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I.  INTRODUCTION 

 With rapidly increasing power densities in high electron mobility electronic 

devices, device self-heating is a growing concern.  Proper thermal management is 

imperative to maintain device efficiency and mitigate device failure.  A proposed 

solution is to place devices in intimate thermal contact with a good thermal 

conductor, such as diamond.  Modern chemical vapor deposition (CVD) diamond 

growth has greatly improved the quality of synthetic diamond thin films, but the 

first few hundred nanometers (called the nucleation layer) is still very poor.1 

Particularly, due to the morphology of the diamond polycrystals, the lateral thermal 

conductivity of CVD is very low compared to single crystals.1,2  In order to optimize 

the thermal management of devices using diamond, it is imperative to understand 

the thermal properties of CVD diamond thin films. 

 Thermal conductivity values for diamond thin films have been measured 

previously.1,2 However, the devices used in this measurement are subject to an 

anisotropic stress gradient due to the thermal expansion mismatch between 

diamond and the metal heater and substrate.  In this work, the lateral thermal 

conductivity of a CVD diamond thin film is interrogated via micro-Raman mapping 

of temperature distribution near a fabricated micro-heater.  Additionally, in order to 

eliminate stress as a source of error, hexagonal boron nitride (h-BN) nano/micro-

particles are deposited on the diamond surface to be used as stress-free Raman 

temperature probes. 

 A novel technique for depositing h-BN nano/micro-particles is developed in this 

work.  A suspension of h-BN in ethylene glycol is dropped into a bead of methanol 
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that is placed on the sample.  The difference in surface tension between methanol 

and ethylene glycol triggers precipitation of h-BN particles onto the sample surface.  

This technique is mild enough to be used on sensitive samples.  Additionally, the 

temperature probes may be deposited on any surface in order to map surface 

temperature.  This may prove to be an invaluable tool for temperature 

measurement of fully metalized, or even packaged electronic devices
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II.  BACKGROUND 

The accurate determination of local temperatures of devices is important for 

understanding how to efficiently mitigate device self-heating.  Device self-heating 

plagues all electronic devices, including silicon MOSFET’s,3 laser diodes,4,5 and high 

electron mobility transistors (HEMT’s).6–10   

One technique for measuring temperature involves placing a thermocouple in 

physical contact with the system to be studied.  Resistive micro-heaters may be 

fabricated on the surface of a device.10,11 These contact thermometers are limited in 

the sense that they can only measure the temperature at a fixed location.  Non-

contact optical methods are nondestructive and have the freedom to measure 

multiple local temperatures on a single device.  Many measurements of thermal 

conductivity rely on transient measurements such as time domain thermal 

reflectance (TDTR).2,8 This technique requires the sample to be coated with an 

aluminum transducer layer that may impede the functionality of the device.  Infra-

red microscopy can be used to map temperatures in an operating device.12  

However, the spatial resolution of this method is poor.  Additionally, thermal 

conductivity can be measured by holographic interferometry.13  The luminescence 

intensity and lifetime of materials can be exploited to determine temperature.  

Fluorescent nanoparticles are often used to determine local temperatures of 

physiological samples.14   

Many Raman spectroscopy techniques have been developed to determine 

local temperature rises in materials.  One such optical method involves measuring 

the intensity ratio of the Stokes and anti-Stokes peaks.15 This measurement, 
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however, is perturbed by electric field induced non-equilibrium longitudinal-optical 

phonons and is therefore unfit for measuring temperatures of driven devices.15 

Additionally, this technique requires a very broad spectral range that straddles the 

laser line.  The Raman linewidth of specific materials is sensitive to temperature and 

can be used to characterize temperatures in crystalline materials.16 This sensitivity 

is weak, however, making accurate temperature measurements using Raman 

linewidth somewhat challenging.  Additionally, local stresses greatly perturb the 

Raman linewidth, invalidating this technique for measurement of polycrystalline 

samples, such as CVD diamond thin films.  

