

A DATA-INTENSIVE ANALYSIS AUGMENTED SIMULATION MODEL

OF AN ORDER PICKING OPERATION

by

Yue Li, B.S.

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment

of the requirements for the degree of

Master of Science

with a Major in Engineering

August 2017

Committee Members:

 Jesus A. Jimenez, Chair

 Eduardo Perez, Co-Chair

 Francis A. Méndez Mediavilla

COPYRIGHT

by

Yue Li

2017

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgment. Use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Yue Li, authorize duplication of this work, in

whole or in part, for educational or scholarly purposes only.

DEDICATION

I would like to say thank you to Linda Anderson, who is my good friend and ESL

teacher in Columbus, Ohio for her insightful suggestions and corrections on this thesis. As

a teacher, she passes her knowledge, experience as well as her positive life attitude to the

young people like me. She is always willing to give me a hand and trying to encourage me

whenever I’m up the creek. I think I am the luckiest one to have such a friend and teacher

like her. Thank you, Linda.

 v

ACKNOWLEDGEMENTS

During my graduate studies in Texas State University, several faculties and staffs

collaborated with my research directly or indirectly. It would be impossible for me to fulfill

my graduate study without their support and assistant.

Foremost, I offer my sincerest gratitude to my advisor, Dr. Jesus A. Jimenez, who

has supported and advised me with his knowledge and patience throughout my thesis. This

thesis would not have been completed without his time and effort.

Besides my advisor, I would like to thank the rest of my thesis committee members:

Dr. Eduardo Perez, Dr. Francis A. Méndez Mediavilla for their insightful guidance,

suggestion and comments.

Also, I wish to thank all the IE staff in Ingram School of Engineering for their

kindness and patience throughout my graduate.

Finally, I would like to thank my family – my wife Nan Cheng, my son Anthony C

Li and my daughter Sophia C Li, for their unconditional support, love, and inspiration.

 vi

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ...v

LIST OF TABLES ... viii

LIST OF FIGURES ...x

LIST OF ABBREVIATIONS ... xii

ABSTRACT ... xiii

CHAPTER

I. INTRODUCTION ..1

1.1 Problem Description ..1

1.2 Objectives ..3

1.3 Organization of Thesis ...3

II. LITERATURE REVIEW ..4

 2.1 Warehousing ..4

 2.2 Order Picking ...5

 2.3 Routing Heuristics ...7

 2.4 Layout Design and Storage Assignment ..9

 2.4.1 Layout Design ...9

 2.4.2 Storage Location Assignment Problem10

 2.5 ARM Algorithm ...12

 2.6 Simulation Approach ...14

III. METHODOLOGY ..15

 3.1 System Configuration ..15

 3.2 Mathematical Formulation ...16

 3.3 Solution Approach ...17

 3.3.1 Weight-based Class ...18

 3.3.2 Ranking and Sorting ...18

 vii

 3.3.3 ARM Algorithm ..19

 3.3.4 Exchange Heuristic ...23

 3.3.5 Computer Simulation ..26

IV. EXPERIMENTS AND RESULTS ..28

 4.1 Data Description ..28

 4.2 Effect of Support and Confidence..28

 4.2.1 Design of Experiments ..29

 4.2.2 Output Analysis ..31

 4.3 Comparison between Optimal and Heuristic Solution.........................33

 4.4 Numerical Analysis ..35

 4.4.1 System Configuration ...35

 4.4.2 Weight-based Class ...38

 4.4.3 Ranking and Sorting ...39

 4.4.4 ARM Algorithm ..40

 4.4.5 Exchange Heuristic ...54

 4.4.6 Computer Simulation ..59

 4.4.6.1 Output Analysis ...60

V. CONCLUSION AND FUTURE RESEARCH ...73

 5.1 Conclusion ...73

 5.2 Future Research ...75

APPENDIX SECTION ..76

REFERENCES ..92

 viii

LIST OF TABLES

Table Page

1. Weight-based classes ...18

2. Example of association rules ...20

3. Functions and parameters in simulation model ...27

4. Design table of two runs in DOE ...30

5. Comparison of computational time ..34

6. Comparison of order picking time ...34

7. Configurations of two scenarios ..37

8. Simulation time (in second) ...38

9. Weight-based classes for scenario 1 ..39

10. Weight-based classes for scenario 2 ..39

11. Association rules of class #1 sorted by lift in scenario 1 ...41

12. Association rules of class #2 sorted by lift in scenario 1 ...42

13. Association rules of class #3 sorted by lift in scenario 1 ...44

14. Association rules of class #1 sorted by lift in scenario 2 ...45

15. Association rules of class #2 sorted by lift in scenario 2 ...46

16. Association rules of class #3 sorted by lift in scenario 2 ...47

17(a). Locations of SKUs in random, stage #1, and stage #2 layout in scenario 155

17(b). Locations of SKUs in random, stage #1, and stage #2 layout in scenario 156

 ix

17(c). Locations of SKUs in random, stage #1, and stage #2 layout in scenario 157

18(a). Locations of SKUs in random, stage #1, and stage #2 layout in scenario 257

18(b). Locations of SKUs in random, stage #1, and stage #2 layout in scenario 258

18(c). Locations of SKUs in random, stage #1, and stage #2 layout in scenario 259

19. Numeric improvement overview ...60

20. Percentage improvement overview ..61

21. Pickup time and trip time in each order in random layout and stage #1 & #2 layout of

scenario 1 ...62

22. Pickup time and trip time in each order in random layout and stage #1 & #2 layout of

scenario 2 ...64

 x

LIST OF FIGURES

Figure Page

1. Illustration of using ARM algorithms to create batches ..2

2. Typical warehouse functions and flows ...4

3. Percentage of order-picker’s time ..5

4. Order picking methods ...6

5. Example of routing methods for a single-block warehouse ...7

6. Layout assumption ...15

7. Methodology flow chart ...17

8. Stage #1 layout considering weight and frequency ...19

9. Example of ARM algorithm visualization ...21

10. The work process of ARM in R package ...23

11. Illustration of the exchange heuristic ...25

12. Plot of DOE design table ...31

13. Output of design of experiment ...32

14. Main effects plot for response..33

15. Stage #1 layout in scenario 1 ...40

16. Stage #1 layout in scenario 2 ...40

17. Rules plot of weight class #1 in scenario 1 ..48

18. Rules plot of weight class #2 in scenario 1 ..49

 xi

19. Rules plot of weight class #3 in scenario 1 ..50

20. Rules plot of weight class #1 in scenario 2 ..51

21. Rules plot of weight class #2 in scenario 2 ..52

22. Rules plot of weight class #3 in scenario 2 ..53

23. Full comparison of scenario 1 & 2 ...66

24. Pickup time of random VS stage #1 in scenario 1 ...67

25. Pickup time of random VS stage #2 in scenario 1 ...67

26. Pickup time of stage #1 VS stage #2 in scenario 1 ..68

27. Pickup time of random VS stage #1 in scenario 2 ...68

28. Pickup time of random VS stage #2 in scenario 2 ...69

29. Pickup time of stage #1 VS stage #2 in scenario 2 ..69

30. Trip time of random VS stage #1 in scenario 1 ...70

31. Trip time of random VS stage #2 in scenario 1 ...70

32. Trip time of stage #1 VS stage #2 in scenario 1 ..71

33. Trip time of random VS stage #1 in scenario 2 ...71

34. Trip time of random VS stage #2 in scenario 2 ...72

35. Trip time of stage #1 VS stage #2 in scenario 2 ..72

 xii

LIST OF ABBREVIATIONS

Abbreviation Description

ARM Association Rules Mining

DC Distribution Center

CAPM Clustering-Assignment Problem Model

OOS Order Oriented Slotting

I/O Input/output

ILP Integer Linear Programming

COI Cube-per-Order Index

SKU Stock Keeping Unit

MLI Maximum Loop Insertion

MTLI Minimum Travelling Loop Insertion

PSO Particle Swarm Optimization

QAP Quadratic Assignment Problem

NP-hard Non-deterministic Polynomial-time hard

 xiii

ABSTRACT

Order picking is the most labor-intensive function of distribution centers (DC) in

the food and beverage store industry. An efficient order picking process supports this

industry’s supply chain to move high volumes of products between the DC and the retail

stores. This thesis focuses on the storage location assignment problem to deciding via an

algorithm based on Association Rules Mining (ARM) the most adequate location of

incoming products. The algorithm analyzes hundreds of orders received by the DC to find

correlated products that are ordered frequently together by retail stores. The algorithm then

assigns correlated products to storage locations that are close to each other in order to

minimize order picking times. The results of computer simulation experiments using data

from a real distribution center will be presented to evaluate the performance of the DC

layout resulting from ARM.

Keywords: Simulation, Data-intensive Analysis, Distribution Center, Facilities Layout,

Order Picking, Association Rules.

 1

I. INTRODUCTION

1.1 Problem Description

In order to meet the requirements of demand-driven markets and maintain the satisfaction

level of customers, both managers and researchers seek to save the cost and time in the

supply chain. In supply chain management, the distribution center (DC) plays a

significant intermediate role between suppliers and customers. Receiving, storing, order

picking, sorting and distributing are the basic activities of a DC. Order picking is the

most time-consuming and labor-intensive process [1], and it approximately accounts for

55% of warehouse operating expenses [2]. By optimizing the order picking process, time

and cost can be reduced, thus, increases the DC’s efficiency.

The efficiency of a DC determines the performance of the whole supply chain and the

competitiveness of the firm. The challenges regarding the distribution center are not only

managing massive amounts of goods and items, but also delivering thousands of daily

orders in a timely manner. The storage location assignment method targets the efficient

and systematic allocation of Stock Keeping Units (SKUs) to warehouse slots in order to

minimize the order-picking time. [3] A typical requirement for storage location

assignment solution is to ensure the SKUs are associated by specific metric, such as

similarity, turnover ratio, product flow, and distance [1]. Due to the complexity of storage

location assignment problem, a quick solution of storage location assignment problem

and facility layout design in practical level becomes more important and valuable to

warehousing operations in the supply chain. [3]

ARM algorithm has been widely used by the food and grocery industry [4][5] to create

efficient layout designs of their retail stores. ARM is a data-mining technique which

 2

focuses on identifying the correlated products among different transactions. ARM

algorithm shows the set of products that are frequently ordered together. These rules can

be used for creating batches in layout design and products allocation in supermarkets, for

example the well-known diaper-beer case [6], as well as pushing advertisements and

issuing coupons to targeted customers to increase the company’s sales. Positioning items

in the distribution center locations is done heuristically by several companies. For

example, they put items that are of similar weight near each other. In this research, the

application of ARM is extended to the distribution center. The ARM algorithm is used to

find the correlations between SKUs that are frequently ordered together among all the

transactions from different retail stores. The correlated SKUs will be reassigned to

locations closer to each other based on ARM algorithm as well as weight-classed policy.

See Figure 1.

 Figure 1 Illustration of using ARM algorithms to create batches

In order to improve the order picking efficiency in the DC, different types of technologies

such as data mining, mathematical formulation, heuristic method as well as computer

simulation, are implemented in this thesis to fill the gap from data collection to

 3

performance comparison. As is mentioned above, ARM algorithm identifies the correlated

batches of products. However, such rules don’t take locations into consideration. Therefore,

the output of the ARM algorithm is used as input for exchange heuristic to solve location

assignment problem to achieve the goal of assigning products into the best locations. The

output of the exchange heuristic will be inputted into simulation model, which will provide

the estimated travel distance, vehicle utilization, and order-picking time - the performance

metrics used in the comparison of layouts.

1.2 Objectives

The objectives of this thesis are as follow:

a. Integrate ARM technique, mathematical programming and computer simulation to

produce a solution for a Quadratic Assignment-based storage location problem.

b. Identify the best combination of support and confidence for the ARM algorithm in

the context of the DC.

c. Design a heuristic to find solutions for the storage location problem in a practical

level in term of computational time and difficulty of implementation.

1.3 Organization of Thesis

The organization of this thesis is as follows: Section 2, a review of the literature of

warehousing and order picking activities. Section 3, the methodology from five aspects:

weight-based class, ranking and sorting, ARM, exchange heuristic, and computer

simulation. Section 4, the experiments and numerical results. Section 5, the conclusion and

future work.

 4

II. LITERATURE REVIEW

2.1 Warehousing

Storing or buffering products such as raw materials, goods-in-process, and finished

products between suppliers and customers is referred to as “warehousing”. Different terms

are used to describe a warehouse when additional functions are added: “Distribution center”

is commonly used for a warehouse with function of distribution; “transshipment”, “cross-

docking”, and “platform” center refer to warehouses with functions of temporarily holding

product and quick transfer [1]. Based on ELA/AT Kearney (2004) [7], the cost of

warehousing involved in logistics process is about 20% of a company's total supply chain

management cost. The workflow includes: receiving products from both suppliers and

customers; reserving storage for products; picking, sorting and packing products according

to orders received from retail stores; and distributing and shipping the orders to the

customers. Figure 2 shows the warehousing functions and corresponding product flows.

Figure 2 Typical warehouse functions and flows (based on Tompkins et al., 2003) [2]

 5

De Koster et al. [1] specified that the factors that need to be considered to enhance

warehousing performance are the number of storage zones and main aisles as well as aisle

dimensions.

2.2 Order Picking

In practice, multiple order-picking methods may be applied to a warehouse at the same

time. These methods include picker-to-parts, parts-to-picker, sorting system, and pick-to-

box [8]. On average, order picking accounts for 55% of warehouse operating expenses.

