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ABSTRACT 

Order picking is the most labor-intensive function of distribution centers (DC) in 

the food and beverage store industry. An efficient order picking process supports this 

industry’s supply chain to move high volumes of products between the DC and the retail 

stores. This thesis focuses on the storage location assignment problem to deciding via an 

algorithm based on Association Rules Mining (ARM) the most adequate location of 

incoming products. The algorithm analyzes hundreds of orders received by the DC to find 

correlated products that are ordered frequently together by retail stores. The algorithm then 

assigns correlated products to storage locations that are close to each other in order to 

minimize order picking times. The results of computer simulation experiments using data 

from a real distribution center will be presented to evaluate the performance of the DC 

layout resulting from ARM.  

 

Keywords: Simulation, Data-intensive Analysis, Distribution Center, Facilities Layout, 

Order Picking, Association Rules. 
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I. INTRODUCTION 

1.1 Problem Description 

In order to meet the requirements of demand-driven markets and maintain the satisfaction 

level of customers, both managers and researchers seek to save the cost and time in the 

supply chain. In supply chain management, the distribution center (DC) plays a 

significant intermediate role between suppliers and customers. Receiving, storing, order 

picking, sorting and distributing are the basic activities of a DC. Order picking is the 

most time-consuming and labor-intensive process [1], and it approximately accounts for 

55% of warehouse operating expenses [2]. By optimizing the order picking process, time 

and cost can be reduced, thus, increases the DC’s efficiency.  

The efficiency of a DC determines the performance of the whole supply chain and the 

competitiveness of the firm. The challenges regarding the distribution center are not only 

managing massive amounts of goods and items, but also delivering thousands of daily 

orders in a timely manner. The storage location assignment method targets the efficient 

and systematic allocation of Stock Keeping Units (SKUs) to warehouse slots in order to 

minimize the order-picking time. [3] A typical requirement for storage location 

assignment solution is to ensure the SKUs are associated by specific metric, such as 

similarity, turnover ratio, product flow, and distance [1]. Due to the complexity of storage 

location assignment problem, a quick solution of storage location assignment problem 

and facility layout design in practical level becomes more important and valuable to 

warehousing operations in the supply chain. [3] 

ARM algorithm has been widely used by the food and grocery industry [4][5] to create 

efficient layout designs of their retail stores. ARM is a data-mining technique which 
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focuses on identifying the correlated products among different transactions. ARM 

algorithm shows the set of products that are frequently ordered together. These rules can 

be used for creating batches in layout design and products allocation in supermarkets, for 

example the well-known diaper-beer case [6], as well as pushing advertisements and 

issuing coupons to targeted customers to increase the company’s sales. Positioning items 

in the distribution center locations is done heuristically by several companies. For 

example, they put items that are of similar weight near each other. In this research, the 

application of ARM is extended to the distribution center. The ARM algorithm is used to 

find the correlations between SKUs that are frequently ordered together among all the 

transactions from different retail stores. The correlated SKUs will be reassigned to 

locations closer to each other based on ARM algorithm as well as weight-classed policy. 

See Figure 1. 

  

 Figure 1 Illustration of using ARM algorithms to create batches  

 

In order to improve the order picking efficiency in the DC, different types of technologies 

such as data mining, mathematical formulation, heuristic method as well as computer 

simulation, are implemented in this thesis to fill the gap from data collection to 
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performance comparison. As is mentioned above, ARM algorithm identifies the correlated 

batches of products. However, such rules don’t take locations into consideration. Therefore, 

the output of the ARM algorithm is used as input for exchange heuristic to solve location 

assignment problem to achieve the goal of assigning products into the best locations. The 

output of the exchange heuristic will be inputted into simulation model, which will provide 

the estimated travel distance, vehicle utilization, and order-picking time - the performance 

metrics used in the comparison of layouts. 

1.2 Objectives  

The objectives of this thesis are as follow: 

a. Integrate ARM technique, mathematical programming and computer simulation to 

produce a solution for a Quadratic Assignment-based storage location problem. 

b. Identify the best combination of support and confidence for the ARM algorithm in 

the context of the DC. 

c. Design a heuristic to find solutions for the storage location problem in a practical 

level in term of computational time and difficulty of implementation.  

1.3 Organization of Thesis 

The organization of this thesis is as follows: Section 2, a review of the literature of 

warehousing and order picking activities. Section 3, the methodology from five aspects: 

weight-based class, ranking and sorting, ARM, exchange heuristic, and computer 

simulation. Section 4, the experiments and numerical results. Section 5, the conclusion and 

future work. 
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II. LITERATURE REVIEW 

2.1 Warehousing   

Storing or buffering products such as raw materials, goods-in-process, and finished 

products between suppliers and customers is referred to as “warehousing”. Different terms 

are used to describe a warehouse when additional functions are added: “Distribution center” 

is commonly used for a warehouse with function of distribution; “transshipment”, “cross-

docking”, and “platform” center refer to warehouses with functions of temporarily holding 

product and quick transfer [1]. Based on ELA/AT Kearney (2004) [7], the cost of 

warehousing involved in logistics process is about 20% of a company's total supply chain 

management cost. The workflow includes: receiving products from both suppliers and 

customers; reserving storage for products; picking, sorting and packing products according 

to orders received from retail stores; and distributing and shipping the orders to the 

customers. Figure 2 shows the warehousing functions and corresponding product flows. 

 

Figure 2 Typical warehouse functions and flows (based on Tompkins et al., 2003) [2] 
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De Koster et al. [1] specified that the factors that need to be considered to enhance 

warehousing performance are the number of storage zones and main aisles as well as aisle 

dimensions.  

2.2 Order Picking   

In practice, multiple order-picking methods may be applied to a warehouse at the same 

time. These methods include picker-to-parts, parts-to-picker, sorting system, and pick-to-

box [8]. On average, order picking accounts for 55% of warehouse operating expenses. 

Among all the activities in order picking, travel consumes 50% of order picking time [2]. 

See Figure 3. 

 

Figure 3 Percentage of order-picker’s time (based on Tompkins et al., 1996) 

 

De Koster et al. [1] introduced two branches of order picking methods –manual and 

automated picking– which are determined by the involvement of automated machines in 

picking process. See Figure 4 for details.  
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Figure 4 Order picking methods based on [1] 

 

The picker-to-parts method is the most commonly implemented in real applications. In this 

method, pickers travel between the aisles to pick up the SKUs. The picker-to-parts method 

is classified into low level and high level order-picking system. In the low-level order 

picking system, the picker picks up the SKUs located on ground level of the bins. In the 

high-level order picking system, also known as man-aboard order picking system, the 

picker needs to stop at the picking location and lift the picking truck or crane to get the 

SKUs located at higher position. More time is required since the picker needs to operate or 

wait for the equipment to finish the picking process. 

Some other classifications include batch picking. In batch picking, multiple orders are 

picked continuously. Wave picking is a term used if all the orders are released at the same 

time for picking in different warehouse areas, but they have a common destination after the 

pick up. According to Petersen (2000) [9], the required time to complete picking the whole 
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batch is often between 30 minutes to 2 hours.  

According to De Koster et al. [1], most academic research focuses on high-level and AS/RS 

order picking systems. This thesis concentrates in low-level order picking operations such 

as the picker-to-parts method. 

2.3 Routing Heuristics  

Routing is another important way to shorten the travel distance and order picking time. 

Ratliff and Rosenthal [10] proposed Optima, which is a routing strategy using dynamic 

programming. Optima repeats the procedures of determining the optimal order picking 

priority within each aisle and concerning the next aisle to find a shortest picking path. Hall 

[11], Petersen [12] and Roodbergen [13] proposed a few heuristic methods for routing 

selection in single-block warehouses such as the S-shape, return, mid-point, largest gap, 

combined and optimal routing heuristics. See details in Figure 5.  

 

Figure 5   Example of routing methods for a single-block warehouse (based on [8] [11] 

[13]). 
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The S-shape routing method is the simplest and most commonly used. The picker follows 

a S-shape route along the aisles to pick up items. The aisles without picking jobs are not 

visited. In the return routing method, the picker enters and exits each aisle at the same 

position. After picking up the item required, the picker exits the aisle at the enter point of 

by retracing the route entered. The midpoint routing method was developed after the return 

routing method. The picker follows the same rules as return routing method, but the picker 

only reaches a maximum distance equivalent to half length of the aisle and then returns to 

the entrance of the aisle. Hall’s study shows that this method is better than S-shape when a 

small number of SKUs is required to be picked up in each aisle [14]. The largest gap routing 

method has a slight variation to the midpoint routing method since it reaches as far as the 

largest gap in an aisle. Usually, the largest gap routing method has better performance than 

the midpoint method, but it’s more complicated to implement. In the combined routing 

method, the picker either exits the aisle at the enter point of this aisle by retracing the route 

entered or at the end of the aisle. Because of the complicated computation, dynamic 

programming may be necessary to determine the route [15]. 

When selecting a routing plan in practice, multiple factors need to be taken into 

consideration, for example, balancing the improvement and complexity of the designed 

system. Hsieh and Huang [16] introduced a routing heuristic, named Maximum Loop 

Insertion (MLI), which balances the routing selection complexity and the travel distance 

reduction. The MLI method provides shorter total travel distance than those obtained with 

the Minimum Travelling Loop Insertion (MTLI) and Particle Swarm Optimization (PSO). 

The travel distance of PSO algorithm decreases when MLI result is used as the initial 

solution.  
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In this thesis, S-shape routing method is selected because S-shape routing is static, which 

then helps to make comparisons of different layout configurations. Also, the S-shape 

routing reduces the complexity of the layout design and the storage location assignment 

problem. 

2.4 Layout Design and Storage Assignment 

2.4.1 Layout Design 

Layout design has two sub-problems: the facility layout and the aisle configuration 

problems. The first problem focuses on locating different departments including receiving, 

picking, storage, sorting and shipping, etc. by considering the operational interactions 

between departments with the objective function to minimize the material handling cost or 

travel distance. The second problem seeks to determine the configuration of internal layout, 

such as the number and dimensions of aisles in the picking area. The common objective of 

this problem is to seek a “best” layout accounting for travel distance in most cases. [1] 

Bassan et al. (1980) [17] introduced a layout design for a low-level picking system focusing 

on unit loads. They compare handling and layout costs of two parallel-aisle layouts. 

Rosenblatt and Roll [18] studied the effect of storage police to design warehouse layout. 

The authors also studied the effect of random demand and multiple service levels on layout 

and storage capability. Roodbergen [13] proposed a nonlinear programming approach. This 

approach considers average time spent on travel in terms of pickup location and number of 

picks per trip in order to determine aisle arrangement for random storage warehouses with 

objective of minimizing average travel distance. Caron et al. [19] and Le-Duc and De 

Koster [20] studied cube-per-order index (COI) -based storage assignment and class-based 

storage assignment also with an objective to minimize average travel distance. Peterson 
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[21] studied the effect of number of aisles as well as aisle dimension on total trip length by 

implementing simulation techniques.  

2.4.2 Storage Location Assignment Problem 

Five storage assignment methods have been introduced in previous studies: random storage 

[12] [22], closest open location storage [23], dedicated storage, COI storage [24], full 

turnover storage [25] [26] [27] [28], class based storage [29] [30] [31].  

Random storage assigns SKU’s with similar characteristics to random locations in the 

warehouse [8]. This method results in less allocation time, but higher space utilization [22]. 