Kuball et. al. have demonstrated that materials deposited on a surface may act as 

micro-Raman surface temperature probes.1,17  Micro-diamonds deposited on the 

surface of a device serve to accurately and rapidly measure the surface temperature 

of the device.17  Specifically, a micro-diamond suspension in ethanol was deposited 

on HEMT device.  Diamond particles present on the gate were used as Raman 

probes to measure the surface temperature.  Moreover, the Raman setup was 

equipped with an acousto-optical modulator to perform time-resolved Raman 

thermography.  Although this method has proven to work well, it is not possible to 

measure diamond surface temperatures.  Another proven method is to use silicon 

nanowires as surface temperature probes.1  However, the heat flow through the 

length of the wire may confound a measurement of lateral thermal conductivity.  

Additionally, proper care must be taken to ensure there is no local heating in the 

nanowire; the laser energy is above the silicon bandgap, therefore absorption will 

cause the silicon to heat.   This is alleviated by reducing the laser power such that 
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there is no local heating.  In this work, the use of a material with a much higher 

bandgap eliminates the concern for laser heating the micro/nano particle 

temperature sensors. 
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III. MATERIALS 

3.1 Diamond 

 Diamond has a crystal structure that can be thought of as two interpenetrating 

face-centered cubic Bravais lattices offset by ¼ of the unit cell diagonal.  Although 

the structure is loosely packed (the atomic packing factor is 34%), diamond has a 

remarkable hardness.  Each atom is sp3 hybridized, and sits at the corner of a 

tetrahedron, as shown in Figure 1.  This configuration lends to extremely strong 

bonds.  Additionally, due to the light atomic mass and strong bonds, diamond has an 

enormous Debye temperature (2230K)18, the temperature at which all phonon 

modes are excited.  Diamond is an insulator with an indirect bandgap at ~5.4 eV.  

The heat carriers in diamond are therefore exclusively phonons.  Because carbon 

atoms are light, the phonon energies in diamond are very high, resulting in a high 

thermal conductivity of ~3320 W/m*K for isotopically enriched synthetic 

diamond.19 

3.2 Diamond Synthesis 

 Diamond, both natural and synthetic, is produced under extremely high 

temperature and pressure.  In the synthetic case, this process mimics the natural 

process, producing high quality stress free diamond.  This is however not a useful 

technique in the semiconductor industry in which the substrate is often fragile.   
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Figure 1: Diamond crystal structure.  The cell is cubic with a lattice constant of 3.57 Å.  Shown are 
the two interpenetrating FCC lattices.  The arrows indicate the relative movement of the zone 

centered optical phonon involved in first order Raman scattering in diamond.20 

 

Also, this method of diamond growth is very costly.  To avoid such harsh 

environments, it is possible to grow diamond synthetically via chemical vapor 

deposition (CVD).  In CVD diamond growth, a substrate is coated with a nano-

diamond powder seed layer and placed in a high vacuum.  A dilute mixture of 

methane and hydrogen are slowly introduced into the chamber via an inert carrier 

gas (nitrogen or argon).  Some of the molecular hydrogen gas is converted to atomic 

hydrogen by application of microwave energy, an electric discharge, or a hot 

filament.  The gasses react with the diamond seeds causing them to grow.  

Eventually, the seed crystals merge, causing the lateral growth to cease.  As the 

diamond film grows thicker, the crystal domains join together and the grain 

boundaries become less distinct.  However, the first few hundred nanometers of 

growth are riddled with defects, domain boundaries, and non-diamond carbon 

materials, significantly influencing the material properties in this region.   
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 Diamond has a single zone-centered optical phonon centered around 1333 cm-1.  

