
Two-Dimensional Linear Homeomorphic Oculomotor Plant 

Mathematical Model 

Oleg V. Komogortsev, Member, IEEE, Corey Holland, Sampath Jayarathna, Student Member, IEEE 

Department of Computer Science, Texas State University – San Marcos, TX 78666-4616, USA 

ok11@txstate.edu, ch1570@txstate.edu, sampath@txstate.edu 

Abstract – This paper builds a two-dimensional linear 

homeomorphic oculomotor plant mathematical model and 

assesses its ability to simulate person-specific oblique 

saccades on a two-dimensional plane. The proposed model is 

driven by a simplified pulse-step neuronal control signal and 

accounts in a linear form for the unique characteristics of the 

eye globe and the extraocular muscles responsible for 

horizontal and vertical rotation (the lateral/medial recti and 

superior/inferior recti respectively). These characteristics 

include: series elasticity, length tension, passive elasticity, 

viscosity, eye globe inertial mass, and the force-velocity 

relationships of agonist/antagonist muscles. Results indicate 

that the model is capable of producing oblique saccade 

trajectories with properties resembling those of normal 

humans. The model can be simplified into two one-

dimensional models for quicker signal simulation, making it 

applicable for time sensitive applications. Practical 

applications of the model might include: enhanced security 

in biometric identification systems; improved noise 

reduction and signal recovery facilities for eye tracking 

systems; and additional metrics from which to determine 

user effort during usability testing.  

Index Terms – Oculomotor plant, model, simulation, 

prediction, human visual system, saccade 

I. INTRODUCTION 

HE HUMAN OCULOMOTOR PLANT (OP) consists 

of the eye globe and six extraocular muscles (medial 

rectus, lateral rectus, superior rectus, inferior rectus, superior 

oblique, and inferior oblique). The OP, driven by the 

neuronal control signal, exhibits six primary eye movement 

types: fixations, saccades, smooth pursuits, optokinetic 

reflex, vestibular-ocular reflex, and vergence [1]. Each 

extraocular muscle (EOM) is represented by a complex 

anatomical structure consisting of components that can be 

considered abstractly through such properties as elasticity, 

viscosity, active state tension, length tension, and force-

velocity relationships. The human eye globe rotates in three 

degrees of freedom with eye movements following Listing’s 

and Donders’ Laws [2]. 

There are two primary categories of OP models that have 

been presented to the scientific community thus far. The first 

of these categories consists of the one-dimensional, 

generally linear, models developed by Westheimer [3], 

Robinson [4], Clark and Stark [5], Bahill [6], Komogortsev 

and Khan [7, 8], Enderle and Zhou [9], and Martin and 

Schovanec [10]. The model developed by Westheimer 

represented the OP as a linear second order system. 

Robinson’s model added the pulse-step neuronal control 

mechanics with the OP system presented as a fourth order 

system. Neither model was capable of producing trajectories 

consistent with the main sequence relationship and normal 

human data. Bahill developed a sixth order linear 

homeomorphic OP model driven by a simplified pulse-step 

neuronal control signal, with velocity output close to the 

physiological recordings of normal humans; however, 

Bahill’s model generated only rightward saccades from the 

primary eye position. Komogortsev and Khan modified 

Bahill’s model, providing the capability of generating both 

rightward and leftward saccades from any angular position. 

The OP developed by Enderle and Zhou extends Bahill’s 

model with an additional characteristics related to the 

neuronal control signal and the plant itself. The OP model 

developed by Martin and Schovanec is a non-linear tenth 

order system, which employs a more anatomically accurate 

hill-type individual extraocular muscle model with passive 

elasticity modeled in a non-linear fashion. 

The second category consists of three-dimensional, 

generally non-linear, OP models capable of simulating eye 

movement trajectories in 3D space. These models can be 

broken into two subcategories. The first being those OP 

models which do not employ the individual anatomical 

properties of each EOM [11-13], and the second being those 

that do [14, 15]. The OP models of the latter group are non-

linear and provide the most accurate representation of 

anatomical components, such as the individual properties of 

the extraocular muscles and pulley mechanics. Quaia and 

Optican [16] present a good overview of these models. 

The two-dimensional oculomotor plant mathematical 

model (2D-OP) presented in this paper builds on the 

horizontal OP model created by Komogortsev and Khan [7, 

8], and provides the ability to simulate  saccade trajectories 

given the coordinates of the saccade’s onset and offset 

position. The 2D-OP incorporates several important 

characteristics of the human oculomotor plant. Each 

extraocular muscle is modeled individually, maintaining the 

physiological agonist-antagonist nature of extraocular 

movement dynamics. The model of each muscle 

encapsulates the series elasticity, length tension, viscosity, 

active state tension, and force-velocity relationship 

properties by creating a linear mathematical representation 

of each component. The model is driven by a simplified 

pulse-step neuronal control signal, sent by the brain to the 

extraocular muscles. For normal humans, the duration of 

saccades is linearly dependent on their amplitude [17], and 

T 



an exponential relationship 

between the maximum 

velocity of saccades and their 

amplitude is maintained, often 

referred to as the main 

sequence relationship [1, 18, 

19]. The proposed model 

assumes linear dependency 

between the amplitude of a 

saccade and its duration, and 

is evaluated in terms of 

positional accuracy and its 

ability to maintain a realistic 

main sequence relationship. In 

this work we assume that 

oculomotor plant 

characteristics (OPC) are 

unique for each individual. 

To the best of our 

knowledge, there is no 

previous research that 

investigates the applicability of a linear homeomorphic 

representation of the OP for the simulation of oblique 

saccades. Such a representation would be particularly useful 

for its speed, analytic tractability, and acceptable accuracy 

for applications that employ eye movements in the domains 

of human-computer interaction, biometrics, eye tracking, 

and usability. A preliminary version of the 2D-OP presented 

here was discussed in [20], however our previous work but 

did not provide the mathematical equations for all directions 

of movement on the 2D plane and did not verify the model’s 

simulation accuracy against recorded data. This paper 

resolves these issues. An additional contribution of this work 

is the collection and analysis of oblique saccade data from a 

relatively large subject pool. 

Paper structure: Section II provides an overview of the 

human oculomotor system including a brief description of 

the oculomotor plant and basic eye movements. Section III 

presents the equations describing the 2D-OP. Section IV 

presents the methodology employed for acquisition of the 

human eye movement data, and provides the details of OPC 

parameter estimation. Section V presents evaluation results. 

