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NONCLASSICAL SHOCK WAVES OF CONSERVATION LAWS:
FLUX FUNCTION HAVING TWO INFLECTION POINTS

HO DAC NGHIA, MAI DUC THANH

Abstract. We consider the Riemann problem for non-genuinely nonlinear

conservation laws where the flux function admits two inflection points. This
is a simplification of van der Waals fluid pressure, which can be seen as a

function of the specific volume for a specific entropy at which the system

lacks the non-genuine nonlinearity. Corresponding to each inflection point, A
nonclassical Riemann solver can be uniquely constructed. Furthermore, two

kinetic relations can be used to construct nonclassical Riemann solutions.

1. Introduction

The theory of nonclassical solutions of hyperbolic systems of conservation laws
has been introduced by LeFloch and has been developed for many years. Nonclas-
sical shocks may appear when the system fails to be genuinely nonlinear. Briefly,
nonclassical shock waves violate the standard the Oleinik criterion [14] in the scalar
case and the Lax shock inequalities [6] and the Liu entropy conditions [13] for the
case of hyperbolic systems of conservation laws. To select nonclassical shock waves,
by a standard way, one follows the strategy proposed by Abeyaratne-Knowles [1, 2],
and by Hayes and LeFloch [3, 4, 8] to describe the whole family of nonclassical Rie-
mann solutions and then to use a kinetic relation to determine the relevant physical
solution. For material on this subject, see the text book [8]. Related works can be
found in [7, 3, 4, 8, 9, 10, 11, 12, 5, 16, 18, 15, 20, 19, 17] and the references therein.

In this paper, we consider the Riemann problem for conservation laws, where
the flux-function has two inflection points

∂tu+ ∂xf(u) = 0,

u(x, 0) =

{
ul for x < 0,
ur for x > 0.

(1.1)

Here, ul and ur are constants.
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The flux function f is a twice differentiable function of u ∈ R and is assumed to
satisfy the following hypotheses

f ′′(u) > 0 for u ∈ (−∞, 0) ∪ (1,+∞),

f ′′(u) < 0 for u ∈ (0, 1),

lim
u→±∞

f ′(u) = +∞, lim
u→±∞

f(u) = +∞.

(1.2)

Thus the flux f has two inflection points at u = 0 and u = 1. The specification
of these two values does not restrict the scope of consideration of this paper. By
assumption, the function f is clearly convex in each interval (−∞, 0) and (1,+∞),
and is concave in the interval (0, 1). To specify these intervals, we denote

EI := (−∞, 0),

EII := [0, 1],

EIII := (1,+∞),
(1.3)

and call each of them a phase.
In studying nonclassical shocks, one is concerned at the break of the genuine

nonlinearity of the system on a manifold. In many situations, this manifold may
be reduced to be simply an inflection point of a flux function in appropriate coordi-
nates. In several models such as the Van der Waals fluids, non-genuine nonlinearity
may occur not only on one, but on two manifolds of phase domains.

In the work of LeFloch-Thanh [9], the presence of two inflection points in the
flux function was studied. The nonclassical Riemann solver was constructed by
restricting only on the first kinetic function, though we may have several kinetic
functions on a Hugoniot curve. More clearly, following the strategy proposed by
Abeyaratne-Knowles [1, 2], and by Hayes-LeFloch [3, 4, 8], the authors define the
entropy dissipation to describe the whole set of nonclassical waves. It appears that
the entropy dissipation may vanish three times. And this would lead to the defi-
nition of two kinetic functions. The domain as well as the range of each of these
two kinetic function contains one inflection point and its values are symmetric to
the variable values with respect to the inflection point. The difficulty to use the
second kinetic function is that the shock speed involving the second kinetic function
may be less than that of the shock speed using the first kinetic function. Conse-
quently, the Riemann solution may not be well-defined when two kinetic functions
are to be involved. In LeFloch-Thanh [12], phase transitions were observed. All
nonclassical shock waves satisfying a single entropy condition that entropy should
be nondecreasing in time were also characterized.

This paper will deal with the case of two apparent kinetic functions, continuing
works in [9, 12]. For simplicity, we restrict our attention to the scalar case where
we have a single conservation law. The flux function will have the shape of the
pressure of van der Waals fluids in the region where it admits two inflection points.
Accordingly, we may have two kinetic functions, and we will consider when we can
use each of them, or both. Moreover, as the entropy dissipation selects nonclassical
waves like the rule of equal areas, we will define the kinetic functions relying on the
rule of equal areas to set up their domains. To select a unique solution, however,
we have to restrict the range of kinetic functions such that the chord connecting
two states of a nonclassical shock cuts the graph of the flux function at only one
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point. The construction may be more visual in some sense. We note that a similar
way was constructed for classical shock waves by Oleinik [14].

We note that the existence of nonclassical shock waves is related to the existence
of travelling waves of a regularized problem for diffusive-dispersive models, when
the diffusive and dispersive coefficients tend to zero, see [8].

This paper is organized as follows. In Section 2 we will investigate the properties
of tangents to the graph of f , and then we review the Oleinik construction of the
entropy solution. Section 3 will be devoted to selecting non-classical Riemann
solutions relying on one kinetic relation corresponding to each inflection point. In
Section 4 we will give a Riemann solver which involves two kinetic relations.

2. Basic Properties and Oleinik Construction

In this section, first we describe several essential properties of the flux function
f . Tangents to the graph of f will be used to select nonclassical shocks instead
of an entropy dissipation. Second, we review the Oleinik construction for classical
entropy solutions of the problem (1.1).