This phonon has a relatively large Raman cross-section that is, as usual, dependent 

on the incident radiation frequency.20,21  The phonon frequency is dependent on 

temperature and stress, making it a useful tool for material characterization.  The 

lifetime of this phonon, and thus the Raman linewidth, is also dependent on such 

parameters, but will not be discussed in this work.   The Raman sensitivity of 

diamond (sp3) increases as the incident wavelength approaches the UV, whereas 

non-diamond carbon (sp2) is more sensitive to higher wavelengths (approaching 

infrared).22  

3.3 Hexagonal Boron Nitride 

 Hexagonal boron nitride (h-BN) adopts a one-atom thick hexagonal crystal 

structure similar to graphene with lattice sites alternating between boron and 

nitrogen.  Like diamond, it is an insulator with an indirect band gap of 5.955 eV.23  

Unlike diamond, it is readily available in particle form, making it attractive as a 

nano/micro sensor.  It is very chemically and thermally robust. 

h-BN has a zone-centered optical phonon that is centered around ~1366 cm-1.  

There is an additional Raman active optical phonon centered around 55 cm-1; it is 

very weak and will not be discussed in this work.  The E2g symmetric phonon 

centered around 1366 cm-1 has an empirically high Raman temperature coefficient 

(0.02025±0.00030 cm-1/°C), which makes it highly valuable for use as a surface 

temperature Raman probe.   
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Figure 2:  Hexagonal boron nitride crystal structure.24 
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IV.  THEORY 

Raman spectroscopy is a useful tool for characterizing materials due to its 

nondestructive nature.  In Raman scattering, incident light is scattered inelastically, 

where the energy difference is due to the annihilation or creation of a phonon 

(Stokes and Anti-Stokes, respectively).  The Raman shift, line width, polarization, 

and intensity can all provide valuable information about the material including 

chemical identification, stress and strain, doping concentration, local temperature, 

and more.   

The goal of this chapter is to elucidate the lattice dynamics that gives rise to 

phonon dispersion relations.  Next, classical and quantum derivations of Raman 

scattering will be introduced.  Additionally, the applications of Raman spectroscopy 

will be discussed.   

 

4.1 Harmonic Approximation of Lattice Dynamics 

Phonons are the collective normal mode vibrations in condensed phases of 

matter.  Due to their quantized nature, phonons are described as quasiparticles.  The 

following derivation of lattice dynamics and Raman theory relies heavily on 

Sampriti Bagchi’s work on Raman characterization of anharmonicity and alloying 

effects in semiconductors.25 In nonmetallic materials, vibrational energies are well 

separated from electronic energy levels.   Therefore, we can employ the Born-

Oppenheimer approximation to describe the eigenfunctions of the coupled system 

as the product of vibrational and electronic wavefunctions: 

  𝚿𝚿𝒏𝒏𝒏𝒏(𝒙𝒙,𝒖𝒖) = 𝝍𝝍𝒏𝒏𝒏𝒏(𝒖𝒖)𝝓𝝓𝒏𝒏(𝒙𝒙,𝒖𝒖) (1)   
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where 𝜓𝜓𝒏𝒏𝒏𝒏(𝒖𝒖)is the vibrational wave function, 𝜙𝜙𝒏𝒏(𝒙𝒙,𝒖𝒖)is the many body electronic 

wavefunction, 𝑛𝑛 and 𝜈𝜈  are the principle electronic and vibrational quantum 

numbers, respectively, and 𝒙𝒙 and 𝒖𝒖are the electronic coordinates and nuclear 

displacement, respectively.  The electronic wavefunctions is given by solving the 

many-electron Schrodinger equation: 

  [𝑇𝑇𝐸𝐸 + 𝑉𝑉𝐸𝐸𝐸𝐸(𝒙𝒙) + 𝑉𝑉𝐸𝐸𝐸𝐸(𝒙𝒙,𝒖𝒖) + 𝑉𝑉𝑁𝑁𝑁𝑁(𝒖𝒖)] 𝜙𝜙𝑛𝑛(𝒙𝒙,𝒖𝒖) = 𝐸𝐸𝑛𝑛(𝒖𝒖)𝜙𝜙𝑛𝑛(𝒙𝒙,𝒖𝒖) (2) 

where 𝑇𝑇𝐸𝐸  is the electronic kinetic energy, 𝑉𝑉𝐸𝐸𝐸𝐸(𝒙𝒙) is the electron-electron interaction 

potential, 𝑉𝑉𝐸𝐸𝐸𝐸(𝒙𝒙,𝒖𝒖) is the electron-lattice potential, and 𝑉𝑉𝑁𝑁𝑁𝑁(𝒖𝒖) is the nuclear-

nuclear potential, and 𝐸𝐸𝑛𝑛(𝒖𝒖) is the nth electronic eigenenergy.  Employing the 

adiabatic approximation, wherein the system remains in the many-electron ground 

state as the lattice moves, the effective potential (crystal potential) is taken to be 

equal to the electronic ground state energy eigenvalue: 