Sections VI and VII present a discussion of the results.  

II. HUMAN OCULOMOTOR SYSTEM 

The eye globe is rotated by six extraocular muscles 

(EOM), with each EOM being driven by a neuronal control 

signal generated by the brain. The role of each EOM can be 

represented by the following table [1]. 

INDIVIDUAL EXTRAOCULAR MUSCLE ROLES 

Muscle Primary Secondary Tertiary 

Lateral rectus (LR) Abduction N/A N/A 

Medial rectus (MR) Adduction N/A N/A 

Inferior rectus (IR) Depression Extortion Adduction 

Superior rectus (SR) Elevation Intortion Adduction 

Inferior oblique (IO) Extortion Elevation Abduction 

Superior oblique (SO) Intorsion Depression Abduction 

The neuronal control signals for the horizontal and 

vertical components of eye movements are generated by 

different parts of the brain. Specifically, the premotor 

neurons in the pons and medulla are responsible for 

horizontal eye movements, and the rostral midbrain is 

responsible for vertical eye movements. The roles of the 

individual EOMs can be defined as agonist (subscript 

notation AG), the EOM that pulls the eye globe in the 

required direction, or antagonist (subscript notation ANT), 

the EOM that resists the pull. 

A. Extraocular Muscle Structure 

Each muscle is represented by a complex anatomical 

structure [21], and has a multitude of characteristics, 

including: active state tension – tension developed as a 

result of muscle innervation by the neuronal control signal; 

length tension relationship – the relationship between the 

length of a muscle and the force it is capable of exerting for 

a given innervation; force-velocity relationship – the 

relationship between the velocity of a muscle 

extension/contraction and the force it is capable of exerting; 

passive elasticity – the resisting properties of a muscle not 

innervated by the neuronal control signal; series elasticity – 

resistive properties of a muscle while the muscle is 

innervated by the neuronal control signal. More detailed 

descriptions of these characteristics can be found in [6]. As 

well, aside from the individual muscle properties, the eye 

globe has passive elastic and viscous characteristics due to 

the properties of the surrounding tissues. 

 

B. Human Saccade Characteristics 

The OP, driven by the neuronal control signal, exhibits 

six eye movement types: fixations, saccades, smooth 

pursuits, optokinetic reflex, vestibulo-ocular reflex, and 

vergence [1], however for the purposes of this work only 

saccades are considered.  

Saccades occur when the eye globe rotates very quickly 

between points of eye fixation, and saccade amplitude refers 
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Figure 1. 1D-OP: Right eye. Rightward horizontal rotation performed by the medial rectus (agonist) 

and lateral rectus (antagonist). AG and ANT mark agonist and antagonist parts of the diagram 

correspondingly. The diagram contains agonist and antagonist specific presentation of the Kse and Klt 

but, corresponding equations are presented without the AG and ANT subscript to avoid cluttering. 



to the difference, in degrees of the visual angle, from the 

point of pre-saccade fixation to the point of post-saccade 

fixation, where the central eye position represents the origin; 

e.g., a purely horizontal saccade made from 10° right of 

center with an amplitude of -15° would reposition the eye to 

5° left of center. Saccades of given amplitude produced by 

an individual tend to show similarities in a number of 

properties, including: reaction time, duration, position, 

velocity, acceleration, and waveform. As well, certain 

relationships exist between saccades of varying amplitudes, 

these include: the amplitude-peak velocity relationship, the 

amplitude-duration relationship, and the velocity waveform. 

The amplitude-peak velocity relationship, also referred to 

as the main sequence relationship [18], describes the 

tendency for saccadic peak velocity to increase in an 

exponential manner until saturation begins to occur at a 

certain velocity maximum (VMAX), according to the 

following formula: 

                ( 
|         |

 
)  (1) 

The amplitude-duration relationship describes the 

tendency for saccade duration to increase linearly with 

saccade amplitude from a certain base duration (DMIN) 

according to the formula: 

        |         | (2) 

Both the main sequence and amplitude-duration 

relationship vary for different angles of motion; that is, 

purely horizontal/vertical saccades and oblique saccades of 

different angles exhibit different relationships. While there 

has been considerable research into these relationships as 

they relate to purely horizontal/vertical saccades [1], there is 

relatively little information on oblique saccades [19]. As 

well, these relationships have been noted to vary between 

individuals and may be affected by subject age [22, 23], 

recording medium [24], and initial eye position [25]. 

The velocity waveform is another characteristic that 

remains similar across saccades of varying amplitudes. The 

skewness of the waveform can be estimated from the ratio of 

the time to reach maximum velocity to the total duration of 

the saccade, and varies from roughly 0.5 for small saccades 

to 0.2 for large saccades. Similarly, it has been noted that the 

ratio of peak velocity to average velocity (Q) remains nearly 

constant at 1.6 for horizontal/vertical saccades of all 

amplitudes [1]. 

Given the fact that the horizontal and vertical 

components of human saccades are generated by separate 

areas of the brain and display noted differences in duration 

and peak velocity, oblique trajectories should be curved 

when component durations are unequal. While this is true 

for a substantial percentage of oblique saccades, a similarly 

substantial percentage exhibit trajectories that are nearly 

straight, more so than could be explained by the random 

synchronization of component durations [26]. 

Based on the frequent occurrence of straight oblique 

trajectories, it is apparent that the neural signals responsible 

for the horizontal and vertical components of oblique 

saccades in some way influence each other. Whether 

component stretching occurs before or after generation of 

the neuronal control signal is an area of active research [27]. 

To simplify the analysis of our model, we assume that the 

duration of both components of movement are equal. 

III. OCULOMOTOR PLANT MATHEMATICAL MODEL 

A. Agonist EOM Model 

The AG part of Figure 1 demonstrates the forces 

involved when the agonist muscle pulls the eye globe in the 

direction of displacement Δθ. The agonist muscle is 

innervated by the neuronal control signal NAG, contracts, 

rotates the eye globe, and stretches the antagonist muscle. A 

detailed description of muscle dynamics during innervation 

is presented in [28]. 

