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ABSTRACT

Order picking is the most labor-intensive function of distribution centers (DC) in
the food and beverage store industry. An efficient order picking process supports this
industry’s supply chain to move high volumes of products between the DC and the retail
stores. This thesis focuses on the storage location assignment problem to deciding via an
algorithm based on Association Rules Mining (ARM) the most adequate location of
incoming products. The algorithm analyzes hundreds of orders received by the DC to find
correlated products that are ordered frequently together by retail stores. The algorithm then
assigns correlated products to storage locations that are close to each other in order to
minimize order picking times. The results of computer simulation experiments using data
from a real distribution center will be presented to evaluate the performance of the DC

layout resulting from ARM.

Keywords: Simulation, Data-intensive Analysis, Distribution Center, Facilities Layout,

Order Picking, Association Rules.
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I. INTRODUCTION

1.1 Problem Description

In order to meet the requirements of demand-driven markets and maintain the satisfaction
level of customers, both managers and researchers seek to save the cost and time in the
supply chain. In supply chain management, the distribution center (DC) plays a
significant intermediate role between suppliers and customers. Receiving, storing, order
picking, sorting and distributing are the basic activities of a DC. Order picking is the
most time-consuming and labor-intensive process [1], and it approximately accounts for
55% of warehouse operating expenses [2]. By optimizing the order picking process, time
and cost can be reduced, thus, increases the DC’s efficiency.

The efficiency of a DC determines the performance of the whole supply chain and the
competitiveness of the firm. The challenges regarding the distribution center are not only
managing massive amounts of goods and items, but also delivering thousands of daily
orders in a timely manner. The storage location assignment method targets the efficient
and systematic allocation of Stock Keeping Units (SKUs) to warehouse slots in order to
minimize the order-picking time. [3] A typical requirement for storage location
assignment solution is to ensure the SKUs are associated by specific metric, such as
similarity, turnover ratio, product flow, and distance [1]. Due to the complexity of storage
location assignment problem, a quick solution of storage location assignment problem
and facility layout design in practical level becomes more important and valuable to
warehousing operations in the supply chain. [3]

ARM algorithm has been widely used by the food and grocery industry [4][5] to create

efficient layout designs of their retail stores. ARM is a data-mining technique which



focuses on identifying the correlated products among different transactions. ARM
algorithm shows the set of products that are frequently ordered together. These rules can
be used for creating batches in layout design and products allocation in supermarkets, for
example the well-known diaper-beer case [6], as well as pushing advertisements and
issuing coupons to targeted customers to increase the company’s sales. Positioning items
in the distribution center locations is done heuristically by several companies. For
example, they put items that are of similar weight near each other. In this research, the
application of ARM is extended to the distribution center. The ARM algorithm is used to
find the correlations between SKUs that are frequently ordered together among all the
transactions from different retail stores. The correlated SKUs will be reassigned to

locations closer to each other based on ARM algorithm as well as weight-classed policy.

See Figure 1.
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Figure 1 lllustration of using ARM algorithms to create batches

In order to improve the order picking efficiency in the DC, different types of technologies
such as data mining, mathematical formulation, heuristic method as well as computer

simulation, are implemented in this thesis to fill the gap from data collection to



performance comparison. As is mentioned above, ARM algorithm identifies the correlated
batches of products. However, such rules don’t take locations into consideration. Therefore,
the output of the ARM algorithm is used as input for exchange heuristic to solve location
assignment problem to achieve the goal of assigning products into the best locations. The
output of the exchange heuristic will be inputted into simulation model, which will provide
the estimated travel distance, vehicle utilization, and order-picking time - the performance
metrics used in the comparison of layouts.
1.2 Objectives
The objectives of this thesis are as follow:
a. Integrate ARM technique, mathematical programming and computer simulation to
produce a solution for a Quadratic Assignment-based storage location problem.
b. Identify the best combination of support and confidence for the ARM algorithm in
the context of the DC.
c. Design a heuristic to find solutions for the storage location problem in a practical
level in term of computational time and difficulty of implementation.
1.3 Organization of Thesis
The organization of this thesis is as follows: Section 2, a review of the literature of
warehousing and order picking activities. Section 3, the methodology from five aspects:
weight-based class, ranking and sorting, ARM, exchange heuristic, and computer
simulation. Section 4, the experiments and numerical results. Section 5, the conclusion and

future work.



Il. LITERATURE REVIEW

2.1 Warehousing

Storing or buffering products such as raw materials, goods-in-process, and finished
products between suppliers and customers is referred to as “warchousing”. Different terms
are used to describe a warehouse when additional functions are added: “Distribution center”
is commonly used for a warehouse with function of distribution; “transshipment”, “cross-
docking”, and “platform” center refer to warchouses with functions of temporarily holding
product and quick transfer [1]. Based on ELA/AT Kearney (2004) [7], the cost of
warehousing involved in logistics process is about 20% of a company's total supply chain
management cost. The workflow includes: receiving products from both suppliers and
customers; reserving storage for products; picking, sorting and packing products according
to orders received from retail stores; and distributing and shipping the orders to the

customers. Figure 2 shows the warehousing functions and corresponding product flows.

Reserve storage &
pallet picking
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Receiving Cross-docking Shipping
[=————"1
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Figure 2 Typical warehouse functions and flows (based on Tompkins et al., 2003) [2]



De Koster et al. [1] specified that the factors that need to be considered to enhance
warehousing performance are the number of storage zones and main aisles as well as aisle
dimensions.

2.2 Order Picking

In practice, multiple order-picking methods may be applied to a warehouse at the same
time. These methods include picker-to-parts, parts-to-picker, sorting system, and pick-to-
box [8]. On average, order picking accounts for 55% of warehouse operating expenses.
Among all the activities in order picking, travel consumes 50% of order picking time [2].

See Figure 3.
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Figure 3 Percentage of order-picker’s time (based on Tompkins et al., 1996)

De Koster et al. [1] introduced two branches of order picking methods —manual and
automated picking— which are determined by the involvement of automated machines in

picking process. See Figure 4 for details.
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Figure 4 Order picking methods based on [1]

The picker-to-parts method is the most commonly implemented in real applications. In this
method, pickers travel between the aisles to pick up the SKUs. The picker-to-parts method
is classified into low level and high level order-picking system. In the low-level order
picking system, the picker picks up the SKUs located on ground level of the bins. In the
high-level order picking system, also known as man-aboard order picking system, the
picker needs to stop at the picking location and lift the picking truck or crane to get the
SKUs located at higher position. More time is required since the picker needs to operate or
wait for the equipment to finish the picking process.

Some other classifications include batch picking. In batch picking, multiple orders are
picked continuously. Wave picking is a term used if all the orders are released at the same
time for picking in different warehouse areas, but they have a common destination after the

pick up. According to Petersen (2000) [9], the required time to complete picking the whole



batch is often between 30 minutes to 2 hours.

According to De Koster et al. [1], most academic research focuses on high-level and AS/RS
order picking systems. This thesis concentrates in low-level order picking operations such
as the picker-to-parts method.

2.3 Routing Heuristics

Routing is another important way to shorten the travel distance and order picking time.
Ratliff and Rosenthal [10] proposed Optima, which is a routing strategy using dynamic
programming. Optima repeats the procedures of determining the optimal order picking
priority within each aisle and concerning the next aisle to find a shortest picking path. Hall
[11], Petersen [12] and Roodbergen [13] proposed a few heuristic methods for routing
selection in single-block warehouses such as the S-shape, return, mid-point, largest gap,

combined and optimal routing heuristics. See details in Figure 5.
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Figure 5 Example of routing methods for a single-block warehouse (based on [8] [11]

[13]).



The S-shape routing method is the simplest and most commonly used. The picker follows
a S-shape route along the aisles to pick up items. The aisles without picking jobs are not
visited. In the return routing method, the picker enters and exits each aisle at the same
position. After picking up the item required, the picker exits the aisle at the enter point of
by retracing the route entered. The midpoint routing method was developed after the return
routing method. The picker follows the same rules as return routing method, but the picker
only reaches a maximum distance equivalent to half length of the aisle and then returns to
the entrance of the aisle. Hall’s study shows that this method is better than S-shape when a
small number of SKUs is required to be picked up in each aisle [14]. The largest gap routing
method has a slight variation to the midpoint routing method since it reaches as far as the
largest gap in an aisle. Usually, the largest gap routing method has better performance than
the midpoint method, but it’s more complicated to implement. In the combined routing
method, the picker either exits the aisle at the enter point of this aisle by retracing the route
entered or at the end of the aisle. Because of the complicated computation, dynamic
programming may be necessary to determine the route [15].

When selecting a routing plan in practice, multiple factors need to be taken into
consideration, for example, balancing the improvement and complexity of the designed
system. Hsieh and Huang [16] introduced a routing heuristic, named Maximum Loop
Insertion (MLI), which balances the routing selection complexity and the travel distance
reduction. The MLI method provides shorter total travel distance than those obtained with
the Minimum Travelling Loop Insertion (MTLI) and Particle Swarm Optimization (PSO).
The travel distance of PSO algorithm decreases when MLI result is used as the initial

solution.



In this thesis, S-shape routing method is selected because S-shape routing is static, which
then helps to make comparisons of different layout configurations. Also, the S-shape
routing reduces the complexity of the layout design and the storage location assignment
problem.
2.4 Layout Design and Storage Assignment

2.4.1 Layout Design
Layout design has two sub-problems: the facility layout and the aisle configuration
problems. The first problem focuses on locating different departments including receiving,
picking, storage, sorting and shipping, etc. by considering the operational interactions
between departments with the objective function to minimize the material handling cost or
travel distance. The second problem seeks to determine the configuration of internal layout,
such as the number and dimensions of aisles in the picking area. The common objective of
this problem is to seek a “best” layout accounting for travel distance in most cases. [1]
Bassan et al. (1980) [17] introduced a layout design for a low-level picking system focusing
on unit loads. They compare handling and layout costs of two parallel-aisle layouts.
Rosenblatt and Roll [18] studied the effect of storage police to design warehouse layout.
The authors also studied the effect of random demand and multiple service levels on layout
and storage capability. Roodbergen [13] proposed a nonlinear programming approach. This
approach considers average time spent on travel in terms of pickup location and number of
picks per trip in order to determine aisle arrangement for random storage warehouses with
objective of minimizing average travel distance. Caron et al. [19] and Le-Duc and De
Koster [20] studied cube-per-order index (COI) -based storage assignment and class-based

storage assignment also with an objective to minimize average travel distance. Peterson



[21] studied the effect of number of aisles as well as aisle dimension on total trip length by
implementing simulation techniques.
2.4.2 Storage Location Assignment Problem

Five storage assignment methods have been introduced in previous studies: random storage
[12] [22], closest open location storage [23], dedicated storage, COI storage [24], full
turnover storage [25] [26] [27] [28], class based storage [29] [30] [31].