  𝑉𝑉(𝒖𝒖) = 𝐸𝐸0(𝒖𝒖) (3) 

 The equilibrium configuration of the lattice is given by the minimum of the 

crystal potential.  The displacements of the atoms are given as a 3n x N dimensional 

vector 

  𝒖𝒖 ≡ {𝑢𝑢𝛼𝛼(𝑙𝑙,𝑘𝑘)} (4) 

where l =1,…N indexes the unit cells of the crystal, k indexes each atom in the unit 

cell, and 𝛼𝛼 indexes the spatial position of the atom in the cell (x,y,z). 
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 It is useful to expand the crystal potential as a Taylor series in small 

displacements from equilibrium.  

  𝑉𝑉(𝒖𝒖) = 𝑉𝑉0 + ∑ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝛼𝛼(𝑙𝑙,𝑘𝑘)�0𝛼𝛼,𝑙𝑙,𝑘𝑘 𝑢𝑢𝛼𝛼(𝑙𝑙,𝑘𝑘) + 

   ∑ ∑ 𝜕𝜕2𝑉𝑉
𝜕𝜕𝑢𝑢𝛼𝛼(𝑙𝑙,𝑘𝑘)𝜕𝜕𝑢𝑢𝛼𝛼(𝑙𝑙,𝑘𝑘)�0𝛽𝛽,𝑙𝑙′,𝑘𝑘′ 𝑢𝑢𝛼𝛼(𝑙𝑙,𝑘𝑘)𝑢𝑢𝛽𝛽(𝑙𝑙′,𝑘𝑘′) + ⋯𝛼𝛼,𝑙𝑙,𝑘𝑘   (5) 

V0 is a constant representing the binding energy of the crystal, and thus can be set to 

zero when discussing the dynamics of lattice vibration.  The second term is equal to 

zero because the forces at equilibrium are zero.  Therefore, the first non-vanishing 

term is the quadratic term, giving rise to what is known as the harmonic 

approximation.  Higher order terms in the expansion give rise to anharmonic 

behavior such as thermal expansion and pressure dependent elastic constants.18,26 

The potential energy in the harmonic approximation is therefore given by 

  𝑉𝑉 = 1
2
∑ ∑ 𝜱𝜱𝛽𝛽,𝑙𝑙′,𝑘𝑘′ 𝑢𝑢𝛼𝛼(𝑙𝑙,𝑘𝑘)𝑢𝑢𝛽𝛽(𝑙𝑙′,𝑘𝑘′)𝛼𝛼,𝑙𝑙,𝑘𝑘   (6) 

where 𝜱𝜱 is a 3nN x 3nN interatomic force matrix given by the second derivatives 

with respect to displacement evaluated at equilibrium 

  𝜱𝜱 ≡ � 𝜕𝜕2𝑉𝑉
𝜕𝜕𝑢𝑢𝛼𝛼(𝑙𝑙,𝑘𝑘)𝜕𝜕𝑢𝑢𝛼𝛼(𝑙𝑙,𝑘𝑘)�0

�  (7) 

The vibrational Hamiltonian can then be written as 

  𝐻𝐻 = 1
2

(𝒑𝒑†𝑴𝑴−𝟏𝟏𝒑𝒑 + 𝒖𝒖†𝜱𝜱𝜱𝜱)  (8) 
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Where M is the diagonal matrix of masses  

  𝑴𝑴 = 𝑚𝑚𝑘𝑘𝛿𝛿𝑙𝑙𝑙𝑙′𝛿𝛿𝑘𝑘𝑘𝑘′𝛿𝛿𝛼𝛼𝛼𝛼  (9) 

 The equations of motion of the atoms are given by setting the force on the kth 

atom equal to the negative derivative of the crystal potential. 