This rule works well in an automated environment. In the closest-open-location storage 

method, the pickers choose the storage location within the warehouse. If shelves are full, 

the method defaults to the random storage policy [33]. In dedicated storage, since a specific 

location is reserved for a certain product, it’s easier for the pickers to get familiar with the 

production location. The problem is that it causes waste of space when this product is out 

of stock. This method has the worst performance in term of space utilization comparing to 

all other storage methods. Full turnover storage policy is a kind of development of cube-

per-order index (COI) rule. The COI of a product equals the total space requirement divided 

by total required trips to meet its demand per period. COI rules suggest locating the lowest 

COI item closest to the I/O point [12] [22] [23]. The full turnover storage method assigns 

products to locations based on their turnover ratio. The products with highest turnover 

ratios are allocated closest to the I/O point, while the products with the lowest turnover 

ratios are assigned in the back of the storage area. The biggest disadvantage of such method 

is that the demand changes frequently and layout reconfiguration is required every time 

demand changes. An information intensive system may be required in full turnover storage 
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method to classify and allocate the products [24]. Class-based storage can be considered as 

the combination of several methods we have reviewed so far. The class is divided based on 

Pareto’s method. That is, the classes with the fastest moving products contain 15% of the 

SKUs, but they contribute to the 85% of the system’s turnover. Each class is assigned to a 

fixed location within the warehouse according to this Pareto rules.  

Petersen and Schmenner [34] investigated the order picking efficiency of different storage 

policies and routing methods that consider order size and demand. The within-aisle method 

is 10–20% better in travel distance than other storage assignment policies. Petersen et al. 

[14] showed that full turnover storage has better performance than class-based storage in a 

manual order picking environment, but class-based storage with two to four classes was 

still recommended in practice. Chen et al. [35] introduced a dynamic operational method 

and a two-stage four-step heuristic to determine preliminary solutions, followed by a tabu 

search algorithm to find further improvements. Heskett first studied the COI storage policy 

in 1963 [24]; he focused on storage of frequently ordered items and smaller requirement of 

storage location closest to the I/O point. An integer linear programming (ILP) model is 

introduced to formulate this storage policy [24].  

Frazelle and Sharp [15] pointed out that the COI policy can be improved especially for the 

case that multiple associated items are included in the same order. Yi-Fei Chuang [36] 

introduced a two-stage Clustering-Assignment Problem Model (CAPM) and a z-type 

picking path considering the associations among items. The CAPM improves results by 

more than 45% over the randomized method. Order Oriented Slotting (OOS) policy 

proposed by Mantel et al. [37] states that the SKUs need to be stored in the warehouse with 

a shortest total picking distance. Besides assigning the popular SKUs to the locations close 
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to the I/O point, SKUs with a high association should be close to each other to minimize 

order picking travel distance.  

A recent study by Diaz [38] indicated customer demand pattern, order clustering as well as 

physical restriction (i.e. weight or volume) are critical for improving operational 

performance of warehousing activities. A quadratic integer programming is used to 

generate the layout considering dynamic demand including throughput-to-storage ratios 

and order similarities. A simulation approach is applied to investigate the effect of 

implementing the generated layout in different zones classified by density. Weight is taken 

into consideration to ensure the heavy product is picked up first to avoid any physical 

damage of the product during order picking.  

Literature that considers physical characters of products is not abundant. Most of the papers 

take similarity into consideration in the layout design and storage assignment phase to 

achieve the best objective value. But in practice, physical characters such as weight, area, 

and volume are one of the most important regulations. Also, in the published literature, the 

selected sample data set is relatively small due to the computation time of Storage Location 

Assignment problem phase. In this thesis, weight is used to divide unique products into 

classes, the improvement method is applied in each weight class to ensure meeting the 

regulation that heavy products need to be picked up first. For the storage location 

assignment problem, an exchange heuristic is implemented to deal with the large data set 

and produce a practical solution. 

2.5 ARM Algorithm 

Associations rules conceptually refer to sets of objects describing the relationships between 

items. ARM is an unsupervised mining technique, also known as affinity analysis or market 
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basket analysis. ARM is widely used for targeted marketing, such as advertisement pushes, 

product recommendation and so on. By applying ARM, we can investigate whether two or 

more items are purchased together, or whether the purchase of one product increases the 

possibility of purchasing the other. The result from data mining analysis can provide 

suggestions for new layouts of a warehouse, when to push ads, when to issue coupons 

among offers. This thesis considers three metrics in ARM algorithms, support, confidence 

and lift [39], [40]. 

ARM algorithm is developed from an Apriori algorithm to identify groups of products that 

are ordered together, and find the frequency with which these item sets are ordered. The 

Apriori algorithm is efficient and relies on the downward closure lemma, which is used to 

discards sets that do not meet minimum support or minimum confidence conditions [39]. 

Apriori Pseudo­code [39]:  

C: a candidate item set of size k k  
L: frequent item set of size k k  
T: database of transactions/trips  
Apriori (T, ε)  
L 1 ← {large 1­itemsets appear in more than ε transactions}  

k←2  
while ( L k ­ 1 ≃ ̸ ∅ )  

C k ← generate item sets from L k­1  

for(transactions t∈ T)  
C ← subset (C k, t) generate candidate transactions size k  
for (candidates c∈ C t )determines frequency of c­candidates  
count[c]←count[c] + 1  
L k ← { c : c ∈ C k ⋀ count[ c ] ≥ ε } P r u n i n g  

k←k+1  
return ∪k L k union of sets of frequent items k=1, 2,... K  

The result is an item set Lk, which consists of those item sets of sizes less than or equal to 

k that meet the minimum support required ε.  

Chen et al. [4] introduced the method of creating order batching via ARM algorithms. Chen 

et al. [5] introduced an extension of this model, which models capacity constraints of the 
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facility by using 0­1 integer programming. Chiang et al.[3] introduce two heuristics, 

modified class-based heuristic and association seed based heuristic, to solve storage 

location assignment problem considering relationship between products. These two 

heuristics assign correlated products which are frequently ordered together to the same 

aisle to maximize the association measure within the same aisle.  

In the reviewed literature, the selected sample data set for scenarios is relatively small. It’s 

rarely mentioned about the effect of combination of support and confidence in ARM. In 

this thesis, ARM algorithm is implemented to analyze larger data sets to achieve more rules 

via ARM. Combination of support and confidence is analyzed by applying design of 

experiment approach with specific data set to indicate the significant interaction of support 

and confidence. 

2.6 Simulation Approach 

Simulation is commonly used to visualize the order picking operations and analyze the 

outputs from different scenarios [38], [41], [42]. In the reviewed literatures, popular 

software such as Arena, Simio, and Witness are used to perform the simulation process. 

But for these packages, it’s not time efficient to build large warehouse layout. In this thesis, 

the simulation model is built in AutoMod which is a package based on C language and 

focuses on logistic simulation and analysis. The model is generated by coding in a general 

way, which makes it easy to expand and modify.  
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III. METHODOLOGY 

3.1 System Configuration. 

The system under analysis is a DC that receives daily orders from 700 retail stores. The 

DC fills up these orders in the morning and replenishes the items sent by their suppliers at 

night. There are 70,000 SKU’s. The DC has 52 aisles, each with 52 pickup locations, for a 

total of 2704 pickup locations. The distance between two adjacent pickup locations is 40 

feet. Orders, each containing between 150 to 250 SKU’s, are picked up by a human 

operator. The operator follows an S-shape route while picking up the orders from the 

picking slots. The operator rides a vehicle, which moves at 3 feet/sec. The pallet is formed 

by placing the items with more weight at the bottom to form the base of the pallet; items 

with less weight are placed on top of heavier items to preserve the integrity of the items. 

Fragile SKUs are placed on the top of the pallet. Figure 6 shows the layout under study.  

 

Figure 6 Layout assumption 
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3.2 Mathematical Formulation 

In the Quadratic Assignment Problem (QAP) stated in (1)-(4). We consider number of 

SKUs and locations as n, the SKU i is assigned to location j, and each location j can only 

have one SKU i allocated.  

Objective function of the problem is as follow to minimize the total joint measurement 

when SKU i is assigned to location j: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ ∑
1

2
𝑆𝑖𝑗𝐷𝑘𝑙

𝑛
𝑙=1

𝑛
𝑘=1

𝑛
𝑗=1 𝑋𝑖𝑘𝑋𝑗𝑙

𝑛
𝑖=1 + ∑ ∑ 𝐶𝑖𝑗𝑋𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1     (1) 

s.t. 

∑ 𝑥𝑖𝑗 = 1𝑛
𝑗=1      𝑓𝑜𝑟 𝑗 = 1,2, … , 𝐽                                                         (2) 

∑ 𝑥𝑖𝑗 = 1𝑛
𝑖=1      𝑓𝑜𝑟 𝑖 = 1,2, … , 𝐼                                                         (3) 

𝑥𝑖𝑗 = (0,1)       𝑖, 𝑗                                                                              (4) 

 

The decision variable is xij which is a binary variable with xij = 1 if SKU i is assigned to 

location j and xij = 0 if SKU i is not assigned to location j. The objective function 

represented in Equation (1) indicates minimizing the total joint measurement when SKUi 

is assigned to locationj. Sij is the dissimilarity of two SKUs which is obtained from ARM 

phase. Dkl is the distance between pick up locations. Cij is the cost of assigning SKU i to 

location j. (2) is a constraint that ensures one SKU is assigned to one location. (3) is a 

constraint that ensures one location only contains one SKU. QAP is a NP-hard problem, as 

number of SKUs n increases, the computational time increases significantly. Therefore, a 

heuristic is considered to achieve a quick practical solution of storage assignment problem.  
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3.3 Solution Approach 

Due to the computational complexity of QAP, it costs too much time to get the optimal 

solution which is against our objective of producing quick practical solution. A case study 

is conducted in next section to compare the computational time and performances between 

optimal and proposed heuristic. A five-stage approach is implemented in this thesis to solve 

the storage location assignment problem stated above. This approach is illustrated in Figure 

7. The method divides unique SKUs into classes based on their weights (in pounds), and 

then ranks and sorts, from highest to lowest, the SKUs in each weight class based on order 

frequency. For example, a SKU is classified in class #2, and it is ordered the most 

frequently among all the SKUs within this class. This SKU should be allocated in the 

closest location to I/O point compared to other SKUs within this weight class. ARM 

algorithm is used to search correlated SKUs to create rules. Then, based on the association 

rules, the exchange heuristic reassigns the consequence SKUs to the locations after their 

antecedent SKUs. Simulation model is developed in AutoMod to visualize the order 

picking operation and to compare performances of different scenarios. These stages will 

be explained in detail below. 

 

Figure 7 Methodology flow chart 
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3.3.1 Weight-based Class 

Class-based storage strategy has positive impact on increasing order picking efficiency. In 

this thesis, the unique SKUs are divided into classes based on their weights (in pounds). 

The heaviest SKU in each class is allocated closest to entry point because, in practice, 

heavy SKUs need to be picked up first and put on the bottom of the pallet followed by 

lighter SKUs, which are placed on the top to avoid physical damages. This process is done 

in R Statistical Package by sorting the given weight of SKUs in the dataset from heaviest 

to lightest. The number of SKUs in each class may vary due to different data sample 

selection. The information needs to be determined as shown in Table 1 below.  

 

Table 1 Weight-based classes 

 Class #1 (Heavy) Class #2 (Medium) Class #3 (Light) 

Weight(lbs) >2/3 * Max{Weight i} 1/3 * Max{Weight i} to 

2/3 * Max{Weight i} 

<1/3 * Max{Weight i} 

Number of 

SKUs 

N1 N2 N3 

Percentage P1% P2% P3% 

 

3.3.2 Ranking and Sorting 

According to Diaz (2016) [38], the SKUs with the highest demand are visited most 

frequently, thus contributing to the travel volume for the order-picking operations. Placing 

these SKU’s closer to the I/O point helps decreasing the total travel distance. For this reason, 

the SKUs are ranked and sorted in each weight-based class by their frequency from highest 
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to lowest. Due to consideration of both weight and frequency, sorting SKUs in a weight 

class based on frequency probably move a light, but frequently ordered SKU, to the 

location closer to entry point than a heavy but less frequently ordered SKU. Executing the 

ranking and sorting phase within each class reduces such risk because we consider the 

SKUs in each class are consistent in weight and make it acceptable to change their sequence.  