Random storage assigns SKU’s with similar characteristics to random locations in the
warehouse [8]. This method results in less allocation time, but higher space utilization [22].
This rule works well in an automated environment. In the closest-open-location storage
method, the pickers choose the storage location within the warehouse. If shelves are full,
the method defaults to the random storage policy [33]. In dedicated storage, since a specific
location is reserved for a certain product, it’s easier for the pickers to get familiar with the
production location. The problem is that it causes waste of space when this product is out
of stock. This method has the worst performance in term of space utilization comparing to
all other storage methods. Full turnover storage policy is a kind of development of cube-
per-order index (COIl) rule. The COI of a product equals the total space requirement divided
by total required trips to meet its demand per period. COI rules suggest locating the lowest
COl item closest to the 1/O point [12] [22] [23]. The full turnover storage method assigns
products to locations based on their turnover ratio. The products with highest turnover
ratios are allocated closest to the I/O point, while the products with the lowest turnover
ratios are assigned in the back of the storage area. The biggest disadvantage of such method
is that the demand changes frequently and layout reconfiguration is required every time

demand changes. An information intensive system may be required in full turnover storage

10



method to classify and allocate the products [24]. Class-based storage can be considered as
the combination of several methods we have reviewed so far. The class is divided based on
Pareto’s method. That is, the classes with the fastest moving products contain 15% of the
SKUSs, but they contribute to the 85% of the system’s turnover. Each class is assigned to a
fixed location within the warehouse according to this Pareto rules.

Petersen and Schmenner [34] investigated the order picking efficiency of different storage
policies and routing methods that consider order size and demand. The within-aisle method
is 10-20% better in travel distance than other storage assignment policies. Petersen et al.
[14] showed that full turnover storage has better performance than class-based storage in a
manual order picking environment, but class-based storage with two to four classes was
still recommended in practice. Chen et al. [35] introduced a dynamic operational method
and a two-stage four-step heuristic to determine preliminary solutions, followed by a tabu
search algorithm to find further improvements. Heskett first studied the COIl storage policy
in 1963 [24]; he focused on storage of frequently ordered items and smaller requirement of
storage location closest to the 1/0O point. An integer linear programming (ILP) model is
introduced to formulate this storage policy [24].

Frazelle and Sharp [15] pointed out that the COI policy can be improved especially for the
case that multiple associated items are included in the same order. Yi-Fei Chuang [36]
introduced a two-stage Clustering-Assignment Problem Model (CAPM) and a z-type
picking path considering the associations among items. The CAPM improves results by
more than 45% over the randomized method. Order Oriented Slotting (OOS) policy
proposed by Mantel et al. [37] states that the SKUs need to be stored in the warehouse with

a shortest total picking distance. Besides assigning the popular SKUs to the locations close

11



to the 1/0O point, SKUs with a high association should be close to each other to minimize
order picking travel distance.

A recent study by Diaz [38] indicated customer demand pattern, order clustering as well as
physical restriction (i.e. weight or volume) are critical for improving operational
performance of warehousing activities. A quadratic integer programming is used to
generate the layout considering dynamic demand including throughput-to-storage ratios
and order similarities. A simulation approach is applied to investigate the effect of
implementing the generated layout in different zones classified by density. Weight is taken
into consideration to ensure the heavy product is picked up first to avoid any physical
damage of the product during order picking.

Literature that considers physical characters of products is not abundant. Most of the papers
take similarity into consideration in the layout design and storage assignment phase to
achieve the best objective value. But in practice, physical characters such as weight, area,
and volume are one of the most important regulations. Also, in the published literature, the
selected sample data set is relatively small due to the computation time of Storage Location
Assignment problem phase. In this thesis, weight is used to divide unique products into
classes, the improvement method is applied in each weight class to ensure meeting the
regulation that heavy products need to be picked up first. For the storage location
assignment problem, an exchange heuristic is implemented to deal with the large data set
and produce a practical solution.

2.5 ARM Algorithm

Associations rules conceptually refer to sets of objects describing the relationships between

items. ARM is an unsupervised mining technique, also known as affinity analysis or market
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basket analysis. ARM is widely used for targeted marketing, such as advertisement pushes,
product recommendation and so on. By applying ARM, we can investigate whether two or
more items are purchased together, or whether the purchase of one product increases the
possibility of purchasing the other. The result from data mining analysis can provide
suggestions for new layouts of a warehouse, when to push ads, when to issue coupons
among offers. This thesis considers three metrics in ARM algorithms, support, confidence
and lift [39], [40].

ARM algorithm is developed from an Apriori algorithm to identify groups of products that
are ordered together, and find the frequency with which these item sets are ordered. The
Apriori algorithm is efficient and relies on the downward closure lemma, which is used to
discards sets that do not meet minimum support or minimum confidence conditions [39].

Apriori Pseudo-code [39]:

C: a candidate item set of size k k

L: frequent item set of size k k

T: database of transactions/trips

Apriori (T, &)

L , < {large I-itemsets appear in more than ¢ transactions}
k2

while (L, ,~/0)

C < generate item sets from L , ,

for(transactions te T)

C <« subset (C«, t) generate candidate transactions size k
for (candidates ce C+t)determines frequency of c-candidates
count[c]«—count[c] + 1
L,«—{c:ceC,Acount[c]>e}Pruning

ke—k+1

return U, L , union of sets of frequent items k=1, 2,... K

The result is an item set Lk, which consists of those item sets of sizes less than or equal to
k that meet the minimum support required .
Chen et al. [4] introduced the method of creating order batching via ARM algorithms. Chen

et al. [5] introduced an extension of this model, which models capacity constraints of the
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facility by using 0-1 integer programming. Chiang et al.[3] introduce two heuristics,
modified class-based heuristic and association seed based heuristic, to solve storage
location assignment problem considering relationship between products. These two
heuristics assign correlated products which are frequently ordered together to the same
aisle to maximize the association measure within the same aisle.

In the reviewed literature, the selected sample data set for scenarios is relatively small. It’s
rarely mentioned about the effect of combination of support and confidence in ARM. In
this thesis, ARM algorithm is implemented to analyze larger data sets to achieve more rules
via ARM. Combination of support and confidence is analyzed by applying design of
experiment approach with specific data set to indicate the significant interaction of support
and confidence.

2.6 Simulation Approach

Simulation is commonly used to visualize the order picking operations and analyze the
outputs from different scenarios [38], [41], [42]. In the reviewed literatures, popular
software such as Arena, Simio, and Witness are used to perform the simulation process.
But for these packages, it’s not time efficient to build large warehouse layout. In this thesis,
the simulation model is built in AutoMod which is a package based on C language and
focuses on logistic simulation and analysis. The model is generated by coding in a general

way, which makes it easy to expand and modify.
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1. METHODOLOGY

3.1 System Configuration.

The system under analysis is a DC that receives daily orders from 700 retail stores. The
DC fills up these orders in the morning and replenishes the items sent by their suppliers at
night. There are 70,000 SKU’s. The DC has 52 aisles, each with 52 pickup locations, for a
total of 2704 pickup locations. The distance between two adjacent pickup locations is 40
feet. Orders, each containing between 150 to 250 SKU’s, are picked up by a human
operator. The operator follows an S-shape route while picking up the orders from the
picking slots. The operator rides a vehicle, which moves at 3 feet/sec. The pallet is formed
by placing the items with more weight at the bottom to form the base of the pallet; items
with less weight are placed on top of heavier items to preserve the integrity of the items.

Fragile SKUs are placed on the top of the pallet. Figure 6 shows the layout under study.

.............................

pickup —

locations [ I} r ] BBl
In each EEL e L] BEREEEEREED 90 o 4 off 3 &l O Y < R ofF 8 o ¥ o ] P
bt FEFG 33 = A N o O ot A A 3 o] e gl ol o A b}

.......................
..................................

'

Input/Output 52 aisles
point

Figure 6 Layout assumption
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3.2 Mathematical Formulation

In the Quadratic Assignment Problem (QAP) stated in (1)-(4). We consider number of
SKUs and locations as n, the SKU i is assigned to location j, and each location j can only
have one SKU i allocated.

Objective function of the problem is as follow to minimize the total joint measurement

when SKU i is assigned to location j:

. . 1
Minimize ¥i_y X1 Xg=1 Xi=15 SijDa XueXj + Xieq Y= CijXiy (1)

s.t.
jeaxyy=1 forj=12,..,] (2)
ixj=1 fori=12,..,1 (3)
x;j=(01) Vij (4)

The decision variable is xij which is a binary variable with xij = 1 if SKU i is assigned to
location j and xij = 0 if SKU 1 is not assigned to location j. The objective function
represented in Equation (1) indicates minimizing the total joint measurement when SKU;
is assigned to location;. Sij is the dissimilarity of two SKUs which is obtained from ARM
phase. Dk is the distance between pick up locations. Cijj is the cost of assigning SKU i to
location j. (2) is a constraint that ensures one SKU is assigned to one location. (3) is a
constraint that ensures one location only contains one SKU. QAP is a NP-hard problem, as
number of SKUs n increases, the computational time increases significantly. Therefore, a

heuristic is considered to achieve a quick practical solution of storage assignment problem.
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3.3 Solution Approach

Due to the computational complexity of QAP, it costs too much time to get the optimal
solution which is against our objective of producing quick practical solution. A case study
is conducted in next section to compare the computational time and performances between
optimal and proposed heuristic. A five-stage approach is implemented in this thesis to solve
the storage location assignment problem stated above. This approach is illustrated in Figure
7. The method divides unique SKUs into classes based on their weights (in pounds), and
then ranks and sorts, from highest to lowest, the SKUs in each weight class based on order
frequency. For example, a SKU is classified in class #2, and it is ordered the most
frequently among all the SKUs within this class. This SKU should be allocated in the
closest location to I/0O point compared to other SKUs within this weight class. ARM
algorithm is used to search correlated SKUs to create rules. Then, based on the association
rules, the exchange heuristic reassigns the consequence SKUs to the locations after their
antecedent SKUs. Simulation model is developed in AutoMod to visualize the order
picking operation and to compare performances of different scenarios. These stages will

be explained in detail below.

Weight-based Class
* In each class the SKUs are sorted by frequency
Ranking and Sorting from highest to lowest
* Stage W1 layout
(4] r
Association Rules « Find items that are freguently ordered
together
Mining

* Create batches

* Reassign children SKUs to the
Exchange Method location after thelr parent SKUs
* Stage ¥2 layout

* Visualize the order picking activity

m r sienulati
Campuiter: Mk ation * Bvaluate perfarmance

Figure 7 Methodology flow chart
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3.3.1 Weight-based Class
Class-based storage strategy has positive impact on increasing order picking efficiency. In
this thesis, the unique SKUs are divided into classes based on their weights (in pounds).
The heaviest SKU in each class is allocated closest to entry point because, in practice,
heavy SKUs need to be picked up first and put on the bottom of the pallet followed by
lighter SKUs, which are placed on the top to avoid physical damages. This process is done
in R Statistical Package by sorting the given weight of SKUs in the dataset from heaviest
to lightest. The number of SKUs in each class may vary due to different data sample

selection. The information needs to be determined as shown in Table 1 below.

Table 1 Weight-based classes
Class #1 (Heavy) Class #2 (Medium) Class #3 (Light)
Weight(lbs)  >2/3 * Max{Weighti}  1/3 * Max{Weight i} to <1/3 * Max{Weight i}

2/3 * Max{Weight i}

Number of N1 N2 N3
SKUs
Percentage P1% P2% P3%

3.3.2 Ranking and Sorting
According to Diaz (2016) [38], the SKUs with the highest demand are visited most
frequently, thus contributing to the travel volume for the order-picking operations. Placing
these SKU’s closer to the 1/0 point helps decreasing the total travel distance. For this reason,

the SKUs are ranked and sorted in each weight-based class by their frequency from highest
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to lowest. Due to consideration of both weight and frequency, sorting SKUs in a weight
class based on frequency probably move a light, but frequently ordered SKU, to the
location closer to entry point than a heavy but less frequently ordered SKU. Executing the
ranking and sorting phase within each class reduces such risk because we consider the
SKUs in each class are consistent in weight and make it acceptable to change their sequence.
The result of this phase is Stage #1 Layout -an improved layout containing the storage
locations of SKU’s based on both weight and order frequency in each class. Since the
pickup routing method is selected as S-Shape routing method, the layout can be considered

as linear. See Figure 8.