  𝑚𝑚𝑘𝑘𝑢̈𝑢𝛼𝛼(𝑙𝑙,𝑘𝑘) = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢𝛼𝛼(𝑙𝑙,𝑘𝑘) = 𝑉𝑉 = 1

2
∑ 𝜱𝜱𝛽𝛽,𝑙𝑙′,𝑘𝑘′ 𝑢𝑢𝛽𝛽(𝑙𝑙′,𝑘𝑘′)  (10) 

Note that previously this first derivative was evaluated at equilibrium in order to 

arrive at the harmonic approximation.  Currently, however, this derivative is not 

evaluated at equilibrium, as that would yield the trivial solution in which there is no 

lattice vibration.  This equation is a second order homogeneous ordinary differential 

equation, thus it is valid to assume an oscillatory solution of the form 

  𝑢𝑢𝑙𝑙𝑙𝑙(𝒒𝒒,𝜔𝜔) = 𝑢𝑢𝑙𝑙𝑙𝑙𝑒𝑒𝑖𝑖[𝒒𝒒∙𝑹𝑹(𝑙𝑙)−𝜔𝜔𝜔𝜔]  (11) 

The normal mode frequencies are then the solution to the eigenvalue equation 

  �𝜱𝜱 − 𝜔𝜔𝑓𝑓𝑴𝑴�𝝍𝝍(𝑓𝑓) = 0  (12) 

where f=1…3Nn indexes the normal modes, and 𝝍𝝍(𝑓𝑓) = 𝜓𝜓(𝑙𝑙𝑙𝑙|𝑓𝑓) is the eigenvector 

of the corresponding lattice vibration with frequency  𝜔𝜔𝑓𝑓. 

 Because the matrices M and 𝜱𝜱 are Hermitian, they must satisfy the following 

conditions of orthonormality and completeness: 

  𝝍𝝍†(𝑓𝑓)𝑴𝑴𝑴𝑴(𝑓𝑓′) = 𝛿𝛿𝑓𝑓𝑓𝑓′ (13) 
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and 

  ∑ 𝑴𝑴𝑴𝑴(𝑓𝑓)𝝍𝝍(𝑓𝑓′)3𝑛𝑛𝑛𝑛
𝑓𝑓=1 = 𝑰𝑰 (14) 

where I is the identity matrix.  With these conditions, it is appropriate to write u as a 

linear combination of the eigenvectors 𝝍𝝍 such as 

  ∑ 𝝍𝝍(𝑓𝑓)𝑄𝑄𝑓𝑓𝑓𝑓  (15) 

where Qf are the normal coordinates of the crystal, defined as 

  𝑄𝑄𝑓𝑓 = 𝝍𝝍†𝑴𝑴𝒖𝒖∗ (16) 

The Hamiltonian can now be rewritten in terms of the dimensionless normal 

coordinates Qf. 

  𝐻𝐻 = 1
2
∑ �𝑄̇𝑄𝑓𝑓2 + 𝜔𝜔𝑓𝑓2𝑄𝑄𝑓𝑓2�𝑓𝑓  (17) 

The equation of motion then becomes 

  𝑄̈𝑄𝑓𝑓 + 𝜔𝜔𝑓𝑓𝑄𝑄𝑓𝑓 = 0   (18)  

 To describe the dynamics using quantum mechanics, the operators 𝑄𝑄𝑓𝑓 and  𝑄̇𝑄𝑓𝑓 

must satisfy the commutation relation �𝑄𝑄𝑓𝑓, 𝑄̇𝑄𝑓𝑓′� = 𝑖𝑖ℏ𝛿𝛿𝑓𝑓𝑓𝑓′.  In the language of second 

quantization, the vibrational Hamiltonian can be written as 

  𝐻𝐻 = ∑ ℏ𝜔𝜔𝑓𝑓 �𝑎𝑎𝑓𝑓
†𝑎𝑎𝑓𝑓 + 1

2
�𝑓𝑓    (19) 

where 𝑎𝑎𝑓𝑓
† and 𝑎𝑎𝑓𝑓 are the creation and annihilation ladder operators  
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  𝑎𝑎𝑓𝑓 = 1
�2ℏ𝜔𝜔𝑓𝑓