Among all the activities in order picking, travel consumes 50% of order picking time [2].

See Figure 3.

Figure 3 Percentage of order-picker’s time (based on Tompkins et al., 1996)

De Koster et al. [1] introduced two branches of order picking methods –manual and

automated picking– which are determined by the involvement of automated machines in

picking process. See Figure 4 for details.

 6

Figure 4 Order picking methods based on [1]

The picker-to-parts method is the most commonly implemented in real applications. In this

method, pickers travel between the aisles to pick up the SKUs. The picker-to-parts method

is classified into low level and high level order-picking system. In the low-level order

picking system, the picker picks up the SKUs located on ground level of the bins. In the

high-level order picking system, also known as man-aboard order picking system, the

picker needs to stop at the picking location and lift the picking truck or crane to get the

SKUs located at higher position. More time is required since the picker needs to operate or

wait for the equipment to finish the picking process.

Some other classifications include batch picking. In batch picking, multiple orders are

picked continuously. Wave picking is a term used if all the orders are released at the same

time for picking in different warehouse areas, but they have a common destination after the

pick up. According to Petersen (2000) [9], the required time to complete picking the whole

 7

batch is often between 30 minutes to 2 hours.

According to De Koster et al. [1], most academic research focuses on high-level and AS/RS

order picking systems. This thesis concentrates in low-level order picking operations such

as the picker-to-parts method.

2.3 Routing Heuristics

Routing is another important way to shorten the travel distance and order picking time.

Ratliff and Rosenthal [10] proposed Optima, which is a routing strategy using dynamic

programming. Optima repeats the procedures of determining the optimal order picking

priority within each aisle and concerning the next aisle to find a shortest picking path. Hall

[11], Petersen [12] and Roodbergen [13] proposed a few heuristic methods for routing

selection in single-block warehouses such as the S-shape, return, mid-point, largest gap,

combined and optimal routing heuristics. See details in Figure 5.

Figure 5 Example of routing methods for a single-block warehouse (based on [8] [11]

[13]).

 8

The S-shape routing method is the simplest and most commonly used. The picker follows

a S-shape route along the aisles to pick up items. The aisles without picking jobs are not

visited. In the return routing method, the picker enters and exits each aisle at the same

position. After picking up the item required, the picker exits the aisle at the enter point of

by retracing the route entered. The midpoint routing method was developed after the return

routing method. The picker follows the same rules as return routing method, but the picker

only reaches a maximum distance equivalent to half length of the aisle and then returns to

the entrance of the aisle. Hall’s study shows that this method is better than S-shape when a

small number of SKUs is required to be picked up in each aisle [14]. The largest gap routing

method has a slight variation to the midpoint routing method since it reaches as far as the

largest gap in an aisle. Usually, the largest gap routing method has better performance than

the midpoint method, but it’s more complicated to implement. In the combined routing

method, the picker either exits the aisle at the enter point of this aisle by retracing the route

entered or at the end of the aisle. Because of the complicated computation, dynamic

programming may be necessary to determine the route [15].

When selecting a routing plan in practice, multiple factors need to be taken into

consideration, for example, balancing the improvement and complexity of the designed

system. Hsieh and Huang [16] introduced a routing heuristic, named Maximum Loop

Insertion (MLI), which balances the routing selection complexity and the travel distance

reduction. The MLI method provides shorter total travel distance than those obtained with

the Minimum Travelling Loop Insertion (MTLI) and Particle Swarm Optimization (PSO).

The travel distance of PSO algorithm decreases when MLI result is used as the initial

solution.

 9

In this thesis, S-shape routing method is selected because S-shape routing is static, which

then helps to make comparisons of different layout configurations. Also, the S-shape

routing reduces the complexity of the layout design and the storage location assignment

problem.

2.4 Layout Design and Storage Assignment

2.4.1 Layout Design

Layout design has two sub-problems: the facility layout and the aisle configuration

problems. The first problem focuses on locating different departments including receiving,

picking, storage, sorting and shipping, etc. by considering the operational interactions

between departments with the objective function to minimize the material handling cost or

travel distance. The second problem seeks to determine the configuration of internal layout,

such as the number and dimensions of aisles in the picking area. The common objective of

this problem is to seek a “best” layout accounting for travel distance in most cases. [1]

Bassan et al. (1980) [17] introduced a layout design for a low-level picking system focusing

on unit loads. They compare handling and layout costs of two parallel-aisle layouts.

Rosenblatt and Roll [18] studied the effect of storage police to design warehouse layout.

The authors also studied the effect of random demand and multiple service levels on layout

and storage capability. Roodbergen [13] proposed a nonlinear programming approach. This

approach considers average time spent on travel in terms of pickup location and number of

picks per trip in order to determine aisle arrangement for random storage warehouses with

objective of minimizing average travel distance. Caron et al. [19] and Le-Duc and De

Koster [20] studied cube-per-order index (COI) -based storage assignment and class-based

storage assignment also with an objective to minimize average travel distance. Peterson

 10

[21] studied the effect of number of aisles as well as aisle dimension on total trip length by

implementing simulation techniques.

2.4.2 Storage Location Assignment Problem

Five storage assignment methods have been introduced in previous studies: random storage

[12] [22], closest open location storage [23], dedicated storage, COI storage [24], full

turnover storage [25] [26] [27] [28], class based storage [29] [30] [31].

Random storage assigns SKU’s with similar characteristics to random locations in the

warehouse [8]. This method results in less allocation time, but higher space utilization [22].

This rule works well in an automated environment. In the closest-open-location storage

method, the pickers choose the storage location within the warehouse. If shelves are full,

the method defaults to the random storage policy [33]. In dedicated storage, since a specific

location is reserved for a certain product, it’s easier for the pickers to get familiar with the

production location. The problem is that it causes waste of space when this product is out

of stock. This method has the worst performance in term of space utilization comparing to

all other storage methods. Full turnover storage policy is a kind of development of cube-

per-order index (COI) rule. The COI of a product equals the total space requirement divided

by total required trips to meet its demand per period. COI rules suggest locating the lowest

COI item closest to the I/O point [12] [22] [23]. The full turnover storage method assigns

products to locations based on their turnover ratio. The products with highest turnover

ratios are allocated closest to the I/O point, while the products with the lowest turnover

ratios are assigned in the back of the storage area. The biggest disadvantage of such method

is that the demand changes frequently and layout reconfiguration is required every time

demand changes. An information intensive system may be required in full turnover storage

 11

method to classify and allocate the products [24]. Class-based storage can be considered as

the combination of several methods we have reviewed so far. The class is divided based on

Pareto’s method. That is, the classes with the fastest moving products contain 15% of the

SKUs, but they contribute to the 85% of the system’s turnover. Each class is assigned to a

fixed location within the warehouse according to this Pareto rules.

Petersen and Schmenner [34] investigated the order picking efficiency of different storage

policies and routing methods that consider order size and demand. The within-aisle method

is 10–20% better in travel distance than other storage assignment policies. Petersen et al.

[14] showed that full turnover storage has better performance than class-based storage in a

manual order picking environment, but class-based storage with two to four classes was

still recommended in practice. Chen et al. [35] introduced a dynamic operational method

and a two-stage four-step heuristic to determine preliminary solutions, followed by a tabu

search algorithm to find further improvements. Heskett first studied the COI storage policy

in 1963 [24]; he focused on storage of frequently ordered items and smaller requirement of

storage location closest to the I/O point. An integer linear programming (ILP) model is

introduced to formulate this storage policy [24].

Frazelle and Sharp [15] pointed out that the COI policy can be improved especially for the

case that multiple associated items are included in the same order. Yi-Fei Chuang [36]

introduced a two-stage Clustering-Assignment Problem Model (CAPM) and a z-type

picking path considering the associations among items. The CAPM improves results by

more than 45% over the randomized method. Order Oriented Slotting (OOS) policy

proposed by Mantel et al. [37] states that the SKUs need to be stored in the warehouse with

a shortest total picking distance. Besides assigning the popular SKUs to the locations close

 12

to the I/O point, SKUs with a high association should be close to each other to minimize

order picking travel distance.

A recent study by Diaz [38] indicated customer demand pattern, order clustering as well as

physical restriction (i.e. weight or volume) are critical for improving operational

performance of warehousing activities. A quadratic integer programming is used to

generate the layout considering dynamic demand including throughput-to-storage ratios

and order similarities. A simulation approach is applied to investigate the effect of

implementing the generated layout in different zones classified by density. Weight is taken

into consideration to ensure the heavy product is picked up first to avoid any physical

damage of the product during order picking.

Literature that considers physical characters of products is not abundant. Most of the papers

take similarity into consideration in the layout design and storage assignment phase to

achieve the best objective value. But in practice, physical characters such as weight, area,

and volume are one of the most important regulations. Also, in the published literature, the

selected sample data set is relatively small due to the computation time of Storage Location

Assignment problem phase. In this thesis, weight is used to divide unique products into

classes, the improvement method is applied in each weight class to ensure meeting the

regulation that heavy products need to be picked up first. For the storage location

assignment problem, an exchange heuristic is implemented to deal with the large data set

and produce a practical solution.

2.5 ARM Algorithm

Associations rules conceptually refer to sets of objects describing the relationships between

items. ARM is an unsupervised mining technique, also known as affinity analysis or market

 13

basket analysis. ARM is widely used for targeted marketing, such as advertisement pushes,

product recommendation and so on. By applying ARM, we can investigate whether two or

more items are purchased together, or whether the purchase of one product increases the

possibility of purchasing the other. The result from data mining analysis can provide

suggestions for new layouts of a warehouse, when to push ads, when to issue coupons

among offers. This thesis considers three metrics in ARM algorithms, support, confidence

and lift [39], [40].

ARM algorithm is developed from an Apriori algorithm to identify groups of products that

are ordered together, and find the frequency with which these item sets are ordered. The

Apriori algorithm is efficient and relies on the downward closure lemma, which is used to

discards sets that do not meet minimum support or minimum confidence conditions [39].

Apriori Pseudo­code [39]:

C: a candidate item set of size k k
L: frequent item set of size k k
T: database of transactions/trips
Apriori (T, ε) 
L 1 ← {large 1­itemsets appear in more than ε transactions}

k←2
while (L k ­ 1 ≃ ̸ ∅) 

C k ← generate item sets from L k­1

for(transactions t∈ T)
C ← subset (C k, t) generate candidate transactions size k
for (candidates c∈ C t)determines frequency of c­candidates
count[c]←count[c] + 1
L k ← { c : c ∈ C k ⋀ count[c] ≥ ε } P r u n i n g

k←k+1 
return ∪k L k union of sets of frequent items k=1, 2,... K

The result is an item set Lk, which consists of those item sets of sizes less than or equal to

k that meet the minimum support required ε.

Chen et al. [4] introduced the method of creating order batching via ARM algorithms. Chen

et al. [5] introduced an extension of this model, which models capacity constraints of the

 14

facility by using 0­1 integer programming. Chiang et al.[3] introduce two heuristics,

modified class-based heuristic and association seed based heuristic, to solve storage

location assignment problem considering relationship between products. These two

heuristics assign correlated products which are frequently ordered together to the same

aisle to maximize the association measure within the same aisle.

In the reviewed literature, the selected sample data set for scenarios is relatively small. It’s

rarely mentioned about the effect of combination of support and confidence in ARM. In

this thesis, ARM algorithm is implemented to analyze larger data sets to achieve more rules

via ARM. Combination of support and confidence is analyzed by applying design of

experiment approach with specific data set to indicate the significant interaction of support

and confidence.

2.6 Simulation Approach

Simulation is commonly used to visualize the order picking operations and analyze the

outputs from different scenarios [38], [41], [42]. In the reviewed literatures, popular

software such as Arena, Simio, and Witness are used to perform the simulation process.

But for these packages, it’s not time efficient to build large warehouse layout. In this thesis,

the simulation model is built in AutoMod which is a package based on C language and

focuses on logistic simulation and analysis. The model is generated by coding in a general

way, which makes it easy to expand and modify.

 15

III. METHODOLOGY

3.1 System Configuration.

The system under analysis is a DC that receives daily orders from 700 retail stores. The

DC fills up these orders in the morning and replenishes the items sent by their suppliers at

night. There are 70,000 SKU’s. The DC has 52 aisles, each with 52 pickup locations, for a

total of 2704 pickup locations. The distance between two adjacent pickup locations is 40

feet. Orders, each containing between 150 to 250 SKU’s, are picked up by a human

operator. The operator follows an S-shape route while picking up the orders from the

picking slots. The operator rides a vehicle, which moves at 3 feet/sec. The pallet is formed

by placing the items with more weight at the bottom to form the base of the pallet; items

with less weight are placed on top of heavier items to preserve the integrity of the items.

Fragile SKUs are placed on the top of the pallet. Figure 6 shows the layout under study.

Figure 6 Layout assumption

 16

3.2 Mathematical Formulation

In the Quadratic Assignment Problem (QAP) stated in (1)-(4). We consider number of

SKUs and locations as n, the SKU i is assigned to location j, and each location j can only

have one SKU i allocated.

Objective function of the problem is as follow to minimize the total joint measurement

when SKU i is assigned to location j:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ ∑
1

2
𝑆𝑖𝑗𝐷𝑘𝑙

𝑛
𝑙=1

𝑛
𝑘=1

𝑛
𝑗=1 𝑋𝑖𝑘𝑋𝑗𝑙

𝑛
𝑖=1 + ∑ ∑ 𝐶𝑖𝑗𝑋𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1 (1)

s.t.

