
1

IMPROVING THE SMALL-SAMPLE EFFICIENCY 
 OF A ROBUST CORRELATION MATRIX: A NOTE 

 
Eric Blankmeyer 

 Department of Finance and Economics 
 McCoy College of Business Administration 

 Texas State University – San Marcos 
 San Marcos, TX 78666 

 Email eb01@txstate.edu
April 2007 

 

The correlation matrix plays a central role in multivariate analysis, and for 

Gaussian distributions the maximum-likelihood estimator (mle) is easily 

computed. However, it is quite vulnerable to outlying observations. The challenge 

is to specify a highly robust estimator that has acceptable statistical efficiency 

when the data in fact resemble a multinormal sample.  From Kendall and 

Spearman onward, many researchers have addressed this problem. In recent 

years, interest has focused on high-breakdown, affine-equivariant estimators of 

the correlation matrix, of which the best known is perhaps Rousseeuw’s 

Minimum Covariance Determinant (mcd) estimator (Rousseeuw and Leroy 1987, 

Rousseeuw and Van Driessen 1999). Using resampling algorithms, the mcd 

searches for the correlation matrix with the smallest volume that contains a 

fraction h of the observations (1/2 < h < 1). The tuning parameter h reflects the 

researcher’s belief that the proportion of contaminated data does not exceed 1-h. 

 Louphaa and Rousseeuw (1991), Butler et al (1993), and Croux and 

Haesbroeck (1997, 1999) are among the authors who explore the mcd’s large- 

sample properties and make proposals to enhance its precision at Gaussian 

distributions. However, asymptotic efficiency may be irrelevant to researchers 

who must work with small samples. In fact, Rousseeuw and van Zomeren (1990) 

remark that, for sparse observations, the robust correlation matrix suffers from a 
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“curse of dimensionality”; they recommend at least five observations for each 

variable in the matrix.  

It is known that a pairwise difference transformation (pdt) can improve the 

efficiency of some robust estimators. Given n observations on a random variable 

x, the pdt produces n(n-1)/2 values zij = xi – xj where i < j .  Using the pdt, 

Rousseeuw and Croux (1993) develop robust, highly efficient estimates of scale 

(dispersion), while Croux et al (1994) and Hossjer et al (1994) show that the pdt 

can greatly enhance the asymptotic efficiency of least median of squares 

regression. Stromberg et al (2000) obtain a similar result for robust regression by 

least trimmed squares. The effect of the pdt is to smooth a robust estimator’s 

influence function and also to reduce skewness in the data. (On the other hand, it 

is easily verified that the pdt leaves the Gaussian mle unchanged, so no 

efficiency gain is possible.)  It seems plausible that the pdt can improve the 

mcd’s precision in small samples. This note reports some exploratory simulations 

based on the hypothetical correlation matrix shown below: 

 

Table 1. A correlation matrix 
 in three variables 
 

1.000 0.700 0.200
0.700 1.000 0.300
0.200 0.300 1.000

We use the version of mcd in the S-Plus 6.2 Robust Library (Insightful 

Corporation 2002) with default settings. One thousand samples, each containing 

15 observations, are drawn from a multinormal distribution; and the simulation is 

repeated for samples of 30 observations. Table 2 displays the average 

correlations before transformation (“mcd”) and after the pdt has been applied 

(“mcd-pdt”). It appears that both estimators are biased upward, but the mcd-pdt 

has a smaller bias. Pison et al (2002) investigate the small-sample bias in mcd 

and propose correction factors. 
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Table 2. Multivariate normal simulation of a 
 correlation matrix in three variables 

 
Sample size n:   15       15   30       30 

 mcd mcd-pdt mcd mcd-pdt
Average  r12 0.761     0.734 0.749    0.720 
Average  r13 0.242     0.209 0.224    0.213 
Average  r23 0.344     0.315 0.313    0.309 
 
Variance of z 0.545    0.292 0.306    0.101 
Efficiency of z            
 relative to 1/(n-3) 15.3% 28.6% 12.0% 36.5%

As for efficiency, the sampling distribution of a correlation coefficient is  

truncated and skewed, so we use the well-known Fisher z transformation (the 

arctangent of the correlation coefficient), whose variance in Gaussian samples of 

size n is 1/(n - 3). Table 2 suggests that the pdt almost doubles the efficiency of 

the mcd when n = 15 and triples the efficiency when n = 30. Of course, these 

simulations are very limited in scope; it will be necessary to explore other 

correlation matrices, more variables, and different sample sizes. In addition, the 

pdt should be applied to contaminated samples; and alternatives to the mcd 

should be examined (e. g., Maronna and Yohai 1995).  
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