�𝑄̇𝑄𝑓𝑓 − 𝑖𝑖𝜔𝜔𝑓𝑓𝑄𝑄𝑓𝑓�  (20) 

The mode frequencies and eigenvectors are solutions to the eigenvalue equation 

(12) which can be rewritten as 

  ∑ �𝜙𝜙𝛼𝛼𝛼𝛼(𝑙𝑙𝑙𝑙, 𝑙𝑙′𝑘𝑘′) − 𝜔𝜔𝑓𝑓2𝑚𝑚𝑘𝑘𝛿𝛿𝑙𝑙𝑙𝑙′𝛿𝛿𝑘𝑘𝑘𝑘′𝛿𝛿𝛼𝛼𝛼𝛼�𝜓𝜓(𝑙𝑙′𝑘𝑘′𝛽𝛽|𝑓𝑓) = 0𝑙𝑙′,𝑘𝑘′,𝛽𝛽   (21) 

Using Bloch’s theorem, the solution can be written as plane waves 

  𝜓𝜓𝛼𝛼(𝑙𝑙𝑙𝑙|𝒒𝒒𝑗𝑗) = 𝑒𝑒𝛼𝛼�𝑘𝑘�𝒒𝒒𝑗𝑗�
�𝑁𝑁𝑁𝑁(𝑘𝑘)

𝑒𝑒𝑖𝑖𝒒𝒒∙𝑹𝑹(𝑙𝑙𝑙𝑙)  (22)  

where R(lk) indicates the equilibrium lattice vector corresponding to the kth atom in 

the lth primitive cell.  The phonon polarization vectors 

  {𝑒𝑒𝛼𝛼(𝑘𝑘|𝒒𝒒𝑗𝑗)} ≡ 𝒆𝒆(𝒒𝒒𝑗𝑗)  (23) 

satisfy the orthonormality condition 

  𝒆𝒆†(𝒒𝒒𝑗𝑗)𝒆𝒆(𝒒𝒒𝑗𝑗′) = 𝛿𝛿𝑗𝑗𝑗𝑗′   (24) 

where j=1,2,3,…3n index the phonon polarization branches. 

 Equation (21) can now be written as  

  ∑ 𝜙𝜙𝛼𝛼𝛼𝛼�𝑙𝑙𝑙𝑙,𝑙𝑙′𝑘𝑘′�

�𝑚𝑚𝑘𝑘𝑚𝑚𝑘𝑘′
𝑒𝑒�𝑖𝑖𝒒𝒒∙𝑹𝑹�𝒍𝒍′𝒌𝒌′��𝑙𝑙′𝑘𝑘′𝛽𝛽 𝑒𝑒𝛽𝛽(𝑘𝑘′|𝒒𝒒𝑗𝑗) = 𝜔𝜔𝑓𝑓2𝑒𝑒𝑖𝑖𝒒𝒒∙𝑹𝑹(𝑙𝑙𝑙𝑙)𝑒𝑒𝛼𝛼(𝑘𝑘|𝒒𝒒𝑗𝑗) (25) 

More compactly, the previous equation can be written as 

  ∑ �𝐷𝐷𝛼𝛼𝛼𝛼(𝑘𝑘𝑘𝑘′|𝒒𝒒) − 𝜔𝜔2(𝒒𝒒)𝛿𝛿𝑘𝑘𝑘𝑘′𝛿𝛿𝛼𝛼𝛼𝛼�𝑒𝑒(𝑘𝑘𝑘𝑘′|𝒒𝒒𝑗𝑗) = 0𝑘𝑘𝑘𝑘′   (26) 
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where  