Class #3 (Light)
High s LOW High ———s Low High —— Low
Frequency Frequency Frequency

Figure 8 Stage #1 layout considering weight and frequency

3.3.3 ARM Algorithm
ARM generates rules of the form:
A—B
The left hand (A) is usually called antecedent and the right hand (B) is called consequent.
See Table 2 for examples of association rules. Different antecedents can be associated with
the same consequent, and association rules are directional. That is, A—»B and B—A are
different rules. Figure 9 shows the graph of the rules. The color of arrows in the graph

demonstrates the strength of the rules, a darker color means the rule is stronger.
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Table 2 Examples of association rules

LHS RHS support confidence lift
1 263639 31217 0.21 0.9 2.67
2 241863 111391 0.23 0.9 2.06
3 39091 179582 0.21 0.8 1.95
4 110142 111493 0.21 0.8 1.95
5 7217 45258 0.23 0.8 1.88

This thesis considers three metrics in ARM Algorithms: support, confidence and lift.

Support indicates the joint probability of SKUs A and B are ordered together
P(AnB). P(AnB) or sup (A and B) is equal to number of transactions that contain
both item A and item B divided by total number of transactions.

Confidence refers to the conditional probability that SKU B occurs given SKU A
occurs, P(BJA). That is, P(B|A) = P(AnB)/ P(A) or P(BJA) = supp(A and B)/
Supp(A).

Lift is the strength of the rules. Lift(A—B) is calculated as P(B|A)/P(B) =
P(BNA)/P(A)P(B). If lift > 1, A and B are positively correlated, that is, if item A is
ordered, it is more likely that item B is also order. If lift < 1, A and B are negatively
correlated, which means, if a custom orders item A, it is more likely that the
customer will NOT order item B. If lift = 1, item A and item B are independent
items, that is, purchase of item A and purchase of item B are two independent
events. Therefore, a high lift suggests the rule, if item A, then item B, may be a
useful rule and a low lift suggests that the rule, if item A, then NOT item B, may

be a useful rule.
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Graph for 48 rules A
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Figure 9 Example of ARM algorithm visualization

Association Rules are solved in this thesis using R. Figure 10 summarize the steps involved
in the R calculations.
Step 1: Install and load required packages “arules” and “arulesViz”, if the package is

installed correctly go to step 2, otherwise back to step 1
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Step 2: Import dataset

Step 3: Reformat and transform dataset

Step 4: Duplicate check to obtain unique dataset, if the dataset is unique, go to step 5,
otherwise go back to step 4.

Step 5: Define support and confidence level

Step 6: Apply data mining algorithm to produce association rules

Step 7: Inspect rules, if number of rules we expected, go to step 8, otherwise go back
to step 5

Step 8: Sort rule and export

Step 9: Stop
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Figure 10 The work process of ARM in R package

3.3.4 Exchange Heuristic
Let A={ai, az,...an} be a set of antecedents containing SKU’s and C={c1,Cz,...cm} be a set
of consequents containing SKU’s. The rules A—C are stored in a set of paired SKUs R=

{(a1,c1),(a2,c2),...(an, cm)} sorted by the support metric sup(A,C) in ascending order. A
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buffer set, with initial status of empty B={¢}, is generated to store the selected antecedents
and consequents temporarily. The exchange heuristic, shown visually as a flow diagram in
Figure 11, follows the steps stated below to produce new sequence of SKUs:
Step 1: Leti=1
Step 2: Select the ith element ci in set C
Step 3: Check the corresponding element in set R, find the antecedent element ai
which is correlated with element ci in R.
Step 4: Search ai in set A
Step 5: Assign ci from set C and add it to set B as bi
Step 6: Insert bito set A after element a;j so that set A = {aij, bi, ai+1, ai+2,...,an+1}.
Then empty set B
Step 7: Let i=i+1and go back to step 1
Step 8: After finishing the loop of m times, the set A includes n+m elements so
that A = {as, c1, az, C2, as, C3,...,an, Cm}
Note: For special cases when different antecedents are correlated with
the same consequents, the consequents choose the location of the
antecedent that has the highest joint support. If a special case occurs,
continue the heuristic algorithm with step 9, otherwise terminate the
algorithm.
Step 9: unify set A, then set A contains the first occurrence of each duplicated
element. For example, if A = {a1, c1, az, C2, as, C2, a4, C3...an, C3}, the unique A =
{a1, C1, a2, C2, a3, a4, C3...an}

Step 10: Terminate algorithm
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Initialization

i=1

~ select ith

let i=i+1 element in
C
insert bi to find
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B with ciin R
assign ci to search aiin

B as bi ‘ - A

—

Special Remove

case? duplicate

Terminate

Figure 11 Illustration of the exchange heuristic
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3.3.5 Computer Simulation

In this phase, a static simulation model of the system described in Section 3.1 was
developed in AutoMod to test the output of different scenarios. The reason for choosing
AutoMod instead of other software is that AutoMod has built-in subsystems to simulate
logistic and warehousing operations. Furthermore, AutoMod is based on C language which
is efficient to generate large layout with thousands of operation locations in a very general
way to make the model convenient to modify and expand.

There are totally 1 process, 2 order lists, 5 attributes, 7 variables, 3 tables, 2 functions and
4 subroutines to control the logic of the model. Functions are used for initializing the orders
and pickup locations, subroutines control the pickup operations, attributes and variables
are used for identifying orders and locations while the tables are used for tabulating the

results collected from simulation. See Table 3 for detail.
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Category
Function

Subroutine

Process
Queue
Order list

Attribute

Variable

Table

Table 3 Functions and parameters in simulation model

Name
F_Order_Init
F_Location_Init
SPickOrder

SReceiveOrder
SDeliverOrder
SParking

PMasterLoad
Qlnitial
OLAssignment

OLVehicle
Attr_Order_ID
Attr_Time

A_index
A_Home
Attr_Time2

V_Location
V_Number_Item_Per_Ord

V_Number_Done
V_Order

V_Order_ctr
V_Count
Vi

T_PickTime
T WaitTime
T_Throughput

Type
integer
integer

integer
integer

integer
integer
time

integer
location
time

location
integer

integer
integer

integer
integer
integer

time
time
integer

Description
Initialization of orders
Initialization of locations
Subroutine of order picking
process
Subroutine of order
receiving process
Subroutine of order
delivery process
Subroutine of parking
process
Main process
Initial queue at entry point
List of assignments to be
picked up
List of available vehicles
Order ID
Counted time for waiting
time calculation
Index of vehicle
Entry point
Counted time for picking
up time calculation
Pickup locations
Number of SKUs included
in each order
Number of orders done
Identifier of each SKU in
each order
Counter for order ID
Counter for vehicle index
Counter for SKUs in an
order
Table of pickup time
Table of waiting time
Table of throughput

Two scenarios are tested via simulation to compare the order-pickup time for different

storage location assignments produced by ARM algorithm.
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IV. EXPERIMENTS AND RESULTS

In this chapter, case studies are conducted to show the performance of the proposed five-
step methodology described in Chapter 3.

4.1 Data Description

Our raw data set includes daily transactions from retail stores as provided by a local
distribution center in Texas. The raw data set includes 624 different orders, which accounts
for a total of 62,887 SKUs. The dataset also included related information such as the order
number, store number, location of SKUs, SKU number, SKU description, quantity, weight,
and volume, among other main fields. Particular emphasis is placed in the selected fields
such as the order number, SKU number, location, weight and SKU description.

The dataset was partitioned to test for repeatability of the proposed algorithms while
managing their computational time. For this reason, two partitions were obtained from the
dataset. SKU’s were selected at random. The first partition (referred to as Scenario 1)
included 39 orders with a total amount of 8141 SKUs. The number of unique SKUs is 2638.
The second partition (referred to as Scenario 2) included 39 orders with 8122 SKUs. The
number of unique SKUs is 2721.

4.2 Effect of Support and Confidence

Support and confidence are defined in R to produce different number of association rules.
In this section, different scenarios are tested exclusively to identify appropriate values of
support and confidence required to obtain an adequate number of rules from ARM
algorithm described in Section 3.3.3. The code was developed in a R package named

“arules” version 1.5-2. [43]. It was run on a computer type of MacBook Pro with an Intel
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2.5 GHz Core i7 processor and 16 GB 1600 MHz DDR3 memory. The program ran for 15
seconds. The code is shown in Appendix 3.
4.2.1 Design of Experiments
a. Two factors are taken in to consideration in this phase, support and confidence.
e Support has 5 levels from 0.1 to 0.3 with increments of 0.05.
e Confidence has 5 levels from 0.5 to 0.9 with an interval of 0.1.
b. Response
e The response is the number of association rules generated from ARM in R.
For example, number of rules A—B where A is antecedent and B is
consequent.
c. Run Design
e 2 factors, each with 5 levels, are taken into consideration. The total number
of combinations is 25.
d. Configurations of DOE
e Factors: 2
e Replicate: 2; one with the partition labeled as Scenario 1 and the second one
with the partition labeled as Scenario 2.
e Total runs: 50
e Total blocks: 2
e Number of levels: 5,5

See Table 4 and Figure 12 for all the combinations of factors.
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Table 4 Design table of two runs in DOE

Support Confidence Response of Runl Response of Run2
(Scenario 1) (Scenario 2)

0.1 0.5 11965 11244
0.1 0.6 6918 6280
0.1 0.7 4244 3618
0.1 0.8 3246 2750
0.1 0.9 1134 843
0.15 0.5 2651 2177
0.15 0.6 1832 1586
0.15 0.7 1068 913
0.15 0.8 585 448
0.15 0.9 188 125
0.2 0.5 708 525
0.2 0.6 511 376
0.2 0.7 335 238
0.2 0.8 215 159
0.2 0.9 62 50
0.25 0.5 218 136
0.25 0.6 182 102
0.25 0.7 115 79
0.25 0.8 64 39
0.25 0.9 23 19
0.3 0.5 93 38
0.3 0.6 73 27
0.3 0.7 58 22
0.3 0.8 35 14
0.3 0.9 8 5
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Plot of DOE design table
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Figure 12 Plot of DOE design table

4.2.2 Output Analysis
Results from different scenarios show that as the support and confidence increase, the
number of association rules as well as computation time decrease. As support and
confidence increase, the selection standard becomes strict, which means fewer sets are
taken into consideration and the SKUs involved in the transactions are highly correlated.
By analyzing the factorial regression model, p-value less than 0.05 indicates that 8 main
factors and 13 interactions have statistically significant effects on the response. See Figure

13, 14 for details.
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General Factorial Regression:

Factor Information

Factor
Support
Confidence

Levels Values
5 ©.1e, 0.
5 8.5, 0.6, 0.7,

Analysis of Variance

Source DF
Model 24
Linear 8
Support 4
Confidence 4
2-Way Interactions 16
SupportxConfidence 16
Error 25
Total 49
Model Summary
S R-sq R-sqladj)
203.360 99.69% 99.40%
Coefficients
Term Coef
Constant 1366.9
Support
8.1@ 3857.3
8.15 -209.6
0.20 -1049.0
B.25 -1269.2
Confidence
8.5 1608.6
9.6 421.8
0.7 -297.9
0.8 -611.4
Support«Confidence
9.19 @.5 4772
.19 0.6 953
g.19 @.7 -995
2.19 8.8 -1615
8.15 @.5 -352
.15 8.6 138
8.15 0.7 131
2.15 8.8 -29
.20 0.5 -1310
.20 0.6 -296
.20 0.7 266
.28 0.8 480
.25 8.5 -1529
B8.25 0.6 -378
8.25 0.7 297
8.25 0.8 565

15, ©.20,
0

Adj S5
335421013
238869543
194018012

44851530
96551471
96551471
1833882
336454895

R-sq(pred)

98.77%

SE Coef
28.

o

57.
57.
57.
57.