Using Figure 1, we can write the equation of force with 

which the part of the diagram responsible for contraction 

(active state tension, damping components, length tension 

component) pulls the series elasticity component: 

                                 ̇      (3) 

Resisting the contraction, the series elasticity component 

propagates the contractile force by pulling the eye globe 

with the same force TAG. 

                        (4) 

Equations (3) and (4) can be rearranged to move the 

contribution from length tension (θLT_AG) and series 

elasticity (θSE_AG) components to the modified active state 

tension ( ̂AG) and damping components ( ̂AG). This 

transition makes it possible to present the force equations 

with a variable depicting eye globe rotation Δθ. Details of 

this calculation are presented in [29]. It should be noted that 

the passive properties of the EOMs are combined with the 

orbital tissue properties for simplicity. 

 ̂   
 ̂     

       

 
        

       

  ̂    ̇      (5) 

 ̂                   (6) 

 

B. Antagonist EOM Model 

The ANT part of Figure 1 demonstrates the forces 

involved when the antagonist muscle is stretched in the 

direction of eye globe displacement Δθ. The antagonist 

muscle is innervated by the neuronal control signal NANT and 

becomes stretched by the pull of the agonist muscle. 

Using Figure 1, we can write the equation of force with 

which the part of the diagram responsible for contraction 

(active state tension, damping components, length tension 

component) pulls the series elasticity component: 

                                       ̇       (7) 

Resisting the contraction, the series elasticity component 

propagates the contractile force by pulling the eye globe 

with the same force TAG. 

                           (8) 

Equations (7) and (8) can be used to calculate the force 

TANT in terms of eye globe rotation Δθ, and displacement 

ΔθLT_ANT in the length tension component of the muscle. 



Again, the passive properties of the EOMs are combined 

with the orbital tissue properties for simplicity. 

 ̂     
 ̂      

       

 
        

       

  ̂     ̇       (9) 

 ̂                      (10) 

 

C. Pulse-Step Neuronal Control 

The neuronal control signal is represented as neuronal 

discharge from the brain, with discharge frequency 

determining the neuronal innervation of an EOM [30]. 

Different approaches are employed for the representation of 

the neuronal control signal sent by the brain to the EOMs. 

Simplified approaches describe the signal as a pulse-step 

function where the pulse part of the signal relates in some 

fashion to the amplitude of the simulated saccades [6, 8]. 

More sophisticated approaches such as the one presented by 

Enderle and Zhou [9] break the pulse part of the signal into 

several pieces and employs additional low pass filtering 

mechanisms on top of the pulse-step form to provide a more 

realistic representation of the neuronal signal. An approach 

developed by  Goldstein and Robinson [31] and Optican and 

Miles [32] described the neuronal control signal as being 

generated by a pulse-slide-step function, in which the 

agonist neural pulse is recalculated continuously throughout 

the saccade producing an exponential decay (slide) to the 

post-saccade step. Both sophisticated approaches described 

above require recorded saccade trajectory to infer neuronal 

control signal parameters, i.e., saccade simulation where 

only onset and offset parameters are provided for trajectory 

simulation becomes more complex than in the simplified 

pulse-step approach.  

In this paper, we employ a simplified pulse-step form, 

because it requires less parameters than other forms and 

allows for an easy trajectory simulation given the onset and 

offset coordinates of the simulated saccades.  

The step part of the signal is created by the positional 

command (angular eye position prior to and immediately 

after a saccade), and the pulse part of the signal is created by 

the velocity command, which is determined by the amplitude 

of the programmed saccade. 

           {

                                              

                                                     

                                              

 

            {

                                                

                                                        

                                                

 

tNAME constants present time parameters for each type of 

muscle and action phase. t is the time elapsed from the 

beginning of the saccade. The quantity                   – 

                    refers to the width of the pulse (PWAG) in the 

agonist EOM and is expressed in the following form, where 

                       represents the amplitude of the 

simulated saccade, p1 and p2 are constants: 

       |                      |      (11) 

The antagonist pulse circumscribes the agonist pulse by 

3 ms on either side [6], starting 3 ms before the agonist pulse 

and ending 3 ms after, hence: PWANT = PWAG + 6. 

Assuming that the eye movement type before and after 

the simulated saccade is a fixation, the equations for the 

neuronal control signal for the onset and offset of a saccade 

can be written as follows: 

                          {
                                

                                  
 

                           {
                                

                                  
 

                           {
                                

                                  
 

                            {
                                

                                  
 

NAG_FIX(θ) and NANT_FIX(θ) are represented in the following 

form [8]: 

                        |  | (12) 

                          |  | (13) 

We have empirically selected an exponential function to 

determine the strength of the agonist neural pulse as a 

function of saccade amplitude, were                        

represents the amplitude of the simulated saccade, p3 and p4 

are constants, and NANT_SAC_PULSE is a constant of 0.5. 

                (   |                      |   )  (14) 

 

D. Transformation of the Neural Signal to Muscle Tension 

While the change in the discharge frequency specified by 

the pulse-step neuronal control signal is instantaneous, the 

change in the active state tension and EOM forces is not. 

The active state tension of the agonist and the antagonist 

go through a low pass filtering process, and can be modeled 

by the following equations, where τAG and τANT are functions 

that define the low pass filtering process [6]: 

 ̂      
     ̂     

   

 (15) 

 ̂       
      ̂      

    

 (16) 

       {

                                 

                                  

                                 

 

        {

                                   

                                     

                                   

 

τAG_AC, τAG_DE, τANT_AC, τANT_DE are activation/deactivation 

time constants that define the low pass filtering process. 

E. 1D Oculomotor Plant Mathematical Model (1D-OP) 

The equations for the one dimensional case, e.g. 

horizontal movement, are created by considering all forces 

that contribute to the rotation of the eye globe. 

The agonist force dynamics can be described by 

combining equations (5) and (6): 

   (          )  
 ̂     

       

 
        

       

  ̂    ̇      (17) 

Antagonist dynamics are derived by combining 

equations (9) and (10): 

   (           )  
 ̂      

       

 
        

       

  ̂     ̇       (18) 



Newton’s second law is applied to connect the equations 

for acceleration and inertia to all forces acting on the eye 

globe: 

   ̈   ̂    ̂             ̇ (19) 

TAG is the force applied by the agonist muscle to the eye 

globe, TANT is the force applied by the antagonist muscle to 

the eye globe, KpΔθ is a linear spring representing the 

passive elastic properties of the EOMs and the eye globe, 

BpΔ ̇ is a damping component representing the viscous 

properties of the eye orbit and surrounding tissues. 