The result of this phase is Stage #1 Layout -an improved layout containing the storage 

locations of SKU’s based on both weight and order frequency in each class. Since the 

pickup routing method is selected as S-Shape routing method, the layout can be considered 

as linear. See Figure 8.  

 

Figure 8 Stage #1 layout considering weight and frequency 

 

3.3.3 ARM Algorithm 

ARM generates rules of the form: 

AB 

The left hand (A) is usually called antecedent and the right hand (B) is called consequent. 

See Table 2 for examples of association rules. Different antecedents can be associated with 

the same consequent, and association rules are directional. That is, AB and BA are 

different rules. Figure 9 shows the graph of the rules. The color of arrows in the graph 

demonstrates the strength of the rules, a darker color means the rule is stronger.  
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Table 2 Examples of association rules 

  LHS RHS support confidence lift 

1 263639 31217 0.21 0.9 2.67 

2 241863 111391 0.23 0.9 2.06 

3 39091 179582 0.21 0.8 1.95 

4 110142 111493 0.21 0.8 1.95 

5 7217 45258 0.23 0.8 1.88 

 

This thesis considers three metrics in ARM Algorithms: support, confidence and lift.  

• Support indicates the joint probability of SKUs A and B are ordered together 

P(AB). P(AB) or sup (A and B) is equal to number of transactions that contain 

both item A and item B divided by total number of transactions.  

• Confidence refers to the conditional probability that SKU B occurs given SKU A 

occurs, P(B|A). That is, P(B|A) = P(AB)/ P(A) or P(B|A) = supp(A and B)/ 

supp(A). 

• Lift is the strength of the rules. Lift(AB) is calculated as P(B|A)/P(B) = 

P(BA)/P(A)P(B). If lift > 1, A and B are positively correlated, that is, if item A is 

ordered, it is more likely that item B is also order. If lift < 1, A and B are negatively 

correlated, which means, if a custom orders item A, it is more likely that the 

customer will NOT order item B. If lift = 1, item A and item B are independent 

items, that is, purchase of item A and purchase of item B are two independent 

events. Therefore, a high lift suggests the rule, if item A, then item B, may be a 

useful rule and a low lift suggests that the rule, if item A, then NOT item B, may 

be a useful rule.  
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Figure 9 Example of ARM algorithm visualization 

 

Association Rules are solved in this thesis using R. Figure 10 summarize the steps involved 

in the R calculations.  

Step 1: Install and load required packages “arules” and “arulesViz”, if the package is 

installed correctly go to step 2, otherwise back to step 1 



 

 22 

Step 2: Import dataset 

Step 3: Reformat and transform dataset 

Step 4: Duplicate check to obtain unique dataset, if the dataset is unique, go to step 5, 

otherwise go back to step 4. 

Step 5: Define support and confidence level 

Step 6: Apply data mining algorithm to produce association rules 

Step 7: Inspect rules, if number of rules we expected, go to step 8, otherwise go back 

to step 5 

Step 8: Sort rule and export 

Step 9: Stop 
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Figure 10 The work process of ARM in R package 

 

3.3.4 Exchange Heuristic 

Let A={a1, a2,…an} be a set of antecedents containing SKU’s and C={c1,c2,…cm} be a set 

of consequents containing SKU’s. The rules AC are stored in a set of paired SKUs R= 

{(a1,c1),(a2,c2),…(an, cm)} sorted by the support metric sup(A,C) in ascending order. A 
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buffer set, with initial status of empty B={}, is generated to store the selected antecedents 

and consequents temporarily. The exchange heuristic, shown visually as a flow diagram in 

Figure 11, follows the steps stated below to produce new sequence of SKUs: 

Step 1: Let i=1 

Step 2: Select the ith element ci in set C  

Step 3: Check the corresponding element in set R, find the antecedent element ai 

which is correlated with element ci in R. 

Step 4: Search ai in set A  

Step 5: Assign ci from set C and add it to set B as bi 

Step 6: Insert bi to set A after element ai so that set A = {ai, bi, ai+1, ai+2,…,an+1}. 

Then empty set B 

Step 7: Let i=i+1and go back to step 1 

Step 8: After finishing the loop of m times, the set A includes n+m elements so 

that A = {a1, c1, a2, c2, a3, c3,…,an, cm} 

Note: For special cases when different antecedents are correlated with 

the same consequents, the consequents choose the location of the 

antecedent that has the highest joint support. If a special case occurs, 

continue the heuristic algorithm with step 9, otherwise terminate the 

algorithm. 

Step 9: unify set A, then set A contains the first occurrence of each duplicated 

element. For example, if A = {a1, c1, a2, c2, a3, c2, a4, c3…an, c3}, the unique A = 

{a1, c1, a2, c2, a3, a4, c3…an} 

Step 10: Terminate algorithm 
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Figure 11 Illustration of the exchange heuristic 
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3.3.5 Computer Simulation 

In this phase, a static simulation model of the system described in Section 3.1 was 

developed in AutoMod to test the output of different scenarios. The reason for choosing 

AutoMod instead of other software is that AutoMod has built-in subsystems to simulate 

logistic and warehousing operations. Furthermore, AutoMod is based on C language which 

is efficient to generate large layout with thousands of operation locations in a very general 

way to make the model convenient to modify and expand.  

There are totally 1 process, 2 order lists, 5 attributes, 7 variables, 3 tables, 2 functions and 

4 subroutines to control the logic of the model. Functions are used for initializing the orders 

and pickup locations, subroutines control the pickup operations, attributes and variables 

are used for identifying orders and locations while the tables are used for tabulating the 

results collected from simulation. See Table 3 for detail. 
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Table 3 Functions and parameters in simulation model 

Category  Name Type Dimension Description 

Function F_Order_Init integer 
 

Initialization of orders  
F_Location_Init integer 

 
Initialization of locations 

Subroutine SPickOrder 
  

Subroutine of order picking 

process  
SReceiveOrder 

  
Subroutine of order 

receiving process  
SDeliverOrder 

  
Subroutine of order 

delivery process  
SParking 

  
Subroutine of parking 

process 

Process PMasterLoad 
  

Main process 

Queue QInitial integer 1 Initial queue at entry point 

Order list OLAssignment integer 1 List of assignments to be 

picked up  
OLVehicle integer 1 List of available vehicles 

Attribute Attr_Order_ID integer 1 Order ID  
Attr_Time time 1 Counted time for waiting 

time calculation   
A_index integer 1 Index of vehicle 

 
A_Home location 1 Entry point  

Attr_Time2 time 1 Counted time for picking 

up time calculation  

Variable V_Location location 2 Pickup locations  
V_Number_Item_Per_Ord integer 2 Number of SKUs included 

in each order  
V_Number_Done integer 1 Number of orders done 

 
V_Order integer 3 Identifier of each SKU in 

each order  
V_Order_ctr integer 1 Counter for order ID  

V_Count integer 1 Counter for vehicle index 
 

Vi integer 1 Counter for SKUs in an 

order 

Table T_PickTime time 1 Table of pickup time  
T_WaitTime time 1 Table of waiting time  

T_Throughput integer 1 Table of throughput 

 

Two scenarios are tested via simulation to compare the order-pickup time for different 

storage location assignments produced by ARM algorithm.   
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IV. EXPERIMENTS AND RESULTS 

In this chapter, case studies are conducted to show the performance of the proposed five-

step methodology described in Chapter 3.  

4.1 Data Description 

Our raw data set includes daily transactions from retail stores as provided by a local 

distribution center in Texas. The raw data set includes 624 different orders, which accounts 

for a total of 62,887 SKUs. The dataset also included related information such as the order 

number, store number, location of SKUs, SKU number, SKU description, quantity, weight, 

and volume, among other main fields. Particular emphasis is placed in the selected fields 

such as the order number, SKU number, location, weight and SKU description.  

The dataset was partitioned to test for repeatability of the proposed algorithms while 

managing their computational time. For this reason, two partitions were obtained from the 

dataset. SKU’s were selected at random. The first partition (referred to as Scenario 1) 

included 39 orders with a total amount of 8141 SKUs. The number of unique SKUs is 2638. 

The second partition (referred to as Scenario 2) included 39 orders with 8122 SKUs. The 

number of unique SKUs is 2721. 

4.2 Effect of Support and Confidence 

Support and confidence are defined in R to produce different number of association rules. 

In this section, different scenarios are tested exclusively to identify appropriate values of 

support and confidence required to obtain an adequate number of rules from ARM 

algorithm described in Section 3.3.3. The code was developed in a R package named 

“arules” version 1.5-2. [43]. It was run on a computer type of MacBook Pro with an Intel 
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2.5 GHz Core i7 processor and 16 GB 1600 MHz DDR3 memory.  The program ran for 15 

seconds. The code is shown in Appendix 3. 

4.2.1 Design of Experiments 

a. Two factors are taken in to consideration in this phase, support and confidence. 

• Support has 5 levels from 0.1 to 0.3 with increments of 0.05.  

• Confidence has 5 levels from 0.5 to 0.9 with an interval of 0.1. 

b. Response 

• The response is the number of association rules generated from ARM in R. 

For example, number of rules AB where A is antecedent and B is 

consequent.  

c. Run Design  

• 2 factors, each with 5 levels, are taken into consideration. The total number 

of combinations is 25.  

d. Configurations of DOE 

• Factors: 2 

• Replicate: 2; one with the partition labeled as Scenario 1 and the second one 

with the partition labeled as Scenario 2. 

• Total runs: 50 

• Total blocks: 2 

• Number of levels: 5, 5 

See Table 4 and Figure 12 for all the combinations of factors. 
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Table 4 Design table of two runs in DOE 

Support Confidence Response of Run1 

(Scenario 1) 

Response of Run2 

(Scenario 2) 

0.1 0.5 11965 11244 

0.1 0.6 6918 6280 

0.1 0.7 4244 3618 

0.1 0.8 3246 2750 

0.1 0.9 1134 843 

0.15 0.5 2651 2177 

0.15 0.6 1832 1586 

0.15 0.7 1068 913 

0.15 0.8 585 448 

0.15 0.9 188 125 

0.2 0.5 708 525 

0.2 0.6 511 376 

0.2 0.7 335 238 

0.2 0.8 215 159 

0.2 0.9 62 50 

0.25 0.5 218 136 

0.25 0.6 182 102 

0.25 0.7 115 79 

0.25 0.8 64 39 

0.25 0.9 23 19 

0.3 0.5 93 38 

0.3 0.6 73 27 

0.3 0.7 58 22 

0.3 0.8 35 14 

0.3 0.9 8 5 
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Figure 12 Plot of DOE design table 

 

4.2.2 Output Analysis 

Results from different scenarios show that as the support and confidence increase, the 

number of association rules as well as computation time decrease. As support and 

confidence increase, the selection standard becomes strict, which means fewer sets are 

taken into consideration and the SKUs involved in the transactions are highly correlated.  

By analyzing the factorial regression model, p-value less than 0.05 indicates that 8 main 

factors and 13 interactions have statistically significant effects on the response. See Figure 

13, 14 for details.  
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Figure 13 Output of design of experiment 
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Figure 14 Main effects plot for response 

By balancing the number of rules and computational time, support range from 0.2 to 0.25 

and confidence range from 0.5-0.8 is appropriate in our case. In this thesis, preferred 

support and confidence in ARM in R are selected as 0.2 and 0.8 to produce association 

rules. 

4.3 Comparison between Optimal and Heuristic Solution 

In this subsection, the comparison between optimal and heuristic solution is conducted to 

prove that the heuristic is implementable in practice.  

As is mentioned in Section 3, it is difficult to solve quadratic assignment problem and 

produce the optimal solution due to the complexity and computational time of the problem. 

