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ON THE FIRST EIGENVALUE OF THE STEKLOV
EIGENVALUE PROBLEM FOR THE INFINITY LAPLACIAN

AN LÊ

Abstract. Let Λp
p be the best Sobolev embedding constant of W 1,p(Ω) ↪→

Lp(∂Ω), where Ω is a smooth bounded domain in RN . We prove that as
p→∞ the sequence Λp converges to a constant independent of the shape and

the volume of Ω, namely 1. Moreover, for any sequence of eigenfunctions up

(associated with Λp), normalized by ‖up‖L∞(∂Ω) = 1, there is a subsequence
converging to a limit function u∞ which satisfies, in the viscosity sense, an

∞-Laplacian equation with a boundary condition.

1. Introduction

Let Ω be a bounded domain in RN with smooth boundary. The minimum Λp
p of

the Rayleigh quotient, among all nonzero functions in the Sobolev space W 1,p(Ω),∫
Ω
(|∇u|p + |u|p)dx∫

∂Ω
|u|pdx

is the first eigenvalue of the problem

−∆pu + |u|p−2u = 0, in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u, on ∂Ω.

(1.1)

where ∆pu = div(|∇u|p−2∇u) is the p-Laplacian and ∂/∂ν is the outer normal
derivative along ∂Ω. The eigenvalue problem (1.1) is understood in the weak sense,
i.e, (u, λ) ∈ W 1,p(Ω)× R+ is an eigenpair if∫

Ω

(|∇u|p−2∇u∇v + |u|p−2uv)dx = λ

∫
∂Ω

|u|p−2uvds, ∀v ∈ W 1,p(Ω).

The first eigenvalue Λp
p = λ1 is the best constant of the compact embedding

W 1,p(Ω) ↪→ Lp(∂Ω) and it satisfies

Λp‖u‖Lp(∂Ω) ≤ ‖u‖W 1,p(Ω), ∀u ∈ W 1,p(Ω).
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In this paper we are interested in finding the limit as p →∞ of Λp. Alternatively,
we want to look at the limit of the minimum, as p →∞, of the ratio(∫

Ω
(|∇u|p + |u|p)dx

)1/p(∫
∂Ω

|u|pds
)1/p

.

It is easy to see that for any positive numbers a and b,

lim
p→∞

(ap + bp)1/p = max{a, b}.

Thus we anticipate that

lim
p→∞

(∫
Ω
(|∇u|p + |u|p)dx

)1/p(∫
∂Ω

|u|pdx
)1/p

=
max{‖∇u‖L∞(Ω), ‖u‖L∞(Ω)}

‖u‖L∞(∂Ω)
.

However, the minimization problem, with minimum value equal 1,

inf
u∈W 1,∞(Ω)\{0}

max{‖∇u‖L∞(Ω), ‖u‖L∞(Ω)}
‖u‖L∞(∂Ω)

, (1.2)

has too many solutions. In fact, given a minimizer, we can modify it on any ball
inside the domain to obtain another one. The correct Euler-Lagrange equation
turns out to be

max{u− |∇u|,−∆∞u} = 0, in Ω,

min{|∇u| − u,
∂u

∂ν
} = 0, on ∂Ω,

(1.3)

where the operator

∆∞u =
N∑

i,j=1

∂u

∂xj

∂2u

∂xj∂xi

∂u

∂xi
,

is called the ∞-Laplacian.
It is clear that for each p > 1 the Sobolev embedding constant Λp depends on

the shape and the volume of domain Ω. We show that when passing to the limit, Λp

converges to a constant independent of the domain Ω, namely 1. We can also choose
a sequence of first eigenfunctions up such that the sequence converges uniformly in
Cα(Ω) to a function u∞ that satisfies (1.3) in the viscosity sense. In this case we
say (u∞, 1) is an eigenpair of (1.3). Our main result is:

Theorem 1.1. For the first eigenvalue of (1.1) we have

lim
p→∞

Λ1/p
p = 1.

For each p > 1, let up positive eigenfunction be a positive eigenfunction associated
with Λp

p such that ‖up‖L∞(∂Ω) = 1. Then there exists a sequence pi →∞ such that
upi

→ u∞ in Cα(Ω). The limit u∞ is a solution of (1.3) in the viscosity sense.

To complete the introduction let us mention some recent work on the subject.
In [7, 8] the authors study eigenvalue problem for the ∞-Laplacian with Dirichlet
boundary condition. In [1], Steklov eigenvalues for the ∞-Laplacian are studied
when one considers the limit as p →∞ of the eigenvalue problem

−∆pu = 0,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u, on ∂Ω.