  𝐷𝐷𝛼𝛼𝛼𝛼(𝑘𝑘𝑘𝑘′|𝒒𝒒) = 1

�𝑚𝑚𝑘𝑘𝑚𝑚𝑘𝑘′
∑ 𝜙𝜙𝛼𝛼𝛼𝛼(𝑙𝑙𝑙𝑙, 𝑙𝑙′𝑘𝑘′)𝑒𝑒[𝑖𝑖𝒒𝒒∙(𝑹𝑹(𝑙𝑙)−𝑹𝑹�𝑙𝑙′�]
𝑙𝑙′   (27) 

This can be written in matrix form as 

  [𝑫𝑫(𝒒𝒒) − 𝜔𝜔2(𝒒𝒒)𝑰𝑰]𝒆𝒆(𝒒𝒒𝑗𝑗) = 0  (28) 

where D(q) is known as the dynamical matrix.  For non-trivial solutions, the 

following determinant must vanish: 

   det[𝑫𝑫(𝒒𝒒) − 𝜔𝜔2(𝒒𝒒)𝑰𝑰] = 0  (29) 

The solutions to this equation yield the phonon dispersion relations in k-space, as 

shown in Figure 2. 

 

 

 

 

 

 

Figure 3:  Phonon dispersion of diamond.  The solid lines indicate ab-initio calculated spectra, 
whereas the points are neutron scattering data. 27 
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4.2 Raman Scattering 

 Incoherent light scattering (Rayleigh and Raman) is considered to be due to 

oscillating electric and magnetic multipole moments of the material induced by the 

incident electromagnetic waves.  This statement holds for both the classical and 

quantum treatment of Raman scattering described in the following sections. 

4.2.1 Classical Treatment 

 The following treatment is modeled after Derek Long’s work, The Raman Effect.28 

In classical electrodynamics it is well known that an oscillating electric (or 

magnetic) multipole will emit electromagnetic radiation.  As such, it is important to 

understand the dynamics of the induced dipole moment of the material due to 

incident radiation.  The total time-dependent electric dipole moment can be 

expanded in terms of electric field perturbations as  

  𝒑𝒑 = 𝒑𝒑(𝟏𝟏) + 𝒑𝒑(𝟐𝟐) + 𝒑𝒑(𝟑𝟑) + ⋯  (30) 

where 𝒑𝒑(𝟏𝟏) ≫ 𝒑𝒑(𝟐𝟐) ≫ 𝒑𝒑(𝟑𝟑) , so the series converges rapidly.  These perturbative 

terms are expressed as functions of the electric field as 

  𝒑𝒑(𝟏𝟏) = 𝜶𝜶 ∙ 𝑬𝑬  (31) 

   𝒑𝒑(𝟐𝟐) = 1
2
𝜷𝜷:𝑬𝑬𝑬𝑬  (32) 

   𝒑𝒑(𝟑𝟑) = 1
6
𝜸𝜸 ⋮ 𝑬𝑬𝑬𝑬𝑬𝑬   (33) 

where 𝜶𝜶  is the second rank polarizability tensor, 𝜷𝜷  is the third rank 

hyperpolarizability tensor, and 𝜸𝜸 is the fourth rank second-hyperpolarizability 
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tensor.  Note that in the above equations, the electric field is written in matrix form.  

The hyperpolarizability and second-hyperpolarizability terms describe two and 

three photon processes and will be neglected in this treatment.   

 Light incident on a material will induce an oscillating dipole moment.  If 

additional vibrations (phonons) are created or annihilated in this process, the 

scattered light will contain a sum or difference of the combined oscillatory 

processes.  Classically, this can be described by expanding the components of the 

polarizability tensor in terms of small perturbations of the normal coordinates as 