Recall that a discontinuity of (1.1) the form

u(x, t) =

{
ul for x < st,

ur for x > st,
(2.1)

connecting the left-hand state ul and the right-hand state ur with shock speed s,
is called a classical shock of (1.1) if it satisfies the Rankine-Hugoniot relations

−s(ur − ul) + (f(ur)− f(ul)) = 0, (2.2)

and the Oleinik entropy criterion

f(u)− f(ul)
u− ul

≥ f(ur)− f(ul)
ur − ul

, for u between ur and ul. (2.3)

The condition (2.3) means that the graph of f is lying below (above) the line
connecting ul to ur when ur < ul (respectively ur > ul).

Under the hypotheses (1.2), the tangents at 1 and 0 cut the graph of the flux
function f at points a and b, respectively, with a < 0 < 1 < b; see Figure 2.1. From
each u ∈ (a, b), one can draw two distinct tangents to the graph of f . Denote these
tangent points by φ\(u) and ψ\(u) with

φ\(u) < ψ\(u).

In other words,

f ′
(
φ\(u)

)
=
f(u)− f

(
φ\(u)

)
u− φ\(u)

,

f ′
(
ψ\(u)

)
=
f(u)− f

(
ψ\(u)

)
u− ψ\(u)

.

(2.4)

To the end points of the interval under consideration a, b we set

φ\(a) = ψ\(a) = 1 and φ\(b) = ψ\(b) = 0.

There are no tangents to the graph of f from any point outside the interval [a, b].
Besides, the values u and ψ\(u) always lie on different sides with respect to u = 1,
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Figure 1. Flux function having two inflection points

and the values u and φ\(u) always lie on different sides with respect to u = 0, i.e.

φ\(u)u < 0 for u 6= 0, φ\(0) = 0,

(ψ\(u)− 1)(u− 1) < 0 for u 6= 1, ψ\(1) = 1.
(2.5)

There are two points c < d such that the epigraph of the function f̃ defined by

f̃(u) =

{
f(u), if u ∈ (−∞, c] ∪ [d,+∞),
affine on [c, d],

(2.6)

coincides with the convex hull of that of the function f . Geometrically, the tangents
to the graph of f from c and d coincide. Such points c and d are unique. More
clearly,

f ′(c) =
f(d)− f(c)

d− c
= f ′(d).

It is not difficult to check that

Proposition 2.1. The function ψ\ is increasing for u ∈ [a, c] and decreasing for
u ∈ [c, b]. The function φ\ is decreasing for u ∈ [a, d] and increasing for u ∈ [d, b].
Moreover φ\ maps [a, b] onto [c, 1], while ψ\ maps [a, b] onto [0, d].

Inversely, the tangent from a point u ∈ (c, d) cuts the graph of f at exactly two
distinct points, denoted by φ−\(v) and ψ−\(v), with the convention

φ−\(v) < ψ−\(v).

The definition can be extended to the end values c and d as

φ−\(c) = d, and ψ−\(d) = c.

The functions φ−\ and ψ−\ in the interval [c, d] are not monotone and therefore
not one-to-one. However, they are monotone for u ∈ [0, 1]. Restricting considera-
tion to the interval [0, 1], they are the inverses of the functions φ\ and ψ\ defined
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above, respectively:

φ\ ◦ φ−\ = ψ\ ◦ ψ−\ = id on the interval [0, 1]. (2.7)

Since we want to discuss the tangent functions in the whole interval [a, b], we
can assume for the global purpose

φ−\(u) = ψ−\(u) = +∞, u ∈ [a, c),

φ−\(u) = ψ−\(u) = −∞, u ∈ (d, b].
(2.8)

We were dealing with tangent points and points from which we can draw tangents
to the graph. Between these two kinds of points, there is another kind of points
that will be concerned to the dynamics of phase transition.

The following proposition can easily be verified.

Proposition 2.2. Given a point u ∈ (a, b), any line between u and another point
v ∈ (φ\(u), ψ\(u)) cuts the graph of f at exactly four points of which u and v are the
two. Denote such the remaining two points by φ](u, v) and ψ](u, v), with convention

φ](u, v) < ψ](u, v).

For the limit cases, we set

φ](u, v = φ\(u)) := φ\(u) = v,

ψ](u, v = ψ\(u)) := ψ\(u) = v.

By definition, the values φ](u, v) and ψ](u, v) satisfy

f(φ](u, v))− f(u)
φ](u, v)− u

=
f(ψ](u, v))− f(u)

ψ](u, v)− u
=
f(v))− f(u)

v − u
. (2.9)

Next, we turn to the Oleinik construction [14] of the entropy solution of the
problem (1.1). The following lemma characterizes shock waves that are admissible
by the Oleinik criterion.

Lemma 2.3 (Classical shocks). Given a left-hand state u0, the set of right-hand
states u1 attainable by a classical shock is given by

(i) If u0 ∈ (−∞, c) ∪ (b,+∞), then u1 ∈ (−∞, u0].
(ii) If u0 ∈ [c, 0], then u1 ∈ (−∞, u0] ∪ [φ−\(u0), ψ\(u0)].
(iii) If u0 ∈ (0, 1), then u1 ∈ (−∞, φ−\(u0)] ∪ [u0, ψ

\(u0)].
(iv) If u0 ∈ [1, b], then u1 ∈ (−∞, φ−\(ψ\(u0))] ∪ [ψ\(u0), u0].

So we are at the position to construct the classical Riemann solutions. First, for
ul ∈ (−∞, c), Lemma 2.2 asserts that all the states ur ∈ (−∞, ul) can be reached
by a single shock. States ur ∈ (ul, 0] can be arrived at by a single rarefaction
wave, since the characteristic speed is increasing when we move from ul to ur. If
ur ∈ [0, d], we have φ\(ur) ∈ [c, 0]. So the solution is a composite of a rarefaction
wave from ul to φ\(ur) followed by a shock from φ\(ur) to ur. If ur > d, the
solution is combined from three elementary waves: a rarefaction wave from ul to c,
followed by a shock from c to d, and then followed by a rarefaction wave from d to
ur.