Equations (15) and (16) describe the dynamics of the 

active state tension, and the last equation connects the 

derivative of position to the velocity of the movement signal: 

  ̇    ̇ (20) 

These six differential equations, (15)-(20), can be 

represented in matrix form with the following variables 

creating a state vector: x1(k) = Δθ – eye rotation, x2(k) = 

ΔθLT_AG and x3(k) = ΔθLT_ANT – displacement of the length 

tension component, x4(k) = Δ ̇ – eye velocity, x5(k) =  ̂AG 

and x6(k) =  ̂ANT active state tension (for the agonist and 

antagonist EOMs respectively). Then: 

 ̇       (21) 

where x is a 1 × 6 state vector, A is a 6 × 6 transition matrix, 

and u is a 1 × 6 control vector. The transition matrix A and 

control vector u change depending on the direction of 

movement. 

Positive Direction Movements: 

During movements in the positive direction (e.g. right 

eye is rotating rightward), the transition matrix and control 

vector are as follows: 
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 (22) 

Negative Direction Movements: 

During movements in the negative direction (e.g. right 

eye is rotating leftward), the transition matrix and control 

vector are as follows: 
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 (23) 

As a result, equation (21) completely describes the 1D-

OP during horizontal saccades. A more detailed description 

of the 1D-OP can be found in [7, 29]. 

F. 2D Oculomotor Plant Mathematical Model (2D-OP)  

One of the objectives of the 2D-OP presented in this 

paper is to accurately simulate saccade trajectories on the 2D 

plane. According to Table I, the rotation of the eye globe 

with a mapped gaze position on a 2D plane can be primarily 

attributed to four EOMs – the lateral, medial, superior, and 

inferior recti. Figure 2 depicts the four EOM forces (TLR, 

TMR, TSR, and TIR) responsible for left-downward rotation of 

the eye globe. 

During 2D rotation, the movement dynamics and roles of 

the EOMs remain essentially the same as in 1D rotation. The 

agonist muscles contract and pull the eye globe in the 

required direction and the antagonist muscles stretch and 

resist the pull. 

Twelve differential equations describe the 2D-OP. Two 

equations are created as a result of the application of 

Newton’s second law to the vertical and horizontal 

components of the eye movement. Four equations describe 

the dynamics of the EOM forces that move the eye globe. 

The horizontal (HR) component of movement is conducted 

by the forces created by the lateral (THR_LR) and medial 

(THR_MR) recti. The vertical (VR) component of movement is 

conducted by the forces created by the superior (TVR_SR) and 

inferior (TVR_IR) recti. Four equations describe the 

transformation of the neuronal control signal in each EOM 

to the active state tension following the mechanism 

described in Section III.E. Two equations connect the 

velocity of the eye movement to the position of the eye in 

the vertical and horizontal planes. 

The derivation of all equations, except the four equations 

describing the dynamics of the EOM forces, in general, 

follows the mechanics described in the previous subsections. 

To provide better analytical tractability of the dynamics of 

the EOM forces, the following sections present a description 
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Figure 2. 2D-OP: Right eye, front view. Left downward eye 

movement performed by medial and inferior recti as agonists, and 

lateral and superior recti as antagonists. EOMs are presented as 

single black lines. 



of the forces for all possible scenarios of rotation: right-

upward, left-upward, right-downward, and left-downward. 

The derivation of the 2D-OP equations is presented in [28]. 

G. Left-Downward Rotation 

The EOM forces responsible for rotation of the eye globe 

can be found as projections to the horizontal and vertical 

axis. Figure 2 illustrates this case. 

During left-downward movement of the right eye 

(saccade between two fixation points) with amplitude of Δθ 

the medial recuts and inferior rectus as agonists move the 

eye to its destination, stretching the antagonist EOMs (the 

lateral and superior recti). ΔθHR and ΔθVR represent the 

horizontal and vertical components of eye globe rotation, 

measured in degrees. All EOMs in the 2D-OP become tilted 

to a set of new angles ΘLR, ΘMR, ΘSR, and ΘIR in regard to 

the primary eye globe position. 

The medial and inferior recti are agonists, while the 

lateral and superior recti are antagonists. 
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  ̂     ̇         (27) 

Application of Newton’s second law to the horizontal 

and vertical component of movement yields: 

   ̈                            ̇   (28) 

   ̈       (               )     (               )

            ̇   
(29) 

where J represents the eye globe’s inertial mass, ΔθHR 

represents the horizontal rotation of the eye, Δ ̇HR represents 

the horizontal velocity of eye rotation, and Δ ̈HR represents 

the horizontal acceleration. 

For the vertical component of movement, the following 

equation can be written: 

   ̈       (               )     (               )

            ̇   
(30) 

The forces represented by equations (29) and (30) are 

identical for all directions of movement, and therefore are 

not described in later subsections. 

H. Right-Upward Rotation 

The lateral and superior recti are agonists, while the 

medial and inferior recti are antagonists. 
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I. Left-Upward Rotation 

The medial and superior recti are the agonists, while the 

lateral and inferior recti are the antagonists. 
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J. Right-Downward Rotation 

The lateral and inferior recti are agonists, while the 

medial and superior recti are antagonists. 
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K. Representation of the 2D-OP via two 1D-OP 

Force equations represented by (24)-(42) indicate that 

equations of all forces and for all directions of movement 

can be separated into only vertical and horizontal 

components, allowing us to employ the mechanism 

illustrated by equations (15)-(21) to generate each 

component of movement separately. The general form of 

this solution is represented by the following set of equations: 

 ̇       (43) 

 ̇       (44) 

where A and B are transition matrices, x and y are state 

vectors, and u and c are control vectors for the horizontal 

and vertical components respectively. The choice of the 

transition matrix and control vector depends on the direction 

of movement in each of its components. Movements in the 

positive direction are performed by the transitional matrix 

and control vector described by (22), and negative direction 

movements are performed by (23). State vectors are 

populated by the EOMs responsible for the agonist and 

antagonist roles. 

The reduction of the 12 variable system to two 6 variable 

sets allows a considerable reduction (up to 4 times) in the 

overall computational requirements, and provides an 

opportunity to efficiently utilize multi-core systems for the 

generation of the 2D-OP eye movement signal. 