(1.4)
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It is known that the structure of the spectrum of (1.4) is the same as that of
(1.1), see [3] and [12] . However, the first eigenvalue of (1.4) is 1 for any p > 1
with corresponding constant eigenfunctions in W 1,p(Ω); thus, theorem 1.1 is trivial
for problem (1.4). Some arguments and technicalities used here are adapted from
[1, 7, 8].

2. Main Results

We first recall the definition of viscosity solutions. Let

F : RN × R× RN × S(N) → R,

B : RN × R× RN → R,

where S(N) denotes the set of N ×N symmetric matrices.
Consider the boundary-value problem

F (x, u,∇u, D2u) = 0,

B(x, u,∇u) = 0, on ∂Ω.
(2.1)

Definition 2.1. (i) An upper semicontinuous function u is a viscosity subso-
lution of (2.1) if for every φ ∈ C2(Ω) such that u−φ has a strict maximum
at the point x0 ∈ Ω with u(x0) = φ(x0), we have

min{F (x0, φ(x0),∇φ(x0), D2φ(x0)), B(x0, φ(x0),∇φ(x0))} ≤ 0, x0 ∈ ∂Ω,

F (x0, φ(x0),∇φ(x0), D2φ(x0)) ≤ 0, x0 ∈ Ω.

(ii) A lower semicontinuous function u is a viscosity supersolution of (2.1) if for
every φ ∈ C2(Ω) such that u−φ has a strict minimum at the point x0 ∈ Ω
with u(x0) = φ(x0), we have

max{F (x0, φ(x0),∇φ(x0), D2φ(x0)), B(x0, φ(x0),∇φ(x0))} ≥ 0, x0 ∈ ∂Ω,

F (x0, φ(x0),∇φ(x0), D2φ(x0)) ≥ 0, x0 ∈ Ω.

(iii) u is a viscosity solution of (2.1) if it is both a supersolution and a subsolu-
tion.

In (i) and (ii) the extrema at x0 need not be strict. We refer to [4] for the theory
of viscosity solutions in general and [2] for viscosity solutions with general boundary
conditions.

If u is a smooth eigenfunction of (1.1) then by differentiation we get

−|∇u|p−2∆u− (p− 2)|∇u|p−4∆∞u + |u|p−2u = 0, in Ω,

|∇u|p−2 ∂u

∂ν
− λ|u|p−2u = 0, on ∂Ω.

(2.2)

In this case,

F (x, z,X, S) = −|X|p−2trace(S)− (p− 2)|X|p−4〈S ·X, X〉+ |z|p−2z, (2.3)

B(x, z,X) = |X|p−2〈X, ν(x)〉 − λ|z|p−2z. (2.4)

It is known that eigenfunctions of (1.1) are in C1,α(Ω), see [9, 10] and references
therein. Thus it makes sense to talk about viscosity solutions. The following lemma
tells us that an eigenfunction is a viscosity solution.

Lemma 2.2. A weak solution u of (1.1) is a viscosity solution of (2.2).
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Proof. We present the details for the case of supersolutions. Let x0 ∈ Ω and a
function φ ∈ C2(Ω) such that u(x0) = φ(x0) and u(x) > φ(x), for x 6= x0. We want
to show that

−|∇φ|p−2∆φ(x0)− (p− 2)|∇φ|p−4∆∞φ(x0) + |u|p−2u(x0) ≥ 0.

Suppose that this is not the case, then by continuity there exists a radius r > 0
such that, for any x ∈ B(x0, r),

−|∇φ|p−2∆φ(x)− (p− 2)|∇φ|p−4∆∞φ(x) + |u|p−2u(x) < 0.

Set m = inf{u(x)− φ(x) : |x− x0| = r} > 0 and let Φ(x) = φ + 1
2m. The function

Φ satisfies Φ < u on ∂B(x0, r), Φ(x0) > u(x0) and

−div(|∇Φ|p−2∇Φ(x)) + |u|p−2u(x) < 0.

Multiplying by (Φ− u)+ extended by zero outside B(x0, r) we get∫
{Φ>u}

|∇Φ|p−2∇Φ · ∇(Φ− u) +
∫
{Φ>u}

|u|p−2u(Φ− u) < 0. (2.5)

Since u is a weak solution, we have∫
{Φ>u}

|∇u|p−2∇u · ∇(Φ− u) +
∫
{Φ>u}

|u|p−2u(Φ− u) = 0. (2.6)

Subtracting (2.6) from (2.5) we get∫
{Φ>u}

〈|∇Φ|p−2∇Φ− |∇u|p−2∇u,∇(Φ− u)〉 < 0.