Second, we deal with ul ∈ [c, 0]. If ur ∈ (−∞, ul), the Riemann solution is a
single shock. A single rarefaction wave can connect ul with the states ur ∈ (ul, 0].
If ur ∈ [0, φ−\(ul)], then φ\(ur) ∈ [ul, 0] and the Riemann solution is composed
by a rarefaction wave from ul to φ\(ur) followed by a shock from φ\(ur) to ur. A
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single shock from ul can reach ur ∈ (φ−\(ul), ψ\(ul]. Finally, if ur > ψ\(ul), the
solution is a composite of a shock from ul to ψ\(ul) followed with a rarefaction wave
connecting ψ\(ul) to ur.

Third, ul ∈ (0, 1). A single shock from ul can reach ur ∈ (−∞, φ−\(ul)] ∪
[ul, ψ

\(ul)]. A single rarefaction wave from ul can connect to ur ∈ [0, ul]. If
ur ∈ (φ−\(ul), 0), then there exists a unique value u∗ ∈ (0, ul) such that φ−\(u∗) =
ur. That is u∗ = φ\(ur). In that case the Riemann solution is a rarefaction wave
connecting ul to u∗ followed by a shock connecting u∗ to ur. Finally, if ur > ψ\(ul),
the Riemann solution is a shock connecting ul to ψ\(ul) followed with a rarefaction
wave from ψ\(ul) to ur.

Fourth, assume that ul ∈ [1, b]. A single shock from ul can reach

ur ∈ (−∞, φ−\(ψ\(ul))] ∪ [ψ\(ul), ul].

A single rarefaction wave from ul can connect to ur ∈ [ul,+∞). If ur ∈ [0, ψ\(ul)),
the Riemann solution is combined by a shock from ul to ψ\(ul) followed by a
rarefaction from ψ\(ul) to ur. If ur ∈ (φ−\(ψ\(ul)), a), the solution contained three
waves: a shock from ul to ψ\(ul), followed by a rarefaction from ψ\(ul) to φ\(ur),
and followed by a shock connecting φ\(ur) to ur.

Finally, if ul ∈ (b,+∞), then the Riemann solution is simply a shock if ur < ul

and a rarefaction wave otherwise. We arrive at the following conclusion.

Theorem 2.4 (Classical Riemann solver). Under the assumption (1.2), the Rie-
mann problem (1.1) admits a unique classical solution in the class of piecewise
smooth self-similar functions made of rarefaction fans and shock waves satisfying
the Oleinik entropy criterion. This solution depends continuously on the Riemann
data.

3. Non-classical Riemann Solvers Using One Kinetic Relation

In this section, we will present two non-classical Riemann solvers. The first one
relying on non-classical jumps (see definition below) crossing the first inflection
point u = 0. This solver can be proved to depend continuously on Riemann data.
The second one using non-classical jumps crossing the second inflection point u = 1.
The Riemann solver, however, does not depend continuouly on Riemann data.

3.1. Riemann solver relying on jumps crossing the inflection point u = 0.
A function φ : [a, b] → [a, b] is called a kinetic relation corresponding to the inflection
point u = 0 if there exists a point p ∈ (a, c) such that in Ω0 := [p, 1] 3 0, the
following conditions are satisfied (see Figure 2):

(A1) The function φ is monotone decreasing in Ω0, φ(u) ≤ ψ\(u), φ(u) lies
between φ\(u) and φ−\(u), for u ∈ Ω0 in the sense that

φ−\(u) > φ(u) > φ\(u), ∀u < 0,

φ−\(u) < φ(u) < φ\(u), ∀u > 0,

φ(0) = φ\(0) = φ−\(0) = 0;

(3.1)

(A2) The contraction property

|φ ◦ φ(u)| < |u|, ∀u ∈ Ω0, u 6= 0. (3.2)
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(A3) Conditions at limits:

φ(p) = ψ\(p), φ(1) = a. (3.3)

u 

φ(u) 

p 

• 

• 

f(u) 

u 

• 

Figure 2. Kinetic Function φ

For an arbitrary non-classical shock between a given left-hand state u0 and a
given right-hand state u1, kinetic relation is the requirement that

u1 = φ(u0). (3.4)

To select non-classical shock rather than classical ones, we postulate that

(C) Non-classical shocks are preferred whenever available.

We now solve the Riemann problem relying on this condition . The construction
in this section is similar to the non-classical one for the 1-wave family in [9], but
we want to recall it here for completeness.

Suppose first that ul ∈ (−∞, p). Any point ur ∈ (−∞, ul) can be achieved by
a single classical shock. Any point ur ∈ (ul, 0] is attainable by a single rarefaction
wave. If ur ∈ (0, φ(p)], there exists a unique point u∗ ∈ [p, 0) such that ur = φ(u∗).
The solution is then the composite of a rarefaction wave from ul to u∗ followed by a
nonclassical shock from u∗ to ur. If ur ∈ (φ(p),+∞), the solution consists of three
parts: A rarefaction wave from ul to p followed by a nonclassical shock from p to
φ(p), followed by a rarefaction wave from φ(p) to ur.

Second, suppose that ul ∈ [p, 0). A point ur ∈ (−∞, ul) can be attained by a
single classical shock. A point ur ∈ (ul, 0] is attainable by a single rarefaction wave.
If ur ∈ (0, φ(ul)], there exists a unique point u∗ ∈ [ul, a) such that ur = φ(u∗). The
solution is then the composite of the rarefaction wave from ul to u∗ followed by a
nonclassical shock from u∗ to ur. If ur ∈ (φ(ul), φ(p)], there exists a unique point
u∗ ∈ [p, ul) such that ur = φ(u∗). For this construction to make sense, one must
here check whether the classical shock from ul to u∗ is slower than the nonclassical
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shock from u∗ to ur. So, consider the function

f̃(v) :=

{
f(v), if v ∈ (−∞, ul],
f(ul) + f ′(ul)(v − ul), if v ∈ (ul,+∞).