IV. METHODOLOGY 

L. Participants 

Eye movement data was collected for a total of 30 

subjects (24 males / 6 females), ages 18-40 with an average 

age of 23 (SD = 5.3).  Mean positional accuracy of the 

recordings averaged between all calibration points was 1.31° 

(SD = 0.88°). For consistency, only data recorded from the 

right eye was used in the current paper. Data collection 

procedures were approved by the Texas State University 

Institutional Review Board, and all subjects provided 

informed consent. 

M. Apparatus & Software 

Eye movements were recorded using an EyeLink II eye 

tracker [33] running at 1000 Hz, a chinrest was employed to 

improve eye tracking accuracy, and subjects were positioned 

such that the primary eye position corresponded to the center 

of the screen. Stimuli were presented on a flat screen 

monitor positioned at a distance of roughly 685 millimeters 

from the subject, with screen dimensions of 640 × 400 

millimeters, and resolution of 2560 × 1600 pixels. 

All algorithms and data analysis were implemented and 

performed in MATLAB. 

N. Data Collection Procedure 

The screen was divided into four Cartesian quadrants, 

with the center of the screen (and central eye position) as the 

origin. Eye movement records were generated for 

participants’ centrifugal saccades at different angles within 

the 1st quadrant (upper-right). Due to the screen dimensions: 

stimuli of 3°, 6°, 9°, 12°, 15°, and 18° amplitude were 

presented at oblique angles of 0°, 15°, 30°, 45°, and 60°; 

stimuli of 3°, 6°, 9°, 12°, and 15° amplitude were presented 

at oblique angles of 75° and 90°. This resulted in a total of 

40 stimulus-evoked oblique saccades per recording, for 1200 

saccades across all subjects. A stimulus was presented at the 

origin before each saccade, and the order of stimulus 

presentation was randomized for each subject according to a 

uniform distribution. The stimulus was presented as a white 

dot of 30 pixels diameter with a smaller black dot of 12 

pixels diameter at its center, the background was black, and 

each stimulus was shown for 1000 ms. 

O. Saccade Extraction Process 

The raw eye movement records were processed to 

identify individual points as being part of a fixation or 

saccade. A velocity threshold algorithm [34] was employed 

to classify individual points with a velocity greater than 

25°/sec as saccades, where all remaining points were 

assumed to be fixations. Following the initial classification, 

a micro-saccade filter re-classified saccades with amplitude 

less than 0.25° as fixations and a micro-fixation filter re-

classified fixations with a duration less than 50 milliseconds 

as saccades. 

Stimulus-evoked centrifugal saccades were extracted 

from the eye movement records according to the following 

criteria: the saccade occurs between 100 and 500 ms after 

the stimulus is displayed; the saccade has a duration between 

10 and 200 ms; at least one component of the saccade has a 

positive amplitude. Only centrifugal saccades were 

considered, as it has been found that centrifugal/centripetal 

saccades often exhibit different dynamics [25] By filtering 

saccades in this manner, the algorithm was able to identify 

an average of 38 (SD = 2.1) stimulus-evoked saccades per 

recording. Across all subjects, 1140 of the possible 1200 

stimulus-evoked saccades were identified. 

P. Data Sets 

Extracted centrifugal saccades were divided into three 

groups according to their amplitude. The first group 

consisted of saccades with amplitudes between 0-10°, the 

second group of 0-15°, and the third group included all 

recorded saccades, where the maximum vectorial amplitude 

was approximately 24°. All saccade groups were employed 

for the 2D-OP testing. 

Algorithm: OPC Estimation 
    Input: Measured saccade trajectories 
    Output: Estimated Oculomotor plant characteristics (OPC) 

1. Perform optimization of all OPC across all possible pulse 

widths for each saccade using NM to minimize the absolute 

positional error between the measured and simulated 

trajectory. This generates an OPC set for each possible 

pulse width of each saccade. 

2. Select initial 3 least-error OPC sets for each saccade. 

3. For each subject, average and fix the least-error values of 

the following model OPC across all saccades: K
SE_AG

, 

K
SE_ANT

, K
LT_AG

, K
LT_ANT

, N
AG_C

, N
ANT_C

, B
P
, B

AG
, B

ANT
, J, 

τ
ANT_AC

, τ
AG_DE

, τ
ANT_DE

, N
FIX_C

, N
ANT_SAC

. 

4. Perform optimization on the remaining OPC (τ
AG_AC

, 

N
AG_SAC

) across all possible pulse widths (PW
AG

) for each 

saccade using NM to minimize the absolute positional error 

between the measured and simulated trajectory. 

5. Select the 3 least-error OPC subsets for each saccade. 

6. For each subject, fix τ
AG_AC

 to the mode of its least-error 

values. 

7. Perform optimization on the remaining OPC (N
AG_SAC

) 

across all possible pulse widths (PW
AG

) for each saccade 

using NM to minimize the absolute positional error between 

the measured and simulated trajectory. 

8. Select the 3 least-error OPC subsets for each saccade. 

9. For each subject, perform exponential regression of the 

form represented by equation (12) on the values of N
AG_SAC

. 

10. Calculate absolute positional error of the various OPC sets 

across all possible pulse widths (PW
AG

) for each saccade. 

11. Select the 3 least-error pulse widths for each saccade. 

12. Perform linear regression of the form represented by 

equation (11) on the values of PW
AG

. 

Figure 3. OPC estimation psuedocode. 



Q. Estimation of Oculomotor Plant Characteristics (OPC) 

The goal of the OPC estimation procedure is to derive a 

set of OPC values that allows for accurate simulation of 

recorded saccade trajectories. The procedure assumes that 

OPC are unique for each individual and are fixed within the 

individual. 

To investigate the ability of the 2D-OP to simulate 

measured human saccade trajectories, an optimization 

problem was defined to reduce the sum of absolute 

positional error between a measured and simulated saccade. 

That is, Error = Σ |mi – si|, where mi is the measured position 

at a given time, i, and si is the simulated position produced 

by the 2D-OP model. 