We obtain a contradiction since the left hand side is bounded below by

C(N, p)
∫
{Φ>u}

|∇Φ−∇u|p,

where C(N, p) is a positive constant depending only on N and p.
Let λ be the eigenvalue corresponding to u in (1.1). If x0 ∈ ∂Ω and φ is a

function in C2(Ω) such that u(x0) = φ(x0) and u(x) > φ(x), for x 6= x0. We want
to prove that either

−|∇φ|p−2∆φ(x0)− (p− 2)|∇φ|p−4∆∞φ(x0) + |u|p−2u(x0) ≥ 0,

or |∇φ|p−2 ∂φ

∂ν
(x0)− λ|u|p−2u(x0) ≥ 0.

Suppose that this is not the case. We repeat the previous argument to obtain∫
{Φ>u}

|∇Φ|p−2∇Φ · ∇(Φ− u) +
∫
{Φ>u}

|u|p−2u(Φ− u)

< λ

∫
∂Ω∩{Φ>u}

|u|p−2u(Φ− u),

and ∫
{Φ>u}

|∇u|p−2∇u · ∇(Φ− u) +
∫
{Φ>u}

|u|p−2u(Φ− u)

= λ

∫
∂Ω∩{Φ>u}

|u|p−2u(Φ− u),
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which implies ∫
{Φ>u}

〈|∇Φ|p−2∇Φ− |∇u|p−2∇u,∇(Φ− u)〉 < 0.

A contradiction is established. This proves that u is a viscosity supersolution. As
mentioned, the proof that u is a viscosity subsolution is similar. �

We are ready to pass to limit as p → ∞ in the eigenvalue problem. Using the
characterization

Λp = min
u 6=0

(∫
Ω
(|∇u|p + |u|p)dx

)1/p(∫
∂Ω

|u|pds
)1/p

, (2.7)

one can show the following statement.

Lemma 2.3.
lim sup

p→∞
Λp ≤ 1.

Proof. Let v(x) ≡ 1, x ∈ Ω. It follows from (2.7) that

Λp ≤
(∫

Ω
(|∇v|p + |v|p)dx

)1/p(∫
∂Ω

|v|pds
)1/p

=
|Ω|1/p

|∂Ω|1/p
,

where |Ω| is the Lebesgue measure of Ω and |∂Ω| is the boundary measure of ∂Ω.
Letting p →∞ we obtain the inequality. �

We recall from [9, 11] that the first eigenvalue Λp
p is isolated and simple. Any

eigenfunction associated with Λp
p is either positive or negative in Ω and any other

eigenfunction (not associated with Λp
p) has to change sign. We show that Λp con-

verges to Λ∞ = 1, the minimum value of (1.2). We also construct a minimizer of
(1.2).

Proposition 2.4. Given up, a positive eigenfunction of (1.1) associated with eigen-
value Λp

p, normalized by ‖up‖L∞(∂Ω) = 1. Then there exists a sequence pi → ∞
such that upi

→ u∞ in Cα(Ω), where the limit u∞ is a minimizer of (1.2) and

lim
p→∞

Λp = 1.

Proof. Fix q > N . For any p > q, one has( ∫
Ω

|∇up|q + |up|q
)1/q

≤ |Ω|(1/q)−(1/p)
[ ∫

Ω

(|∇up|q + |up|q)p/q
]1/p

≤ (2|Ω|)(1/q)−(1/p)
( ∫

Ω

|∇up|p + |up|p
)1/p

= (2|Ω|)(1/q)−(1/p)Λp

( ∫
∂Ω

|up|p
)1/p

≤ Λp(2|Ω|)(1/q)−(1/p)|∂Ω|1/p.