∑ 𝑥𝑖𝑗 = 1𝑛
𝑗=1 𝑓𝑜𝑟 𝑗 = 1,2, … , 𝐽 (2)

∑ 𝑥𝑖𝑗 = 1𝑛
𝑖=1 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝐼 (3)

𝑥𝑖𝑗 = (0,1)  𝑖, 𝑗 (4)

The decision variable is xij which is a binary variable with xij = 1 if SKU i is assigned to

location j and xij = 0 if SKU i is not assigned to location j. The objective function

represented in Equation (1) indicates minimizing the total joint measurement when SKUi

is assigned to locationj. Sij is the dissimilarity of two SKUs which is obtained from ARM

phase. Dkl is the distance between pick up locations. Cij is the cost of assigning SKU i to

location j. (2) is a constraint that ensures one SKU is assigned to one location. (3) is a

constraint that ensures one location only contains one SKU. QAP is a NP-hard problem, as

number of SKUs n increases, the computational time increases significantly. Therefore, a

heuristic is considered to achieve a quick practical solution of storage assignment problem.

 17

3.3 Solution Approach

Due to the computational complexity of QAP, it costs too much time to get the optimal

solution which is against our objective of producing quick practical solution. A case study

is conducted in next section to compare the computational time and performances between

optimal and proposed heuristic. A five-stage approach is implemented in this thesis to solve

the storage location assignment problem stated above. This approach is illustrated in Figure

7. The method divides unique SKUs into classes based on their weights (in pounds), and

then ranks and sorts, from highest to lowest, the SKUs in each weight class based on order

frequency. For example, a SKU is classified in class #2, and it is ordered the most

frequently among all the SKUs within this class. This SKU should be allocated in the

closest location to I/O point compared to other SKUs within this weight class. ARM

algorithm is used to search correlated SKUs to create rules. Then, based on the association

rules, the exchange heuristic reassigns the consequence SKUs to the locations after their

antecedent SKUs. Simulation model is developed in AutoMod to visualize the order

picking operation and to compare performances of different scenarios. These stages will

be explained in detail below.

Figure 7 Methodology flow chart

 18

3.3.1 Weight-based Class

Class-based storage strategy has positive impact on increasing order picking efficiency. In

this thesis, the unique SKUs are divided into classes based on their weights (in pounds).

The heaviest SKU in each class is allocated closest to entry point because, in practice,

heavy SKUs need to be picked up first and put on the bottom of the pallet followed by

lighter SKUs, which are placed on the top to avoid physical damages. This process is done

in R Statistical Package by sorting the given weight of SKUs in the dataset from heaviest

to lightest. The number of SKUs in each class may vary due to different data sample

selection. The information needs to be determined as shown in Table 1 below.

Table 1 Weight-based classes

 Class #1 (Heavy) Class #2 (Medium) Class #3 (Light)

Weight(lbs) >2/3 * Max{Weight i} 1/3 * Max{Weight i} to

2/3 * Max{Weight i}

<1/3 * Max{Weight i}

Number of

SKUs

N1 N2 N3

Percentage P1% P2% P3%

3.3.2 Ranking and Sorting

According to Diaz (2016) [38], the SKUs with the highest demand are visited most

frequently, thus contributing to the travel volume for the order-picking operations. Placing

these SKU’s closer to the I/O point helps decreasing the total travel distance. For this reason,

the SKUs are ranked and sorted in each weight-based class by their frequency from highest

 19

to lowest. Due to consideration of both weight and frequency, sorting SKUs in a weight

class based on frequency probably move a light, but frequently ordered SKU, to the

location closer to entry point than a heavy but less frequently ordered SKU. Executing the

ranking and sorting phase within each class reduces such risk because we consider the

SKUs in each class are consistent in weight and make it acceptable to change their sequence.

The result of this phase is Stage #1 Layout -an improved layout containing the storage

locations of SKU’s based on both weight and order frequency in each class. Since the

pickup routing method is selected as S-Shape routing method, the layout can be considered

as linear. See Figure 8.

Figure 8 Stage #1 layout considering weight and frequency

3.3.3 ARM Algorithm

ARM generates rules of the form:

AB

The left hand (A) is usually called antecedent and the right hand (B) is called consequent.

See Table 2 for examples of association rules. Different antecedents can be associated with

the same consequent, and association rules are directional. That is, AB and BA are

different rules. Figure 9 shows the graph of the rules. The color of arrows in the graph

demonstrates the strength of the rules, a darker color means the rule is stronger.

 20

Table 2 Examples of association rules

 LHS RHS support confidence lift

1 263639 31217 0.21 0.9 2.67

2 241863 111391 0.23 0.9 2.06

3 39091 179582 0.21 0.8 1.95

4 110142 111493 0.21 0.8 1.95

5 7217 45258 0.23 0.8 1.88

This thesis considers three metrics in ARM Algorithms: support, confidence and lift.

• Support indicates the joint probability of SKUs A and B are ordered together

P(AB). P(AB) or sup (A and B) is equal to number of transactions that contain

both item A and item B divided by total number of transactions.

• Confidence refers to the conditional probability that SKU B occurs given SKU A

occurs, P(B|A). That is, P(B|A) = P(AB)/ P(A) or P(B|A) = supp(A and B)/

supp(A).

• Lift is the strength of the rules. Lift(AB) is calculated as P(B|A)/P(B) =

P(BA)/P(A)P(B). If lift > 1, A and B are positively correlated, that is, if item A is

ordered, it is more likely that item B is also order. If lift < 1, A and B are negatively

correlated, which means, if a custom orders item A, it is more likely that the

customer will NOT order item B. If lift = 1, item A and item B are independent

items, that is, purchase of item A and purchase of item B are two independent

events. Therefore, a high lift suggests the rule, if item A, then item B, may be a

useful rule and a low lift suggests that the rule, if item A, then NOT item B, may

be a useful rule.

 21

Figure 9 Example of ARM algorithm visualization

Association Rules are solved in this thesis using R. Figure 10 summarize the steps involved

in the R calculations.

Step 1: Install and load required packages “arules” and “arulesViz”, if the package is

installed correctly go to step 2, otherwise back to step 1

 22

Step 2: Import dataset

Step 3: Reformat and transform dataset

Step 4: Duplicate check to obtain unique dataset, if the dataset is unique, go to step 5,

otherwise go back to step 4.

Step 5: Define support and confidence level

Step 6: Apply data mining algorithm to produce association rules

Step 7: Inspect rules, if number of rules we expected, go to step 8, otherwise go back

to step 5

Step 8: Sort rule and export

Step 9: Stop

 23

Figure 10 The work process of ARM in R package

3.3.4 Exchange Heuristic

Let A={a1, a2,…an} be a set of antecedents containing SKU’s and C={c1,c2,…cm} be a set

of consequents containing SKU’s. The rules AC are stored in a set of paired SKUs R=

{(a1,c1),(a2,c2),…(an, cm)} sorted by the support metric sup(A,C) in ascending order. A

 24

buffer set, with initial status of empty B={}, is generated to store the selected antecedents

and consequents temporarily. The exchange heuristic, shown visually as a flow diagram in

Figure 11, follows the steps stated below to produce new sequence of SKUs:

Step 1: Let i=1

Step 2: Select the ith element ci in set C

Step 3: Check the corresponding element in set R, find the antecedent element ai

which is correlated with element ci in R.

Step 4: Search ai in set A

Step 5: Assign ci from set C and add it to set B as bi

Step 6: Insert bi to set A after element ai so that set A = {ai, bi, ai+1, ai+2,…,an+1}.

Then empty set B

Step 7: Let i=i+1and go back to step 1

Step 8: After finishing the loop of m times, the set A includes n+m elements so

that A = {a1, c1, a2, c2, a3, c3,…,an, cm}

Note: For special cases when different antecedents are correlated with

the same consequents, the consequents choose the location of the

antecedent that has the highest joint support. If a special case occurs,

continue the heuristic algorithm with step 9, otherwise terminate the

algorithm.

Step 9: unify set A, then set A contains the first occurrence of each duplicated

element. For example, if A = {a1, c1, a2, c2, a3, c2, a4, c3…an, c3}, the unique A =

{a1, c1, a2, c2, a3, a4, c3…an}

Step 10: Terminate algorithm

 25

Figure 11 Illustration of the exchange heuristic

 26

3.3.5 Computer Simulation

In this phase, a static simulation model of the system described in Section 3.1 was

developed in AutoMod to test the output of different scenarios. The reason for choosing

AutoMod instead of other software is that AutoMod has built-in subsystems to simulate

logistic and warehousing operations. Furthermore, AutoMod is based on C language which

is efficient to generate large layout with thousands of operation locations in a very general

way to make the model convenient to modify and expand.

There are totally 1 process, 2 order lists, 5 attributes, 7 variables, 3 tables, 2 functions and

4 subroutines to control the logic of the model. Functions are used for initializing the orders

and pickup locations, subroutines control the pickup operations, attributes and variables

are used for identifying orders and locations while the tables are used for tabulating the

results collected from simulation. See Table 3 for detail.

 27

Table 3 Functions and parameters in simulation model

Category Name Type Dimension Description

Function F_Order_Init integer

Initialization of orders
F_Location_Init integer

Initialization of locations

Subroutine SPickOrder

Subroutine of order picking

process
SReceiveOrder

Subroutine of order

receiving process
SDeliverOrder

Subroutine of order

delivery process
SParking

Subroutine of parking

process

Process PMasterLoad

Main process

Queue QInitial integer 1 Initial queue at entry point

Order list OLAssignment integer 1 List of assignments to be

picked up
OLVehicle integer 1 List of available vehicles

Attribute Attr_Order_ID integer 1 Order ID
Attr_Time time 1 Counted time for waiting

time calculation
A_index integer 1 Index of vehicle

A_Home location 1 Entry point

Attr_Time2 time 1 Counted time for picking

up time calculation

Variable V_Location location 2 Pickup locations
V_Number_Item_Per_Ord integer 2 Number of SKUs included

in each order
V_Number_Done integer 1 Number of orders done

V_Order integer 3 Identifier of each SKU in

each order
V_Order_ctr integer 1 Counter for order ID

V_Count integer 1 Counter for vehicle index

Vi integer 1 Counter for SKUs in an

order

Table T_PickTime time 1 Table of pickup time
T_WaitTime time 1 Table of waiting time

T_Throughput integer 1 Table of throughput

Two scenarios are tested via simulation to compare the order-pickup time for different

storage location assignments produced by ARM algorithm.

 28

IV. EXPERIMENTS AND RESULTS

In this chapter, case studies are conducted to show the performance of the proposed five-

step methodology described in Chapter 3.

4.1 Data Description

Our raw data set includes daily transactions from retail stores as provided by a local

distribution center in Texas. The raw data set includes 624 different orders, which accounts

for a total of 62,887 SKUs. The dataset also included related information such as the order

number, store number, location of SKUs, SKU number, SKU description, quantity, weight,

and volume, among other main fields. Particular emphasis is placed in the selected fields

such as the order number, SKU number, location, weight and SKU description.

The dataset was partitioned to test for repeatability of the proposed algorithms while

managing their computational time. For this reason, two partitions were obtained from the

dataset. SKU’s were selected at random. The first partition (referred to as Scenario 1)

included 39 orders with a total amount of 8141 SKUs. The number of unique SKUs is 2638.

The second partition (referred to as Scenario 2) included 39 orders with 8122 SKUs. The

number of unique SKUs is 2721.

4.2 Effect of Support and Confidence

Support and confidence are defined in R to produce different number of association rules.

In this section, different scenarios are tested exclusively to identify appropriate values of

support and confidence required to obtain an adequate number of rules from ARM

algorithm described in Section 3.3.3. The code was developed in a R package named

“arules” version 1.5-2. [43]. It was run on a computer type of MacBook Pro with an Intel

 29

2.5 GHz Core i7 processor and 16 GB 1600 MHz DDR3 memory. The program ran for 15

seconds. The code is shown in Appendix 3.

4.2.1 Design of Experiments

a. Two factors are taken in to consideration in this phase, support and confidence.

• Support has 5 levels from 0.1 to 0.3 with increments of 0.05.

• Confidence has 5 levels from 0.5 to 0.9 with an interval of 0.1.

b. Response

• The response is the number of association rules generated from ARM in R.

For example, number of rules AB where A is antecedent and B is

consequent.

c. Run Design

• 2 factors, each with 5 levels, are taken into consideration. The total number

of combinations is 25.

d. Configurations of DOE

• Factors: 2

• Replicate: 2; one with the partition labeled as Scenario 1 and the second one

with the partition labeled as Scenario 2.

• Total runs: 50

• Total blocks: 2

• Number of levels: 5, 5

See Table 4 and Figure 12 for all the combinations of factors.

 30

Table 4 Design table of two runs in DOE

Support Confidence Response of Run1

(Scenario 1)

Response of Run2

(Scenario 2)

0.1 0.5 11965 11244

0.1 0.6 6918 6280

0.1 0.7 4244 3618

0.1 0.8 3246 2750

0.1 0.9 1134 843

0.15 0.5 2651 2177

0.15 0.6 1832 1586

0.15 0.7 1068 913

0.15 0.8 585 448

0.15 0.9 188 125

0.2 0.5 708 525

0.2 0.6 511 376

0.2 0.7 335 238

0.2 0.8 215 159

0.2 0.9 62 50

0.25 0.5 218 136

0.25 0.6 182 102

0.25 0.7 115 79

0.25 0.8 64 39

0.25 0.9 23 19

0.3 0.5 93 38

0.3 0.6 73 27

0.3 0.7 58 22

0.3 0.8 35 14

0.3 0.9 8 5

 31

Figure 12 Plot of DOE design table

4.2.2 Output Analysis

Results from different scenarios show that as the support and confidence increase, the

number of association rules as well as computation time decrease. As support and

confidence increase, the selection standard becomes strict, which means fewer sets are

taken into consideration and the SKUs involved in the transactions are highly correlated.