The computational time increases significantly when number of SKUs increases. In this 

thesis, computational time and performance between optimal (in AMPL) and proposed 
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heuristic results are compared. See Table 5 and 6. AMPL code for problem formulation is 

shown in Appendix 1. 

 

Table 5 Comparison of computational time 

 

In AMPL via solver CPLEX Heuristic in R 

Number of SKUs Computational time 
(in second)  

Computational time 
(in second)  

10 2 <30 
15 231 <30 
20 10310 <30 

~8000 N/A ~300 
 

Table 6 Comparison of order picking time 

Order picking time comparison 
 

Optimal Heuristic 

Number of SKUs 10 10 

Number of orders 14 14 

SKU per order 1~5 1~5 

Order picking time (in second) 237.244 254.522 

 

The difference in term of order picking time between optimal and heuristic solution is 

17.278 seconds. The optimal solution is 6.788% better than the heuristic solution in this 

specific case.  

By considering the computational time and performance, the heuristic is implementable to 

achieve a good practical solution with large data set in a much shorter time when compare 

to the optimal solution. 
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4.4 Numerical Analysis 

4.4.1 System Configuration 

a. Data size 

For Scenario 1, the final selected sample data set include 39 orders with 8141 SKUs. 

Class #1 includes 802 unique SKUs, Class #2 includes 756 unique SKUs and Class #3 

includes 1080 unique SKUs. 

For Scenario 2, the final selected sample data set include 39 orders with 8122 SKUs. 

Class #1 includes 805 unique SKUs, Class #2 includes 902 unique SKUs and Class #3 

includes 1014 unique SKUs. 

b. Metric 

Support: 0.2 

Confidence: 0.8 

Batch size: 2 

For Exchange Heuristic phase, the configuration is shown as follow: 

a. Data size 

Scenario 1 has 76 batches of size = 2.  

Scenario 2 has 59 batches of size = 2. 

b. Initial status 

Before applying the method, all the rules obtained within each weight-based class are 

sorted by lift from highest to lowest which means the strongest association rule has higher 

priority to be allocated. 

The configuration of Computer Simulation phase is shown as follow: 

a. Data size 
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For scenario 1, 39 orders with 150-250 SKUs in each including totally 8141 SKUs are 

used to build simulation model; 2638 unique SKUs are used to create facility layout. 

For scenario 2, 39 orders with 150-250 SKUs in each including totally 8122 SKUs are 

used to build simulation model; 2721 unique SKUs are used to create facility layout. R 

code for data selection is shown in Appendix 2. 

b. Simulation settings 

Two scenarios have the same assumptions for layout, vehicle, pickup and routing method 

etc. The differences are the SKU locations in the layout and the association rules that are 

considered. See Table 7. The assumptions are made considering both the complexity of 

simulation model as well as the real behaviors in real world. For example, we fixed the 

conditions, such as the layout, pick up and routing method to reduce the complexity in 

order to purely compare the performances of two layouts. The assumptions of vehicle and 

distance are based on the study of dataset and the pickup behaviors.  
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Table 7 Configurations of two scenarios 

 

Scenario 1 Scenario 2 

Number of aisles 52 52 

Pickup locations in each aisle 52 52 

Distance between adjacent 

locations (feet) 

40 40 

Number of vehicles 1 1 

Velocity of vehicles (feet/sec) 3 3 

Pickup Method Picker-to-part Picker-to-part 

Routing Method S-shape S-shape 

Number of order per trip 1 1 

Support 0.2 0.2 

Confidence 0.8 0.8 

Number of orders 39 39 

Total SKUs 8141 8122 

Total Unique SKUs 2638 2711 

Unique SKUs in Class 1 802(30.40%) 805(29.58%) 

Unique SKUs in Class 2 756(28.66%) 902(33.15%) 

Unique SKUs in Class 3 1080(40.94%) 1014(37.27%) 

Number or rules 76 59 

Comparisons Random VS Stage #1 

VS Stage #2 

Random VS Stage #1 VS 

Stage #2 

 

c. Run control 

The simulation model runs for 1 replication since the model is deterministic. That is, all 

the controllable factors such as vehicle speed, picking up time, waiting time, routing 

selection are fixed. The run time of model vary from one scenario to another, See Table 8. 

The simulation time indicates the run time of the deterministic simulation model under 

each condition. 
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Table 8 Simulation time (in second) 

  Scenario 1 Scenario 2 

  Random 

Layout 

Stage #1 

Layout 

Stage #2 

Layout 

Random 

Layout 

Stage #1 

Layout 

Stage #2 

Layout 

Replicates 1  1 1 1   1 

Simulation 

Time 

12,079,744 1,568,458 1,410,042 11,773,986 1,635,642 1,376,351 

 

4.4.2 Weight-based Class 

Both scenarios, Scenario 1 and Scenario 2, were divided into three weight classes. 

According to Peterson et al. [29], 2-4 classes are suggested in practice since it is easier to 

implement and required less to administer. For Scenario 1, 2638 unique SKUs are divided 

into three classes based on their weights. Class #1 accounts for 30.40% of all the SKUs in 

sample data set containing 802 SKUs with weight greater than 9 pounds. Class #2 includes 

756 SKUs with weight between 5.28 and 9 pounds, which is 28.66% of all the sample 

SKUs. Class #3 has 1080 SKUs with weight less than 5.28 pounds. This class includes 

most of the SKUs which is 40.94% of all the SKUs in the selected sample. See Table 9. 

For Scenario 2, 2721 unique SKUs are divided into three classes based on their weights. 

Class #1 accounts for 29.58% of all the SKUs in sample data set containing 805 SKUs with 

weight greater than 8.85 pounds. Class #2 includes 902 SKUs with weight between 5 and 

8.85 pounds which is 33.15% of all the sample SKUs. Class #3 has 1014 SKUs with weight 

less than 5 pounds. This class includes most of the SKUs which is 37.27% of all the SKUs 

in selected sample. See Table 10. 
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Table 9 Weight-based classes for scenario 1 

 Class #1(Heavy) Class #2(Medium) Class #3(Light) 

Weight(lbs) >9 5.28-9 <5.28 

Number of SKUs 802 756 1080 

Percentage 30.40% 28.66% 40.94% 

 

Table 10 Weight-based classes for scenario 2 

 Class #1(Heavy) Class #2(Medium) Class #3(Light) 

Weight(lbs) >8.85 5-8.85 <5 

Number of SKUs 805 902 1014 

Percentage 29.58% 33.15% 37.27% 

 

4.4.3 Ranking and Sorting 

For each weight-based class, the Rank and Sortation method is implemented separately and 

then combine again to achieve Stage #1 layout.  

Scenario 1: Class #1 includes 802 unique SKUs with frequency vary from 23 to 1. Class 

#2 includes 756 unique SKUs with frequency vary from 16 to 1. Class #3 includes 1080 

unique SKUs with frequency vary from 25 to 1. See Figure 15. 

Scenario 2: Class #1 includes 805 unique SKUs with frequency vary from 20 to 1. Class 

#2 includes 902 unique SKUs with frequency vary from 25 to 1. Class #3 includes 1014 

unique SKUs with frequency vary from 23 to 1. See Figure 16. 
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The rank and sortation phase is done in R by implemented functions in ‘dplyr’ and ‘aruels’ 

packages. The computation time of ARM in each class is about 15 seconds on a computer 

with i7 processor and 16GB memory. The code is shown in Appendix 4. 

The output of this phase is Stage #1 layout which consider both weight and frequency of 

SKUs.  

 

Figure 15 Stage #1 layout in scenario 1 

 

Figure 16 Stage #1 layout in scenario 2 

 

4.4.4 ARM Algorithm 

ARM is conducted in three weight-based classes to create batches of correlated SKUs.  

Scenario 1: By implementing ARM algorithm in R, 10 association rules are obtained in 

Class #1, 48 rules are achieved in Class #2 while 18 rules are included in Class #3. Class 

#2 is the most correlation effective since it accounts for 28.66% of all the unique SKUs but 

contributes 63.16% of the correlated pairs. See Table 11,12,13. 
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Scenario 2: 14 association rules are obtained in Class #1, 32 rules are achieved in Class #2 

while 13 rules are included in Class #3. See Table 14, 15, 16. 

Table 11 Association rules of class #1 sorted by lift in scenario 1 

  rules support confidence lift 

3 {189145} => {90991} 0.2051 0.8889 2.4762 

6 {271586} => {90991} 0.2051 0.8000 2.2286 

9 {143789} => {90991} 0.2051 0.8000 2.2286 

4 {10829} => {103427} 0.2308 0.9000 1.4040 

1 {117091} => {103427} 0.2051 0.8889 1.3867 

2 {113849} => {103427} 0.2051 0.8889 1.3867 

10 {83626} => {103427} 0.2821 0.8462 1.3200 

5 {249707} => {103427} 0.2308 0.8182 1.2764 

8 {241880} => {103427} 0.2308 0.8182 1.2764 

7 {271586} => {103427} 0.2051 0.8000 1.2480 
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Table 12 Association rules of class #2 sorted by lift in scenario 1 

  rules support confidence lift 

3 {263639} => {31217} 0.2051 0.8889 2.6667 

29 {241863} => {111391} 0.2308 0.9000 2.0647 

5 {39091} => {179582} 0.2051 0.8000 1.9500 

18 {110142} => {111493} 0.2051 0.8000 1.9500 

35 {7217} => {45258} 0.2308 0.8182 1.8770 

32 {89436} => {111391} 0.2051 0.8000 1.8353 

17 {73474} => {202466} 0.2308 0.8182 1.6794 

10 {162481} => {202466} 0.2051 0.8000 1.6421 

14 {98931} => {7516} 0.2051 0.8000 1.6421 

28 {110770} => {178642} 0.2564 1.0000 1.6250 

30 {241863} => {178642} 0.2564 1.0000 1.6250 

25 {58728} => {178642} 0.2308 0.9000 1.4625 

33 {89436} => {178642} 0.2308 0.9000 1.4625 

6 {15074} => {178642} 0.2051 0.8889 1.4444 

8 {200124} => {178642} 0.2051 0.8889 1.4444 

12 {265274} => {178642} 0.2051 0.8889 1.4444 

20 {31160} => {178642} 0.2051 0.8889 1.4444 

40 {188} => {178642} 0.2564 0.8333 1.3542 

1 {86316} => {245047} 0.2051 1.0000 1.3448 

36 {7217} => {245047} 0.2821 1.0000 1.3448 

45 {111391} => {178642} 0.3590 0.8235 1.3382 

37 {176855} => {178642} 0.2308 0.8182 1.3295 

42 {111505} => {178642} 0.3333 0.8125 1.3203 

24 {94892} => {178642} 0.2051 0.8000 1.3000 

15 {98931} => {245047} 0.2308 0.9000 1.2103 

19 {110142} => {245047} 0.2308 0.9000 1.2103 

23 {265276} => {245047} 0.2308 0.9000 1.2103 

26 {58728} => {245047} 0.2308 0.9000 1.2103 

47 {7516} => {245047} 0.4359 0.8947 1.2033 

2 {838946} => {245047} 0.2051 0.8889 1.1954 

4 {98938} => {245047} 0.2051 0.8889 1.1954 

7 {15074} => {245047} 0.2051 0.8889 1.1954 

9 {200124} => {245047} 0.2051 0.8889 1.1954 

11 {265282} => {245047} 0.2051 0.8889 1.1954 

13 {265274} => {245047} 0.2051 0.8889 1.1954 

16 {48114} => {245047} 0.2051 0.8889 1.1954 

21 {31160} => {245047} 0.2051 0.8889 1.1954 

46 {111391} => {245047} 0.3846 0.8824 1.1866 

41 {111493} => {245047} 0.3590 0.8750 1.1767 

43 {111505} => {245047} 0.3590 0.8750 1.1767 
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  rules support confidence lift 