The following algorithm takes as an input all saccades 

recorded for a given individual and outputs a set of fixed 

OPC values for that individual. OPC for the horizontal and 

vertical trajectory of each saccade were optimized 

separately, and all model OPC were allowed to vary, these 

include (with initial values): KSE_AG = 2.5, KSE_ANT = 2.5, 

KLT_AG = 1.2, KLT_ANT = 1.2, NAG_C = 0.8, NANT_C = 0.3, BP = 

0.06, BAG = 0.046, BANT = 0.022, J = 0.000046, τAG_AC = 

11.7, τANT_AC = 2.4, τAG_DE = 2.0, τANT_DE = 1.9, NFIX_C = 

14.0, NAG_SAC = 100.0, NANT_SAC = 0.5, PWAG for each 

component; where KP = NAG_C – NANT_C in all relevant 

equations. Optimization was performed across all possible 

pulse widths within the duration of a given saccade using the 

Nelder-Mead (NM) simplex search algorithm [35] 

(MATLAB‘s fminsearch implementation) to minimize the 

absolute positional error between the measured and 

simulated trajectory; the pulse width with the least-error 

OPC set was selected for each saccade component. This 

resulted in the optimization of 18 OPC per component of 

TABLE I 
ESTIMATED OCULOMOTOR PLANT CHARACTERISTICS 

Parameter 

0 – 10° Amplitude 0 – 15° Amplitude All Saccades 

Horizontal Vertical Horizontal Vertical Horizontal Vertical 

μ σ μ σ μ σ μ σ μ σ μ σ 

KSE_AG 2.6 0.3 2.4 0.3 2.5 0.3 2.4 0.2 2.5 0.3 2.3 0.3 

KSE_ANT 2.9 0.5 2.7 0.4 2.9 0.4 2.6 0.4 2.9 0.4 2.6 0.4 

KLT_AG 1.3 0.1 1.3 0.1 1.3 0.1 1.3 0.1 1.3 0.1 1.3 0.1 

KLT_ANT 1.4 0.1 1.4 0.1 1.4 0.1 1.4 0.1 1.4 0.1 1.4 0.1 

NAG_C 0.88 0.09 0.86 0.06 0.88 0.08 0.86 0.05 0.88 0.08 0.86 0.04 

NANT_C 0.48 0.03 0.48 0.03 0.48 0.03 0.48 0.03 0.48 0.03 0.48 0.02 

BP 0.044 0.009 0.045 0.009 0.042 0.008 0.043 0.008 0.040 0.007 0.043 0.007 

BAG 0.043 0.005 0.045 0.005 0.040 0.004 0.042 0.004 0.040 0.004 0.041 0.004 

BANT 0.017 0.004 0.019 0.003 0.018 0.003 0.019 0.003 0.017 0.003 0.019 0.003 

J 5.0(10-5) 0.8(10-5) 5.3(10-5) 0.7(10-5) 5.0(10-5) 0.8(10-5) 5.4(10-5) 0.6(10-5) 4.9(10-5) 0.8(10-5) 5.4(10-6) 0.6(10-5) 

τAG_AC 1.5 0.1 1.5 0.1 1.5 0.0 1.5 0.0 1.5 0.0 1.5 0.0 

τANT_AC 3.1 0.2 3.0 0.2 3.1 0.2 3.0 0.2 3.1 0.2 3.0 0.2 

τAG_DE 2.4 0.1 2.4 0.1 2.4 0.1 2.4 0.1 2.4 0.1 2.4 0.1 

τANT_DE 2.0 0.2 2.1 0.2 2.1 0.1 2.2 0.1 2.1 0.1 2.2 0.1 

NFIX_C 14.7 1.6 14.1 1.9 15.6 1.6 14.6 1.7 15.9 1.4 14.6 1.6 

NAG_SAC PULSE * 349.6 (1 – e–|A| / 28.4) 274.3 (1 – e–|A| / 23.4) 175.3 (1 – e-|A| / 17.5) 216.4 (1 – e-|A| / 23.6) 163.3 (1 – e-|A| / 17.7) 144.7 (1 – e-|A| / 13.8) 

NANT_SAC PULSE 0.52 0.03 0.51 0.03 0.51 0.03 0.51 0.03 0.51 0.02 0.51 0.03 

PWANT * 1.2 |A| + 6.0 1.6 |A| + 5.7 1.6 |A| + 7.4 1.8 |A| + 6.5 1.6 |A| + 9.0 1.8 |A| + 7.0 

p1 1.2 0.7 1.6 0.9 1.6 0.6 1.8 0.7 1.7 0.6 1.7 0.8 

p2 6.1 3.4 5.8 2.8 7.3 3.5 6.7 2.1 2.3 4.3 1.6 3.0 

p3 2.6(105) 3.6(105) 3.8(105) 4.0(105) 1.8(105) 3.5(105) 2.9(105) 4.7(105) 9.4(104) 2.4(105) 2.5(105) 3.6(105) 

p4 2.1(104) 2.4(104) 3.4(104) 3.5(104) 1.8(104) 3.3(104) 3.5(104) 5.8(104) 1.3(104) 3.3(104) 3.0(104) 3.9(104) 

 * Due to high variability in the values of p1-p4, an additional regression was performed across all subjects to provide a more accurate representation. 

TABLE II 
POSITIONAL ACCURACY 

Component 

0 – 10° Amplitude 0 – 15° Amplitude All Saccades 

RMSE R² RMSE R² RMSE R² 

μ σ μ σ μ σ μ σ μ σ μ σ 

Horizontal 0.63° 0.61° 0.83 0.25 0.72° 0.64° 0.85 0.25 0.81° 0.96° 0.86 0.24 

Vertical 0.64° 0.58° 0.84 0.24 0.77° 0.82° 0.85 0.24 0.87° 0.96° 0.85 0.25 

Oblique 0.64° 0.60° 0.84 0.25 0.75° 0.73° 0.85 0.24 0.84° 0.96° 0.85 0.24 

 TABLE III 
VELOCITY ACCURACY 

Component 

0 – 10° Amplitude 0 – 15° Amplitude All Saccades 

RMSE R² RMSE R² RMSE R² 

μ σ μ σ μ σ μ σ μ σ μ σ 

Horizontal 98°/s 283°/s 0.47 0.29 103°/s 309°/s 0.49 0.29 116°/s 367°/s 0.51 0.29 

Vertical 100°/s 287°/s 0.39 0.27 103°/s 272°/s 0.40 0.27 116°/s 333°/s 0.39 0.27 

Oblique 118°/s 400°/s 0.55 0.26 124°/s 409°/s 0.59 0.25 141°/s 493°/s 0.59 0.25 

 



each saccade, or 36 OPC to describe a given saccade within 

the 2D-OP. 