By analyzing the factorial regression model, p-value less than 0.05 indicates that 8 main

factors and 13 interactions have statistically significant effects on the response. See Figure

13, 14 for details.

 32

Figure 13 Output of design of experiment

 33

Figure 14 Main effects plot for response

By balancing the number of rules and computational time, support range from 0.2 to 0.25

and confidence range from 0.5-0.8 is appropriate in our case. In this thesis, preferred

support and confidence in ARM in R are selected as 0.2 and 0.8 to produce association

rules.

4.3 Comparison between Optimal and Heuristic Solution

In this subsection, the comparison between optimal and heuristic solution is conducted to

prove that the heuristic is implementable in practice.

As is mentioned in Section 3, it is difficult to solve quadratic assignment problem and

produce the optimal solution due to the complexity and computational time of the problem.

The computational time increases significantly when number of SKUs increases. In this

thesis, computational time and performance between optimal (in AMPL) and proposed

 34

heuristic results are compared. See Table 5 and 6. AMPL code for problem formulation is

shown in Appendix 1.

Table 5 Comparison of computational time

In AMPL via solver CPLEX Heuristic in R

Number of SKUs Computational time
(in second)

Computational time
(in second)

10 2 <30
15 231 <30
20 10310 <30

~8000 N/A ~300

Table 6 Comparison of order picking time

Order picking time comparison

Optimal Heuristic

Number of SKUs 10 10

Number of orders 14 14

SKU per order 1~5 1~5

Order picking time (in second) 237.244 254.522

The difference in term of order picking time between optimal and heuristic solution is

17.278 seconds. The optimal solution is 6.788% better than the heuristic solution in this

specific case.

By considering the computational time and performance, the heuristic is implementable to

achieve a good practical solution with large data set in a much shorter time when compare

to the optimal solution.

 35

4.4 Numerical Analysis

4.4.1 System Configuration

a. Data size

For Scenario 1, the final selected sample data set include 39 orders with 8141 SKUs.

Class #1 includes 802 unique SKUs, Class #2 includes 756 unique SKUs and Class #3

includes 1080 unique SKUs.

For Scenario 2, the final selected sample data set include 39 orders with 8122 SKUs.

Class #1 includes 805 unique SKUs, Class #2 includes 902 unique SKUs and Class #3

includes 1014 unique SKUs.

b. Metric

Support: 0.2

Confidence: 0.8

Batch size: 2

For Exchange Heuristic phase, the configuration is shown as follow:

a. Data size

Scenario 1 has 76 batches of size = 2.

Scenario 2 has 59 batches of size = 2.

b. Initial status

Before applying the method, all the rules obtained within each weight-based class are

sorted by lift from highest to lowest which means the strongest association rule has higher

priority to be allocated.

The configuration of Computer Simulation phase is shown as follow:

a. Data size

 36

For scenario 1, 39 orders with 150-250 SKUs in each including totally 8141 SKUs are

used to build simulation model; 2638 unique SKUs are used to create facility layout.

For scenario 2, 39 orders with 150-250 SKUs in each including totally 8122 SKUs are

used to build simulation model; 2721 unique SKUs are used to create facility layout. R

code for data selection is shown in Appendix 2.

b. Simulation settings

Two scenarios have the same assumptions for layout, vehicle, pickup and routing method

etc. The differences are the SKU locations in the layout and the association rules that are

considered. See Table 7. The assumptions are made considering both the complexity of

simulation model as well as the real behaviors in real world. For example, we fixed the

conditions, such as the layout, pick up and routing method to reduce the complexity in

order to purely compare the performances of two layouts. The assumptions of vehicle and

distance are based on the study of dataset and the pickup behaviors.

 37

Table 7 Configurations of two scenarios

Scenario 1 Scenario 2

Number of aisles 52 52

Pickup locations in each aisle 52 52

Distance between adjacent

locations (feet)

40 40

Number of vehicles 1 1

Velocity of vehicles (feet/sec) 3 3

Pickup Method Picker-to-part Picker-to-part

Routing Method S-shape S-shape

Number of order per trip 1 1

Support 0.2 0.2

Confidence 0.8 0.8

Number of orders 39 39

Total SKUs 8141 8122

Total Unique SKUs 2638 2711

Unique SKUs in Class 1 802(30.40%) 805(29.58%)

Unique SKUs in Class 2 756(28.66%) 902(33.15%)

Unique SKUs in Class 3 1080(40.94%) 1014(37.27%)

Number or rules 76 59

Comparisons Random VS Stage #1

VS Stage #2

Random VS Stage #1 VS

Stage #2

c. Run control

The simulation model runs for 1 replication since the model is deterministic. That is, all

the controllable factors such as vehicle speed, picking up time, waiting time, routing

selection are fixed. The run time of model vary from one scenario to another, See Table 8.

The simulation time indicates the run time of the deterministic simulation model under

each condition.

 38

Table 8 Simulation time (in second)

 Scenario 1 Scenario 2

 Random

Layout

Stage #1

Layout

Stage #2

Layout

Random

Layout

Stage #1

Layout

Stage #2

Layout

Replicates 1 1 1 1 1

Simulation

Time

12,079,744 1,568,458 1,410,042 11,773,986 1,635,642 1,376,351

4.4.2 Weight-based Class

Both scenarios, Scenario 1 and Scenario 2, were divided into three weight classes.

According to Peterson et al. [29], 2-4 classes are suggested in practice since it is easier to

implement and required less to administer. For Scenario 1, 2638 unique SKUs are divided

into three classes based on their weights. Class #1 accounts for 30.40% of all the SKUs in

sample data set containing 802 SKUs with weight greater than 9 pounds. Class #2 includes

756 SKUs with weight between 5.28 and 9 pounds, which is 28.66% of all the sample

SKUs. Class #3 has 1080 SKUs with weight less than 5.28 pounds. This class includes

most of the SKUs which is 40.94% of all the SKUs in the selected sample. See Table 9.

For Scenario 2, 2721 unique SKUs are divided into three classes based on their weights.

Class #1 accounts for 29.58% of all the SKUs in sample data set containing 805 SKUs with

weight greater than 8.85 pounds. Class #2 includes 902 SKUs with weight between 5 and

8.85 pounds which is 33.15% of all the sample SKUs. Class #3 has 1014 SKUs with weight

less than 5 pounds. This class includes most of the SKUs which is 37.27% of all the SKUs

in selected sample. See Table 10.

 39

Table 9 Weight-based classes for scenario 1

 Class #1(Heavy) Class #2(Medium) Class #3(Light)

Weight(lbs) >9 5.28-9 <5.28

Number of SKUs 802 756 1080

Percentage 30.40% 28.66% 40.94%

Table 10 Weight-based classes for scenario 2

 Class #1(Heavy) Class #2(Medium) Class #3(Light)

Weight(lbs) >8.85 5-8.85 <5

Number of SKUs 805 902 1014

Percentage 29.58% 33.15% 37.27%

4.4.3 Ranking and Sorting

For each weight-based class, the Rank and Sortation method is implemented separately and

then combine again to achieve Stage #1 layout.

Scenario 1: Class #1 includes 802 unique SKUs with frequency vary from 23 to 1. Class

#2 includes 756 unique SKUs with frequency vary from 16 to 1. Class #3 includes 1080

unique SKUs with frequency vary from 25 to 1. See Figure 15.

Scenario 2: Class #1 includes 805 unique SKUs with frequency vary from 20 to 1. Class

#2 includes 902 unique SKUs with frequency vary from 25 to 1. Class #3 includes 1014

unique SKUs with frequency vary from 23 to 1. See Figure 16.

 40

The rank and sortation phase is done in R by implemented functions in ‘dplyr’ and ‘aruels’

packages. The computation time of ARM in each class is about 15 seconds on a computer

with i7 processor and 16GB memory. The code is shown in Appendix 4.

The output of this phase is Stage #1 layout which consider both weight and frequency of

SKUs.

Figure 15 Stage #1 layout in scenario 1

Figure 16 Stage #1 layout in scenario 2

4.4.4 ARM Algorithm

ARM is conducted in three weight-based classes to create batches of correlated SKUs.

Scenario 1: By implementing ARM algorithm in R, 10 association rules are obtained in

Class #1, 48 rules are achieved in Class #2 while 18 rules are included in Class #3. Class

#2 is the most correlation effective since it accounts for 28.66% of all the unique SKUs but

contributes 63.16% of the correlated pairs. See Table 11,12,13.

 41

Scenario 2: 14 association rules are obtained in Class #1, 32 rules are achieved in Class #2

while 13 rules are included in Class #3. See Table 14, 15, 16.