(2.8)

In above expression, the first inequality follows from a Hölder inequality. We have
used that (a + b)r ≤ 2r−1(ar + br), r ≥ 1, for the second inequality and that
‖up‖L∞(∂Ω) = 1 for the last inequality. We obtain from (2.8) that {up} is uni-
formly bounded in W 1,q(Ω). Thus there exists a subsequence {upi} converging to
a function u∞ weakly in W 1,q(Ω). Since q > N , the Sobolev compact embedding
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W 1,q(Ω) ↪→ Cα(Ω) holds for any α ∈ (0, 1−N/q). It follows that {upi
} converges

to u∞ uniformly in Cα(Ω). Moreover, as pi →∞, (2.8) becomes( ∫
Ω

|∇u∞|q + |u∞|q
)1/q

≤ lim inf
pi→∞

Λpi(2|Ω|)1/q ≤ (2|Ω|)1/q. (2.9)

On the other hand,

max{‖∇u∞‖Lq(Ω), ‖u∞‖Lq(Ω} ≤
( ∫

Ω

|∇u∞|q + |u∞|q
)1/q

(2.10)

Letting q →∞, (2.9) and (2.10) imply that

max{‖∇u∞‖L∞(Ω), ‖u∞‖L∞(Ω)} ≤ 1.

The uniform convergence of {upi
} in Cα(Ω) gives ‖u∞‖L∞(∂Ω) = 1. Hence

‖∇u∞‖L∞(Ω) ≤ 1 and ‖u∞‖L∞(Ω) = ‖u∞‖L∞(∂Ω)) = 1.

Clearly, u∞ is the minimizer of (1.2). Furthermore,

1 = ‖u∞‖L∞(Ω) ≤ lim
q→∞

( ∫
Ω

|∇u∞|q + |u∞|q
)1/q

≤ lim inf
pi→∞

Λpi ,

which together with the lemma 2.3 gives limpi→∞ Λpi = 1. Since the limit holds
for any subsequence, we conclude that limp→∞ Λp = 1. The proof is complete. �

Let us verify that the limit of (2.2) as p →∞ is (1.3) in the viscosity sense. We
obtain from proposition 2.4 that there is a sequence of positive eigenfuntions {upi

}
converging to u∞ uniformly in Ω as pi →∞. Consequently, u∞ ≥ 0 in Ω.

Lemma 2.5. u∞ is a viscosity solution of (1.3), i.e.,

max{u∞ − |∇u∞|,−∆∞u∞} = 0, in Ω,

min{|∇u∞| − u,
∂u∞
∂ν

} = 0, on ∂Ω.
(2.11)

Proof. First let us check

max{u∞ − |∇u∞|,−∆∞u∞} = 0 in Ω. (2.12)

Fix x0 ∈ Ω and a function φ ∈ C2(Ω) such that u∞(x0) = φ(x0) and u(x) < φ(x),
for x 6= x0. Also fix R > 0 such that B(x0, 2R) ⊂ Ω. For 0 < r < R we have

sup{u∞(x)− φ(x) : x ∈ B(x0, R) \B(x0, r)} < 0.

As upi
→ u∞ uniformly in B(x0, R), for i large enough we conclude that

sup{upi
(x)− φ(x) : x ∈ B(x0, R) \B(x0, r)} < upi

(x0)− φ(x0).

Therefore for such indices i, upi − φ attains its maximum at xi ∈ B(x0, r). By
letting r → 0 we obtain xi → x0 as i → ∞. We relabel and denote by {xi} and
{pi} the subsequences {xir

} and {pir
}. Since upi

is a subsolution of (2.2) and
x0 ∈ Ω,

−|∇φ|pi−2∆φ(xi)− (pi − 2)|∇φ|pi−4∆∞φ(xi) + |upi
|pi−2upi

(xi) ≤ 0. (2.13)

• Case 1: φ(x0) = u(x0) > 0. Then upi(xi) > 0 for large i, which implies that
|∇φ(xi)| 6= 0 due to (2.13). Dividing by (pi − 2)|∇φ(xi)|pi−4 we get

−|∇φ|2∆φ(xi)
pi − 2

−∆∞φ(xi) ≤ −
( upi(xi)
|∇φ(xi)|

)pi−4 u3
pi

(xi)
pi − 2

. (2.14)
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Letting pi →∞ we obtain from (2.14) that

φ(x0)
|∇φ(x0)|

≤ 1 and−∆∞φ(xi) ≤ 0.

Therefore,
max{φ(x0)− |∇φ(x0)|,−∆∞φ(x0)} ≤ 0. (2.15)

• Case 2: φ(x0) = u(x0) = 0. If |∇φ(x0)| = 0, then ∆∞φ(x0) = 0 and thus (2.15)
holds. If |∇φ(x0)| 6= 0, then |∇φ(xi)| 6= 0 for i large. We then obtain (2.14). The
right-hand side of (2.14) tends to zero as pi →∞, since

lim
pi→∞

( upi
(xi)

|∇φ(xi)|

)pi−4

= 0.