This process was repeated in several stages, with certain 

OPC being fixed to their average least-error value at each 

stage, with the goal of stabilizing constants first (e.g. KSE, 

KLT, BP, J, etc.), followed by equations (e.g. NAG_SAC, PW, 

etc.) ordered by increasing complexity. The output from 

each stage is provided as an input to the subsequent stage. At 

each stage, fixing certain OPC results in the formation of 

more stable and noticeable patterns in the values of the 

remaining OPC, allowing more accuracy in the resulting 

optimization and subsequent regression of parameter values. 

Several optimization techniques were considered and the 

heuristic presented in Figure 3 was selected because it 

produced OPC that allow the 2D-OP to simulate more 

accurate trajectories. 

This process was repeated on sub-intervals of 0-10° and 

0-15° amplitude, to assess the ability of the 2D-OP to model 

saccades within a reduced range. 

R. Comparison Metrics 

In comparing the saccades simulated by the 2D-OP to 

measured (or expected) values, the following metrics were 

employed, where m indicates a measured/expected value, p 

indicates a predicted/simulated value, and n denotes the total 

number of data points being compared: 

     
√∑      

 
 (45) 

   
  ∑      ∑   ∑     

  ∑      ∑        ∑      ∑      
 (46) 

V. RESULTS 

S. Simulation Results 

Table I presents averaged OPC parameters across all 

subjects, Table II presents the accuracy results of the OPC 

estimation experiment, specifically the RMSE of the 

measured vs. simulated saccade trajectories, and the R² 

correlation between the measured and simulated saccade 

trajectories, Table III presents the accuracy of the simulated 

vectorial velocity, similar to Table II, and Table IV gives the 

average main sequence equations for the various oblique 

angles and the corresponding R² of the regression. Figures 3-

5 show examples of measured and simulated main sequences 

from several subjects. Each line in those figures represents a 

different oblique angle of movement. Figures 6-7 presents 

examples of measured and simulated trajectories for the 

oblique saccades. Figures 9-11 present corresponding 

velocity profiles. 

TABLE IV 
MEASURED AND SIMULATED OBLIQUE MAIN SEQUENCES, VPEAK = VMAX (1 – e–|Amplitude| / C) 

Oblique Angle 

0 – 10° Amplitude 

Measured Simulated 

VMAX C R² VMAX C R² 

μ σ μ σ μ σ μ σ μ σ μ σ 

0° 539 38 4.32 0.59 0.94 0.06 519 22 5.17 3.10 0.99 0.02 

15° 553 149 4.71 1.90 0.88 0.15 634 212 6.08 3.65 0.94 0.15 

30° 542 125 4.55 1.66 0.81 0.16 572 137 5.85 1.73 0.96 0.09 

45° 587 118 5.22 2.43 0.85 0.19 649 159 6.10 2.00 0.97 0.04 

60° 601 223 5.51 3.32 0.75 0.32 584 171 6.24 2.03 0.96 0.06 

75° 563 125 4.37 2.34 0.78 0.23 575 160 6.93 4.89 0.96 0.04 

90° 586 112 4.75 1.20 0.82 0.14 358 29 4.27 1.11 0.98 0.02 

Oblique Angle 

0 – 15° Amplitude 

Measured Simulated 

VMAX C R² VMAX C R² 

μ σ μ σ μ σ Μ σ μ σ μ σ 

0° 597 128 5.37 1.92 0.79 0.25 630 156 9.33 2.94 0.94 0.07 

15° 583 128 4.97 3.25 0.82 0.20 675 152 9.33 3.78 0.94 0.17 

30° 627 129 5.38 2.32 0.84 0.14 654 161 8.01 3.17 0.95 0.05 

45° 616 118 5.57 2.54 0.82 0.25 638 158 7.86 2.66 0.96 0.05 

60° 590 175 4.99 2.79 0.59 0.38 579 150 7.19 2.37 0.95 0.06 

75° 557 114 4.59 1.64 0.81 0.18 633 173 9.39 4.37 0.93 0.12 

90° 619 149 6.28 2.43 0.78 0.20 611 319 8.06 5.26 0.99 0.01 

Oblique Angle 

All Saccades 

Measured Simulated 

VMAX C R² VMAX C R² 

μ σ μ σ μ σ μ σ μ σ μ σ 

0° 584 108 5.56 1.65 0.82 0.24 633 121 10.38 3.43 0.95 0.07 

15° 602 116 5.37 2.11 0.80 0.18 667 121 9.55 3.32 0.97 0.03 

30° 625 95 5.94 3.05 0.84 0.14 649 155 8.28 3.26 0.95 0.05 

45° 644 131 6.24 2.97 0.84 0.16 680 131 8.88 2.69 0.96 0.05 

60° 615 179 5.16 2.71 0.59 0.35 606 165 8.81 3.79 0.94 0.09 

75° 559 100 4.49 1.56 0.75 0.27 577 136 8.24 3.45 0.93 0.11 

90° 624 152 6.33 2.52 0.76 0.20 447 91 6.03 1.73 0.89 0.23 

 



T. Estimated Oculomotor Plant Characteristics 

With the exception of NAG_SAC, obtained OPC values are 

relatively consistent across the considered intervals 

(generally varying by less than 10% in both μ and σ) and fall 

within a degree of magnitude from their initial generic 

values. 

U. Accuracy of Simulated Saccades 

The results indicate that positional error was small (0.63-

0.87° on average). As the range of saccades included in the 

OPC estimation of a given subject increases, both the RMSE 

and R² of the simulated trajectory increases. That is, as the 

data set increases, the average positional error of simulated 

saccades across that data set increases, but the average 

correlation between measured and simulated saccades also 

increases. This is likely due to the inclusion of greater 

Figure 3. 0 – 10° amplitude, 

oblique main sequence, subject 8. 
Figure 4. 0 – 15° amplitude, 

oblique main sequence, subject 24. 
Figure 5. All saccades, oblique 

main sequence, subject 24. 

Figure 8. Comparative trajectory of 

a 15° saccade at a 30° angle. 

Figure 11. Comparative velocity of 

a 15° saccade at a 30° angle. 

Figure 6. Comparative trajectory of 

a 3° saccade at a 45° angle. 