Table 11 Association rules of class #1 sorted by lift in scenario 1

 rules support confidence lift

3 {189145} => {90991} 0.2051 0.8889 2.4762

6 {271586} => {90991} 0.2051 0.8000 2.2286

9 {143789} => {90991} 0.2051 0.8000 2.2286

4 {10829} => {103427} 0.2308 0.9000 1.4040

1 {117091} => {103427} 0.2051 0.8889 1.3867

2 {113849} => {103427} 0.2051 0.8889 1.3867

10 {83626} => {103427} 0.2821 0.8462 1.3200

5 {249707} => {103427} 0.2308 0.8182 1.2764

8 {241880} => {103427} 0.2308 0.8182 1.2764

7 {271586} => {103427} 0.2051 0.8000 1.2480

 42

Table 12 Association rules of class #2 sorted by lift in scenario 1

 rules support confidence lift

3 {263639} => {31217} 0.2051 0.8889 2.6667

29 {241863} => {111391} 0.2308 0.9000 2.0647

5 {39091} => {179582} 0.2051 0.8000 1.9500

18 {110142} => {111493} 0.2051 0.8000 1.9500

35 {7217} => {45258} 0.2308 0.8182 1.8770

32 {89436} => {111391} 0.2051 0.8000 1.8353

17 {73474} => {202466} 0.2308 0.8182 1.6794

10 {162481} => {202466} 0.2051 0.8000 1.6421

14 {98931} => {7516} 0.2051 0.8000 1.6421

28 {110770} => {178642} 0.2564 1.0000 1.6250

30 {241863} => {178642} 0.2564 1.0000 1.6250

25 {58728} => {178642} 0.2308 0.9000 1.4625

33 {89436} => {178642} 0.2308 0.9000 1.4625

6 {15074} => {178642} 0.2051 0.8889 1.4444

8 {200124} => {178642} 0.2051 0.8889 1.4444

12 {265274} => {178642} 0.2051 0.8889 1.4444

20 {31160} => {178642} 0.2051 0.8889 1.4444

40 {188} => {178642} 0.2564 0.8333 1.3542

1 {86316} => {245047} 0.2051 1.0000 1.3448

36 {7217} => {245047} 0.2821 1.0000 1.3448

45 {111391} => {178642} 0.3590 0.8235 1.3382

37 {176855} => {178642} 0.2308 0.8182 1.3295

42 {111505} => {178642} 0.3333 0.8125 1.3203

24 {94892} => {178642} 0.2051 0.8000 1.3000

15 {98931} => {245047} 0.2308 0.9000 1.2103

19 {110142} => {245047} 0.2308 0.9000 1.2103

23 {265276} => {245047} 0.2308 0.9000 1.2103

26 {58728} => {245047} 0.2308 0.9000 1.2103

47 {7516} => {245047} 0.4359 0.8947 1.2033

2 {838946} => {245047} 0.2051 0.8889 1.1954

4 {98938} => {245047} 0.2051 0.8889 1.1954

7 {15074} => {245047} 0.2051 0.8889 1.1954

9 {200124} => {245047} 0.2051 0.8889 1.1954

11 {265282} => {245047} 0.2051 0.8889 1.1954

13 {265274} => {245047} 0.2051 0.8889 1.1954

16 {48114} => {245047} 0.2051 0.8889 1.1954

21 {31160} => {245047} 0.2051 0.8889 1.1954

46 {111391} => {245047} 0.3846 0.8824 1.1866

41 {111493} => {245047} 0.3590 0.8750 1.1767

43 {111505} => {245047} 0.3590 0.8750 1.1767

 43

 rules support confidence lift

48 {178642} => {245047} 0.5385 0.8750 1.1767

39 {14964} => {245047} 0.2564 0.8333 1.1207

44 {45258} => {245047} 0.3590 0.8235 1.1075

27 {44095} => {245047} 0.2308 0.8182 1.1003

38 {176855} => {245047} 0.2308 0.8182 1.1003

22 {86642} => {245047} 0.2051 0.8000 1.0759

31 {241863} => {245047} 0.2051 0.8000 1.0759

34 {89436} => {245047} 0.2051 0.8000 1.0759

 44

Table 13 Association rules of class #3 sorted by lift in scenario 1

 rules support confidence lift

1 {52616} => {87168} 0.2051 1.0000 3.0000

7 {770099} => {630434} 0.2051 0.8889 2.8889

4 {77786} => {167155} 0.2051 1.0000 2.7857

13 {920785} => {630434} 0.2564 0.8333 2.7083

14 {630434} => {920785} 0.2564 0.8333 2.7083

8 {770099} => {167155} 0.2051 0.8889 2.4762

5 {24982} => {265030} 0.2308 0.9000 2.3400

15 {920785} => {167155} 0.2564 0.8333 2.3214

16 {630434} => {167155} 0.2564 0.8333 2.3214

9 {83551} => {265031} 0.2051 0.8889 2.3111

12 {119144} => {167155} 0.2308 0.8182 2.2792

17 {265031} => {117791} 0.3333 0.8667 2.1125

18 {117791} => {265031} 0.3333 0.8125 2.1125

10 {73329} => {3305} 0.2051 0.8000 2.0800

6 {24982} => {117791} 0.2051 0.8000 1.9500

11 {87168} => {73583} 0.3077 0.9231 1.5652

2 {176438} => {73583} 0.2051 0.8889 1.5072

3 {87167} => {73583} 0.2051 0.8000 1.3565

 45

Table 14 Association rules of class #1 sorted by lift in scenario 2

rules support confidence lift

5 {73328} => {73325} 0.231 1.000 3.000

10 {84155} => {630434} 0.205 0.800 2.836

12 {630434} => {920785} 0.231 0.818 2.455

13 {460931} => {3305} 0.231 0.818 2.455

14 {170743} => {920785} 0.231 0.818 2.455

9 {269308} => {920785} 0.205 0.800 2.400

11 {84155} => {920785} 0.205 0.800 2.400

7 {41866} => {181846} 0.282 0.846 2.357

8 {41866} => {62134} 0.282 0.846 1.941

1 {62054} => {62134} 0.205 0.800 1.835

6 {87167} => {73583} 0.231 0.818 1.595

2 {62054} => {73583} 0.205 0.800 1.560

3 {265215} => {73583} 0.205 0.800 1.560

4 {87168} => {73583} 0.205 0.800 1.560

 46

Table 15 Association rules of class #2 sorted by lift in scenario 2

rules support confidence lift

20 {110770} => {110142} 0.2051 0.8000 2.6000

26 {110142} => {111391} 0.2564 0.8333 2.5000

11 {87376} => {202466} 0.2564 0.9091 2.0856

14 {109567} => {179582} 0.2564 0.9091 2.0856

6 {152603} => {179582} 0.2308 0.9000 2.0647

7 {152603} => {202466} 0.2308 0.9000 2.0647

1 {111505} => {178642} 0.2051 1.0000 2.0526

4 {92733} => {179582} 0.2051 0.8889 2.0392

24 {269305} => {202466} 0.2821 0.8462 1.9412

15 {111493} => {178642} 0.2051 0.8000 1.6421

21 {110770} => {178642} 0.2051 0.8000 1.6421

2 {111505} => {245047} 0.2051 1.0000 1.5600

5 {265276} => {245047} 0.2308 1.0000 1.5600

9 {265274} => {245047} 0.2308 1.0000 1.5600

30 {7217} => {245047} 0.3333 0.9286 1.4486

31 {7516} => {245047} 0.3333 0.9286 1.4486

28 {111391} => {245047} 0.3077 0.9231 1.4400

25 {45258} => {245047} 0.2821 0.9167 1.4300

27 {110142} => {245047} 0.2821 0.9167 1.4300

16 {111493} => {245047} 0.2308 0.9000 1.4040

17 {444588} => {245047} 0.2308 0.9000 1.4040

19 {58728} => {245047} 0.2308 0.9000 1.4040

3 {87567} => {245047} 0.2051 0.8889 1.3867

8 {200124} => {245047} 0.2051 0.8889 1.3867

12 {89436} => {245047} 0.2051 0.8889 1.3867

13 {241863} => {245047} 0.2051 0.8889 1.3867

29 {14964} => {245047} 0.2821 0.8462 1.3200

32 {178642} => {245047} 0.4103 0.8421 1.3137

23 {241601} => {245047} 0.2308 0.8182 1.2764

10 {183555} => {245047} 0.2051 0.8000 1.2480

18 {109958} => {245047} 0.2051 0.8000 1.2480

22 {110770} => {245047} 0.2051 0.8000 1.2480

 47

Table 16 Association rules of class #3 sorted by lift in scenario 2

rules support confidence lift

7 {183555} => {63831} 0.205 0.800 2.836

12 {19163} => {75638} 0.231 0.818 1.994

2 {113849} => {75638} 0.205 0.800 1.950

9 {91999} => {75638} 0.205 0.800 1.950

1 {441279} => {103427} 0.205 1.000 1.696

13 {19163} => {103427} 0.282 1.000 1.696

3 {113849} => {103427} 0.231 0.900 1.526

5 {10829} => {103427} 0.231 0.900 1.526

4 {246717} => {103427} 0.205 0.889 1.507

11 {63831} => {103427} 0.231 0.818 1.387

6 {86241} => {103427} 0.205 0.800 1.357

8 {183555} => {103427} 0.205 0.800 1.357

10 {91999} => {103427} 0.205 0.800 1.357

Figures 17- 22 show the plot of rules in each weight class in both scenarios. In these figures,

size of circles stands for the support of rules, large size means higher support; the color

shows the lift of the rules, darker color stands for higher lift. The arrow starts from the

antecedent pointing to the consequents. Different SKUs can be correlated with the same

SKU.

 48

Figure 17 Rules plot of weight class #1 in scenario 1

 49

Figure 18 Rules plot of weight class #2 in scenario 1

 50

Figure 19 Rules plot of weight class #3 in scenario 1

 51

Figure 20 Rules plot of weight class #1 in scenario 2

 52

Figure 21 Rules plot of weight class #2 in scenario 2

 53

Figure 22 Rules plot of weight class #3 in scenario 2

The rules are created based on the ARM algorithm and each rule is considered as a pair of

SKUs. SKUs included in each pair are reallocated to the location next to each other by

implementing Exchange Method which will be introduced in next section.

 54

4.4.5 Exchange Heuristic

In this section, Exchange Heuristic is applied within each weight-based class to reallocate

the consequences to the location right after its antecedents in Stage #1 layout which is

obtained from section 5.4.

In Scenario 1, 56 unique SKUs are impacted by implementing Exchange Method, the

involved SKUs and their sequences in random, stage #1 and stage #2 layout are shown in

the Tables 17 (a)(b)(c) below. The new locations of these SKUs depend on the location of

the first SKU which has highest frequency in each weight-based class. The paired set in

each weight-based class is inserted into the locations after the first SKU in the related

class. The same process is done to scenario 2 with 56 unique SKUs as well. See Tables

18(a), (b) and (c).

The final output of this phase is the improved Stage #2 layout which is ready to use for

computer simulation in the next section.

 55

Table 17 (a) Locations of SKUs in random, stage #1, and stage #2 layout in scenario 1

SKU

Number

Frequency Random

Layout

Stage #1

Layout

Stage #2

Layout

Class #1 1 117791 16 2228 3 3

2 265031 15 2023 8 4

3 87168 13 1630 16 5

4 630434 12 1982 19 6

5 920785 12 2189 20 7

6 119144 11 1930 26 8

7 24982 10 711 34 9

8 73329 10 657 36 10

9 87167 10 2209 37 11

10 83551 9 1489 46 12

11 176438 9 1664 52 13

12 770099 9 1766 54 14

13 52616 8 2442 62 15

14 77786 8 1238 67 16

 56

Table 17 (b) Locations of SKUs in random, stage #1, and stage #2 layout in scenario 1

SKU

Number

Frequency Random

Layout

Stage #1

Layout

Stage #2

Layout

Class #2 15 178642 24 588 787 787

16 7516 19 1678 788 788

17 45258 17 1563 790 789

18 111391 17 1381 791 790

19 111493 16 239 793 791

20 111505 16 1477 794 792

21 188 12 628 798 793

22 14964 12 1490 800 794

23 7217 11 1663 803 795

24 44095 11 1894 804 796

25 73474 11 2485 805 797

26 176855 11 2126 809 798

27 39091 10 967 810 799

28 58728 10 2481 811 800

29 86642 10 1135 812 801

30 89436 10 2151 813 802

31 94892 10 1105 814 803

32 98931 10 1339 815 804

33 110142 10 718 816 805

34 110770 10 1191 817 806

35 162481 10 917 818 807

36 241863 10 287 819 808

37 265276 10 474 820 809

38 15074 9 1192 822 810

39 31160 9 1984 824 811

40 48114 9 1797 825 812

41 98938 9 1581 830 813

42 200124 9 134 832 814

43 263639 9 1682 834 815

44 265274 9 124 835 816

45 265282 9 2213 836 817

46 838946 9 963 837 818

47 86316 8 1721 848 819

 57

Table 17 (c) Locations of SKUs in random, stage #1, and stage #2 layout in scenario 1

SKU

Number

Frequency Random

Layout

Stage #1

Layout

Stage #2

Layout

Class #3 48 83626 13 2132 1633 1633

49 241880 11 1405 1643 1634

50 249707 11 1949 1644 1635

51 10829 10 2537 1646 1636

52 143789 10 1087 1652 1637

53 271586 10 1740 1654 1638

54 113849 9 986 1659 1639

55 117091 9 95 1660 1640

56 189145 9 1498 1662 1641

Table 18 (a) Locations of SKUs in random, stage #1, and stage #2 layout in scenario 2

 SKU

Number

Frequency Random

Layout

Stage #1

Layout

Stage #2

Layout

Class #1 1 73583 20 925 1 1

2 62134 19 1236 2 2

3 181846 14 354 3 3

4 41866 13 938 6 4

5 73325 13 229 7 5

6 920785 13 2442 12 6

7 3305 13 2371 15 7

8 630434 11 500 23 8

9 460931 11 1332 22 9

10 170743 11 2111 20 10

11 87167 11 550 16 11

12 269308 10 2013 37 12

13 62054 10 2300 32 13

14 265215 10 1091 36 14

15 87168 10 2155 34 15

 58

Table 18 (b) Locations of SKUs in random, stage #1, and stage #2 layout in scenario 2

 SKU

Number

Frequency Random

Layout

Stage #1

Layout

Stage #2

Layout

Class #2 16 245047 25 910 806 806

17 178642 19 2276 807 807

18 202466 17 1712 809 808

19 179582 17 2088 808 809

20 7217 14 1106 810 810

21 7516 14 996 811 811

22 269305 13 363 818 812

23 111391 13 457 817 813

24 14964 13 1764 815 814

25 110142 12 648 821 815

26 45258 12 131 819 816

27 87376 11 1159 822 817

28 109567 11 823 823 818

29 241601 11 1644 824 819

30 152603 10 2261 832 820

31 111493 10 1660 831 821

32 444588 10 1018 834 822

33 58728 10 1983 827 823

34 109958 10 552 829 824

35 84155 10 2275 833 825

36 92733 9 2578 840 826

37 265276 9 1411 847 827

38 265274 9 349 846 828

39 87567 9 2720 838 829

40 200124 9 707 843 830

41 89436 9 1457 839 831

42 241863 9 2173 844 832

43 73328 9 1533 845 833

44 111505 8 1542 855 834

 59

Table 18 (c) Locations of SKUs in random, stage #1, and stage #2 layout in scenario 2

 SKU

Number

Frequency Random

Layout

Stage #1

Layout

Stage #2

Layout

Class #3 45 103427 23 2179 1708 1708

46 75638 16 1155 1711 1709

47 19163 11 1572 1719 1710

48 63831 11 295 1720 1711

49 110770 10 953 1830 1712

50 183555 10 326 1833 1713

51 10829 10 197 1723 1714

52 86241 10 106 1728 1715

53 91999 10 455 1729 1716

54 113849 10 2643 1730 1717

55 246717 9 2493 1743 1718

56 441279 8 2183 1764 1719

In the tables above, all the SKUs involved in exchange heuristic which are the unique SKUs

in association rules are sorted by frequency, the locations are shown in different phases,

the original layout is random, stage #1 layout is the obtained in ranking and sorting phase,

and stage #2 layout is the final layout by implementing exchange heuristic. It’s obvious

that the correlated SKUs are moving closer the I/O point as well as closer to each other

which further lead to a reduction in picking up activity.

4.4.6 Computer Simulation

In this section, a static simulation model is developed in AutoMod to compare the

performance in two scenarios, respectively, random layout and improved layout by

implementing the proposed method in this thesis. The measurement of outperformance is

average pickup time. Appendix 5 shows the code in AutoMod.

 60

4.4.6.1 Output Analysis

The output from simulation indicates that the improvement is significant by implementing

the method proposed in this thesis. By comparing random layout to Stage #1 and Stage #2

layouts, the grand average pickup time decrease from 308603.9.5 to 39740 then to 34848.7

seconds while the trip time decreases from 309591.9 to 41006.1 then to 36106 seconds.

The improvement rate from random to Stage #1 is 87.12% and 12.31% from Stage #1 to

Stage #2 in term of pickup time, the total improvement is 88.71%. In term of trip time, the

improvements are 86.75%, 11.95% and 88.34%. See Table 19-20 and Figure 23-35. In

other words, labor cost in the order picking process is reduced by almost 90%. This

heuristic is a very good attempt of building a new DC from the scratch or rebuilding an

existing DC because the solution is relatively quick and easy to implement.