(3.5)

If ur ∈ (φ(ul), η), where
η := min{φ(p), φ−\(ul)},

the function f̃ is convex on (−∞,+∞) and the points u∗ and ur belong to its
epigraph. Therefore, the line segment connecting u∗ and ur should lie above the
graph of f̃ in the interval (u∗, ur) 3 ul. That is to say

f̃(ul)− f̃(u∗)
ul − u∗

<
f(ur)− f(u∗)

ur − u∗
,

i.e.,
s(ul, u

∗) < s(u∗, ur). (3.6)

The latter inequality means precisely that the classical shock from ul to u∗ can be
followed by the nonclassical shock from u∗ to ur.

In the latter construction, if ul ∈ [p, φ\(φ(p)), then

η = φ(p),

and we have completed the argument when ur ∈ (φ(ul), φ(p)). For ur ∈ (φ(p),
+ ∞), the Riemann solution consists of three parts: A classical shock from ul to
p followed by a nonclassical shock from p to φ(p), followed by a rarefaction wave
from φ(p) to ur.

Suppose next that ul ∈ [φ\(φ(p)), 0), then

η = φ−\(ul).

If ur ∈ [φ−\(ul), φ(p)], the solution can be a classical shock connecting ul to u∗

followed by a nonclassical shock from u∗ to ur provided (3.6) holds, or else a single
classical shock. For ur ∈ (φ(p),+∞), if

s(ul, p) < s(p, φ(p)), (3.7)

then the solution consists of a classical shock from ul to p, followed by a nonclassical
shock from p to φ(p), then followed by a rarefaction wave. If else, (3.7) fails, then
the solution is either a classical shock from ul to ur if ur ≤ ψ\(ul) or a classical
shock from ul to ψ\(ul) followed by a rarefaction wave from ψ\(ul) to ur if else.

Third, suppose that ul ∈ [0, 1). The points ur ∈ [0,+∞) are reached by the
classical construction described in Section 2. If ur ∈ [φ(ul), 0], there exists a unique
point u∗ ∈ [0, ul] such that ur = φ(u∗). The solution then consists of a rarefaction
wave connecting ul to u∗ followed by a nonclassical shock from u∗ to ur. If ur ∈
[φ−\(ul), φ(ul)), then there exists a unique point u∗ ∈ [ul, 1) such that ur = φ(u∗).
Since both ul and u∗ belong to [0, 1] and the function f is concave in this interval,
we have

f(ul)− f(u∗)
ul − u∗

<
f(φ(ul))− f(u∗)

φ(ul)− u∗
<
f(ur)− f(u∗)

ur − u∗
.

This means the shock speed s(ul, u∗) is less than the shock speed s(u∗, ur). There-
fore the Riemann solution can be a classical shock from ul to u∗ followed by a
nonclassical shock from u∗ to ur. If ur ∈ (a, φ−\(ul)], there exists a unique point
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u∗ ∈ [ul, 1) such that ur = φ(u∗). The solution then consists of a classical shock
from ul to u∗ followed by a nonclassical shock from u∗ to ur provided

s(ul, u
∗) < s(u∗, ur),

or else a single classical shock. The states ur ∈ (−∞, a] are reached by single
classical shocks.

Finally, when ul ∈ [1,+∞), we also use the classical construction described in
Section 2.

Denote by φ−1 : [a, φ(p)] → [p, 1], the inverse of the kinetic function φ, which is
also a monotone decreasing mapping.

The arguments presented above are summarized as follows:

Theorem 3.1 (Construction of the Riemann solver). Given the left-hand and the
right-hand states ul, ur. Under the hypotheses (1.2), we have the following descrip-
tion of the Riemann solver that can be involved in a combination of rarefaction fans
and shock waves, satisfying the kinetic relation (3.4) (for nonclassical shocks), and
the condition (C):
Case 1: ul ∈ (−∞, p).

• If ur ∈ (−∞, ul), the solution is a single classical shock.
• If ur ∈ (ul, 0], the solution is a single rarefaction wave.
• If ur ∈ (0, φ(p)], the solution is the composite of a rarefaction wave con-

necting ul to u∗ := φ−1(ur) followed by a nonclassical shock from u∗ to
ur.

• If ur ∈ (φ(p),+∞), the solution consists of three parts: A rarefaction wave
from ul to e followed by a nonclassical shock from e to φ(p), followed by a
rarefaction wave from φ(p) to ur.

Case 2: ul ∈ [p, 0).
• If ur ∈ (−∞, ul), the solution is a single classical shock.
• If ur ∈ (ul, 0], the solution is a single rarefaction wave.
• If ur ∈ (0, φ(ul)], the solution is the composite of a rarefaction wave from
ul to u∗ := φ−1(ur) followed by a nonclassical shock from u∗ to ur.

• If ul ∈ [p, φ\(φ(p))) and ur ∈ (φ(ul), φ(p)), then the solution consists of a
classical shock from ul to u∗ := φ−1(ur) followed by a nonclassical shock
from u∗ to ur.

• If ul ∈ [p, φ\(φ(p))) and ur ∈ (φ(p),+∞), the solution consists of three
waves: A classical shock from ul to e followed by a nonclassical shock from
e to φ(p), followed by a rarefaction wave from φ(p) to ur.

• If ul ∈ [φ\(φ(p)), 0) and ur ∈ (φ(ul), φ−\(ul)), the solution consists of the
classical shock from ul to u∗ := φ−1(ur) followed by a nonclassical shock
from u∗ to ur.

• If ul ∈ [φ\(φ(p)), 0) and ur ∈ [φ−\(ul), ψ\(ul)], the solution is a classical
shock from ul to u∗ followed by a nonclassical shock from u∗ to ur if (3.5)
holds, or else a single classical shock.