37.
57.

.8,

©.25, 0.3
a

r
.9

Adj MS
13975876
29858693
48504503
11212883

6034467

6034467

41355

T-Value
47 .53

67.06
-3.64
-18.24
-22.87

27.97

-5.18
-18.63

41.48

-8.65
-14.04
-3.06

-8.26
-11.39
-2.57

-13.29
-3.28

a

Response versus Support,
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1
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Figure 13 Output of design of experiment
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Figure 14 Main effects plot for response
By balancing the number of rules and computational time, support range from 0.2 to 0.25
and confidence range from 0.5-0.8 is appropriate in our case. In this thesis, preferred
support and confidence in ARM in R are selected as 0.2 and 0.8 to produce association
rules.
4.3 Comparison between Optimal and Heuristic Solution
In this subsection, the comparison between optimal and heuristic solution is conducted to
prove that the heuristic is implementable in practice.
As is mentioned in Section 3, it is difficult to solve quadratic assignment problem and
produce the optimal solution due to the complexity and computational time of the problem.
The computational time increases significantly when number of SKUs increases. In this

thesis, computational time and performance between optimal (in AMPL) and proposed
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heuristic results are compared. See Table 5 and 6. AMPL code for problem formulation is

shown in Appendix 1.

Table 5 Comparison of computational time

In AMPL via solver CPLEX Heuristicin R
Number of SKUs Computational time Computational time
(in second) (in second)
10 2 <30
15 231 <30
20 10310 <30
~8000 N/A ~300

Table 6 Comparison of order picking time

Order picking time comparison

Optimal Heuristic
Number of SKUs 10 10
Number of orders 14 14
SKU per order 1~5 1~5

Order picking time (in second) 237.244 254.522

The difference in term of order picking time between optimal and heuristic solution is
17.278 seconds. The optimal solution is 6.788% better than the heuristic solution in this
specific case.

By considering the computational time and performance, the heuristic is implementable to
achieve a good practical solution with large data set in a much shorter time when compare

to the optimal solution.
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4.4 Numerical Analysis

4.4.1 System Configuration

a. Data size
For Scenario 1, the final selected sample data set include 39 orders with 8141 SKUSs.
Class #1 includes 802 unique SKUs, Class #2 includes 756 unique SKUs and Class #3
includes 1080 unique SKUSs.
For Scenario 2, the final selected sample data set include 39 orders with 8122 SKUs.
Class #1 includes 805 unique SKUs, Class #2 includes 902 unique SKUs and Class #3
includes 1014 unique SKUSs.

b. Metric
Support: 0.2
Confidence: 0.8
Batch size: 2
For Exchange Heuristic phase, the configuration is shown as follow:

a. Datasize
Scenario 1 has 76 batches of size = 2.
Scenario 2 has 59 batches of size = 2.

b. Initial status
Before applying the method, all the rules obtained within each weight-based class are
sorted by lift from highest to lowest which means the strongest association rule has higher
priority to be allocated.
The configuration of Computer Simulation phase is shown as follow:

a. Datasize
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For scenario 1, 39 orders with 150-250 SKUs in each including totally 8141 SKUs are
used to build simulation model; 2638 unique SKUs are used to create facility layout.
For scenario 2, 39 orders with 150-250 SKUs in each including totally 8122 SKUs are
used to build simulation model; 2721 unique SKUs are used to create facility layout. R
code for data selection is shown in Appendix 2.

b. Simulation settings
Two scenarios have the same assumptions for layout, vehicle, pickup and routing method
etc. The differences are the SKU locations in the layout and the association rules that are
considered. See Table 7. The assumptions are made considering both the complexity of
simulation model as well as the real behaviors in real world. For example, we fixed the
conditions, such as the layout, pick up and routing method to reduce the complexity in
order to purely compare the performances of two layouts. The assumptions of vehicle and

distance are based on the study of dataset and the pickup behaviors.
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Table 7 Configurations of two scenarios

Scenario 1 Scenario 2
Number of aisles 52 52
Pickup locations in each aisle 52 52
Distance between adjacent 40 40
locations (feet)
Number of vehicles 1 1
Velocity of vehicles (feet/sec) 3 3
Pickup Method Picker-to-part Picker-to-part
Routing Method S-shape S-shape
Number of order per trip 1 1
Support 0.2 0.2
Confidence 0.8 0.8
Number of orders 39 39
Total SKUs 8141 8122
Total Unique SKUs 2638 2711
Unique SKUs in Class 1 802(30.40%) 805(29.58%)
Unique SKUs in Class 2 756(28.66%) 902(33.15%)
Unique SKUs in Class 3 1080(40.94%) 1014(37.27%)
Number or rules 76 59
Comparisons Random VS Stage #1 = Random VS Stage #1 VS
VS Stage #2 Stage #2

c. Run control
The simulation model runs for 1 replication since the model is deterministic. That is, all
the controllable factors such as vehicle speed, picking up time, waiting time, routing
selection are fixed. The run time of model vary from one scenario to another, See Table 8.
The simulation time indicates the run time of the deterministic simulation model under

each condition.
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Table 8 Simulation time (in second)

Scenario 1 Scenario 2
Random Stage #1  Stage #2 Random Stage #1 Stage #2
Layout Layout Layout Layout Layout Layout
Replicates 1 1 1 1 1
Simulation 12,079,744 1,568,458 1,410,042 11,773,986 1,635,642 1,376,351

Time

4.4.2 Weight-based Class

Both scenarios, Scenario 1 and Scenario 2, were divided into three weight classes.
According to Peterson et al. [29], 2-4 classes are suggested in practice since it is easier to
implement and required less to administer. For Scenario 1, 2638 unique SKUs are divided
into three classes based on their weights. Class #1 accounts for 30.40% of all the SKUs in
sample data set containing 802 SKUs with weight greater than 9 pounds. Class #2 includes
756 SKUs with weight between 5.28 and 9 pounds, which is 28.66% of all the sample
SKUs. Class #3 has 1080 SKUs with weight less than 5.28 pounds. This class includes
most of the SKUs which is 40.94% of all the SKUs in the selected sample. See Table 9.

For Scenario 2, 2721 unique SKUs are divided into three classes based on their weights.
Class #1 accounts for 29.58% of all the SKUs in sample data set containing 805 SKUs with
weight greater than 8.85 pounds. Class #2 includes 902 SKUs with weight between 5 and
8.85 pounds which is 33.15% of all the sample SKUs. Class #3 has 1014 SKUs with weight
less than 5 pounds. This class includes most of the SKUs which is 37.27% of all the SKUs

in selected sample. See Table 10.
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Table 9 Weight-based classes for scenario 1

Class #1(Heavy)  Class #2(Medium) Class #3(Light)

Weight(lbs) >9 5.28-9 <5.28
Number of SKUs 802 756 1080
Percentage 30.40% 28.66% 40.94%

Table 10 Weight-based classes for scenario 2

Class #1(Heavy)  Class #2(Medium) Class #3(Light)

Weight(lbs) >8.85 5-8.85 <5
Number of SKUs 805 902 1014
Percentage 29.58% 33.15% 37.271%

4.4.3 Ranking and Sorting

For each weight-based class, the Rank and Sortation method is implemented separately and
then combine again to achieve Stage #1 layout.

Scenario 1: Class #1 includes 802 unique SKUs with frequency vary from 23 to 1. Class
#2 includes 756 unique SKUs with frequency vary from 16 to 1. Class #3 includes 1080
unigue SKUs with frequency vary from 25 to 1. See Figure 15.

Scenario 2: Class #1 includes 805 unique SKUs with frequency vary from 20 to 1. Class
#2 includes 902 unique SKUs with frequency vary from 25 to 1. Class #3 includes 1014

unigque SKUs with frequency vary from 23 to 1. See Figure 16.
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The rank and sortation phase is done in R by implemented functions in ‘dplyr’ and ‘aruels’
packages. The computation time of ARM in each class is about 15 seconds on a computer
with i7 processor and 16GB memory. The code is shown in Appendix 4.

The output of this phase is Stage #1 layout which consider both weight and frequency of

SKUs.

Close to I/O point

-~ Far away from 1/O point

Class #3 (Light)
1080 unique SKUs
3 ———] 16 —— 1} 25 ——]
Frequency Frequency Frequency
Figure 15 Stage #1 layout in scenario 1
Close to 1/O point = Far away from I/O point
Class #3 (Light)
1014 unique SKUs
e 23
Frequency Frequency Frequency

Figure 16 Stage #1 layout in scenario 2

4.4.4 ARM Algorithm
ARM is conducted in three weight-based classes to create batches of correlated SKUs.
Scenario 1: By implementing ARM algorithm in R, 10 association rules are obtained in
Class #1, 48 rules are achieved in Class #2 while 18 rules are included in Class #3. Class
#2 is the most correlation effective since it accounts for 28.66% of all the unique SKUs but

contributes 63.16% of the correlated pairs. See Table 11,12,13.
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Scenario 2: 14 association rules are obtained in Class #1, 32 rules are achieved in Class #2

while 13 rules are included in Class #3. See Table 14, 15, 16.
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Table 11 Association rules of class #1 sorted by lift in scenario 1

rules

{189145} => {90991}
{271586} => {90991}
{143789} => {90991}
{10829} => {103427}
{117091} => {103427}
{113849} => {103427}
{83626} => {103427}
{249707} => {103427}
{241880} => {103427}
{271586} => {103427}

support

41

0.2051
0.2051
0.2051
0.2308
0.2051
0.2051
0.2821
0.2308
0.2308
0.2051

confidence
0.8889
0.8000
0.8000
0.9000
0.8889
0.8889
0.8462
0.8182
0.8182
0.8000

lift

2.4762
2.2286
2.2286
1.4040
1.3867
1.3867
1.3200
1.2764
1.2764
1.2480
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30
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23
26
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16
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46
41
43