Table 19 Numeric improvement overview

 Scenario 1

pickup time trip time

Random Stage #1 Stage #2 Random Stage #1 Stage #2

Average 308682.5 38597.2 34535.2 309664.9 40144.8 36082.8

Std. Dev 43316.5 2469.4 2052.7 43258.0 2653.1 2160.9

Max 370859.7 43064.6 36928.0 371656.2 44665.6 38565.1

Min 229049.9 31603.5 29382.2 230827.3 33060.9 31242.6

Scenario 2

pickup time trip time

Random Stage #1 Stage #2 Random Stage #1 Stage #2

Average 308525.3 40900.8 35162.1 309518.9 41867.4 36129.2

Std. Dev 45721.6 3203.8 3002.8 45717.9 3089.1 2819.8

Max 370739.8 44528.2 37878.3 371536.2 45205.0 38565.1

Min 231640.1 30256.2 25894.8 232516.5 31479.3 27118.0

 61

Table 20 Percentage improvement overview

Pickup time

Scenario1 Scenario2

Random Stage #1 Stage #2 Random Stage #1 Stage #2

Scenario 1 Random 0.00% - - - - -

Stage #1 87.50% 0.00% - - - -

Stage #2 88.81% 10.52% 0.00% - - -

Scenario 2 Random - - - 0.00% - -

Stage #1 - - - 86.74% 0.00% -

Stage #2 - - - 88.60% 14.03% 0.00%

Trip time

Scenario1 Scenario2

Random Stage #1 Stage #2 Random Stage #1 Stage #2

Scenario 1 Random 0.00% - - - - -

Stage #1 87.04% 0.00% - - - -

Stage #2 88.35% 10.12% 0.00% - - -

Scenario 2 Random - - - 0.00% - -

Stage #1 - - - 86.47% 0.00% -

Stage #2 - - - 88.33% 13.71% 0.00%

Comparison of pickup and trip time in each order picking operation is shown in Table 21-

22 and Figures 23-35 below.

 62

Table 21 Pickup time and trip time in each order in random layout and stage #1 & #2

layout of scenario 1

Scenario 1

pickup time trip time

Random Stage #1 Stage #2 Random Stage #1 Stage #2

order1 274,985.5 39,983.3 36,650.7 275,882.9 41,717.9 38,385.1

order2 235,021.3 31,603.5 29,785.2 235,817.8 33,060.9 31,242.6

order3 313,026.4 39,275.8 36,002.4 314,590.5 40,285.6 37,012.2

order4 240,569.1 39,290.5 36,011.1 241,338.9 40,153.6 36,874.2

order5 365,635.9 39,922.6 35,186.8 365,779.0 41,860.6 37,124.2

order6 350,083.0 37,346.3 31,209.5 351,266.2 38,977.0 32,840.2

order7 345,435.7 37,708.9 34,429.5 346,045.5 38,958.8 35,679.3

order8 287,162.5 38,701.9 35,369.1 288,473.3 40,343.0 37,010.2

order9 306,332.9 41,287.0 33,748.6 307,116.0 43,194.7 35,656.3

order10 365,575.1 36,791.7 34,914.2 366,685.9 37,574.9 35,697.3

order11 352,848.0 34,116.9 29,382.2 354,758.8 36,161.0 31,426.3

order12 245,521.9 37,094.3 33,820.9 246,158.4 38,788.8 35,515.3

order13 357,851.9 40,148.4 35,473.1 358,381.8 41,829.5 37,154.2

order14 313,406.2 41,559.3 36,824.7 314,269.4 43,173.7 38,439.1

order15 277,094.1 41,462.3 36,727.7 277,964.8 43,116.7 38,382.1

order16 365,589.0 41,285.3 36,550.7 367,393.1 43,299.7 38,565.1

order17 327,011.4 38,635.9 33,901.2 327,714.6 40,397.0 35,662.3

order18 333,415.4 36,763.1 32,028.4 333,705.2 37,586.2 32,851.5

order19 316,213.7 36,608.7 34,790.5 316,876.8 37,458.5 35,640.3

order20 325,035.6 40,091.1 36,758.3 325,965.4 41,798.9 38,466.1

order21 282,645.6 39,868.1 36,535.3 284,409.7 41,735.9 38,403.1

order22 245,665.7 37,694.6 33,019.3 246,789.7 38,757.8 34,082.4

order23 275,087.9 33,621.3 31,743.7 276,291.9 34,431.1 32,553.5

order24 337,699.8 37,080.3 32,345.7 338,469.6 38,991.1 34,256.4

order25 229,049.9 34,714.2 32,895.9 230,827.3 35,870.6 34,052.4

order26 279,306.4 36,870.0 34,992.1 279,462.8 38,793.8 36,916.2

order27 350,364.5 43,064.6 36,928.0 350,507.7 44,665.6 38,529.1

order28 244,047.8 41,232.0 36,497.3 245,491.9 43,059.7 38,325.1

order29 335,800.0 41,587.0 36,852.3 336,129.8 43,254.7 38,520.1

order30 296,296.0 36,377.1 31,642.4 297,353.4 37,520.2 32,785.5

order31 344,531.4 38,664.6 35,331.8 345,962.1 40,439.0 37,106.2

order32 314,689.8 39,988.8 35,254.1 315,600.6 41,789.9 37,055.2

order33 297,647.4 37,506.3 34,226.8 299,198.2 38,862.8 35,583.3

order34 370,859.7 41,657.0 36,922.3 371,656.2 43,284.7 38,550.1

order35 355,992.8 39,789.8 35,055.1 357,676.9 41,870.9 37,136.2

 63

 pickup time trip time

 Random Stage #1 Stage #2 Random Stage #1 Stage #2

order36 302,029.3 38,531.6 32,395.0 302,892.5 40,309.0 34,172.4

order37 234,012.0 39,897.8 33,761.2 235,002.7 41,618.9 35,482.3

order38 290,917.9 37,536.9 34,257.5 292,081.9 38,826.8 35,547.3

order39 354,159.5 39,932.1 36,652.7 354,942.7 41,826.5 38,547.1

 64

Table 22 Pickup time and trip time in each order in random layout and stage #1 & #2

layout of scenario 2

Scenario2

pickup time trip time

Random Stage #1 Stage #2 Random Stage #1 Stage #2

order1 231,640.1 39,106.5 34,798.5 232,516.5 39,793.3 35,485.3

order2 285,661.0 42,548.6 36,299.4 287,078.4 43,235.4 36,986.2

order3 278,703.8 42,846.3 36,170.4 279,707.8 43,616.1 36,940.2

order4 242,477.1 41,817.3 37,082.6 244,121.2 43,050.7 38,316.1

order5 367,170.2 42,129.9 35,880.7 368,193.3 43,366.4 37,117.2

order6 362,659.1 40,858.1 32,780.3 363,625.9 42,419.2 34,341.4

order7 242,145.7 43,402.6 36,726.7 242,328.9 44,977.0 38,301.1

order8 244,041.4 33,703.9 27,940.7 244,677.9 35,574.6 29,811.4

order9 354,714.9 43,034.9 36,359.1 355,378.0 43,815.1 37,139.2

order10 241,269.4 38,521.5 34,160.2 242,993.5 39,861.6 35,500.3

order11 370,739.8 38,460.6 32,201.4 371,536.2 39,200.8 32,951.5

order12 338,484.2 42,886.6 36,637.3 339,267.4 44,754.3 38,505.1

order13 359,703.4 38,534.3 31,858.4 360,459.9 39,557.4 32,881.5

order14 298,024.0 42,593.6 36,344.4 299,508.0 43,280.4 37,031.2

order15 348,945.4 44,528.2 37,842.3 349,181.9 45,205.0 38,529.1

order16 329,026.4 40,741.7 36,380.4 330,110.5 41,428.5 37,067.2

order17 285,183.7 43,974.5 37,725.3 286,814.5 44,661.3 38,412.1

order18 360,572.6 42,694.3 36,445.1 362,150.0 43,394.4 37,145.2

order19 329,342.7 39,131.2 32,455.3 329,699.1 40,972.3 34,296.4

order20 267,109.5 36,133.1 29,937.2 267,386.0 37,329.5 31,133.6

order21 283,535.0 41,112.7 36,308.4 285,139.0 41,799.5 36,995.2

order22 285,680.0 43,838.2 37,588.9 286,583.2 44,658.3 38,409.1

order23 273,134.1 30,256.2 25,894.8 274,130.6 31,479.3 27,118.0

order24 236,917.1 34,825.5 31,919.4 237,833.5 35,515.3 32,609.2

order25 266,102.2 39,382.9 31,305.1 267,092.9 40,800.3 32,722.5

order26 340,794.7 37,766.3 30,115.2 342,678.8 39,119.8 31,468.6

order27 368,179.5 44,127.5 37,878.3 368,536.0 44,814.3 38,565.1

order28 349,752.7 42,212.6 37,851.3 351,156.8 42,899.4 38,538.1

order29 313,683.1 42,506.6 36,257.4 315,087.1 43,313.4 37,064.2

order30 354,119.9 42,692.6 36,443.4 356,094.3 43,379.4 37,130.2

order31 273,594.7 37,765.3 36,320.4 274,017.8 38,452.1 37,007.2

order32 326,641.2 41,213.4 36,419.4 326,957.7 41,900.2 37,106.2

order33 260,900.4 39,467.2 37,579.3 262,197.8 40,234.0 38,346.1

order34 332,215.9 43,561.8 37,312.6 333,206.7 44,715.3 38,466.1

order35 367,421.4 43,155.3 36,479.4 368,564.6 43,842.1 37,166.2

 65

 pickup time trip time

 Random Stage #1 Stage #2 Random Stage #1 Stage #2

order36 342,646.2 44,079.5 37,830.3 343,442.7 44,766.3 38,517.1

order37 277,585.0 42,905.6 36,229.7 278,328.2 43,659.1 36,983.2

order38 281,004.2 43,950.5 37,701.3 281,627.4 44,637.3 38,388.1

order39 360,964.3 42,664.6 37,860.3 361,827.4 43,351.4 38,547.1

 66

Figure 23 Full comparisons of scenario 1 & 2

 67

Figure 24 Pickup time of random VS stage #1 in scenario 1

Figure 25 Pickup time of random VS stage #2 in scenario 1

 68

Figure 26 Pickup time of stage #1 VS stage #2 in scenario 1

Figure 27 Pickup time of random VS stage #1 in scenario 2

 69

Figure 28 Pickup time of random VS Stage #2 in scenario 2

Figure 29 Pickup time of stage #1 VS stage #2 in scenario 2

 70

Figure 30 Trip time of random VS stage #1 in scenario 1

Figure 31 Trip time of random VS stage #2 in scenario 1

 71

Figure 32 Trip time of stage #1 VS stage #2 in scenario 1

Figure 33 Trip time of random VS stage #1 in scenario 2

 72

Figure 34 Trip time of random VS stage #2 in scenario 2

Figure 35 Trip time of stage #1 VS stage #2 in scenario 2

 73

V. CONCLUSION AND FUTURE RESEARCH

As described in Section 1.3 for objectives of this thesis, the case study presents a quick

solution of storage location assignment problem in a practical level with significant

improvement by implementing the proposed heuristic as well as the combination of

picker-to-parts pickup method and S-shape routing method.

5.1 Conclusion

The results of this thesis indicate that the combination of picker-to-parts method and S-

shape routing selection method has positive impact on improving efficiency of order

picking activity. The reason for choosing S-shape routing method is that it is commonly

used in practice, and the selection of S-shape routing method reduced the complexity of

the problem, and thus, shorten the computational time.

By balancing the computational time and output between optimal and heuristic solutions,

optimal solution is not implementable because of the huge computational time. As is

mentioned in section 4.3, the computational time for obtaining optimal solution is too long

to meet our goal of producing a quick solution, especially when number of SKUs increases.

In term of performance, the proposed heuristic is 6.7% worse than the optimal in the

experiment involved 10 SKUs. We can conclude that the proposed heuristic is

implementable in practice because it provides a good solution in much shorter time.

The proposed heuristic integrates techniques such as data analysis, association mining,

mathematical formulation and computer simulation. Five steps of the proposed heuristic

ensure the pickup priority accounting for weight and frequency of SKUs. Also, the heuristic

improves the layout design by exchanging the storage locations of SKUs based on the

associations between SKUs generated via association rules mining. The numerical results

 74

from different scenarios show that the average improvement of 87.12% from random

layout to Stage #1 layout and 12.31% from Stage #1 layout to Stage #2 layout in term of

pickup time. In term of pickup time, the improvements are 86.75% from random layout to

stage #1 layout and 11.95% from stage #1 layout to stage #2 layout.

ARM algorithm is an important technique to identify correlations between SKUs among

different transactions. And it has more potential in improving order picking operation by

considering more rules. Before implementing the proposed heuristic in practice, an

appropriate combination of support and confidence in ARM algorithm needs to be

determined in advanced, since it is the key activity to balance the outperformance and

computation time. According to the result form design of experiment, the selected

combination of support (0.2) and confidence (0.8) is significant to impact number of rules

produced via ARM.

Furthermore, simulation provides an easy and convenient way to visualize and analysis the

ordering picking operations. C language-based coding environment in AutoMod makes the

model easy to be expanded and modified to test more experiments. In addition, simulation

is also an efficient way to validate and verify the method applied and control the potential

risk by analyzing the simulation output.

The heuristic proposed in this thesis is a ready-to-use “package” for layout design, the only

input for such package is the raw data set with transaction numbers, SKU numbers and

weights of SKUs. It takes much shorter time to produce a good solution when compare to

optimal solution. It is recommended to implement such heuristic for new layout design

and/or layout improvement in an existing DC.

 75

5.2 Future Research

Due to limited time, this thesis only provides comparison among two layouts generated

from the proposed heuristics and randomized layout. The future research may focus on:

First, applying proposed heuristic into new layout, for example, fishbone layout to achieve

better performance. Second, identifying the break-even point of support and confidence

regarding specific data set in ARM phase to produce the best solution of number of rules.