• If ul ∈ [φ\(φ(p)), 0) and ur ∈ (ψ\(ul),+∞), the solution consists of a
classical shock from ul to ψ\(ul) followed by a rarefaction wave from ψ\(ul)
to ur.

Case 3: ul ∈ [0, 1).
• If ur ∈ [0,+∞), the solution is classical (Section 2).
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• If ur ∈ [φ(ul), 0], the solution consists of the rarefaction wave from ul to
u∗ := φ−1(ur) followed by a nonclassical shock from u∗ to ur.

• If ur ∈ [φ−\(ul), φ(ul)), the solution consists of a classical shock from ul to
u∗ := φ−1(ur) followed by a nonclassical shock from u∗ to ur.

• If ur ∈ [φ−\(ul), a), the solution consists of the classical shock wave from
ul to u∗ := φ(ur) followed by a nonclassical shock from u∗ to ur provided
(4.3) holds, or else a single classical shock.

• The states ur ∈ (−∞, a] are reached by a single classical shock.
Case 4: ul ∈ [1,+∞). The construction is classical (Section 2).

3.2. Riemann solver relying on jumps crossing the inflection point u = 1.
In this subsection, we will provide a Riemann solver using only non-classical shocks
crossing through the inflection point u = 1. As the behavior of the graph of f
changes across this point from concavity to convexity, another condition will be
placed instead of the convex-concave condition (3.2).

A function ψ : [a, b] → [a, b] is called a kinetic function corresponding to the
inflection point u = 1 if there are points θ ∈ (c, 0), q ∈ (d, b) such that in Ω1 :=
[θ, q] 3 1, the following conditions are satisfied (see Figure 3):

(B1) The function ψ is monotone decreasing in Ω1, ψ(u) ≥ φ\(u), ψ(u) lies
between ψ\(u) and ψ−\(u),∀u ∈ Ω1 in the sense that

ψ−\(u) > ψ(u) > ψ\(u), ∀u < 1,

ψ−\(u) < ψ(u) < ψ\(u), ∀u > 1,

ψ(1) = ψ\(1) = ψ−\(1) = 1;

(3.8)

(B2) The contraction property

|ψ ◦ ψ(u)− 1| < |u− 1|, ∀u ∈ Ω1, u 6= 1. (3.9)

(B3) Conditions at limits:

ψ(q) = φ\(q), φ\(ψ(θ)) = θ. (3.10)

For any non-classical shock between a given left-hand state u0 and a given right-
hand state u1, kinetic relation for the coming construction is the requirement that

u1 = ψ(u0). (3.11)
So, we begin to construct the Riemann solver, postulating the condition (C) in

the previous subsection.
Assume first that ul ∈ (−∞, θ). A single classical shock can jump to any ur ∈

(−∞, ul). A single rarefaction wave can connect ul from the left to any ur ∈ [ul, 0]
from the right. If ur ∈ (0, φ−\(θ)], then φ\(ur) ∈ [θ, 0), the solution thus is a
rarefaction wave from ul to φ\(ur) followed by a classical shock from φ\(ur to ur.
If now ur ∈ (φ−\(θ), ψ(θ)), the solution consists of a rarefaction wave from ul to θ,
followed by a non-classical shock from θ to ψ(θ), then followed by a classical shock
from ψ(θ) to ur. If ur ∈ [ψ(θ),+∞), the solution is a composite of a rarefaction
wave from ul to θ, followed by a non-classical shock from θ to ψ(θ), then followed
by a rareffaction wave from ψ(θ) to ur.

Second, let ul ∈ [θ, 0]. A single classical shock can jump to any ur ∈ (−∞, ul). A
single rarefaction wave can connect ul to any ur ∈ [ul, 0]. If ur ∈ (0, φ−\(ul)], then
φ\(ur) ∈ [ul, 0), and therefore the solution is a rarefaction wave from ul to φ\(ur)



EJDE-2006/149 NONCLASSICAL SHOCK WAVES 11

u 

ψ(u) 

q 

• 
• 

f(u) 

u 

• 

Figure 3. Kinetic Function ψ

followed by a classical shock from φ\(ur) to ur. If now ur ∈ (φ−\(ul), ψ](ul, ψ(ul))],
the solution is a single classical shock. If ur ∈ (ψ](ul, ψ(ul)), ψ(ul)), then the
solution is a non-classical shock from ul to ψ(ul) followed by a classical shock from
ψ(ul) to ur. If ur ∈ [ψ(ul),+∞), then the solution is composed from a non-classical
shock from ul to ψ(ul) followed by a rarefaction wave from ψ(ul) to ur.

Third, let ul ∈ (0, 1). A single classical shock can arrive at any ur ∈ (−∞,
φ−\(ul)]. If ur ∈ (φ−\(ul), 0], then φ\(ur) ∈ [0, ul). The solution is thus a rarefac-
tion wave from ul to φ\(ur) attached by a classical shock from φ\(ur) to ur. If
ur ∈ (0, ul], the solution is a single rarefaction wave. A single classical shock can
arrive at any ur ∈ (ul, ψ

](ul, ψ(ul))]. If ur ∈ (ψ](ul, ψ(ul)), ψ(ul)), then the solu-
tion is a composite of a non-classical shock from ul to ψ(ul) followed by a classical
shock from ψ(ul) to ur. If ur ∈ [ψ(ul),+∞), then the solution is combined from a
non-classical shock from ul to ψ(ul) followed by a rarefaction wave from ψ(ul) to
ur.

Fourth, assume ul ∈ (1, ψ−1(0)). By the monotony, we have

ψ(ul) > 0.