Thus −∆∞φ(xi) ≤ 0 and (2.15) holds in this case. From both cases we conclude
that u∞ is a viscosity subsolution of (2.12).

Next we claim that u∞ is a viscosity supersolution of (2.12) in Ω. Fix a point
x0 ∈ Ω and a function φ ∈ C2(Ω) such that u∞(x0) = φ(x0) and u∞(x) > φ(x),
for x 6= x0. We will show that

max{φ(x0)− |∇φ(x0)|,−∆∞φ(x0)} ≥ 0. (2.16)

If |∇φ(x0)| = 0, there is nothing to prove. It suffices to show that if |∇φ(x0)| 6= 0
and φ(x0)− |∇φ(x0)| < 0, then −∆∞φ(x0) ≥ 0. We follow the arguments made in
the subsolution case. An analogue of (2.14) is

−|∇φ|2∆φ(xi)
pi − 2

−∆∞φ(xi) ≥ −
( upi

(xi)
|∇φ(xi)|

)pi−4 u3
pi

(xi)
pi − 2

. (2.17)

Since φ(x0) − |∇φ(x0)| < 0, φ(x0)
|∇φ(x0)| ≤ 1. Letting pi → ∞ it follows from (2.17)

that −∆∞φ(x0) ≥ 0 as claimed. Therefore u∞ is a viscosity solution of (2.12).
We next need to check on the boundary using definition 2.1. Fix x0 ∈ ∂Ω and a

function φ ∈ C2(Ω) such that u∞(x0) = φ(x0) and u∞(x) < φ(x), for x 6= x0. Using
the uniform convergence of upi

to u∞ we obtain that upi
− φ attains a maximum

at xi ∈ Ω with xi → x0. If (2.13) holds for infinitely many xi, we use the argument
before to obtain (2.15). Thus we may assume that, for infinitely many xi ∈ ∂Ω,

|∇φ(xi)|pi−2 ∂φ

∂ν
(xi) ≤ Λpi

pi
|upi

|pi−2upi
(xi).

If |∇φ(x0)| = 0, then ∂φ
∂ν (x0) = 0. If |∇φ(x0)| 6= 0 we obtain

∂φ

∂ν
(xi) ≤

(Λpi
|upi

(xi)|
|∇φ(xi)|

)pi−2

Λ2
pi

upi
(xi).

Since Λpi → 1 as pi →∞, we conclude that either

φ(x0)
|∇φ(x0)|

≥ 1 or
∂φ

∂ν
(x0) ≤ 0,

which implies that min{|∇φ(x0)| − φ(x0), ∂φ
∂ν (x0)} ≤ 0. Therefore, at x0,

min
{

max{φ− |∇φ|,−∆∞φ},min{|∇φ| − φ,
∂φ

∂ν
}
}
≤ 0. (2.18)
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Fix x0 ∈ ∂Ω and a function φ ∈ C2(Ω) such that u∞(x0) = φ(x0) and u∞(x) >
φ(x), for x 6= x0. Using the uniform convergence of upi to u∞ we obtain that upi−φ

attains a minimum at xi ∈ Ω with xi → x0. If

−|∇φ|pi−2∆φ(xi)− (pi − 2)|∇φ|pi−4∆∞φ(xi) + |upi
|pi−2upi

(xi) ≥ 0

holds for infinitely many xi, we use the argument before to obtain (2.16). Thus we
may assume that, for infinitely many xi ∈ ∂Ω,

|∇φ(xi)|pi−2 ∂φ

∂ν
(xi) ≥ Λpi

pi
|upi

|pi−2upi
(xi).

If |∇φ(x0)| = 0,
max{φ(x0)− |∇φ|(x0),−∆∞φ(x0)} ≥ 0

If |∇φ(x0)| 6= 0 we obtain

∂φ

∂ν
(xi) ≥

(Λpi
|upi

(xi)|
|∇φ(xi)|

)pi−2

Λ2
pi

upi
(xi).

We conclude that
φ(x0)

|∇φ(x0)|
≥ 1 and

∂φ

∂ν
(x0) ≥ 0,

which implies that min{|∇φ(x0)| − φ(x0), ∂φ
∂ν (x0)} ≥ 0. Therefore, at x0,

max
{

max{φ− |∇φ|,−∆∞φ},min{|∇φ| − φ,
∂φ

∂ν
}
}
≥ 0. (2.19)

Inequalities (2.18) and (2.19) prove that u∞ satisfies in the viscosity sense the
boundary condition of (1.3). �

Theorem 1.1 follows from proposition 2.4 and lemma 2.5.
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