Table 12 Association rules of class #2 sorted by lift in scenario 1

rules

{263639} => {31217}
{241863} => {111391}
{39091} => {179582}
{110142} => {111493}
{7217} => {45258}
{89436} => {111391}
{73474} => {202466}
{162481} => {202466}
{98931} => {7516}
{110770} => {178642}
{241863} => {178642}
{58728} => {178642}
{89436} => {178642}
{15074} => {178642}
{200124} => {178642}
{265274} => {178642}
{31160} => {178642}
{188} => {178642}
{86316} => {245047}
{7217} => {245047}
{111391} => {178642}
{176855} => {178642}
{111505} => {178642}
{94892} => {178642}
{98931} => {245047}
{110142} => {245047}
{265276} => {245047}
{58728} => {245047}
{7516} => {245047}
{838946} => {245047}
{98938} => {245047}
{15074} => {245047}
{200124} => {245047}
{265282} => {245047}
{265274} => {245047}
{48114} => {245047}
{31160} => {245047}
{111391} => {245047}
{111493} => {245047}
{111505} => {245047}

support

42

0.2051
0.2308
0.2051
0.2051
0.2308
0.2051
0.2308
0.2051
0.2051
0.2564
0.2564
0.2308
0.2308
0.2051
0.2051
0.2051
0.2051
0.2564
0.2051
0.2821
0.3590
0.2308
0.3333
0.2051
0.2308
0.2308
0.2308
0.2308
0.4359
0.2051
0.2051
0.2051
0.2051
0.2051
0.2051
0.2051
0.2051
0.3846
0.3590
0.3590

confidence
0.8889
0.9000
0.8000
0.8000
0.8182
0.8000
0.8182
0.8000
0.8000
1.0000
1.0000
0.9000
0.9000
0.8889
0.8889
0.8889
0.8889
0.8333
1.0000
1.0000
0.8235
0.8182
0.8125
0.8000
0.9000
0.9000
0.9000
0.9000
0.8947
0.8889
0.8889
0.8889
0.8889
0.8889
0.8889
0.8889
0.8889
0.8824
0.8750
0.8750

lift

2.6667
2.0647
1.9500
1.9500
1.8770
1.8353
1.6794
1.6421
1.6421
1.6250
1.6250
1.4625
1.4625
1.4444
1.4444
1.4444
1.4444
1.3542
1.3448
1.3448
1.3382
1.3295
1.3203
1.3000
1.2103
1.2103
1.2103
1.2103
1.2033
1.1954
1.1954
1.1954
1.1954
1.1954
1.1954
1.1954
1.1954
1.1866
1.1767
1.1767
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39
44
27
38
22
31
34

rules

{178642} => {245047}
{14964} => {245047}
{45258} => {245047}
{44095} => {245047}
{176855} => {245047}
{86642} => {245047}
{241863} => {245047}
{89436} => {245047}
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support
0.5385
0.2564
0.3590
0.2308
0.2308
0.2051
0.2051
0.2051

confidence
0.8750
0.8333
0.8235
0.8182
0.8182
0.8000
0.8000
0.8000

lift
1.1767
1.1207
1.1075
1.1003
1.1003
1.0759
1.0759
1.0759
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Table 13 Association rules of class #3 sorted by lift in scenario 1

rules

{52616} => {87168}
{770099} => {630434}
{77786} => {167155}
{920785} => {630434}
{630434} => {920785}
{770099} => {167155}
{24982} => {265030}
{920785} => {167155}
{630434} => {167155}
{83551} => {265031}
{119144} => {167155}
{265031} => {117791}
{117791} => {265031}
{73329} => {3305}
{24982} => {117791}
{87168} => {73583}
{176438} => {73583}
{87167} => {73583}

support

44

0.2051
0.2051
0.2051
0.2564
0.2564
0.2051
0.2308
0.2564
0.2564
0.2051
0.2308
0.3333
0.3333
0.2051
0.2051
0.3077
0.2051
0.2051

confidence
1.0000
0.8889
1.0000
0.8333
0.8333
0.8889
0.9000
0.8333
0.8333
0.8889
0.8182
0.8667
0.8125
0.8000
0.8000
0.9231
0.8889
0.8000

lift

3.0000
2.8889
2.7857
2.7083
2.7083
2.4762
2.3400
2.3214
2.3214
2.3111
2.2792
2.1125
2.1125
2.0800
1.9500
1.5652
1.5072
1.3565
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Table 14 Association rules of class #1 sorted by lift in scenario 2

rules
{73328} => {73325}
{84155} => {630434}
{630434} => {920785}
{460931} => {3305}
{170743} => {920785}
{269308} => {920785}
{84155} => {920785}
{41866} => {181846}
{41866} => {62134}
{62054} => {62134}
{87167} => {73583}
{62054} => {73583}
{265215} => {73583}
{87168} => {73583}

45

support
0.231
0.205
0.231
0.231
0.231
0.205
0.205
0.282
0.282
0.205
0.231
0.205
0.205
0.205

confidence
1.000
0.800
0.818
0.818
0.818
0.800
0.800
0.846
0.846
0.800
0.818
0.800
0.800
0.800

lift
3.000
2.836
2.455
2.455
2.455
2.400
2.400
2.357
1.941
1.835
1.595
1.560
1.560
1.560
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30
31
28
25
27
16
17
19

12
13
29
32
23
10
18
22

rules
{110770} => {110142}
{110142} => {111391}
{87376} => {202466}
{109567} => {179582}
{152603} => {179582}
{152603} => {202466}
{111505} => {178642}
{92733} => {179582}
{269305} => {202466}
{111493} => {178642}
{110770} => {178642}
{111505} => {245047}
{265276} => {245047}
{265274} => {245047}
{7217} => {245047}
{7516} => {245047}
{111391} => {245047}
{45258} => {245047}
{110142} => {245047}
{111493} => {245047}
{444588} => {245047}
{58728} => {245047}
{87567} => {245047}
{200124} => {245047}
{89436} => {245047}
{241863} => {245047}
{14964} => {245047}
{178642} => {245047}
{241601} => {245047}
{183555} => {245047}
{109958} => {245047}
{110770} => {245047}

46

support
0.2051
0.2564
0.2564
0.2564
0.2308
0.2308
0.2051
0.2051
0.2821
0.2051
0.2051
0.2051
0.2308
0.2308
0.3333
0.3333
0.3077
0.2821
0.2821
0.2308
0.2308
0.2308
0.2051
0.2051
0.2051
0.2051
0.2821
0.4103
0.2308
0.2051
0.2051
0.2051

Table 15 Association rules of class #2 sorted by lift in scenario 2

confidence
0.8000
0.8333
0.9091
0.9091
0.9000
0.9000
1.0000
0.8889
0.8462
0.8000
0.8000
1.0000
1.0000
1.0000
0.9286
0.9286
0.9231
0.9167
0.9167
0.9000
0.9000
0.9000
0.8889
0.8889
0.8889
0.8889
0.8462
0.8421
0.8182
0.8000
0.8000
0.8000

lift
2.6000
2.5000
2.0856
2.0856
2.0647
2.0647
2.0526
2.0392
1.9412
1.6421
1.6421
1.5600
1.5600
1.5600
1.4486
1.4486
1.4400
1.4300
1.4300
1.4040
1.4040
1.4040
1.3867
1.3867
1.3867
1.3867
1.3200
1.3137
1.2764
1.2480
1.2480
1.2480



Table 16 Association rules of class #3 sorted by lift in scenario 2

rules support confidence lift
7 {183555} => {63831} 0.205 0.800 2.836
12 {19163} => {75638} 0.231 0.818 1.994
2 {113849} => {75638} 0.205 0.800 1.950
9 {91999} => {75638} 0.205 0.800 1.950
1 {441279} => {103427} 0.205 1.000 1.696
13 {19163} => {103427} 0.282 1.000 1.696
3 {113849} => {103427} 0.231 0.900 1.526
5 {10829} => {103427} 0.231 0.900 1.526
4 {246717} => {103427} 0.205 0.889 1.507
11 {63831} => {103427} 0.231 0.818 1.387
6 {86241} => {103427} 0.205 0.800 1.357
8 {183555} => {103427} 0.205 0.800 1.357
10 {91999} => {103427} 0.205 0.800 1.357

Figures 17- 22 show the plot of rules in each weight class in both scenarios. In these figures,
size of circles stands for the support of rules, large size means higher support; the color
shows the lift of the rules, darker color stands for higher lift. The arrow starts from the
antecedent pointing to the consequents. Different SKUs can be correlated with the same

SKU.
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Graph for 10 rules
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Figure 17 Rules plot of weight class #1 in scenario 1

48



Graph for 48 rules )
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color: lift (1.076 - 2.667)

39091
162481
O = & 179582
202466
73474
O o 188
o 111391 O
241863 29438 o O © 110770
- . ®
200124
178642 O
O 45258 @ @ O 265274 O 94802
7217 '
O
O 311600 O
98938
o J O P
245047 111505
111493 4 Q O 15074
58728 263639
110142 O O O 176855
(@)
838946 OO O _0 QO
O ®) 31217
44095
14964 86316
48114
265282 265276
86642

Figure 18 Rules plot of weight class #2 in scenario 1
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Graph for 18 rules
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Figure 19 Rules plot of weight class #3 in scenario 1
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Graph for 14 rules
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colar: it (1.56 - 3)

170743

630434 O O 1305
0 920785 O

satss O Q 460931
269308
73305 181846
73328 BT167 41866
87168
O ¢
£2134
265215 73583
0 O

@) 62054

Figure 20 Rules plot of weight class #1 in scenario 2
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Graph for 32 rules
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Figure 21 Rules plot of weight class #2 in scenario 2
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Graph for 13 rules
size: support (0.205 - 0.282)
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Figure 22 Rules plot of weight class #3 in scenario 2

The rules are created based on the ARM algorithm and each rule is considered as a pair of

SKUs. SKUs included in each pair are reallocated to the location next to each other by

implementing Exchange Method which will be introduced in next section.
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4.4.5 Exchange Heuristic
In this section, Exchange Heuristic is applied within each weight-based class to reallocate
the consequences to the location right after its antecedents in Stage #1 layout which is
obtained from section 5.4.
In Scenario 1, 56 unique SKUs are impacted by implementing Exchange Method, the
involved SKUs and their sequences in random, stage #1 and stage #2 layout are shown in
the Tables 17 (a)(b)(c) below. The new locations of these SKUs depend on the location of
the first SKU which has highest frequency in each weight-based class. The paired set in
each weight-based class is inserted into the locations after the first SKU in the related
class. The same process is done to scenario 2 with 56 unique SKUs as well. See Tables
18(a), (b) and (c).
The final output of this phase is the improved Stage #2 layout which is ready to use for

computer simulation in the next section.
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Table 17 (a) Locations of SKUs in random, stage #1, and stage #2 layout in scenario 1

SKU Frequency = Random Stage #1 Stage #2

Number Layout Layout Layout
Class #1 1 117791 16 2228 3 3
2 265031 15 2023 8 4
3 87168 13 1630 16 5
4 630434 12 1982 19 6
5 920785 12 2189 20 7
6 119144 11 1930 26 8
7 24982 10 711 34 9
8 73329 10 657 36 10
9 87167 10 2209 37 11
10 83551 9 1489 46 12
11 176438 9 1664 52 13
12 770099 9 1766 54 14
13 52616 8 2442 62 15
14 77786 8 1238 67 16
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Table 17 (b) Locations of SKUs in random, stage #1, and stage #2 layout in scenario 1

Class #2

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

SKU
Number

178642
7516
45258
111391
111493
111505
188
14964
7217
44095
73474
176855
39091
58728
86642
89436
94892
98931
110142
110770
162481
241863
265276
15074
31160
48114
98938
200124
263639
265274
265282
838946
86316

Frequency

24
19
17
17
16
16
12
12
11
11
11
11
10
10
10
10
10
10
10
10
10
10

[y
o

00 O O© © © O O O O ©o

56

Random
Layout

588
1678
1563
1381

239
1477

628
1490
1663
1894
2485
2126

967
2481
1135
2151
1105
1339

718
1191

917

287

474
1192
1984
1797
1581

134
1682

124
2213

963
1721

Stage #1
Layout

787
788
790
791
793
794
798
800
803
804
805
809
810
811
812
813
814
815
816
817
818
819
820
822
824
825
830
832
834
835
836
837
848

Stage #2
Layout

787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819



Table 17 (c) Locations of SKUs in random, stage #1, and stage #2 layout in scenario 1

Class #3

48
49
50
51
52
53
54
55
56

SKU
Number

83626
241880
249707

10829
143789
271586
113849
117091
189145

Frequency

13
11
11

Random
Layout

2132
1405
1949
2537
1087
1740
986
95
1498

Stage #1
Layout

1633
1643
1644
1646
1652
1654
1659
1660
1662

Stage #2
Layout

1633
1634
1635
1636
1637
1638
1639
1640
1641

Table 18 (a) Locations of SKUs in random, stage #1, and stage #2 layout in scenario 2