48 {178642} => {245047} 0.5385 0.8750 1.1767 

39 {14964} => {245047} 0.2564 0.8333 1.1207 

44 {45258} => {245047} 0.3590 0.8235 1.1075 

27 {44095} => {245047} 0.2308 0.8182 1.1003 

38 {176855} => {245047} 0.2308 0.8182 1.1003 

22 {86642} => {245047} 0.2051 0.8000 1.0759 

31 {241863} => {245047} 0.2051 0.8000 1.0759 

34 {89436} => {245047} 0.2051 0.8000 1.0759 
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Table 13 Association rules of class #3 sorted by lift in scenario 1 

  rules support confidence lift 

1 {52616} => {87168} 0.2051 1.0000 3.0000 

7 {770099} => {630434} 0.2051 0.8889 2.8889 

4 {77786} => {167155} 0.2051 1.0000 2.7857 

13 {920785} => {630434} 0.2564 0.8333 2.7083 

14 {630434} => {920785} 0.2564 0.8333 2.7083 

8 {770099} => {167155} 0.2051 0.8889 2.4762 

5 {24982} => {265030} 0.2308 0.9000 2.3400 

15 {920785} => {167155} 0.2564 0.8333 2.3214 

16 {630434} => {167155} 0.2564 0.8333 2.3214 

9 {83551} => {265031} 0.2051 0.8889 2.3111 

12 {119144} => {167155} 0.2308 0.8182 2.2792 

17 {265031} => {117791} 0.3333 0.8667 2.1125 

18 {117791} => {265031} 0.3333 0.8125 2.1125 

10 {73329} => {3305} 0.2051 0.8000 2.0800 

6 {24982} => {117791} 0.2051 0.8000 1.9500 

11 {87168} => {73583} 0.3077 0.9231 1.5652 

2 {176438} => {73583} 0.2051 0.8889 1.5072 

3 {87167} => {73583} 0.2051 0.8000 1.3565 
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Table 14 Association rules of class #1 sorted by lift in scenario 2 

 

rules support confidence lift 

5 {73328} => {73325} 0.231 1.000 3.000 

10 {84155} => {630434} 0.205 0.800 2.836 

12 {630434} => {920785} 0.231 0.818 2.455 

13 {460931} => {3305} 0.231 0.818 2.455 

14 {170743} => {920785} 0.231 0.818 2.455 

9 {269308} => {920785} 0.205 0.800 2.400 

11 {84155} => {920785} 0.205 0.800 2.400 

7 {41866} => {181846} 0.282 0.846 2.357 

8 {41866} => {62134} 0.282 0.846 1.941 

1 {62054} => {62134} 0.205 0.800 1.835 

6 {87167} => {73583} 0.231 0.818 1.595 

2 {62054} => {73583} 0.205 0.800 1.560 

3 {265215} => {73583} 0.205 0.800 1.560 

4 {87168} => {73583} 0.205 0.800 1.560 
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Table 15 Association rules of class #2 sorted by lift in scenario 2 

 

rules support confidence lift 

20 {110770} => {110142} 0.2051 0.8000 2.6000 

26 {110142} => {111391} 0.2564 0.8333 2.5000 

11 {87376} => {202466} 0.2564 0.9091 2.0856 

14 {109567} => {179582} 0.2564 0.9091 2.0856 

6 {152603} => {179582} 0.2308 0.9000 2.0647 

7 {152603} => {202466} 0.2308 0.9000 2.0647 

1 {111505} => {178642} 0.2051 1.0000 2.0526 

4 {92733} => {179582} 0.2051 0.8889 2.0392 

24 {269305} => {202466} 0.2821 0.8462 1.9412 

15 {111493} => {178642} 0.2051 0.8000 1.6421 

21 {110770} => {178642} 0.2051 0.8000 1.6421 

2 {111505} => {245047} 0.2051 1.0000 1.5600 

5 {265276} => {245047} 0.2308 1.0000 1.5600 

9 {265274} => {245047} 0.2308 1.0000 1.5600 

30 {7217} => {245047} 0.3333 0.9286 1.4486 

31 {7516} => {245047} 0.3333 0.9286 1.4486 

28 {111391} => {245047} 0.3077 0.9231 1.4400 

25 {45258} => {245047} 0.2821 0.9167 1.4300 

27 {110142} => {245047} 0.2821 0.9167 1.4300 

16 {111493} => {245047} 0.2308 0.9000 1.4040 

17 {444588} => {245047} 0.2308 0.9000 1.4040 

19 {58728} => {245047} 0.2308 0.9000 1.4040 

3 {87567} => {245047} 0.2051 0.8889 1.3867 

8 {200124} => {245047} 0.2051 0.8889 1.3867 

12 {89436} => {245047} 0.2051 0.8889 1.3867 

13 {241863} => {245047} 0.2051 0.8889 1.3867 

29 {14964} => {245047} 0.2821 0.8462 1.3200 

32 {178642} => {245047} 0.4103 0.8421 1.3137 

23 {241601} => {245047} 0.2308 0.8182 1.2764 

10 {183555} => {245047} 0.2051 0.8000 1.2480 

18 {109958} => {245047} 0.2051 0.8000 1.2480 

22 {110770} => {245047} 0.2051 0.8000 1.2480 
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Table 16 Association rules of class #3 sorted by lift in scenario 2 

 

rules support confidence lift 

7 {183555} => {63831} 0.205 0.800 2.836 

12 {19163} => {75638} 0.231 0.818 1.994 

2 {113849} => {75638} 0.205 0.800 1.950 

9 {91999} => {75638} 0.205 0.800 1.950 

1 {441279} => {103427} 0.205 1.000 1.696 

13 {19163} => {103427} 0.282 1.000 1.696 

3 {113849} => {103427} 0.231 0.900 1.526 

5 {10829} => {103427} 0.231 0.900 1.526 

4 {246717} => {103427} 0.205 0.889 1.507 

11 {63831} => {103427} 0.231 0.818 1.387 

6 {86241} => {103427} 0.205 0.800 1.357 

8 {183555} => {103427} 0.205 0.800 1.357 

10 {91999} => {103427} 0.205 0.800 1.357 

 

Figures 17- 22 show the plot of rules in each weight class in both scenarios. In these figures, 

size of circles stands for the support of rules, large size means higher support; the color 

shows the lift of the rules, darker color stands for higher lift. The arrow starts from the 

antecedent pointing to the consequents. Different SKUs can be correlated with the same 

SKU.    
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Figure 17 Rules plot of weight class #1 in scenario 1 
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Figure 18 Rules plot of weight class #2 in scenario 1 
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Figure 19 Rules plot of weight class #3 in scenario 1 
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Figure 20 Rules plot of weight class #1 in scenario 2 
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Figure 21 Rules plot of weight class #2 in scenario 2 
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Figure 22 Rules plot of weight class #3 in scenario 2 

 

The rules are created based on the ARM algorithm and each rule is considered as a pair of 

SKUs. SKUs included in each pair are reallocated to the location next to each other by 

implementing Exchange Method which will be introduced in next section.  
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4.4.5 Exchange Heuristic 

In this section, Exchange Heuristic is applied within each weight-based class to reallocate 

the consequences to the location right after its antecedents in Stage #1 layout which is 

obtained from section 5.4. 

In Scenario 1, 56 unique SKUs are impacted by implementing Exchange Method, the 

involved SKUs and their sequences in random, stage #1 and stage #2 layout are shown in 

the Tables 17 (a)(b)(c) below. The new locations of these SKUs depend on the location of 

the first SKU which has highest frequency in each weight-based class. The paired set in 

each weight-based class is inserted into the locations after the first SKU in the related 

class. The same process is done to scenario 2 with 56 unique SKUs as well. See Tables 

18(a), (b) and (c). 

The final output of this phase is the improved Stage #2 layout which is ready to use for 

computer simulation in the next section.  
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Table 17 (a) Locations of SKUs in random, stage #1, and stage #2 layout in scenario 1 

  

SKU 

Number 

Frequency Random 

Layout 

Stage #1 

Layout 

Stage #2 

Layout 

Class #1 1 117791 16 2228 3 3 

2 265031 15 2023 8 4 

3 87168 13 1630 16 5 

4 630434 12 1982 19 6 

5 920785 12 2189 20 7 

6 119144 11 1930 26 8 

7 24982 10 711 34 9 

8 73329 10 657 36 10 

9 87167 10 2209 37 11 

10 83551 9 1489 46 12 

11 176438 9 1664 52 13 

12 770099 9 1766 54 14 

13 52616 8 2442 62 15 

14 77786 8 1238 67 16 
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Table 17 (b) Locations of SKUs in random, stage #1, and stage #2 layout in scenario 1 

  

SKU 

Number 

Frequency Random 

Layout 

Stage #1 

Layout 

Stage #2 

Layout 

Class #2 15 178642 24 588 787 787 

16 7516 19 1678 788 788 

17 45258 17 1563 790 789 

18 111391 17 1381 791 790 

19 111493 16 239 793 791 

20 111505 16 1477 794 792 

21 188 12 628 798 793 

22 14964 12 1490 800 794 

23 7217 11 1663 803 795 

24 44095 11 1894 804 796 

25 73474 11 2485 805 797 

26 176855 11 2126 809 798 

27 39091 10 967 810 799 

28 58728 10 2481 811 800 

29 86642 10 1135 812 801 

30 89436 10 2151 813 802 

31 94892 10 1105 814 803 

32 98931 10 1339 815 804 

33 110142 10 718 816 805 

34 110770 10 1191 817 806 

35 162481 10 917 818 807 

36 241863 10 287 819 808 

37 265276 10 474 820 809 

38 15074 9 1192 822 810 

39 31160 9 1984 824 811 

40 48114 9 1797 825 812 

41 98938 9 1581 830 813 

42 200124 9 134 832 814 

43 263639 9 1682 834 815 

44 265274 9 124 835 816 

45 265282 9 2213 836 817 

46 838946 9 963 837 818 

47 86316 8 1721 848 819 
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Table 17 (c) Locations of SKUs in random, stage #1, and stage #2 layout in scenario 1 

  

SKU 

Number 

Frequency Random 

Layout 

Stage #1 

Layout 

Stage #2 

Layout 

Class #3 48 83626 13 2132 1633 1633 

49 241880 11 1405 1643 1634 

50 249707 11 1949 1644 1635 

51 10829 10 2537 1646 1636 

52 143789 10 1087 1652 1637 

53 271586 10 1740 1654 1638 

54 113849 9 986 1659 1639 

55 117091 9 95 1660 1640 

56 189145 9 1498 1662 1641 

 

Table 18 (a) Locations of SKUs in random, stage #1, and stage #2 layout in scenario 2 

  SKU 

Number 

Frequency Random 

Layout 

Stage #1 

Layout 

Stage #2 

Layout 

Class #1 1 73583 20 925 1 1 

2 62134 19 1236 2 2 

3 181846 14 354 3 3 

4 41866 13 938 6 4 

5 73325 13 229 7 5 

6 920785 13 2442 12 6 

7 3305 13 2371 15 7 

8 630434 11 500 23 8 

9 460931 11 1332 22 9 

10 170743 11 2111 20 10 

11 87167 11 550 16 11 

12 269308 10 2013 37 12 

13 62054 10 2300 32 13 

14 265215 10 1091 36 14 

15 87168 10 2155 34 15 
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Table 18 (b) Locations of SKUs in random, stage #1, and stage #2 layout in scenario 2 