If ur ∈ [ul,+∞), then the solution is a rarefaction wave. A single classical shock
can jump from ul to any ur ∈ [ψ](ul, ψ(ul)), ul).
If ur ∈ (ψ(ul), ψ](ul, ψ(ul))), then the solution is combined from two shocks: a
non-classical shock from ul to ψ(ul) followed by a classical one from ψ(ul) to ur.
If ur ∈ [0, ψ(ul)], then the solution is a non-classical shock from ul to ψ(ul) fol-
lowed by a rarefaction wave from ψ(ul) to ur. If now ur ∈ (φ−\(ψ(ul)), 0), then
φ\(ur) ∈ (0, ψ(ul)). The solution is thus a non-classical shock from ul to ψ(ul)
followed by a rarefaction wave from ψ(ul) to φ\(ur) attached by a classical shock
from φ\(ur) to ur. If ur ∈ [ψ](ul, ψ(ul)), φ−\(ψ(ul))], then the solution is a non-
classical shock from ul to ψ(ul) followed by a classical shock from ψ(ul) to ur. If
ur ∈ (−∞, ψ](ul, ψ(ul))), then no non-classical shocks can be involved in the con-
struction. We thus use the classical construction in Section 2 in this interval. The
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discontinuity in this regime is

ul ∈ (1, ψ−1(0)), ur = ψ](ul, ψ(ul)). (3.12)

Fifth, let ul ∈ [ψ−1(0), q]. The monotony of ψ yields

ψ(ul) ≤ 0.

A single rarefaction wave can connect ul to any ur ∈ [ul,+∞). A single classical
shock can jump from ul to any ur ∈ [ψ](ul, ψ(ul)), ul).

If ur ∈ [φ−\(ψ(ul)), ψ](ul, ψ(ul))), then the solution is combined from two
shocks: a non-classical shock from ul to ψ(ul) followed by a classical one from
ψ(ul) to ur. If ur ∈ (0, φ−\(ψ(ul))), then φ\(ur) ∈ (ψ(ul), 0). The solution is there-
fore a composite of a non-classical shock from ul to ψ(ul) followed by a rarefaction
wave from ψ(ul) to φ\(ur), then attached by a classical shock from φ\(ur) to ur. If
ur ∈ [ψ(ul), 0], then the solution is a non-classical shock from ul to ψ(ul) followed
by a rarefaction wave from ψ(ul) to ur. If ur ∈ [ψ](ul, ψ(ul)), ψ(ul)), then the
solution is a non-classical shock from ul to ψ(ul) followed by a classical one from
ψ(ul) to ur. If ur ∈ (−∞, ψ](ul, ψ(ul))), then there are no non-classical shocks and
we have a situation similar to the previous one. In this construction, we have a dis-
continuity sharing the same formula for ur but ul ∈ [ψ−1(0), q] instead. Combining
this argument and (3.16), we obtain the curve of discontinuity of the construction

{ul ∈ (1, q], ur = ψ](ul, ψ(ul))}. (3.13)

Finally, let ul ∈ (q,+∞). In this case we have no non-classical shocks and we
use the classical construction as well.

The above arguments can be summarized in the following theorem

Theorem 3.2. Given the initial Riemann data (ul, ur). Under the hypotheses (1.2)
and the condition (C), the Riemann problem (1.1) admits a unique self-similar solu-
tion made of rarefaction waves, classical shocks and non-classical shocks satisfying
the kinetic relation (3.15). The Riemann solver is described by
Case 1: ul ∈ (−∞, θ).

• If ur ∈ (−∞, ul), the solution is a single classical shock.
• If ur ∈ [ul, 0], the solution is a single rarefaction wave.
• If ur ∈ (0, φ−\(θ)], the solution is a rarefaction wave from ul to φ\(ur)

followed by a classical shock from φ\(ur to ur.
• If ur ∈ (φ−\(θ), ψ(θ)), the solution is a composite of a rarefaction wave

from ul to θ, followed by a non-classical shock from θ to ψ(θ), followed by
a classical shock from ψ(θ) to ur. If ur ∈ [ψ(θ),+∞), the solution is a
rarefaction wave from ul to θ, followed by a non-classical shock from θ to
ψ(θ), then followed by a rarefaction wave from ψ(θ) to ur.

Case 2: ul ∈ [θ, 0].

• If ur ∈ (−∞, ul), then the solution is a classical shock.
• If ur ∈ [ul, 0], the solution is a single rarefaction wave.
• If ur ∈ (0, φ−\(ul)], the solution is a rarefaction wave from ul to φ\(ur)

followed by a classical shock from φ\(ur) to ur.
• If ur ∈ (φ−\(ul), ψ](ul, ψ(ul))], the solution is a single classical shock.
• If ur ∈ (ψ](ul, ψ(ul)), ψ(ul)), the solution is a non-classical shock from ul

to ψ(ul) followed by a classical shock from ψ(ul) to ur.
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• If ur ∈ [ψ(ul),+∞), the solution is a composite of a non-classical shock
from ul to ψ(ul) followed by a rarefaction wave from ψ(ul) to ur.

Case 3: ul ∈ (0, 1). If ur ∈ (−∞, φ−\(ul)], the solution is a classical shock.
• If ur ∈ (φ−\(ul), 0], the solution is a rarefaction wave from ul to φ\(ur)

attached by a classical shock from φ\(ur) to ur.
• If ur ∈ (0, ul], the solution is a single rarefaction wave.
• If ur ∈ (ul, ψ

](ul, ψ(ul))], the solution is a single classical shock.
• If ur ∈ (ψ](ul, ψ(ul)), ψ(ul)), the solution is a composite of a non-classical

shock from ul to ψ(ul) followed by a classical shock from ψ(ul) to ur.
• If ur ∈ [ψ(ul),+∞), then the solution is a composite of a non-classical

shock from ul to ψ(ul) followed by a rarefaction wave from ψ(ul) to ur.
Case 4: ul ∈ (1, ψ−1(0)).

• If ur ∈ [ul,+∞), the solution is a rarefaction wave.
• If ur ∈ [ψ](ul, ψ(ul)), ul), the solution is a single classical shock.
• If ur ∈ (ψ(ul), ψ](ul, ψ(ul))), the solution is a composite of two shocks: a

non-classical shock from ul to ψ(ul) followed by a classical one from ψ(ul)
to ur.