Class #1

SKU
Number
73583
62134
181846
41866
73325
920785
3305
630434
460931
170743
87167
269308
62054
265215
87168

Frequency

20
19
14
13
13
13
13
11
11
11
11
10
10
10
10

57

Random
Layout
925
1236
354
938
229
2442
2371
500
1332
2111
550
2013
2300
1091
2155

Stage #1
Layout
1

2
3
6
7

12
15
23
22
20
16
37
32
36
34

Stage #2
Layout



Table 18 (b) Locations of SKUs in random, stage #1, and stage #2 layout in scenario 2

Class #2

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

SKU
Number
245047
178642
202466
179582
7217
7516
269305
111391
14964
110142
45258
87376
109567
241601
152603
111493
444588
58728
109958
84155
92733
265276
265274
87567
200124
89436
241863
73328
111505

Frequency Random

25
19
17
17
14
14
13
13
13
12
12
11
11
11
10
10
10
10
10

-
o

0 O© O©W O O ©O© O © ©

58

Layout
910
2276
1712
2088
1106
996
363
457
1764
648
131
1159
823
1644
2261
1660
1018
1983
552
2275
2578
1411
349
2720
707
1457
2173
1533
1542

Stage #1
Layout
806
807
809
808
810
811
818
817
815
821
819
822
823
824
832
831
834
827
829
833
840
847
846
838
843
839
844
845
855

Stage #2
Layout
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834



Table 18 (c) Locations of SKUs in random, stage #1, and stage #2 layout in scenario 2

SKU Frequency = Random Stage #1 Stage #2

Number Layout Layout Layout
Class #3 45 103427 23 2179 1708 1708
46 75638 16 1155 1711 1709
47 19163 11 1572 1719 1710
48 63831 11 295 1720 1711
49 110770 10 953 1830 1712
50 183555 10 326 1833 1713
51 10829 10 197 1723 1714
52 86241 10 106 1728 1715
53 91999 10 455 1729 1716
54 113849 10 2643 1730 1717
55 246717 9 2493 1743 1718
56 441279 8 2183 1764 1719

In the tables above, all the SKUs involved in exchange heuristic which are the unique SKUs
in association rules are sorted by frequency, the locations are shown in different phases,
the original layout is random, stage #1 layout is the obtained in ranking and sorting phase,
and stage #2 layout is the final layout by implementing exchange heuristic. It’s obvious
that the correlated SKUs are moving closer the 1/0 point as well as closer to each other
which further lead to a reduction in picking up activity.

4.4.6 Computer Simulation
In this section, a static simulation model is developed in AutoMod to compare the
performance in two scenarios, respectively, random layout and improved layout by
implementing the proposed method in this thesis. The measurement of outperformance is

average pickup time. Appendix 5 shows the code in AutoMod.
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4.4.6.1 Output Analysis
The output from simulation indicates that the improvement is significant by implementing
the method proposed in this thesis. By comparing random layout to Stage #1 and Stage #2
layouts, the grand average pickup time decrease from 308603.9.5 to 39740 then to 34848.7
seconds while the trip time decreases from 309591.9 to 41006.1 then to 36106 seconds.
The improvement rate from random to Stage #1 is 87.12% and 12.31% from Stage #1 to
Stage #2 in term of pickup time, the total improvement is 88.71%. In term of trip time, the
improvements are 86.75%, 11.95% and 88.34%. See Table 19-20 and Figure 23-35. In
other words, labor cost in the order picking process is reduced by almost 90%. This
heuristic is a very good attempt of building a new DC from the scratch or rebuilding an

existing DC because the solution is relatively quick and easy to implement.

Table 19 Numeric improvement overview

Scenario 1
pickup time trip time
Random Stage #1 Stage #2 Random Stage #1 Stage #2
Average 308682.5 38597.2 34535.2 309664.9 40144.8 36082.8

Std. Dev 43316.5 2469.4 2052.7 43258.0 2653.1 2160.9
Max 370859.7 43064.6 36928.0 371656.2 44665.6 38565.1
Min 229049.9 31603.5 29382.2 230827.3 33060.9 31242.6

Scenario 2
pickup time trip time

Random Stage #1 Stage #2 Random Stage #1 Stage #2
Average 308525.3 40900.8 35162.1 309518.9 41867.4 36129.2

Std. Dev 45721.6 3203.8 3002.8 45717.9 3089.1 2819.8
Max 370739.8 44528.2 37878.3 371536.2 45205.0 38565.1
Min 231640.1 30256.2 25894.8 232516.5 31479.3 27118.0

60



Scenario 1

Scenario 2

Scenario 1

Scenario 2

Table 20 Percentage improvement overview

Random
Stage #1
Stage #2
Random
Stage #1
Stage #2

Random
Stage #1
Stage #2
Random
Stage #1
Stage #2

Random
0.00%
87.50%
88.81%

Random
0.00%
87.04%
88.35%

Pickup time
Scenariol
Stage #1  Stage #2

0.00% -
10.52% 0.00%

Trip time
Scenariol
Stage #1  Stage #2

0.00% -
10.12% 0.00%

Random

0.00%
86.74%
88.60%

Random

0.00%
86.47%
88.33%

Scenario?2
Stage #1

0.00%
14.03%

Scenario2
Stage #1

0.00%
13.71%

Stage #2

0.00%

Stage #2

0.00%

Comparison of pickup and trip time in each order picking operation is shown in Table 21-

22 and Figures 23-35 below.
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Table 21 Pickup time and trip time in each order in random layout and stage #1 & #2

orderl

order2

order3

order4

order5

order6

order7

order8

order9

order10
orderll
order12
orderl13
orderl4
orderl15
order16
orderl7
orderl8
order19
order20
order21
order22
order23
order24
order25
order26
order27
order28
order29
order30
order31
order32
order33
order34
order35

Random
274,985.5
235,021.3
313,026.4
240,569.1
365,635.9
350,083.0
345,435.7
287,162.5
306,332.9
365,575.1
352,848.0
245,521.9
357,851.9
313,406.2
277,094.1
365,589.0
327,011.4
333,415.4
316,213.7
325,035.6
282,645.6
245,665.7
275,087.9
337,699.8
229,049.9
279,306.4
350,364.5
244,047.8
335,800.0
296,296.0
344,531.4
314,689.8
297,647.4
370,859.7
355,992.8

layout of scenario 1

pickup time

Stage #1
39,983.3
31,603.5
39,275.8
39,290.5
39,922.6
37,346.3
37,708.9
38,701.9
41,287.0
36,791.7
34,116.9
37,094.3
40,148.4
41,559.3
41,462.3
41,285.3
38,635.9
36,763.1
36,608.7
40,091.1
39,868.1
37,694.6
33,621.3
37,080.3
34,714.2
36,870.0
43,064.6
41,232.0
41,587.0
36,377.1
38,664.6
39,988.8
37,506.3
41,657.0
39,789.8

Scenario 1

Stage #2
36,650.7
29,785.2
36,002.4
36,011.1
35,186.8
31,209.5
34,429.5
35,369.1
33,748.6
34,914.2
29,382.2
33,820.9
35,473.1
36,824.7
36,727.7
36,550.7
33,901.2
32,028.4
34,790.5
36,758.3
36,535.3
33,019.3
31,743.7
32,345.7
32,895.9
34,992.1
36,928.0
36,497.3
36,852.3
31,642.4
35,331.8
35,254.1
34,226.8
36,922.3
35,055.1
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Random
275,882.9
235,817.8
314,590.5
241,338.9
365,779.0
351,266.2
346,045.5
288,473.3
307,116.0
366,685.9
354,758.8
246,158.4
358,381.8
314,269.4
277,964.8
367,393.1
327,714.6
333,705.2
316,876.8
325,965.4
284,409.7
246,789.7
276,291.9
338,469.6
230,827.3
279,462.8
350,507.7
245,491.9
336,129.8
297,353.4
345,962.1
315,600.6
299,198.2
371,656.2
357,676.9

trip time

Stage #1
41,7179
33,060.9
40,285.6
40,153.6
41,860.6
38,977.0
38,958.8
40,343.0
43,194.7
37,574.9
36,161.0
38,788.8
41,829.5
43,173.7
43,116.7
43,299.7
40,397.0
37,586.2
37,458.5
41,798.9
41,735.9
38,757.8
34,431.1
38,991.1
35,870.6
38,793.8
44,665.6
43,059.7
43,254.7
37,520.2
40,439.0
41,789.9
38,862.8
43,284.7
41,870.9

Stage #2
38,385.1
31,242.6
37,012.2
36,874.2
37,124.2
32,840.2
35,679.3
37,010.2
35,656.3
35,697.3
31,426.3
35,515.3
37,154.2
38,439.1
38,382.1
38,565.1
35,662.3
32,851.5
35,640.3
38,466.1
38,403.1
34,082.4
32,553.5
34,256.4
34,052.4
36,916.2
38,529.1
38,325.1
38,520.1
32,785.5
37,106.2
37,055.2
35,583.3
38,550.1
37,136.2



order36
order37
order38
order39

Random
302,029.3
234,012.0
290,917.9
354,159.5

pickup time
Stage #1
38,531.6
39,897.8
37,536.9
39,932.1

Stage #2
32,395.0
33,761.2
34,257.5
36,652.7
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Random
302,892.5
235,002.7
292,081.9
354,942.7

trip time
Stage #1
40,309.0
41,618.9
38,826.8
41,826.5

Stage #2
34,172.4
35,482.3
35,547.3
38,547.1



Table 22 Pickup time and trip time in each order in random layout and stage #1 & #2

orderl

order2

order3

order4

order5

order6

order7

order8

order9

order10
orderll
order12
orderl3
orderl4
orderl5
orderl16
orderl7
orderl8
order19
order20
order21
order22
order23
order24
order25
order26
order27
order28
order29
order30
order31
order32
order33
order34
order35

Random
231,640.1
285,661.0
278,703.8
242,477.1
367,170.2
362,659.1
242,145.7
244,041.4
354,714.9
241,269.4
370,739.8
338,484.2
359,703.4
298,024.0
348,945.4
329,026.4
285,183.7
360,572.6
329,342.7
267,109.5
283,535.0
285,680.0
273,134.1
236,917.1
266,102.2
340,794.7
368,179.5
349,752.7
313,683.1
354,119.9
273,594.7
326,641.2
260,900.4
332,215.9
367,421.4

layout of scenario 2

pickup time

Stage #1
39,106.5
42,548.6
42,846.3
41,817.3
42,129.9
40,858.1
43,402.6
33,703.9
43,034.9
38,521.5
38,460.6
42,886.6
38,534.3
42,593.6
44,528.2
40,741.7
43,974.5
42,694.3
39,131.2
36,133.1
41,112.7
43,838.2
30,256.2
34,825.5
39,382.9
37,766.3
44,127.5
42,212.6
42,506.6
42,692.6
37,765.3
41,213.4
39,467.2
43,561.8
43,155.3