  SKU 

Number 

Frequency Random 

Layout 

Stage #1 

Layout 

Stage #2 

Layout 

Class #2 16 245047 25 910 806 806 

17 178642 19 2276 807 807 

18 202466 17 1712 809 808 

19 179582 17 2088 808 809 

20 7217 14 1106 810 810 

21 7516 14 996 811 811 

22 269305 13 363 818 812 

23 111391 13 457 817 813 

24 14964 13 1764 815 814 

25 110142 12 648 821 815 

26 45258 12 131 819 816 

27 87376 11 1159 822 817 

28 109567 11 823 823 818 

29 241601 11 1644 824 819 

30 152603 10 2261 832 820 

31 111493 10 1660 831 821 

32 444588 10 1018 834 822 

33 58728 10 1983 827 823 

34 109958 10 552 829 824 

35 84155 10 2275 833 825 

36 92733 9 2578 840 826 

37 265276 9 1411 847 827 

38 265274 9 349 846 828 

39 87567 9 2720 838 829 

40 200124 9 707 843 830 

41 89436 9 1457 839 831 

42 241863 9 2173 844 832 

43 73328 9 1533 845 833 

44 111505 8 1542 855 834 
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Table 18 (c) Locations of SKUs in random, stage #1, and stage #2 layout in scenario 2 

  SKU 

Number 

Frequency Random 

Layout 

Stage #1 

Layout 

Stage #2 

Layout 

Class #3 45 103427 23 2179 1708 1708 

46 75638 16 1155 1711 1709 

47 19163 11 1572 1719 1710 

48 63831 11 295 1720 1711 

49 110770 10 953 1830 1712 

50 183555 10 326 1833 1713 

51 10829 10 197 1723 1714 

52 86241 10 106 1728 1715 

53 91999 10 455 1729 1716 

54 113849 10 2643 1730 1717 

55 246717 9 2493 1743 1718 

56 441279 8 2183 1764 1719 

 

In the tables above, all the SKUs involved in exchange heuristic which are the unique SKUs 

in association rules are sorted by frequency, the locations are shown in different phases, 

the original layout is random, stage #1 layout is the obtained in ranking and sorting phase, 

and stage #2 layout is the final layout by implementing exchange heuristic. It’s obvious 

that the correlated SKUs are moving closer the I/O point as well as closer to each other 

which further lead to a reduction in picking up activity.  

4.4.6 Computer Simulation 

In this section, a static simulation model is developed in AutoMod to compare the 

performance in two scenarios, respectively, random layout and improved layout by 

implementing the proposed method in this thesis. The measurement of outperformance is 

average pickup time. Appendix 5 shows the code in AutoMod. 
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4.4.6.1 Output Analysis 

The output from simulation indicates that the improvement is significant by implementing 

the method proposed in this thesis. By comparing random layout to Stage #1 and Stage #2 

layouts, the grand average pickup time decrease from 308603.9.5 to 39740 then to 34848.7 

seconds while the trip time decreases from 309591.9 to 41006.1 then to 36106 seconds. 

The improvement rate from random to Stage #1 is 87.12% and 12.31% from Stage #1 to 

Stage #2 in term of pickup time, the total improvement is 88.71%. In term of trip time, the 

improvements are 86.75%, 11.95% and 88.34%. See Table 19-20 and Figure 23-35. In 

other words, labor cost in the order picking process is reduced by almost 90%. This 

heuristic is a very good attempt of building a new DC from the scratch or rebuilding an 

existing DC because the solution is relatively quick and easy to implement.  

 

Table 19 Numeric improvement overview 

 
 Scenario 1 

   

 
pickup time trip time 

 
Random Stage #1 Stage #2 Random Stage #1 Stage #2 

Average 308682.5 38597.2 34535.2 309664.9 40144.8 36082.8 

Std. Dev 43316.5 2469.4 2052.7 43258.0 2653.1 2160.9 

Max 370859.7 43064.6 36928.0 371656.2 44665.6 38565.1 

Min 229049.9 31603.5 29382.2 230827.3 33060.9 31242.6 

Scenario 2 
 

pickup time trip time 
 

Random Stage #1 Stage #2 Random Stage #1 Stage #2 

Average 308525.3 40900.8 35162.1 309518.9 41867.4 36129.2 

Std. Dev 45721.6 3203.8 3002.8 45717.9 3089.1 2819.8 

Max 370739.8 44528.2 37878.3 371536.2 45205.0 38565.1 

Min 231640.1 30256.2 25894.8 232516.5 31479.3 27118.0 
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Table 20 Percentage improvement overview 

Pickup time 
  

Scenario1 Scenario2 
  

Random Stage #1 Stage #2 Random Stage #1 Stage #2 

Scenario 1 Random 0.00% - - - - - 
 

Stage #1 87.50% 0.00% - - - - 
 

Stage #2 88.81% 10.52% 0.00% - - - 

Scenario 2 Random - - - 0.00% - - 
 

Stage #1 - - - 86.74% 0.00% - 
 

Stage #2 - - - 88.60% 14.03% 0.00% 
        

Trip time 
  

Scenario1 Scenario2 
  

Random Stage #1 Stage #2 Random Stage #1 Stage #2 

Scenario 1 Random 0.00% - - - - - 
 

Stage #1 87.04% 0.00% - - - - 
 

Stage #2 88.35% 10.12% 0.00% - - - 

Scenario 2 Random - - - 0.00% - - 
 

Stage #1 - - - 86.47% 0.00% - 
 

Stage #2 - - - 88.33% 13.71% 0.00% 

 

Comparison of pickup and trip time in each order picking operation is shown in Table 21-

22 and Figures 23-35 below.  
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Table 21 Pickup time and trip time in each order in random layout and stage #1 & #2 

layout of scenario 1 

 
Scenario 1 

 

 
pickup time trip time 

 
Random Stage #1 Stage #2 Random Stage #1 Stage #2 

order1 274,985.5 39,983.3 36,650.7 275,882.9 41,717.9 38,385.1 

order2 235,021.3 31,603.5 29,785.2 235,817.8 33,060.9 31,242.6 

order3 313,026.4 39,275.8 36,002.4 314,590.5 40,285.6 37,012.2 

order4 240,569.1 39,290.5 36,011.1 241,338.9 40,153.6 36,874.2 

order5 365,635.9 39,922.6 35,186.8 365,779.0 41,860.6 37,124.2 

order6 350,083.0 37,346.3 31,209.5 351,266.2 38,977.0 32,840.2 

order7 345,435.7 37,708.9 34,429.5 346,045.5 38,958.8 35,679.3 

order8 287,162.5 38,701.9 35,369.1 288,473.3 40,343.0 37,010.2 

order9 306,332.9 41,287.0 33,748.6 307,116.0 43,194.7 35,656.3 

order10 365,575.1 36,791.7 34,914.2 366,685.9 37,574.9 35,697.3 

order11 352,848.0 34,116.9 29,382.2 354,758.8 36,161.0 31,426.3 

order12 245,521.9 37,094.3 33,820.9 246,158.4 38,788.8 35,515.3 

order13 357,851.9 40,148.4 35,473.1 358,381.8 41,829.5 37,154.2 

order14 313,406.2 41,559.3 36,824.7 314,269.4 43,173.7 38,439.1 

order15 277,094.1 41,462.3 36,727.7 277,964.8 43,116.7 38,382.1 

order16 365,589.0 41,285.3 36,550.7 367,393.1 43,299.7 38,565.1 

order17 327,011.4 38,635.9 33,901.2 327,714.6 40,397.0 35,662.3 

order18 333,415.4 36,763.1 32,028.4 333,705.2 37,586.2 32,851.5 

order19 316,213.7 36,608.7 34,790.5 316,876.8 37,458.5 35,640.3 

order20 325,035.6 40,091.1 36,758.3 325,965.4 41,798.9 38,466.1 

order21 282,645.6 39,868.1 36,535.3 284,409.7 41,735.9 38,403.1 

order22 245,665.7 37,694.6 33,019.3 246,789.7 38,757.8 34,082.4 

order23 275,087.9 33,621.3 31,743.7 276,291.9 34,431.1 32,553.5 

order24 337,699.8 37,080.3 32,345.7 338,469.6 38,991.1 34,256.4 

order25 229,049.9 34,714.2 32,895.9 230,827.3 35,870.6 34,052.4 

order26 279,306.4 36,870.0 34,992.1 279,462.8 38,793.8 36,916.2 

order27 350,364.5 43,064.6 36,928.0 350,507.7 44,665.6 38,529.1 

order28 244,047.8 41,232.0 36,497.3 245,491.9 43,059.7 38,325.1 

order29 335,800.0 41,587.0 36,852.3 336,129.8 43,254.7 38,520.1 

order30 296,296.0 36,377.1 31,642.4 297,353.4 37,520.2 32,785.5 

order31 344,531.4 38,664.6 35,331.8 345,962.1 40,439.0 37,106.2 

order32 314,689.8 39,988.8 35,254.1 315,600.6 41,789.9 37,055.2 

order33 297,647.4 37,506.3 34,226.8 299,198.2 38,862.8 35,583.3 

order34 370,859.7 41,657.0 36,922.3 371,656.2 43,284.7 38,550.1 

order35 355,992.8 39,789.8 35,055.1 357,676.9 41,870.9 37,136.2 
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 pickup time trip time 

 Random Stage #1 Stage #2 Random Stage #1 Stage #2 

order36 302,029.3 38,531.6 32,395.0 302,892.5 40,309.0 34,172.4 

order37 234,012.0 39,897.8 33,761.2 235,002.7 41,618.9 35,482.3 

order38 290,917.9 37,536.9 34,257.5 292,081.9 38,826.8 35,547.3 

order39 354,159.5 39,932.1 36,652.7 354,942.7 41,826.5 38,547.1 
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Table 22 Pickup time and trip time in each order in random layout and stage #1 & #2 

layout of scenario 2 

Scenario2 
 

pickup time trip time 
 

Random Stage #1 Stage #2 Random Stage #1 Stage #2 

order1 231,640.1 39,106.5 34,798.5 232,516.5 39,793.3 35,485.3 

order2 285,661.0 42,548.6 36,299.4 287,078.4 43,235.4 36,986.2 

order3 278,703.8 42,846.3 36,170.4 279,707.8 43,616.1 36,940.2 

order4 242,477.1 41,817.3 37,082.6 244,121.2 43,050.7 38,316.1 

order5 367,170.2 42,129.9 35,880.7 368,193.3 43,366.4 37,117.2 

order6 362,659.1 40,858.1 32,780.3 363,625.9 42,419.2 34,341.4 

order7 242,145.7 43,402.6 36,726.7 242,328.9 44,977.0 38,301.1 

order8 244,041.4 33,703.9 27,940.7 244,677.9 35,574.6 29,811.4 

order9 354,714.9 43,034.9 36,359.1 355,378.0 43,815.1 37,139.2 

order10 241,269.4 38,521.5 34,160.2 242,993.5 39,861.6 35,500.3 

order11 370,739.8 38,460.6 32,201.4 371,536.2 39,200.8 32,951.5 

order12 338,484.2 42,886.6 36,637.3 339,267.4 44,754.3 38,505.1 

order13 359,703.4 38,534.3 31,858.4 360,459.9 39,557.4 32,881.5 

order14 298,024.0 42,593.6 36,344.4 299,508.0 43,280.4 37,031.2 

order15 348,945.4 44,528.2 37,842.3 349,181.9 45,205.0 38,529.1 

order16 329,026.4 40,741.7 36,380.4 330,110.5 41,428.5 37,067.2 

order17 285,183.7 43,974.5 37,725.3 286,814.5 44,661.3 38,412.1 

order18 360,572.6 42,694.3 36,445.1 362,150.0 43,394.4 37,145.2 

order19 329,342.7 39,131.2 32,455.3 329,699.1 40,972.3 34,296.4 

order20 267,109.5 36,133.1 29,937.2 267,386.0 37,329.5 31,133.6 

order21 283,535.0 41,112.7 36,308.4 285,139.0 41,799.5 36,995.2 

order22 285,680.0 43,838.2 37,588.9 286,583.2 44,658.3 38,409.1 

order23 273,134.1 30,256.2 25,894.8 274,130.6 31,479.3 27,118.0 

order24 236,917.1 34,825.5 31,919.4 237,833.5 35,515.3 32,609.2 

order25 266,102.2 39,382.9 31,305.1 267,092.9 40,800.3 32,722.5 

order26 340,794.7 37,766.3 30,115.2 342,678.8 39,119.8 31,468.6 

order27 368,179.5 44,127.5 37,878.3 368,536.0 44,814.3 38,565.1 

order28 349,752.7 42,212.6 37,851.3 351,156.8 42,899.4 38,538.1 

order29 313,683.1 42,506.6 36,257.4 315,087.1 43,313.4 37,064.2 

order30 354,119.9 42,692.6 36,443.4 356,094.3 43,379.4 37,130.2 

order31 273,594.7 37,765.3 36,320.4 274,017.8 38,452.1 37,007.2 

order32 326,641.2 41,213.4 36,419.4 326,957.7 41,900.2 37,106.2 

order33 260,900.4 39,467.2 37,579.3 262,197.8 40,234.0 38,346.1 

order34 332,215.9 43,561.8 37,312.6 333,206.7 44,715.3 38,466.1 

order35 367,421.4 43,155.3 36,479.4 368,564.6 43,842.1 37,166.2 
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 pickup time trip time 