Finally, comparing the proposed method to other existing algorithm to indicate the

performance, like Genetic Algorithm and Ant Colony Optimization algorithm.

 76

APPENDIX SECTION

APPENDIX 1: AMPL CODE OF QAP FORMULATION

 param n:=20;

 param f{1..n,1..n};

 param d{1..n,1..n};

 param c{1..n,1..n};

 var x{1..n,1..n} integer;

 minimize obj_function: sum{i in 1..n} sum{j in 1..n} sum{k in 1..n} sum{l in 1..n}

f[i,j]*d[k,l]*x[i,k]*x[j,l] + sum{i in 1..n} sum{j in 1..n} c[i,j]*x[i,j];

 subject to constr1{j in 1..n}: sum{i in 1..n} x[i,j] = 1;

 subject to constr2{i in 1..n}: sum{j in 1..n} x[i,j] = 1;

 subject to bound1{i in 1..n,j in 1..n}: 0<=x[i,j]<=1;

 #subject to con_add{i in 1..n}: x[i,i]=0;

 data HCP13.5.1.dat; option solver cplexamp; solve; display x;

 display _total_solve_time

 77

APPENDIX 2: R CODE OF DATA SAMPLE SELECTION

getwd()

setwd("/Users/yueli/Desktop/Thesis R code")

library("readxl")

library("dplyr")

library("stringr")

library("stringi")

dt_table <- read_excel("GM.xlsx","GM")

dt_ASGN <- dt_table[,1]

dt_ASGN <- unique(dt_ASGN)

choose ASGN count between 150-250

df<-data.frame(dt_table$ASGN,dt_table$Product)

names(df)[1:2] <- c("Assignment", "Product")

group_df <- group_by(df,as.numeric(df$Assignment))

count_df<-count_(group_df)

final_df<-filter(count_df, count_df$n>= 150 & count_df$n <= 250)

names(final_df)[1:2] <- c("ASGN", "Frequency")

all_df<-filter(dt_table,dt_table$ASGN %in% final_df$ASGN)

write.csv(all_df, "150to250.csv")

randomly choose 1/3 of orders with items between 150 and 250

dt_ASGN1 <- all_df[,1]

dt_ASGN1 <- unique(dt_ASGN1)

dt_ASGN_rand <- mutate(dt_ASGN1,rand_num = runif(nrow(dt_ASGN1),1,100))

 78

dt_table_sort <- arrange(dt_ASGN_rand,as.numeric(desc(dt_ASGN_rand$rand_num)))

table1 <- dt_table_sort[1:ceiling(1/3 * nrow(dt_table_sort)),]

final_table_1 <- filter(all_df, all_df$ASGN %in% table1$ASGN)

write.csv(final_table_1, "onethirdof150to250.csv")

 79

APPENDIX 3: R CODE OF WEIGHT-BASED CLASS AND STAGE #1 LAYOUT

quan <- quantile(final_table_1$Weight,probs = seq(0,1,0.33333333))

weight_filter_1 <- filter(final_table_1,final_table_1$Weight<=quan[2])

group_weight_1<-group_by(weight_filter_1,as.numeric(weight_filter_1$Product))

frequencyofclass1 <- count(group_weight_1)

dec_freq_class1 <- arrange(frequencyofclass1,as.numeric(desc(frequencyofclass1$n)))

names(dec_freq_class1)[1:2] <- c("Product", "Freq")

weight_filter_2 <- filter(final_table_1,final_table_1$Weight>=quan[2] &

final_table_1$Weight <= quan[3])

group_weight_2<-group_by(weight_filter_2,as.numeric(weight_filter_2$Product))

frequencyofclass2 <- count(group_weight_2)

dec_freq_class2 <- arrange(frequencyofclass2,as.numeric(desc(frequencyofclass2$n)))

names(dec_freq_class2)[1:2] <- c("Product", "Freq")

weight_filter_3 <- filter(final_table_1,final_table_1$Weight >= quan[3])

group_weight_3<-group_by(weight_filter_3,as.numeric(weight_filter_3$Product))

frequencyofclass3 <- count(group_weight_3)

dec_freq_class3 <- arrange(frequencyofclass3,as.numeric(desc(frequencyofclass3$n)))

names(dec_freq_class3)[1:2] <- c("Product", "Freq")

itemlocationall <- rbind(dec_freq_class3,dec_freq_class2,dec_freq_class1)

location<-c(1:nrow(itemlocationall))

itemlocationall <- cbind(itemlocationall,location)

write.csv(weight_filter_1, "weightclass1.csv")

write.csv(weight_filter_2, "weightclass2.csv")

 80

write.csv(weight_filter_3, "weightclass3.csv")

write.csv(dec_freq_class1, "itemlocationclass1.csv")

write.csv(dec_freq_class2, "itemlocationclass2.csv")

write.csv(dec_freq_class3, "itemlocationclass3.csv")

write.csv(itemlocationall, "itemlocationall.csv")

Stage 1 layout matrix

new_matrix <- matrix(ncol = nrow(itemlocationall), nrow = nrow(itemlocationall), c(0))

rownames(new_matrix) <- 1:nrow(itemlocationall) #item

colnames(new_matrix) <- 1:nrow(itemlocationall) #location

new_matrix

for (i in 1:nrow(new_matrix))

{

 new_matrix[itemlocationall$location[i],itemlocationall$location[i]] <-

itemlocationall$Product[i]

}

dim(new_matrix)

write.csv(new_matrix, "stage1layoutmatrix.csv")

 81

APPENDIX 4: R CODE OF ASSOCIATION RULES MINING AND OUTPUT

REFORMATION

Association rules mining for class #1

install.package("arules")

library("arules")

HEBdata <- weight_filter_1

HEBdata<-transform(HEBdata, ASGN=as.factor(ASGN))

HEBdata<-transform(HEBdata, Product=as.factor(Product))

HEBdata<-transform(HEBdata, Aisle=as.factor(Aisle))

HEBdata<-transform(HEBdata, Location=as.factor(Location))

HEBdata<-transform(HEBdata, Description=as.factor(ItemDescription))

HEBdata<-transform(HEBdata, Weight=as.numeric(Weight))

length(levels(HEBdata$ASGN))

length(levels(HEBdata$Product))

quantile(HEBdata$Weight)

WC <- split(x=HEBdata[,"Description"], f=HEBdata$ASGN)

itemM <- split(x=HEBdata[,"Product"], f=HEBdata$ASGN)

WC <- lapply(WC, unique)

itemM <- lapply(itemM, unique)

itemM <- as(itemM, "transactions"); itemM

WC <- as(WC, "transactions"); WC

itemFrequencyPlot(itemM,support=.20)

sizes<-size(itemM)

 82

sizes

size.labels<-as.numeric(levels(as.factor(sizes)))

itemM.subset.2<-subset(itemM,sizes==2)

inspect(itemM.subset.2)

HEBdatasup <- itemFrequency(itemM, type= "relative")

M = mean(HEBdatasup)

rules_class1<- apriori(itemM,

 parameter=list(support=.2,

 confidence=.8, maxlen=2, target="rules"))

rules_class1

inspect(rules_class1)

HEBdatasup <- itemFrequency(itemM, type= "relative")

sort(head(HEBdatasup, 25), decreasing = TRUE)

highest.lift_class1 <- sort(rules_class1, by = "lift", na.last=NA, decreasing = TRUE)

inspect(head(highest.lift_class1, 25))

highest.conf_class1 <- sort(rules_class1, by = "confidence", na.last=NA, decreasing =

TRUE)

inspect(head(highest.conf_class1, 25))

highest.sup_class1 <- sort(rules_class1, by = "support", na.last=NA, decreasing = TRUE)

inspect(head(highest.sup_class1, 25))

association_rules_class1<-as(rules_class1, "data.frame");

rules_highest_lift_class1 <- as(highest.lift_class1, "data.frame");

write.csv(association_rules_class1,"association_rules_class1.csv")

 83

write.csv(rules_highest_lift_class1, "rules_highest_lift_class1.csv")

Clean Association Rules output

before1 <- rules_highest_lift_class1

out1 <- strsplit(as.character(before1$rules),'=>')

out1 <- data.frame(t(sapply(out1, `[`)))

after1 <- with(before1, data.frame(support = support, confidence = confidence, lift = lift))

after1 <- cbind(out1,after1)

names(after1)[1:2] <- c("LHS", "RHS")

after1$LHS<-gsub('.{2}$', '', after1$LHS)

after1$LHS<-gsub('^.', '', after1$LHS)

after1$RHS<-gsub('.{1}$', '', after1$RHS)

after1$RHS<-gsub('^.{2}', '', after1$RHS)

write.csv(after1, "rules_highest_lift_classs1_cleaned.csv")

Association rules mining for class #2

install.package("arules")

library("arules")

HEBdata <- weight_filter_2

HEBdata<-transform(HEBdata, ASGN=as.factor(ASGN))

HEBdata<-transform(HEBdata, Product=as.factor(Product))

HEBdata<-transform(HEBdata, Aisle=as.factor(Aisle))

HEBdata<-transform(HEBdata, Location=as.factor(Location))

HEBdata<-transform(HEBdata, Description=as.factor(ItemDescription))

HEBdata<-transform(HEBdata, Weight=as.numeric(Weight))

 84

length(levels(HEBdata$ASGN))

length(levels(HEBdata$Product))

quantile(HEBdata$Weight)

WC <- split(x=HEBdata[,"Description"], f=HEBdata$ASGN)

itemM <- split(x=HEBdata[,"Product"], f=HEBdata$ASGN)

WC <- lapply(WC, unique)

itemM <- lapply(itemM, unique)

itemM <- as(itemM, "transactions"); itemM

WC <- as(WC, "transactions"); WC

itemFrequencyPlot(itemM,support=.20)

sizes<-size(itemM)

sizes

size.labels<-as.numeric(levels(as.factor(sizes)))

itemM.subset.2<-subset(itemM,sizes==2)

inspect(itemM.subset.2)

HEBdatasup <- itemFrequency(itemM, type= "relative")

M = mean(HEBdatasup)

rules_class2<- apriori(itemM,

 parameter=list(support=.2,

 confidence=.8, maxlen=2, target="rules"))

rules_class2

inspect(rules_class2)

HEBdatasup <- itemFrequency(itemM, type= "relative")

 85

sort(head(HEBdatasup, 25), decreasing = TRUE)

highest.lift_class2 <- sort(rules_class2, by = "lift", na.last=NA, decreasing = TRUE)

inspect(head(highest.lift_class2, 25))

highest.conf_class2 <- sort(rules_class2, by = "confidence", na.last=NA, decreasing =

TRUE)

inspect(head(highest.conf_class2, 25))

highest.sup_class2 <- sort(rules_class2, by = "support", na.last=NA, decreasing = TRUE)

inspect(head(highest.sup_class2, 25))

association_rules_class2<-as(rules_class2, "data.frame");

rules_highest_lift_class2 <- as(highest.lift_class2, "data.frame");

write.csv(association_rules_class2,"association_rules_class2.csv")

write.csv(rules_highest_lift_class2, "rules_highest_lift_class2.csv")

Clean Association Rules output

before2 <- rules_highest_lift_class2

out2 <- strsplit(as.character(before2$rules),'=>')

out2 <- data.frame(t(sapply(out2, `[`)))

after2 <- with(before2, data.frame(support = support, confidence = confidence, lift = lift))

after2 <- cbind(out2,after2)

names(after2)[1:2] <- c("LHS", "RHS")

after2$LHS<-gsub('.{2}$', '', after2$LHS)

after2$LHS<-gsub('^.', '', after2$LHS)

after2$RHS<-gsub('.{1}$', '', after2$RHS)

after2$RHS<-gsub('^.{2}', '', after2$RHS)

 86

write.csv(after2, "rules_highest_lift_classs2_cleaned.csv")

Association rules mining for class #3

install.package("arules")

library("arules")

HEBdata <- weight_filter_3

HEBdata<-transform(HEBdata, ASGN=as.factor(ASGN))

HEBdata<-transform(HEBdata, Product=as.factor(Product))

HEBdata<-transform(HEBdata, Aisle=as.factor(Aisle))

HEBdata<-transform(HEBdata, Location=as.factor(Location))

HEBdata<-transform(HEBdata, Description=as.factor(ItemDescription))

HEBdata<-transform(HEBdata, Weight=as.numeric(Weight))

length(levels(HEBdata$ASGN))

length(levels(HEBdata$Product))

quantile(HEBdata$Weight)

WC <- split(x=HEBdata[,"Description"], f=HEBdata$ASGN)

itemM <- split(x=HEBdata[,"Product"], f=HEBdata$ASGN)

WC <- lapply(WC, unique)

itemM <- lapply(itemM, unique)

itemM <- as(itemM, "transactions"); itemM

WC <- as(WC, "transactions"); WC

itemFrequencyPlot(itemM,support=.20)

sizes<-size(itemM)

sizes

 87

size.labels<-as.numeric(levels(as.factor(sizes)))

itemM.subset.2<-subset(itemM,sizes==2)

inspect(itemM.subset.2)

HEBdatasup <- itemFrequency(itemM, type= "relative")

M = mean(HEBdatasup)

rules_class3<- apriori(itemM,

 parameter=list(support=.2,

 confidence=.8, maxlen=2, target="rules"))

rules_class3

inspect(rules_class3)