Scenario2

Stage #2
34,798.5
36,299.4
36,170.4
37,082.6
35,880.7
32,780.3
36,726.7
27,940.7
36,359.1
34,160.2
32,201.4
36,637.3
31,858.4
36,344.4
37,842.3
36,380.4
37,725.3
36,445.1
32,455.3
29,937.2
36,308.4
37,588.9
25,894.8
31,9194
31,305.1
30,115.2
37,878.3
37,851.3
36,257.4
36,443.4
36,320.4
36,419.4
37,579.3
37,312.6
36,479.4
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Random
232,516.5
287,078.4
279,707.8
244,121.2
368,193.3
363,625.9
242,328.9
244,677.9
355,378.0
242,993.5
371,536.2
339,267.4
360,459.9
299,508.0
349,181.9
330,110.5
286,814.5
362,150.0
329,699.1
267,386.0
285,139.0
286,583.2
274,130.6
237,833.5
267,092.9
342,678.8
368,536.0
351,156.8
315,087.1
356,094.3
274,017.8
326,957.7
262,197.8
333,206.7
368,564.6

trip time

Stage #1
39,793.3
43,2354
43,616.1
43,050.7
43,366.4
42,419.2
44,977.0
35,574.6
43,815.1
39,861.6
39,200.8
44,754.3
39,557.4
43,280.4
45,205.0
41,428.5
44,661.3
43,3944
40,972.3
37,329.5
41,799.5
44,658.3
31,479.3
35,515.3
40,800.3
39,119.8
44,814.3
42,899.4
43,313.4
43,379.4
38,452.1
41,900.2
40,234.0
44,715.3
43,842.1

Stage #2
35,485.3
36,986.2
36,940.2
38,316.1
37,117.2
34,341.4
38,301.1
29,8114
37,139.2
35,500.3
32,951.5
38,505.1
32,881.5
37,031.2
38,529.1
37,067.2
38,412.1
37,145.2
34,296.4
31,133.6
36,995.2
38,409.1
27,118.0
32,609.2
32,722.5
31,468.6
38,565.1
38,538.1
37,064.2
37,130.2
37,007.2
37,106.2
38,346.1
38,466.1
37,166.2



order36
order37
order38
order39

Random
342,646.2
277,585.0
281,004.2
360,964.3

pickup time
Stage #1
44,079.5
42,905.6
43,950.5
42,664.6

Stage #2
37,830.3
36,229.7
37,701.3
37,860.3
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Random
343,442.7
278,328.2
281,627.4
361,827.4

trip time
Stage #1
44,766.3
43,659.1
44,637.3
43,3514

Stage #2
38,517.1
36,983.2
38,388.1
38,547.1



Full comparisons In scenario 1 & 2
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Figure 23 Full comparisons of scenario 1 & 2
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Random VS Stage #1
in Scenario 1 - Pickup time
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Figure 24 Pickup time of random VS stage #1 in scenario 1

Random VS Stage #2
in Scenario 1 - Pickup time
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Figure 25 Pickup time of random VS stage #2 in scenario 1
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Figure 26 Pickup time of stage #1 VS stage #2 in scenario 1

Random VS Stage #1
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Figure 27 Pickup time of random VS stage #1 in scenario 2
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Random VS Stage #2
in Scenario 2 - Pickup time
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Figure 28 Pickup time of random VS Stage #2 in scenario 2
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Figure 29 Pickup time of stage #1 VS stage #2 in scenario 2
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Random VS Stage #1
in Scenario 1 - Trip time
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Figure 30 Trip time of random VS stage #1 in scenario 1
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Figure 31 Trip time of random VS stage #2 in scenario 1
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Stage #1VS Stage #2
in Scenario 1 - Trip time
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Figure 32 Trip time of stage #1 VS stage #2 in scenario 1
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Figure 33 Trip time of random VS stage #1 in scenario 2
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Random VS Stage #2
in Scenario 2 - Trip time
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Figure 34 Trip time of random VS stage #2 in scenario 2
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Figure 35 Trip time of stage #1 VS stage #2 in scenario 2
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V. CONCLUSION AND FUTURE RESEARCH

As described in Section 1.3 for objectives of this thesis, the case study presents a quick
solution of storage location assignment problem in a practical level with significant
improvement by implementing the proposed heuristic as well as the combination of
picker-to-parts pickup method and S-shape routing method.

5.1 Conclusion

The results of this thesis indicate that the combination of picker-to-parts method and S-
shape routing selection method has positive impact on improving efficiency of order
picking activity. The reason for choosing S-shape routing method is that it is commonly
used in practice, and the selection of S-shape routing method reduced the complexity of
the problem, and thus, shorten the computational time.

By balancing the computational time and output between optimal and heuristic solutions,
optimal solution is not implementable because of the huge computational time. As is
mentioned in section 4.3, the computational time for obtaining optimal solution is too long
to meet our goal of producing a quick solution, especially when number of SKUs increases.
In term of performance, the proposed heuristic is 6.7% worse than the optimal in the
experiment involved 10 SKUs. We can conclude that the proposed heuristic is
implementable in practice because it provides a good solution in much shorter time.

The proposed heuristic integrates techniques such as data analysis, association mining,
mathematical formulation and computer simulation. Five steps of the proposed heuristic
ensure the pickup priority accounting for weight and frequency of SKUs. Also, the heuristic
improves the layout design by exchanging the storage locations of SKUs based on the

associations between SKUs generated via association rules mining. The numerical results
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from different scenarios show that the average improvement of 87.12% from random
layout to Stage #1 layout and 12.31% from Stage #1 layout to Stage #2 layout in term of
pickup time. In term of pickup time, the improvements are 86.75% from random layout to
stage #1 layout and 11.95% from stage #1 layout to stage #2 layout.

ARM algorithm is an important technique to identify correlations between SKUs among
different transactions. And it has more potential in improving order picking operation by
considering more rules. Before implementing the proposed heuristic in practice, an
appropriate combination of support and confidence in ARM algorithm needs to be
determined in advanced, since it is the key activity to balance the outperformance and
computation time. According to the result form design of experiment, the selected
combination of support (0.2) and confidence (0.8) is significant to impact number of rules
produced via ARM.

Furthermore, simulation provides an easy and convenient way to visualize and analysis the
ordering picking operations. C language-based coding environment in AutoMod makes the
model easy to be expanded and modified to test more experiments. In addition, simulation
is also an efficient way to validate and verify the method applied and control the potential
risk by analyzing the simulation output.

The heuristic proposed in this thesis is a ready-to-use “package” for layout design, the only
input for such package is the raw data set with transaction numbers, SKU numbers and
weights of SKUs. It takes much shorter time to produce a good solution when compare to
optimal solution. It is recommended to implement such heuristic for new layout design

and/or layout improvement in an existing DC.
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5.2 Future Research

Due to limited time, this thesis only provides comparison among two layouts generated
from the proposed heuristics and randomized layout. The future research may focus on:
First, applying proposed heuristic into new layout, for example, fishbone layout to achieve
better performance. Second, identifying the break-even point of support and confidence
regarding specific data set in ARM phase to produce the best solution of number of rules.
Finally, comparing the proposed method to other existing algorithm to indicate the

performance, like Genetic Algorithm and Ant Colony Optimization algorithm.
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APPENDIX SECTION
APPENDIX 1: AMPL CODE OF QAP FORMULATION

param n:=20;

param f{1..n,1..n};

param d{1..n,1..n};

param c{1..n,1..n};

var x{1..n,1..n} integer;

minimize obj_function: sum{i in 1..n} sum{j in 1..n} sum{k in 1..n} sum{l in 1..n}
L, j1xd [k, 1] x[i,K]*x[j,1] + sum{i in 1..n} sum{j in 1..n} c[i,j]*x[i,j];
subject to constrl{j in 1..n}: sum{iin 1..n} x[i,j] = 1,

subject to constr2{i in 1..n}: sum{j in 1..n} x[i,j] = 1;

subject to bound1{i in 1..n,j in 1..n}: 0<=x[i,j]<=1;

#subject to con_add{i in 1..n}: X[i,i]=0;

data HCP13.5.1.dat; option solver cplexamp; solve; display x;

display _total _solve time
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APPENDIX 2: R CODE OF DATA SAMPLE SELECTION
getwd()
setwd("/Users/yueli/Desktop/Thesis R code™)
library("readx|™)
library("dplyr")
library("stringr")
library("stringi™)
dt_table <- read_excel("GM.xlIsx","GM")
dt_ASGN <- dt_table[,1]
dt ASGN <- unique(dt_ASGN)
## choose ASGN count between 150-250
df<-data.frame(dt_table3ASGN,dt_table$Product)
names(df)[1:2] <- c("Assignment”, "Product")
group_df <- group_by(df,as.numeric(df$Assignment))
count_df<-count_(group_df)
final_df<-filter(count_df, count_df$n>= 150 & count_df$n <= 250)
names(final_df)[1:2] <- c("ASGN", "Frequency")
all_df<-filter(dt_table,dt_table$ASGN %in% final_df$ASGN)
write.csv(all_df, "150t0250.csv")
## randomly choose 1/3 of orders with items between 150 and 250
dt_ ASGN1 <- all_dff,1]
dt ASGNL1 <- unique(dt_ ASGN1)

dt_ASGN_rand <- mutate(dt_ ASGNZ1,rand_num = runif(nrow(dt_ASGN1),1,100))
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dt_table sort <- arrange(dt_ASGN _rand,as.numeric(desc(dt ASGN_rand$rand_num)))
tablel <- dt_table_sort[1:ceiling(1/3 * nrow(dt_table_sort)),]
final_table_1 <- filter(all_df, all_df$ASGN %in% table1$ASGN)

write.csv(final_table 1, "onethirdof150t0250.csv")
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APPENDIX 3: R CODE OF WEIGHT-BASED CLASS AND STAGE #1 LAYOUT
quan <- quantile(final_table_1$Weight,probs = seq(0,1,0.33333333))

weight_filter_1 <- filter(final_table_1,final_table _1$Weight<=quan[2])
group_weight_1<-group_by(weight_filter_1,as.numeric(weight_filter 1$Product))
frequencyofclassl <- count(group_weight 1)

dec_freq_classl <- arrange(frequencyofclassl,as.numeric(desc(frequencyofclass1$n)))
names(dec_freq_class1)[1:2] <- c("Product”, "Freq")

weight_filter_2 <- filter(final_table_1,final table 1$Weight>=quan[2] &
final_table_1$Weight <= quan[3])
group_weight_2<-group_by(weight_filter_2,as.numeric(weight_filter 2$Product))
frequencyofclass2 <- count(group_weight_2)

dec_freq_class2 <- arrange(frequencyofclass2,as.numeric(desc(frequencyofclass2$n)))
names(dec_freq_class2)[1:2] <- c("Product”, "Freq")

weight_filter_3 <- filter(final_table_1,final table_1$Weight >= quan[3])
group_weight_3<-group_by(weight_filter_3,as.numeric(weight_filter_3$Product))
frequencyofclass3 <- count(group_weight_3)

dec_freq_class3 <- arrange(frequencyofclass3,as.numeric(desc(frequencyofclass3$n)))
names(dec_freq_class3)[1:2] <- ¢("Product”, "Freq")

itemlocationall <- rbind(dec_freq_class3,dec_freq_class2,dec_freq_classl)
location<-c(1:nrow(itemlocationall))

itemlocationall <- chind(itemlocationall,location)

write.csv(weight_filter_1, "weightclass1.csv")

write.csv(weight_filter_2, "weightclass2.csv™)
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write.csv(weight_filter_3, "weightclass3.csv")
write.csv(dec_freq_classl, “itemlocationclassl.csv™)
write.csv(dec_freq_class2, "itemlocationclass2.csv*™)
write.csv(dec_freq_class3, "itemlocationclass3.csv")
write.csv(itemlocationall, "itemlocationall.csv™)
## Stage 1 layout matrix
new_matrix <- matrix(ncol = nrow(itemlocationall), nrow = nrow(itemlocationall), c(0))
rownames(new_matrix) <- 1:nrow(itemlocationall) #item
colnames(new_matrix) <- 1:nrow(itemlocationall) #location
new_matrix
for (i in 1:nrow(new_matrix))
{

new_matrix[itemlocationall$location[i],itemlocationall$location[i]] <-
itemlocationall$Product[i]