 Random Stage #1 Stage #2 Random Stage #1 Stage #2 

order36 342,646.2 44,079.5 37,830.3 343,442.7 44,766.3 38,517.1 

order37 277,585.0 42,905.6 36,229.7 278,328.2 43,659.1 36,983.2 

order38 281,004.2 43,950.5 37,701.3 281,627.4 44,637.3 38,388.1 

order39 360,964.3 42,664.6 37,860.3 361,827.4 43,351.4 38,547.1 
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Figure 23 Full comparisons of scenario 1 & 2 
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Figure 24 Pickup time of random VS stage #1 in scenario 1 

 

 

Figure 25 Pickup time of random VS stage #2 in scenario 1 
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Figure 26 Pickup time of stage #1 VS stage #2 in scenario 1 

 

 

Figure 27 Pickup time of random VS stage #1 in scenario 2 
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Figure 28 Pickup time of random VS Stage #2 in scenario 2 

 

 

Figure 29 Pickup time of stage #1 VS stage #2 in scenario 2 
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Figure 30 Trip time of random VS stage #1 in scenario 1 

 

 

Figure 31 Trip time of random VS stage #2 in scenario 1 
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Figure 32 Trip time of stage #1 VS stage #2 in scenario 1 

 

Figure 33 Trip time of random VS stage #1 in scenario 2 
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Figure 34 Trip time of random VS stage #2 in scenario 2 

 

Figure 35 Trip time of stage #1 VS stage #2 in scenario 2 
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V. CONCLUSION AND FUTURE RESEARCH 

As described in Section 1.3 for objectives of this thesis, the case study presents a quick 

solution of storage location assignment problem in a practical level with significant 

improvement by implementing the proposed heuristic as well as the combination of 

picker-to-parts pickup method and S-shape routing method.   

5.1 Conclusion 

The results of this thesis indicate that the combination of picker-to-parts method and S-

shape routing selection method has positive impact on improving efficiency of order 

picking activity. The reason for choosing S-shape routing method is that it is commonly 

used in practice, and the selection of S-shape routing method reduced the complexity of 

the problem, and thus, shorten the computational time.  

By balancing the computational time and output between optimal and heuristic solutions, 

optimal solution is not implementable because of the huge computational time. As is 

mentioned in section 4.3, the computational time for obtaining optimal solution is too long 

to meet our goal of producing a quick solution, especially when number of SKUs increases. 

In term of performance, the proposed heuristic is 6.7% worse than the optimal in the 

experiment involved 10 SKUs. We can conclude that the proposed heuristic is 

implementable in practice because it provides a good solution in much shorter time.  

The proposed heuristic integrates techniques such as data analysis, association mining, 

mathematical formulation and computer simulation. Five steps of the proposed heuristic 

ensure the pickup priority accounting for weight and frequency of SKUs. Also, the heuristic 

improves the layout design by exchanging the storage locations of SKUs based on the 

associations between SKUs generated via association rules mining. The numerical results 
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from different scenarios show that the average improvement of 87.12% from random 

layout to Stage #1 layout and 12.31% from Stage #1 layout to Stage #2 layout in term of 

pickup time. In term of pickup time, the improvements are 86.75% from random layout to 

stage #1 layout and 11.95% from stage #1 layout to stage #2 layout.  

ARM algorithm is an important technique to identify correlations between SKUs among 

different transactions. And it has more potential in improving order picking operation by 

considering more rules. Before implementing the proposed heuristic in practice, an 

appropriate combination of support and confidence in ARM algorithm needs to be 

determined in advanced, since it is the key activity to balance the outperformance and 

computation time. According to the result form design of experiment, the selected 

combination of support (0.2) and confidence (0.8) is significant to impact number of rules 

produced via ARM.  

Furthermore, simulation provides an easy and convenient way to visualize and analysis the 

ordering picking operations. C language-based coding environment in AutoMod makes the 

model easy to be expanded and modified to test more experiments. In addition, simulation 

is also an efficient way to validate and verify the method applied and control the potential 

risk by analyzing the simulation output.  

The heuristic proposed in this thesis is a ready-to-use “package” for layout design, the only 

input for such package is the raw data set with transaction numbers, SKU numbers and 

weights of SKUs. It takes much shorter time to produce a good solution when compare to 

optimal solution. It is recommended to implement such heuristic for new layout design 

and/or layout improvement in an existing DC. 
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5.2 Future Research 

Due to limited time, this thesis only provides comparison among two layouts generated 

from the proposed heuristics and randomized layout. The future research may focus on: 

First, applying proposed heuristic into new layout, for example, fishbone layout to achieve 

better performance. Second, identifying the break-even point of support and confidence 

regarding specific data set in ARM phase to produce the best solution of number of rules. 

Finally, comparing the proposed method to other existing algorithm to indicate the 

performance, like Genetic Algorithm and Ant Colony Optimization algorithm. 
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APPENDIX SECTION 

APPENDIX 1: AMPL CODE OF QAP FORMULATION 

 param n:=20;  

 param f{1..n,1..n};  

 param d{1..n,1..n};  

 param c{1..n,1..n};  

 var x{1..n,1..n} integer;  

  minimize obj_function: sum{i in 1..n} sum{j in 1..n} sum{k in 1..n} sum{l in 1..n} 

f[i,j]*d[k,l]*x[i,k]*x[j,l] + sum{i in 1..n} sum{j in 1..n} c[i,j]*x[i,j];  

  subject to constr1{j in 1..n}: sum{i in 1..n} x[i,j] = 1;  

  subject to constr2{i in 1..n}: sum{j in 1..n} x[i,j] = 1;  

  subject to bound1{i in 1..n,j in 1..n}: 0<=x[i,j]<=1;  

  #subject to con_add{i in 1..n}: x[i,i]=0;  

  data HCP13.5.1.dat; option solver cplexamp; solve; display x;  

  display _total_solve_time 
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APPENDIX 2: R CODE OF DATA SAMPLE SELECTION 

getwd() 

setwd("/Users/yueli/Desktop/Thesis R code") 

library("readxl") 

library("dplyr") 

library("stringr") 

library("stringi") 

dt_table <- read_excel("GM.xlsx","GM") 

dt_ASGN <- dt_table[,1] 

dt_ASGN <- unique(dt_ASGN) 

## choose ASGN count between 150-250 

df<-data.frame(dt_table$ASGN,dt_table$Product) 

names(df)[1:2] <- c("Assignment", "Product") 

group_df <- group_by(df,as.numeric(df$Assignment)) 

count_df<-count_(group_df) 

final_df<-filter(count_df, count_df$n>= 150 & count_df$n <= 250) 

names(final_df)[1:2] <- c("ASGN", "Frequency") 

all_df<-filter(dt_table,dt_table$ASGN %in% final_df$ASGN) 

write.csv(all_df, "150to250.csv") 

## randomly choose 1/3 of orders with items between 150 and 250 

dt_ASGN1 <- all_df[,1] 

dt_ASGN1 <- unique(dt_ASGN1) 

dt_ASGN_rand <- mutate(dt_ASGN1,rand_num = runif(nrow(dt_ASGN1),1,100)) 
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dt_table_sort <- arrange(dt_ASGN_rand,as.numeric(desc(dt_ASGN_rand$rand_num))) 

table1 <- dt_table_sort[1:ceiling(1/3 * nrow(dt_table_sort)),] 

final_table_1 <- filter(all_df, all_df$ASGN %in% table1$ASGN) 

write.csv(final_table_1, "onethirdof150to250.csv") 
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APPENDIX 3: R CODE OF WEIGHT-BASED CLASS AND STAGE #1 LAYOUT 

quan <- quantile(final_table_1$Weight,probs = seq(0,1,0.33333333)) 

weight_filter_1 <- filter(final_table_1,final_table_1$Weight<=quan[2]) 

group_weight_1<-group_by(weight_filter_1,as.numeric(weight_filter_1$Product)) 

frequencyofclass1 <- count(group_weight_1) 

dec_freq_class1 <- arrange(frequencyofclass1,as.numeric(desc(frequencyofclass1$n))) 

names(dec_freq_class1)[1:2] <- c("Product", "Freq") 

weight_filter_2 <- filter(final_table_1,final_table_1$Weight>=quan[2] & 

final_table_1$Weight <= quan[3]) 

group_weight_2<-group_by(weight_filter_2,as.numeric(weight_filter_2$Product)) 

frequencyofclass2 <- count(group_weight_2) 

dec_freq_class2 <- arrange(frequencyofclass2,as.numeric(desc(frequencyofclass2$n))) 

names(dec_freq_class2)[1:2] <- c("Product", "Freq") 

weight_filter_3 <- filter(final_table_1,final_table_1$Weight >= quan[3]) 

group_weight_3<-group_by(weight_filter_3,as.numeric(weight_filter_3$Product)) 

frequencyofclass3 <- count(group_weight_3) 

dec_freq_class3 <- arrange(frequencyofclass3,as.numeric(desc(frequencyofclass3$n))) 

names(dec_freq_class3)[1:2] <- c("Product", "Freq") 

itemlocationall <- rbind(dec_freq_class3,dec_freq_class2,dec_freq_class1) 

location<-c(1:nrow(itemlocationall)) 

itemlocationall <- cbind(itemlocationall,location) 

write.csv(weight_filter_1, "weightclass1.csv") 

write.csv(weight_filter_2, "weightclass2.csv") 
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write.csv(weight_filter_3, "weightclass3.csv") 

write.csv(dec_freq_class1, "itemlocationclass1.csv") 

write.csv(dec_freq_class2, "itemlocationclass2.csv") 

write.csv(dec_freq_class3, "itemlocationclass3.csv") 

write.csv(itemlocationall, "itemlocationall.csv") 

## Stage 1 layout matrix 

new_matrix <- matrix(ncol = nrow(itemlocationall), nrow = nrow(itemlocationall), c(0)) 

rownames(new_matrix) <- 1:nrow(itemlocationall) #item 

colnames(new_matrix) <- 1:nrow(itemlocationall) #location 

new_matrix 

for (i in 1:nrow(new_matrix)) 

{ 

  new_matrix[itemlocationall$location[i],itemlocationall$location[i]] <- 

itemlocationall$Product[i] 

} 

dim(new_matrix) 

 

write.csv(new_matrix, "stage1layoutmatrix.csv") 

 

 

 

 

 



 

 81 

APPENDIX 4: R CODE OF ASSOCIATION RULES MINING AND OUTPUT 

REFORMATION 

## Association rules mining for class #1 

install.package("arules") 

library("arules") 