• If ur ∈ [0, ψ(ul)], the solution is a non-classical shock from ul to ψ(ul)
followed by a rarefaction wave from ψ(ul) to ur.

• If ur ∈ (φ−\(ψ(ul)), 0), the solution is a composite of a non-classical shock
from ul to ψ(ul) followed by a rarefaction wave from ψ(ul) to φ\(ur) at-
tached by a classical shock from φ\(ur) to ur.

• If ur ∈ [ψ](ul, ψ(ul)), φ−\(ψ(ul))], the solution is a non-classical shock from
ul to ψ(ul) followed by a classical shock from ψ(ul) to ur.

• If ur ∈ (−∞, ψ](ul, ψ(ul))), then the construction is classical (Section 2).
Case 5: ul ∈ [ψ−1(0), q].

• If ur ∈ [ul,+∞), the solution is a single rarefaction wave.
• If ur ∈ [ψ](ul, ψ(ul)), ul), the solution is a single classical shock.
• If ur ∈ [φ−\(ψ(ul)), ψ](ul, ψ(ul))), the solution is a composite of two shocks:

a non-classical shock from ul to ψ(ul) followed by a classical one from ψ(ul)
to ur.

• If ur ∈ (0, φ−\(ψ(ul))), the solution is a composite of three elementary
waves: a non-classical shock from ul to ψ(ul) followed by a rarefaction
wave from ψ(ul) to φ\(ur), then attached by a classical shock from φ\(ur)
to ur.

• If ur ∈ [ψ(ul), 0], the solution is a non-classical shock from ul to ψ(ul)
followed by a rarefaction wave from ψ(ul) to ur.

• If ur ∈ [ψ](ul, ψ(ul)), ψ(ul)), then the solution is a non-classical shock from
ul to ψ(ul) followed by a classical one from ψ(ul) to ur.

• If ur ∈ (−∞, ψ](ul, ψ(ul))), then the construction is classical.
Case 6: ul ∈ (q,+∞), the construction is classical. The curve of discontinuity is

{ul ∈ (1, q], ur = ψ](ul, ψ(ul))} ⊂ R2.

4. Non-Classical Riemann Solver Using two Kinetic Relations

In this section, we discuss the Riemann solver to the problem (1.1) using two
kinetic relations for non-classical shock-waves between two phases. It turns out
that even under the condition (C), non-uniqueness appears. A stronger condition is
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imposed to guarantee there is a unique choice of non-classical shocks. As expected,
the unique Riemann solution does not depend continuously globally on the Riemann
data.

Let us first point out several circumstances in which there are distinct choices
of non-classical solutions adaptable to the condition (C). Firtly, assume that ul ∈
(1, ψ−1(0)), then ψ(ul) ∈ (0, 1). Therefore,

φ(ψ(ul)) ∈ (φ−\(ψ(ul)), φ\(ψ(ul))) ⊂ (φ−\(ψ(ul)), 0).

If we take
ur = φ(ψ(ul)),

then we obtain a solution contains two nonclassical shocks: one nonclassical shock
corresponding to the kinetic function ψ from ul to ψ(ul), followed by one nonclassi-
cal shock corresponding to the kinetic function φ from ψ(ul) to φ(ψ(ul)). However,
as derived from the construction in the subsection 3.2 that in this case, we obtained
a non-classical solution containing a non-classical shock corresponding to the kinetic
function ψ: one nonclassical shock from ul to ψ(ul) followed by a rarefaction wave
from ψ(ul) to φ−\(ur), attached by a classical shock from φ−\(ur) to ur. This illus-
trates the co-existence of two nonclassical solutions, one contains more nonclassical
shocks than the other, see Figure 4.1.

u 

ψ(ul) 

ul 

• 
• 

• 
• 

ur 

f(u) 

Figure 4. Two possible solutions: one contains one and the other
contains two nonclassical shocks

Secondly, assume now

ul ∈ [θ, 0], and ur ∈ (ψ](ul, ψ(ul)), 1).

According to the description in Section 3, we could have two nonclassical Riemann
solutions, each of them contain one nonclassical shock. Precisely, the solution would
be

• either a classical shock from ul to φ−1(ur), followed by a nonclassical shock
corresponding to the kinetic function φ from φ−1(ur) to ur;
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• or a nonclassical shock corresponding to the kinetic function ψ from ul to
ψ(ul) followed by a classical shock from ψ(ul) to ur.

This is an example of the co-existence of nonclassical solutions including the
same number of nonclassical shocks, see Figure 5.

u 

ψ(ul) 

ul 

• 

• 
• 

• 

ur 

φ−1(ur)

f(u) 

Figure 5. Two distinct solutions: each contains a nonclassical shock

For short, in the sequel we will name a 0−shock (or a 1−shock) is a nonclasscial
shock corresponding to the kinetic function φ (the kinetic function ψ, resp.).

In order to select a unique solution, at least we must avoid the above circum-
stances. In the following, we need a more restrictive procedure than (C). That is
the procedure

(P) – A classical solution is understood to contain zero nonclassical shock.
– Nonclassical shocks are preferred whenever available in the extended

sense that: If a solverR1(ul, ur) containsm nonclassical shocks, and a solver
R2(ul, ur) contains n nonclassical shocks with m > n, then R1 excludes R2.

– If the left-hand state belongs to the phase EI , then the 0-shocks are
preferred than the 1-shocks in the sense that: if R1(ul, ur) and R2(ul, ur)
contain the same total number of nonclassical shocks, andR1(ul, ur) contain
m 0-shocks and R2(ul, ur) contain n 0-shocks with m > n, then R1 excludes
R2. Similarly, if the left-hand state belongs to the phase EIII , then 1-shocks
are preferred than the 0-shocks.

For the construction, we first make it clear that a 1 − shock can not follow a
0− shock.