¥

dim(new_matrix)

write.csv(new_matrix, "stagellayoutmatrix.csv')
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APPENDIX 4: R CODE OF ASSOCIATION RULES MINING AND OUTPUT
REFORMATION

## Association rules mining for class #1
install.package(*arules")
library("arules™)
HEBdata <- weight_filter_1
HEBdata<-transform(HEBdata, ASGN=as.factor(ASGN))
HEBdata<-transform(HEBdata, Product=as.factor(Product))
HEBdata<-transform(HEBdata, Aisle=as.factor(Aisle))
HEBdata<-transform(HEBdata, Location=as.factor(Location))
HEBdata<-transform(HEBdata, Description=as.factor(ltemDescription))
HEBdata<-transform(HEBdata, Weight=as.numeric(Weight))
length(levels(HEBdata$ASGN))
length(levels(HEBdata$Product))
quantile(HEBdata$Weight)
WC <- split(x=HEBdata[,"Description"], f=HEBdata$ASGN)
itemM <- split(x=HEBdata[,"Product"], f=HEBdata$ASGN)
WC <- lapply(WC, unique)
itemM <- lapply(itemM, unique)
itemM <- as(itemM, "transactions"); itemM
WC <- as(WC, "transactions™); WC
itemFrequencyPlot(itemM,support=.20)

sizes<-size(itemM)
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sizes
size.labels<-as.numeric(levels(as.factor(sizes)))
itemM.subset.2<-subset(itemM,sizes==2)
inspect(itemM.subset.2)
HEBdatasup <- itemFrequency(itemM, type= "relative")
M = mean(HEBdatasup)
rules_class1<- apriori(itemM,

parameter=list(support=.2,

confidence=.8, maxlen=2, target="rules"))

rules_classl
inspect(rules_classl)
HEBdatasup <- itemFrequency(itemM, type= "relative")
sort(head(HEBdatasup, 25), decreasing = TRUE)
highest.lift_classl <- sort(rules_classl, by = "lift", na.last=NA, decreasing = TRUE)
inspect(head(highest.lift_classl, 25))
highest.conf_classl <- sort(rules_classl, by = "confidence”, na.last=NA, decreasing =
TRUE)
inspect(head(highest.conf _class1, 25))
highest.sup_classl <- sort(rules_class1, by = "support”, na.last=NA, decreasing = TRUE)
inspect(head(highest.sup_class1, 25))
association_rules_classl<-as(rules_classl, "data.frame™);
rules_highest_lift_classl <- as(highest.lift_class1, "data.frame™);

write.csv(association_rules_classl,"association_rules_classl.csv")
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write.csv(rules_highest_lift_class1, "rules_highest_lift_classl.csv")
## Clean Association Rules output

beforel <- rules_highest_lift_classl

outl <- strsplit(as.character(beforel$rules),'=>")

outl <- data.frame(t(sapply(outl, [)))

afterl <- with(beforel, data.frame(support = support, confidence = confidence, lift = lift))
afterl <- cbind(outl,afterl)

names(afterl)[1:2] <- c("LHS", "RHS")

after1$LHS<-gsub('.{2}$', ", after1$LHS)

after1$LHS<-gsub(**.', ", after1$LHS)

after1ISRHS<-gsub('.{1}$', ", after1$RHS)
after1ISRHS<-gsub('*.{2}, ", afterl1$RHS)

write.csv(afterl, "rules_highest_lift_classsl_cleaned.csv")

## Association rules mining for class #2

install.package(*arules")

library("arules™)

HEBdata <- weight_filter_2

HEBdata<-transform(HEBdata, ASGN=as.factor(ASGN))
HEBdata<-transform(HEBdata, Product=as.factor(Product))
HEBdata<-transform(HEBdata, Aisle=as.factor(Aisle))
HEBdata<-transform(HEBdata, Location=as.factor(Location))
HEBdata<-transform(HEBdata, Description=as.factor(ltemDescription))

HEBdata<-transform(HEBdata, Weight=as.numeric(\Weight))
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length(levels(HEBdata$ASGN))
length(levels(HEBdata$Product))
quantile(HEBdata$Weight)
WC <- split(x=HEBdata[,"Description™], f=HEBdata$ASGN)
itemM <- split(x=HEBdata[,"Product"], f=HEBdataSASGN)
WC <- lapply(WC, unique)
itemM <- lapply(itemM, unique)
itemM <- as(itemM, "transactions"); itemM
WC <- as(WC, "transactions"); WC
itemFrequencyPlot(itemM,support=.20)
sizes<-size(itemM)
sizes
size.labels<-as.numeric(levels(as.factor(sizes)))
itemM.subset.2<-subset(itemM,sizes==2)
inspect(itemM.subset.2)
HEBdatasup <- itemFrequency(itemM, type= "relative")
M = mean(HEBdatasup)
rules_class2<- apriori(itemM,

parameter=list(support=.2,

confidence=.8, maxlen=2, target="rules"))

rules_class2
inspect(rules_class2)

HEBdatasup <- itemFrequency(itemM, type= "relative")
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sort(head(HEBdatasup, 25), decreasing = TRUE)

highest.lift_class2 <- sort(rules_class2, by = "lift", na.last=NA, decreasing = TRUE)
inspect(head(highest.lift_class2, 25))

highest.conf_class2 <- sort(rules_class2, by = "confidence", na.last=NA, decreasing =
TRUE)

inspect(head(highest.conf_class2, 25))

highest.sup_class2 <- sort(rules_class2, by = "support”, na.last=NA, decreasing = TRUE)
inspect(head(highest.sup_class2, 25))

association_rules_class2<-as(rules_class2, "data.frame");

rules_highest_lift_class2 <- as(highest.lift_class2, "data.frame™);
write.csv(association_rules_class2,"association_rules_class2.csv™)
write.csv(rules_highest_lift_class2, "rules_highest_lift_class2.csv™)

## Clean Association Rules output

before2 <- rules_highest_lift_class2

out2 <- strsplit(as.character(before2$rules),'=>")

out2 <- data.frame(t(sapply(out2, [')))

after2 <- with(before2, data.frame(support = support, confidence = confidence, lift = lift))
after2 <- cbind(out2,after2)

names(after2)[1:2] <- c("LHS", "RHS")

after28LHS<-gsub('.{2}$', ", after2$LHS)

after2$LHS<-gsub(**.', ", after2$LHS)

after2$RHS<-gsub('.{1}$', ", after2$RHS)

after2$RHS<-gsub("*.{2}, ", after2$RHS)

85



write.csv(after2, "rules_highest_lift_classs2_cleaned.csv'™)

## Association rules mining for class #3
install.package("arules")

library("arules")

HEBdata <- weight_filter_3

HEBdata<-transform(HEBdata, ASGN=as.factor(ASGN))
HEBdata<-transform(HEBdata, Product=as.factor(Product))
HEBdata<-transform(HEBdata, Aisle=as.factor(Aisle))
HEBdata<-transform(HEBdata, Location=as.factor(Location))
HEBdata<-transform(HEBdata, Description=as.factor(ltemDescription))
HEBdata<-transform(HEBdata, Weight=as.numeric(\Weight))
length(levels(HEBdata$ASGN))
length(levels(HEBdata$Product))

quantile(HEBdata$Weight)

WC <- split(x=HEBdata[,"Description™], f=HEBdata$ASGN)
itemM <- split(x=HEBdata[,"Product"], f=HEBdataSASGN)
WC <- lapply(WC, unique)

itemM <- lapply(itemM, unique)

itemM <- as(itemM, "transactions"); itemM

WC <- as(WC, "transactions"); WC
itemFrequencyPlot(itemM,support=.20)

sizes<-size(itemM)

sizes
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size.labels<-as.numeric(levels(as.factor(sizes)))
itemM.subset.2<-subset(itemM,sizes==2)
inspect(itemM.subset.2)
HEBdatasup <- itemFrequency(itemM, type= "relative")
M = mean(HEBdatasup)
rules_class3<- apriori(itemM,

parameter=list(support=.2,

confidence=.8, maxlen=2, target="rules™))

rules_class3
inspect(rules_class3)
HEBdatasup <- itemFrequency(itemM, type= "relative")
sort(head(HEBdatasup, 25), decreasing = TRUE)
highest.lift_class3 <- sort(rules_class3, by = "lift", na.last=NA, decreasing = TRUE)
inspect(head(highest.lift_class3, 25))
highest.conf_class3 <- sort(rules_class3, by = "confidence", na.last=NA, decreasing =
TRUE)
inspect(head(highest.conf_class3, 25))
highest.sup_class3 <- sort(rules_class3, by = "support”, na.last=NA, decreasing = TRUE)
inspect(head(highest.sup_class3, 25))
association_rules_class3<-as(rules_class3, "data.frame");
rules_highest_lift_class3 <- as(highest.lift_class3, "data.frame™);
write.csv(association_rules_class3,"association_rules_class3.csv™)

write.csv(rules_highest_lift_class3, "rules_highest_lift_class3.csv")
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## Clean Association Rules output

before3 <- rules_highest_lift_class3

out3 <- strsplit(as.character(before3$rules),'=>")
out3 <- data.frame(t(sapply(out3, [)))

after3 <- with(before3, data.frame(support = support, confidence = confidence, lift = lift))
after3 <- cbind(out3,after3)

names(after3)[1:2] <- ¢("LHS", "RHS")
after3$LHS<-gsub(".{2}$', ", after3$LHS)
after3$LHS<-gsub(**.', ", after3$LHS)
after33RHS<-gsub('.{1}$', ", after3$RHS)
after3$RHS<-gsub('*.{2}, ", after3$RHS)

write.csv(after3, "rules_highest_lift_classs3 cleaned.csv™)
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APPENDIX 5: AUTOMOD CODE FOR CREATING SIMULATION LOGICS
(PARTIAL)
SFileBegin  name init.m
begin model initialization function
call F_Location_Init()
call F_Order_Init()
create 39 load of type Order_load to PMasterLoad
return true
end
begin PMasterLoad arriving procedure
inc V_Order_ctrby 1
set Attr_Order_ID to V_Order_ctr
call SReceiveOrder
call SPickOrder
call SDeliverOrder
print ac to message
end
SFileBegin  name veh.m
begin pm vehicle initialization function
increment V_Count by 1
set theVehicle A _index = V_Count
set theVehicle A_Home = pm.cp_home

dispatch theVehicle to pm.cp_home
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return true

end

SFileBegin title "idle, receive,pick,deliver”
name subs.m

begin pm idle procedure
dispatch this vehicle to pm.cp_home
wait to be ordered on OLVehicle

end

begin SReceiveOrder procedure
move into Qlnitial
move into pm.cp_home

end

begin SPickOrder procedure
set Attr_Time2 to ac
setVito1l
print this load to message
print "Order received:" ac to message
print this load vehicle to message
while Vi <=V_Number_Item_Per_Ord(Attr_Order_ID) do
begin

travel to V_Location(V_Order(Attr_Order_ID,Vi))
incViby 1

inc V_Number_Done by 1
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end
end
begin SDeliverOrder procedure
tabulate ac - Attr_Time2 in T_PickTime
print “finish time of picking up the last SKU in an order" ac to message
tabulate V_Number_Done in T_Throughput
travel to pm.cp_home

print "time back to Home for another order” ac to message

end
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