HEBdata <- weight_filter_1 

HEBdata<-transform(HEBdata, ASGN=as.factor(ASGN)) 

HEBdata<-transform(HEBdata, Product=as.factor(Product)) 

HEBdata<-transform(HEBdata, Aisle=as.factor(Aisle)) 

HEBdata<-transform(HEBdata, Location=as.factor(Location)) 

HEBdata<-transform(HEBdata, Description=as.factor(ItemDescription)) 

HEBdata<-transform(HEBdata, Weight=as.numeric(Weight)) 

length(levels(HEBdata$ASGN)) 

length(levels(HEBdata$Product)) 

quantile(HEBdata$Weight) 

WC <- split(x=HEBdata[,"Description"], f=HEBdata$ASGN) 

itemM <- split(x=HEBdata[,"Product"], f=HEBdata$ASGN) 

WC <- lapply(WC, unique) 

itemM <- lapply(itemM, unique)  

itemM <- as(itemM, "transactions"); itemM  

WC <- as(WC, "transactions"); WC 

itemFrequencyPlot(itemM,support=.20) 

sizes<-size(itemM) 
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sizes 

size.labels<-as.numeric(levels(as.factor(sizes))) 

itemM.subset.2<-subset(itemM,sizes==2) 

inspect(itemM.subset.2) 

HEBdatasup <- itemFrequency(itemM, type= "relative") 

M = mean(HEBdatasup) 

rules_class1<- apriori(itemM, 

                parameter=list(support=.2, 

                               confidence=.8, maxlen=2, target="rules")) 

rules_class1 

inspect(rules_class1) 

HEBdatasup <- itemFrequency(itemM, type= "relative") 

sort(head(HEBdatasup, 25), decreasing = TRUE) 

highest.lift_class1 <- sort(rules_class1, by = "lift", na.last=NA, decreasing = TRUE) 

inspect(head(highest.lift_class1, 25)) 

highest.conf_class1 <- sort(rules_class1, by = "confidence", na.last=NA, decreasing = 

TRUE) 

inspect(head(highest.conf_class1, 25)) 

highest.sup_class1 <- sort(rules_class1, by = "support", na.last=NA, decreasing = TRUE) 

inspect(head(highest.sup_class1, 25)) 

association_rules_class1<-as(rules_class1, "data.frame"); 

rules_highest_lift_class1 <- as(highest.lift_class1, "data.frame"); 

write.csv(association_rules_class1,"association_rules_class1.csv") 
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write.csv(rules_highest_lift_class1, "rules_highest_lift_class1.csv") 

## Clean Association Rules output 

before1 <- rules_highest_lift_class1 

out1 <- strsplit(as.character(before1$rules),'=>') 

out1 <- data.frame(t(sapply(out1, `[`))) 

after1 <- with(before1, data.frame(support = support, confidence = confidence, lift = lift)) 

after1 <- cbind(out1,after1) 

names(after1)[1:2] <- c("LHS", "RHS") 

after1$LHS<-gsub('.{2}$', '', after1$LHS) 

after1$LHS<-gsub('^.', '', after1$LHS) 

after1$RHS<-gsub('.{1}$', '', after1$RHS) 

after1$RHS<-gsub('^.{2}', '', after1$RHS) 

write.csv(after1, "rules_highest_lift_classs1_cleaned.csv") 

## Association rules mining for class #2 

install.package("arules") 

library("arules") 

HEBdata <- weight_filter_2 

HEBdata<-transform(HEBdata, ASGN=as.factor(ASGN)) 

HEBdata<-transform(HEBdata, Product=as.factor(Product)) 

HEBdata<-transform(HEBdata, Aisle=as.factor(Aisle)) 

HEBdata<-transform(HEBdata, Location=as.factor(Location)) 

HEBdata<-transform(HEBdata, Description=as.factor(ItemDescription)) 

HEBdata<-transform(HEBdata, Weight=as.numeric(Weight)) 
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length(levels(HEBdata$ASGN)) 

length(levels(HEBdata$Product)) 

quantile(HEBdata$Weight) 

WC <- split(x=HEBdata[,"Description"], f=HEBdata$ASGN) 

itemM <- split(x=HEBdata[,"Product"], f=HEBdata$ASGN) 

WC <- lapply(WC, unique) 

itemM <- lapply(itemM, unique)  

itemM <- as(itemM, "transactions"); itemM  

WC <- as(WC, "transactions"); WC 

itemFrequencyPlot(itemM,support=.20) 

sizes<-size(itemM) 

sizes 

size.labels<-as.numeric(levels(as.factor(sizes))) 

itemM.subset.2<-subset(itemM,sizes==2) 

inspect(itemM.subset.2) 

HEBdatasup <- itemFrequency(itemM, type= "relative") 

M = mean(HEBdatasup) 

rules_class2<- apriori(itemM, 

                parameter=list(support=.2, 

                               confidence=.8, maxlen=2, target="rules")) 

rules_class2 

inspect(rules_class2) 

HEBdatasup <- itemFrequency(itemM, type= "relative") 
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sort(head(HEBdatasup, 25), decreasing = TRUE) 

highest.lift_class2 <- sort(rules_class2, by = "lift", na.last=NA, decreasing = TRUE) 

inspect(head(highest.lift_class2, 25)) 

highest.conf_class2 <- sort(rules_class2, by = "confidence", na.last=NA, decreasing = 

TRUE) 

inspect(head(highest.conf_class2, 25)) 

highest.sup_class2 <- sort(rules_class2, by = "support", na.last=NA, decreasing = TRUE) 

inspect(head(highest.sup_class2, 25)) 

association_rules_class2<-as(rules_class2, "data.frame"); 

rules_highest_lift_class2 <- as(highest.lift_class2, "data.frame"); 

write.csv(association_rules_class2,"association_rules_class2.csv") 

write.csv(rules_highest_lift_class2, "rules_highest_lift_class2.csv") 

## Clean Association Rules output 

before2 <- rules_highest_lift_class2 

out2 <- strsplit(as.character(before2$rules),'=>') 

out2 <- data.frame(t(sapply(out2, `[`))) 

after2 <- with(before2, data.frame(support = support, confidence = confidence, lift = lift)) 

after2 <- cbind(out2,after2) 

names(after2)[1:2] <- c("LHS", "RHS") 

after2$LHS<-gsub('.{2}$', '', after2$LHS) 

after2$LHS<-gsub('^.', '', after2$LHS) 

after2$RHS<-gsub('.{1}$', '', after2$RHS) 

after2$RHS<-gsub('^.{2}', '', after2$RHS) 
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write.csv(after2, "rules_highest_lift_classs2_cleaned.csv") 

## Association rules mining for class #3 

install.package("arules") 

library("arules") 

HEBdata <- weight_filter_3 

HEBdata<-transform(HEBdata, ASGN=as.factor(ASGN)) 

HEBdata<-transform(HEBdata, Product=as.factor(Product)) 

HEBdata<-transform(HEBdata, Aisle=as.factor(Aisle)) 

HEBdata<-transform(HEBdata, Location=as.factor(Location)) 

HEBdata<-transform(HEBdata, Description=as.factor(ItemDescription)) 

HEBdata<-transform(HEBdata, Weight=as.numeric(Weight)) 

length(levels(HEBdata$ASGN)) 

length(levels(HEBdata$Product)) 

quantile(HEBdata$Weight) 

WC <- split(x=HEBdata[,"Description"], f=HEBdata$ASGN) 

itemM <- split(x=HEBdata[,"Product"], f=HEBdata$ASGN) 

WC <- lapply(WC, unique) 

itemM <- lapply(itemM, unique)  

itemM <- as(itemM, "transactions"); itemM  

WC <- as(WC, "transactions"); WC 

itemFrequencyPlot(itemM,support=.20) 

sizes<-size(itemM) 

sizes 
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size.labels<-as.numeric(levels(as.factor(sizes))) 

itemM.subset.2<-subset(itemM,sizes==2) 

inspect(itemM.subset.2) 

HEBdatasup <- itemFrequency(itemM, type= "relative") 

M = mean(HEBdatasup) 

rules_class3<- apriori(itemM, 

                parameter=list(support=.2, 

                               confidence=.8, maxlen=2, target="rules")) 

rules_class3 

inspect(rules_class3) 

HEBdatasup <- itemFrequency(itemM, type= "relative") 

sort(head(HEBdatasup, 25), decreasing = TRUE) 

highest.lift_class3 <- sort(rules_class3, by = "lift", na.last=NA, decreasing = TRUE) 

inspect(head(highest.lift_class3, 25)) 

highest.conf_class3 <- sort(rules_class3, by = "confidence", na.last=NA, decreasing = 

TRUE) 

inspect(head(highest.conf_class3, 25)) 

highest.sup_class3 <- sort(rules_class3, by = "support", na.last=NA, decreasing = TRUE) 

inspect(head(highest.sup_class3, 25)) 

association_rules_class3<-as(rules_class3, "data.frame"); 

rules_highest_lift_class3 <- as(highest.lift_class3, "data.frame"); 

write.csv(association_rules_class3,"association_rules_class3.csv") 

write.csv(rules_highest_lift_class3, "rules_highest_lift_class3.csv") 
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## Clean Association Rules output 

before3 <- rules_highest_lift_class3 

out3 <- strsplit(as.character(before3$rules),'=>') 

out3 <- data.frame(t(sapply(out3, `[`))) 

after3 <- with(before3, data.frame(support = support, confidence = confidence, lift = lift)) 

after3 <- cbind(out3,after3) 

names(after3)[1:2] <- c("LHS", "RHS") 

after3$LHS<-gsub('.{2}$', '', after3$LHS) 

after3$LHS<-gsub('^.', '', after3$LHS) 

after3$RHS<-gsub('.{1}$', '', after3$RHS) 

after3$RHS<-gsub('^.{2}', '', after3$RHS) 

write.csv(after3, "rules_highest_lift_classs3_cleaned.csv") 
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APPENDIX 5: AUTOMOD CODE FOR CREATING SIMULATION LOGICS 

(PARTIAL) 

SFileBegin name init.m 

begin model initialization function 

 call F_Location_Init() 

 call F_Order_Init() 

create 39 load of type Order_load to PMasterLoad 

 return true 

end 

begin PMasterLoad arriving procedure 

 inc V_Order_ctr by 1 

 set Attr_Order_ID to V_Order_ctr 

 call SReceiveOrder 

 call SPickOrder 

 call SDeliverOrder 

 print ac to message 

end 

SFileBegin name veh.m 

begin pm vehicle initialization function 

 increment V_Count by 1 

 set theVehicle A_index = V_Count 

 set theVehicle A_Home = pm.cp_home 

 dispatch theVehicle to pm.cp_home 
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 return true 

end 

SFileBegin title "idle, receive,pick,deliver" 

 name subs.m 

begin pm idle procedure 

 dispatch this vehicle to pm.cp_home 

 wait to be ordered on OLVehicle 

end 

begin SReceiveOrder procedure 

 move into QInitial  

 move into pm.cp_home 

end 

begin SPickOrder procedure 

 set Attr_Time2 to ac 

 set Vi to 1 

 print this load to message 

 print "Order received:" ac to message 

 print this load vehicle to message 

 while Vi <= V_Number_Item_Per_Ord(Attr_Order_ID) do 

 begin 

  travel to V_Location(V_Order(Attr_Order_ID,Vi)) 

  inc Vi by 1  

  inc V_Number_Done by 1   
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 end 

end 

begin SDeliverOrder procedure  

 tabulate ac - Attr_Time2 in T_PickTime 

 print "finish time of picking up the last SKU in an order" ac to message 

 tabulate V_Number_Done in T_Throughput 

 travel to pm.cp_home 

 print "time back to Home for another order" ac to message 

end 
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