Proposition 4.1. In any Riemann solution, a 1−shock can not follow a 0−shock.
Proof. Let the states u0, u1, u2 be given. Denote N0(u0, u1) is the 0-shock from u0

to u1 and N1(u1, u2) is the 1-shock from u1 to u2. That is to say

u1 = φ(u0), and u2 = ψ(u1).

In order to for N1 to follow N0 we must have the condition on shock speeds:

s(u1, u2) > s(u0, u1). (4.1)
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By the definition of kinetic functions, the shock speed s(u1, u2) has to be smaller
than the slope of the tangent at u1, which is greater than the shock speed s(u0, u1).
This contradicts with the condition (4.1). The proposition is proved. �

Based on the procedure (P), we proceed now to construct the Riemann solution.
First, assume that ul ∈ (−∞,min{θ, φ\(φ(p))]. Since ul is out of the domain of the
kinetic function ψ and, as described in the subsection 3.1, any ur ∈ (0,+∞) can
be arrived at by a solution contain one 0-shock. By virtue of the procedure (P), we
thus use the construction in the subsection 3.1 for this interval.

Second, let ul ∈ (min{θ, φ\(φ(p)), 0). The construction of the subsection 3.1 is
valid for ur < φ−\(ul). If ur ∈ [φ−\(ul), φ(p)], the solution can be a classical shock
connecting ul to u∗ followed by a nonclassical shock from u∗ to ur provided (3.6)
holds. If (3.6) fails, then the construction in the subsection 3.2 can be applied
here: if ul ≤ θ we have a rarefaction wave from ul to θ followed by a 1-shock from
θ to ψ(θ), then followed by a classical shock from ψ(θ) to ur, if ul > θ, then we
have a 1-shock from ul to ψ(ul) followed by a classical one from ψ(ul) to ur. For
ur ∈ (φ(p),+∞), if (3.7) holds then we use the construction in the subsection 3.1
to cover 0-shocks, else we use the one in the subsection 3.2 to cover 1-shocks or
classical construction.

Third, let ul ∈ [0, 1]. We know from Proposition 4.1 that 1-shocks can not follow
0-shocks, so we need only find the possibility of a 0-shock following a 1-shock. The
interval [0, 1] can be separated by two regions

A := {u ∈ [0, 1] : ψ](u, ψ(u)) < 1} relatively open in [0, 1],

AC = [0, 1] \ A.
(4.2)

The relatively open set A is thus a union of certain relatively open subintervals of
the interval [0, 1]. For any u ∈ A, there corresponds a set defined by

B := {v ∈ (a, 0) : v < φ(ψ](u, ψ(u))), and v > φ](ψ(u), φ−1(v))}. (4.3)

The set B is an open subset of R. By definition, given any left-hand state ur ∈ B,
the Riemann solution for the initial datum (ul, ur) is a three-jump wave: first a
1-shock from ul to ψ(ul), followed by a classical jump from ψ(ul) to φ−1(ur), then
followed by a 0-shock from φ−1(ur) to ur. For ur ∈ (−∞, ul] \ B, no 1-shocks to
be followed by a 0-shock, so we use the construction in the subsection 3.1. The
states ur ∈ (ul,+∞) can be reached by the construction in the subsection 3.2, as
no 0-shocks are available.

Fourth, assume ul ∈ (1, ψ−1(0)]. By the monotony, we have

ψ(ul) > 0. (4.4)

Due to (4.4) the right-hand states ur ∈ [0,+∞) should be involved with 1-shocks
and the construction is the one of the subsection 3.2. If ur ∈ (φ(ψ(ul)), 0), then the
solution is a 1-shock from ul to ψ(ul) followed by a rarefaction wave from ψ(ul) to
φ−1(ur), then followed by a 0-shock from φ−1(ur) to ur. If ur ∈ (φ](ul, ψ(ul)),
φ(ψ(ul))], then φ−1(ur) ∈ (ψ(ul), 1). The solution is a 1-shock from ul to ψ(ul)
followed by a classical shock from ψ(ul) to φ−1(ur), then followed by a 0-shock
from φ−1(ur) to ur iff

s(ψ(ul), φ−1(ur)) < s(φ−1(ur), ur). (4.5)
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If (4.5) fails, then no 0-shocks are involved in the construction and we use the one in
the subsection 3.2. If now ur ∈ (−∞, φ](ul, ψ(ul))], then the classical construction
is invoked.

Fifth, let ul ∈ (ψ−1(0), q], then

ψ(ul) < 0. (4.6)

The right-hand states ur ∈ [ψ](ul, ψ(ul)),+∞) ∪ (−∞, 0] can be arrived at as
in the construction of the subsection 3.2. If ur ∈ (0, φ(ψ(ul))), then the solu-
tion is a 1-shock from ul to ψ(ul) followed by a rarefaction wave from ψ(ul) to
φ−1(ur) by virtue of (4.6), then followed by a 0-shock from φ−1(ur) to ur. If
ur ∈ [φ(ψ(ul)), ψ](ul, ψ(ul))), then φ−1(ur) ∈ (p, ψ(ul)). The solution is a 1-shock
from ul to ψ(ul) followed by a classical shock from ψ(ul) to φ−1(ur), then followed
by a 0-shock from φ−1(ur) to ur if and only if

s(ψ(ul), φ−1(ur)) < s(φ−1(ur), ur). (4.7)

If (4.7) fails, then we use the one in the subsection 3.2.
Finally, if ul ∈ (q,+∞), then the classical construction is valid. Summarizing

the above arguments, we arrive at the following theorem.

Theorem 4.2. Given the initial Riemann data (ul, ur). Under the hypotheses
(1.2), There exists a unique Riemann solution made of rarefaction waves, classical
shocks and non-classical shocks satisfying the kinetic relations (3.4) and (3.11), and
the selective procedure (P).
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