HEBdatasup <- itemFrequency(itemM, type= "relative")

sort(head(HEBdatasup, 25), decreasing = TRUE)

highest.lift_class3 <- sort(rules_class3, by = "lift", na.last=NA, decreasing = TRUE)

inspect(head(highest.lift_class3, 25))

highest.conf_class3 <- sort(rules_class3, by = "confidence", na.last=NA, decreasing =

TRUE)

inspect(head(highest.conf_class3, 25))

highest.sup_class3 <- sort(rules_class3, by = "support", na.last=NA, decreasing = TRUE)

inspect(head(highest.sup_class3, 25))

association_rules_class3<-as(rules_class3, "data.frame");

rules_highest_lift_class3 <- as(highest.lift_class3, "data.frame");

write.csv(association_rules_class3,"association_rules_class3.csv")

write.csv(rules_highest_lift_class3, "rules_highest_lift_class3.csv")

 88

Clean Association Rules output

before3 <- rules_highest_lift_class3

out3 <- strsplit(as.character(before3$rules),'=>')

out3 <- data.frame(t(sapply(out3, `[`)))

after3 <- with(before3, data.frame(support = support, confidence = confidence, lift = lift))

after3 <- cbind(out3,after3)

names(after3)[1:2] <- c("LHS", "RHS")

after3$LHS<-gsub('.{2}$', '', after3$LHS)

after3$LHS<-gsub('^.', '', after3$LHS)

after3$RHS<-gsub('.{1}$', '', after3$RHS)

after3$RHS<-gsub('^.{2}', '', after3$RHS)

write.csv(after3, "rules_highest_lift_classs3_cleaned.csv")

 89

APPENDIX 5: AUTOMOD CODE FOR CREATING SIMULATION LOGICS

(PARTIAL)

SFileBegin name init.m

begin model initialization function

 call F_Location_Init()

 call F_Order_Init()

create 39 load of type Order_load to PMasterLoad

 return true

end

begin PMasterLoad arriving procedure

 inc V_Order_ctr by 1

 set Attr_Order_ID to V_Order_ctr

 call SReceiveOrder

 call SPickOrder

 call SDeliverOrder

 print ac to message

end

SFileBegin name veh.m

begin pm vehicle initialization function

 increment V_Count by 1

 set theVehicle A_index = V_Count

 set theVehicle A_Home = pm.cp_home

 dispatch theVehicle to pm.cp_home

 90

 return true

end

SFileBegin title "idle, receive,pick,deliver"

 name subs.m

begin pm idle procedure

 dispatch this vehicle to pm.cp_home

 wait to be ordered on OLVehicle

end

begin SReceiveOrder procedure

 move into QInitial

 move into pm.cp_home

end

begin SPickOrder procedure

 set Attr_Time2 to ac

 set Vi to 1

 print this load to message

 print "Order received:" ac to message

 print this load vehicle to message

 while Vi <= V_Number_Item_Per_Ord(Attr_Order_ID) do

 begin

 travel to V_Location(V_Order(Attr_Order_ID,Vi))

 inc Vi by 1

 inc V_Number_Done by 1

 91

 end

end

begin SDeliverOrder procedure

 tabulate ac - Attr_Time2 in T_PickTime

 print "finish time of picking up the last SKU in an order" ac to message

 tabulate V_Number_Done in T_Throughput

 travel to pm.cp_home

 print "time back to Home for another order" ac to message

end

 92

REFERENCES

[1] Koster, R. D., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of

warehouse order picking: A literature review. European Journal of Operational

Research,182(2), 481-501. doi:10.1016/j.ejor.2006.07.009

[2] Tompkins, J.A., J.A. White, Y.A. Bozer, E.H. Frazelle, J.M.A. Tanchoco and J.

Trevino (1996). Facilities Planning, 2nd ed., New York: Wiley & Sons Inc.

[3] Ming-Huang Chiang, D., Lin, C.-P. and Chen, M.-C. (2012), Data mining based

storage assignment heuristics for travel distance reduction. Expert Systems, 31: 81–

90. doi:10.1111/exsy.12006

[4] Chen, M., Huang, C., Chen, K., & Wu, H. (2005). Aggregation of orders in

distribution centers using data mining. Expert Systems with Applications,28(3), 453-

460. doi:10.1016/j.eswa.2004.12.006

[5] Chen, M., & Wu, H. (2005). An association-based clustering approach to order

batching considering customer demand patterns. Omega,33(4), 333-343.

doi:10.1016/j.omega.2004.05.003

[6] Diaper-beer syndrome. (1998, April 06). Retrieved July 19, 2017, from

https://www.forbes.com/forbes/1998/0406/6107128a.html

[7] ELA/AT Kearney (2004). Excellence in Logistics 2004. ELA, Brussels.

[8] Vaughan, T. S. (1999). The effect of warehouse cross aisles on order picking

efficiency. International Journal of Production Research,37(4), 881-897.

doi:10.1080/002075499191580

[9] Petersen, C.G. (2000). An evaluation of order picking policies for mail order

companies. Production and Operations Management 9 (4), 319–335.

[10] Ratliff, H. D., & Rosenthal, A. S. (1983). Order-Picking in a Rectangular

Warehouse: A Solvable Case of the Traveling Salesman Problem. Operations

Research,31(3), 507-521. doi:10.1287/opre.31.3.507

[11] Hall, R. W. (1993). Distance Approximations For Routing Manual Pickers In A

Warehouse. IIE Transactions,25(4), 76-87. doi:10.1080/07408179308964306

[12] Petersen, C.G. (1997). An evaluation of order picking routing policies. International

Journal of Operations & Production Management 17 (11), 1098–1111.

 93

[13] Roodbergen, K.J. (2001). Layout and routing methods for warehouses. Ph.D. thesis,

RSM Erasmus University, the Netherlands.

[14] Petersen, C. G., Aase, G. R., & Heiser, D. R. (2004). Improving order‐ picking

performance through the implementation of class‐ based storage. International

Journal of Physical Distribution & Logistics Management,34(7), 534-544.

doi:10.1108/09600030410552230

[15] Frazelle, E.A., & Sharp, G.P.(1989). Correlated assignment strategy can improve

order-picking operation. Industrial Engineering, 4, 33-37.

[16] Hsieh, L.F., & Huang, C.L. (2007). Optimal order picking planning for distribution

center with cross aisle. Proceedings of the 7th International Conference on

Optimization: Techniques and Applications (ICOTA7), Kobe, Japan.

[17] Bassan, Y., & Roll, Y., & Rosenblatt, M.J. (1980). Internal layout design of a

warehouse. AIIE Transactions 12 (4), 317–322.

[18] Roll, Y., & Rosenblatt, M.J. (1983). Random versus grouped storage policies and

their effect on warehouse capacity. Material Flow 1, 199–205.

[19] Caron, F., Marchet, G., & Perego, A. (2000). Optimal layout in low-level picker-to-

part systems. International Journal of Production Research,38(1), 101-117.

doi:10.1080/002075400189608

[20] R. (M.) B. M. De Koster, Le-Duc, T., & Yugang, Y. (2008). Optimal storage rack

design for a 3-dimensional compact AS/RS. International Journal of Production

Research,46(6), 1495-1514. doi:10.1080/00207540600957795

[21] Petersen, C. G. (2002). Considerations in order picking zone

configuration. International Journal of Operations & Production Management,22(7),

793-805. doi:10.1108/01443570210433553

[22] Choe, K., & Sharp, G.P. (1991). Small parts order picking: design and operation.

[23] Hausman, W. H., & Schwarz, L. B., & Graves, S. C. (1976). Optimal Storage

Assignment in Automatic Warehousing Systems. Management Science,22(6), 629-

638. doi:10.1287/mnsc.22.6.629

[24] Heskett, J. L. (1963). Cube-per-order index-a key to warehouse stock location.

Transportation and distribution Management, 3(1), 27-31.

 94

[25] Kallina, C., & Lynn, J. (1976). Application of the cube-per-order index rule for stock

location in a distribution warehouse. Interfaces 7 (1), 37–46.

[26] Malmborg, C.J., & Bhaskaran, K. (1990). A revised proof of optimality for the cube-

per-order index rule for stored item location. Applied Mathematical Modelling (14),

87–95.

[27] Malmborg, C.J. (1995). Optimization of Cubic-per-Order Index layouts with zoning

constraints. International Journal of Production Research 33 (2), 465–482.

[28] Caron, F., & Marchet, G., & Perego, A. (1998). Routing policies and COI-based

storage policies in picker-to-part systems. International Journal of Production

Research 36 (3), 713–732.

[29] Petersen, C. G., & Aase, G. (2004). A comparison of picking, storage, and routing

policies in manual order picking. International Journal of Production

Economics,92(1), 11-19. doi:10.1016/j.ijpe.2003.09.006

[30] Yang, M. (1988, May 01). Analysis and optimization of class-based dedicated

storage systems. Retrieved July 19, 2017, from http://hdl.handle.net/1853/21730

[31] Van den Berg, J.P., & Gademann, A.J.R.N. (2000). Simulation study of an

automated storage/retrieval system. International Journal of Production Research 38,

1339–1356.

[32] Tompkins, J. A., & Smith, J. D. (1998). The Warehouse management handbook.

Raleigh, NC: Tompkins Press.

[33] Hsu, C., Chen, K., & Chen, M. (2005). Batching orders in warehouses by

minimizing travel distance with genetic algorithms. Computers in Industry,56(2),

169-178. doi:10.1016/j.compind.2004.06.001

[34] Petersen, C. G., & Schmenner, R. W. (1999). An Evaluation of Routing and

Volume-based Storage Policies in an Order Picking Operation. Decision

Sciences,30(2), 481-501. doi:10.1111/j.1540-5915.1999.tb01619.x

[35] Chen, L., Langevin, A., & Riopel, D. (2011). A tabu search algorithm for the

relocation problem in a warehousing system. International Journal of Production

Economics,129(1), 147-156. doi:10.1016/j.ijpe.2010.09.012

 95

 [36] Chuang, Y., Lee, H., & Lai, Y. (2012). Item-associated cluster assignment model on

storage allocation problems. Computers & Industrial Engineering,63(4), 1171-1177.

doi:10.1016/j.cie.2012.06.021

[37] Mantel, R. J., Schuur, P. C., & Heragu, S. S. (2007). Order oriented slotting: a new

assignment strategy for warehouses. European J. of Industrial Engineering,1(3), 301.

doi:10.1504/ejie.2007.014689

[38] Diaz, R. (2015). Using dynamic demand information and zoning for the storage of

non-uniform density stock keeping units. International Journal of Production

Research,54(8), 2487-2498. doi:10.1080/00207543.2015.1106605

[39] Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between

sets of items in large databases. Proceedings of the 1993 ACM SIGMOD

international conference on Management of data - SIGMOD 93.

doi:10.1145/170035.170072

[40] Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques

concepts and techniques. San Francisco: Morgan Kaufmann In.

[41] Diaz, R. (2010). Using optmization coupled with simulation to construct layout

solutions. Proceedings of the 2010 Spring Simulation Multiconference on -

SpringSim 10. doi:10.1145/1878537.1878617

[42] Chan, H., Pang, A., & Li, K. (1970, January 01). Association rule based approach

for improving operation efficiency in a randomized warehouse. Retrieved July 19,

2017, from http://hdl.handle.net/10397/4450

[43] Mining Association Rules and Frequent Itemsets [R package arules version 1.5-2].

(n.d.). Retrieved July 19, 2017, from https://cran.r-

project.org/web/packages/arules/index.html

	A DATA-INTENSIVE ANALYSIS AUGMENTED SIMULATION MODEL
	OF AN ORDER PICKING OPERATION
	3.1 System Configuration.
	3.3 Solution Approach
	Figure 7 Methodology flow chart
	3.3.1 Weight-based Class
	Table 1 Weight-based classes
	3.3.2 Ranking and Sorting
	Figure 8 Stage #1 layout considering weight and frequency
	3.3.3 ARM Algorithm
	Figure 9 Example of ARM algorithm visualization
	Figure 10 The work process of ARM in R package
	3.3.4 Exchange Heuristic
	Figure 11 Illustration of the exchange heuristic
	4.2 Effect of Support and Confidence
	4.2.1 Design of Experiments
	4.3 Comparison between Optimal and Heuristic Solution
	In this subsection, the comparison between optimal and heuristic solution is conducted to prove that the heuristic is implementable in practice.
	As is mentioned in Section 3, it is difficult to solve quadratic assignment problem and produce the optimal solution due to the complexity and computational time of the problem. The computational time increases significantly when number of SKUs increa...
	Table 5 Comparison of computational time
	Table 6 Comparison of order picking time
	The difference in term of order picking time between optimal and heuristic solution is 17.278 seconds. The optimal solution is 6.788% better than the heuristic solution in this specific case.
	By considering the computational time and performance, the heuristic is implementable to achieve a good practical solution with large data set in a much shorter time when compare to the optimal solution.
	4.4.1 System Configuration
	4.4.2 Weight-based Class
	Table 9 Weight-based classes for scenario 1
	Table 10 Weight-based classes for scenario 2
	Figure 15 Stage #1 layout in scenario 1
	Figure 16 Stage #1 layout in scenario 2
	4.4.4 ARM Algorithm
	4.4.5 Exchange Heuristic
	In Scenario 1, 56 unique SKUs are impacted by implementing Exchange Method, the involved SKUs and their sequences in random, stage #1 and stage #2 layout are shown in the Tables 17 (a)(b)(c) below. The new locations of these SKUs depend on the locatio...
	4.4.6 Computer Simulation
	4.4.6.1 Output Analysis