Figure 9. Comparative velocity of a 

3° saccade at a 45° angle. 

Figure 7. Comparative trajectory of 

a 12° saccade at a 60° angle. 

Figure 10. Comparative velocity of 

a 12° saccade at a 60° angle. 



amplitude saccades in subsequent data sets, where larger 

saccades contribute relatively more error to the RMSE 

calculation. Such error might occur due to the linear 

representation of the OP by the 2D-OP model, as the linear 

representation is more accurate toward primary eye position. 

The results are similar to that of the positional accuracy, 

as the range of saccades included in OPC estimation 

increases, both the RMSE and R² of the simulated velocity 

increase. It should also be noted, that across all saccades the 

ratio of peak velocity to average velocity (Q) of measured 

saccades had an average value of 2.74 (SD = 3.02), while the 

simulated Q had an average value of 2.01 (SD = 0.66). 

V. Measured & Simulated Oblique Main Sequences 

The main sequence relationship for the oblique angles of 

each subject was calculated separately based on the available 

data for both measured and simulated saccades. In some 

cases, insufficient data points for a given angle and outliers 

resulted in unusable fits. To mediate the effect of including 

this data in the average, relationships were excluded based 

on the following criteria: if regression failed for a given data 

set, the R² of the regression was negative, or the value of 

VMAX was unrealistically high (>1000 deg/s), the 

relationship was excluded from the averaged relationship 

values. Because of this exclusion, the averaged value for 

each angle was not necessarily drawn from the average data 

across all subjects, but only a subset of this. Of the oblique 

angles, 0° and 90° tended to have the most data loss in this 

respect. The explanation being that purely horizontal/vertical 

saccades are very rare, and even when the eye is 

programmed for such a saccade, there is a certain amount of 

drift that occurs in the orthogonal component, resulting in a 

skewed oblique angle. 

As expected from the literature [1, 18, 19, 22, 23], the 

simulated values of VMAX produced for all angles (358 ~ 680 

deg/s) are within a realistic range (400 ~ 800 deg/s), as is the 

curvature C in Equation (1). The average R² for regressions 

of measured saccade data are often lower than the average 

R² for simulated saccade data, suggesting that the model 

provides a stricter adherence to the main sequence 

relationship than is found in normal human saccade data 

(possibly due to noise or measurement accuracy). 

VI. DISCUSSION 

W. Evaluation Limitations 

The 2D-OP is able to simulate saccades from any point 

to any point in a two-dimensional plane; however, the 

evaluation of the 2D-OP was performed only for centrifugal 

saccades in the first quadrant that originated from at or near 

the primary eye position. This simplification was necessary 

to establish a thorough baseline for the accuracy of the 2D-

OP. Other types of oblique saccades might require 

adjustments to the parameters responsible for generating the 

neuronal control signal, and will require some mechanism to 

incorporate the information about the coordinates of 

onset/offset position in addition to saccade amplitude. 

Additional research is required to establish those strategies. 

X. 2D-OP Simplifications 

The 2D-OP is not an exact replica of the human 

oculomotor plant. 1) The 2D-OP employs a linear 

representation of the major anatomical components, which 

in real systems are non-linear [36]. 2) The 2D-OP does not 

explicitly account for the effects of the superior and inferior 

obliques, primarily responsible for extorsion/intorsion of the 

eye globe. 3) The 2D-OP models rotations as translations, 

which is acceptable for saccades to secondary positions, but 

neglects the non-commutativity of rotations when modeling 

saccades to tertiary positions. Considering the 

simplifications, the results presented by Tables II-IV 

indicate that the 2D-OP is able to simulate centrifugal 

oblique saccades with properties resembling those produced 

by normal humans. 

Y. Practical Advantages & Applications of the 2D-OP 

The 2D-OP, however simplified, represents the major 

anatomical components of the OP.  The simple pulse-step 

form of the neuronal control signal allows simulation of 

saccade trajectories in cases when the onset and offset 

coordinates are provided to the model with the equations 

responsible for pulse height (Equation (14)) and pulse width 

(Equation (11)) computation. The 2D-OP can be represented 

as separate 1D-OP models for each component of 

movement, reducing the amount of computations done by up 

to 4 times and allowing parallel computation of each 

component. 

Practical applications of the 2D-OP might include: 1) 

biometric systems, in which individual anatomical 

components represented in the 2D-OP allow for the unique 

identification of individuals [37]; 2) human-computer 

interaction, in which simulated saccadic trajectories allow 

research into the properties of the eye movement signal, 

providing capabilities for developing extremely fast target 

selection methods, where selection occurs at saccade onset 

[38]; 3) usability, in which individual EOM forces can be 

approximated by the 2D-OP, providing an opportunity to 

estimate the physical effort exerted by a user during a 

specific task [39]; 4) eye tracking, in which the linear design 

of the 2D-OP allows its encapsulation in Kalman filter form, 

providing the means for robust signal recovery and noise 

reducing facilities [7], and saccade trajectory prediction for 

gaze-contingent compression [40]. 

VII. CONCLUSION 

This paper has presented a two-dimensional linear 

homeomorphic model (2D-OP) of the oculomotor plant 

driven by a simplified pulse-step neuronal control signal. An 

optimization algorithm was developed that estimates the 

characteristics of the oculomotor plant as represented by the 

2D-OP from the recorded eye movement signal of an 

individual. 

To assess performance of the 2D-OP, approximately 

1040 centrifugal oblique saccades were recorded from 30 

humans. The results suggest that the 2D-OP driven by 

person-specific oculomotor plant characteristics is capable 

of simulating saccadic eye movements with characteristics 



resembling those of normal humans. The most accurate 

simulation results were obtained for the saccades with 

amplitudes of up to 10°, however even larger saccades were 

simulated relatively accurately with average positional and 

velocity error not exceeding 0.87° and 141°/s respectively. 

Oblique main sequences generated by the 2D-OP resulted in 

a better fit to the stereotyped exponential form than the 

recorded human data. 

The presented 2D-OP model can be simplified into two 

smaller one-dimensional models that produce identical 

simulation results but considerably speed up the simulation 

process. The practical applications of such a model might 

include: enhanced security in biometric identification 

systems; improved noise reduction and signal recovery 

facilities for eye tracking systems; and additional metrics 

from which to determine user effort during usability testing. 
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