   𝛼𝛼𝜌𝜌𝜌𝜌 = �𝛼𝛼𝜌𝜌𝜌𝜌�0 + ∑ �𝜕𝜕𝛼𝛼𝜌𝜌𝜌𝜌
𝜕𝜕𝑄𝑄𝑘𝑘

�
0
𝑄𝑄𝑘𝑘𝑘𝑘 + ∑ � 𝜕𝜕

2𝛼𝛼𝜌𝜌𝜌𝜌
𝜕𝜕𝑄𝑄𝑘𝑘𝜕𝜕𝑄𝑄𝑙𝑙

�
0
𝑄𝑄𝑘𝑘𝑄𝑄𝑙𝑙𝑘𝑘,𝑙𝑙 + ⋯  (34) 

Assuming harmonic motion, the normal coordinates 𝑄𝑄𝑘𝑘 have a time dependence 

   𝑄𝑄𝑘𝑘 = 𝑄𝑄𝑘𝑘0 cos(𝜔𝜔𝑘𝑘𝑡𝑡 + 𝛿𝛿𝑘𝑘)  (35) 

where 𝜔𝜔𝑘𝑘 is the frequency of the kth vibrational mode and 𝛿𝛿𝑘𝑘 is a phase factor.  Here, 

we introduce a derived polarizability tensor 𝜶𝜶𝒌𝒌′  which has components  

   �𝛼𝛼𝜌𝜌𝜌𝜌′ �
𝑘𝑘

= �𝜕𝜕𝛼𝛼𝜌𝜌𝜌𝜌
𝜕𝜕𝑄𝑄𝑘𝑘

�
0

  (36) 

in order to rewrite the polarizability tensor with explicit time dependence as 

   𝜶𝜶𝒌𝒌 = 𝜶𝜶𝟎𝟎 + 𝜶𝜶𝒌𝒌′ 𝑄𝑄𝑘𝑘0 cos(𝜔𝜔𝑘𝑘𝑡𝑡 + 𝛿𝛿𝑘𝑘)  (37) 

The incident electric field also has a time dependence:  

  𝑬𝑬 = 𝑬𝑬𝟎𝟎cos (𝜔𝜔𝛾𝛾𝑡𝑡)  (38) 
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where 𝜔𝜔𝛾𝛾is the frequency of the incident light.  Inserting this into the first order 

dipole vector equation, 

   𝒑𝒑(𝟏𝟏) = [𝑬𝑬𝟎𝟎 cos�𝜔𝜔𝛾𝛾𝑡𝑡�] ∗ [(𝜶𝜶𝟎𝟎 + 𝜶𝜶𝒌𝒌′ 𝑄𝑄𝑘𝑘0 cos(𝜔𝜔𝑘𝑘𝑡𝑡 + 𝛿𝛿𝑘𝑘)] = 

   𝜶𝜶𝟎𝟎𝑬𝑬𝟎𝟎cos (𝜔𝜔𝛾𝛾𝑡𝑡) + 𝜶𝜶𝒌𝒌′ 𝑬𝑬𝟎𝟎𝑄𝑄𝑘𝑘0 cos(𝜔𝜔𝑘𝑘𝑡𝑡 + 𝛿𝛿𝑘𝑘) cos (𝜔𝜔𝛾𝛾𝑡𝑡)   (39) 

The second term can be simplified using the trigonometric identity 

   cos (𝐴𝐴)cos (𝐵𝐵) = 1/2 [cos (𝐴𝐴 + 𝐵𝐵) + cos (𝐴𝐴 − 𝐵𝐵)]  (40) 

so that 

   𝒑𝒑(1) = 𝜶𝜶𝟎𝟎𝑬𝑬𝟎𝟎cos (𝜔𝜔𝛾𝛾𝑡𝑡) + 1
2
𝜶𝜶𝒌𝒌′ 𝑬𝑬𝟎𝟎𝑄𝑄𝑘𝑘0 cos(𝜔𝜔𝛾𝛾  + 𝜔𝜔𝑘𝑘 + 𝛿𝛿𝑘𝑘)  

   + 1
2
𝜶𝜶𝒌𝒌′ 𝑬𝑬𝟎𝟎𝑄𝑄𝑘𝑘0 cos(𝜔𝜔𝛾𝛾 –𝜔𝜔𝑘𝑘 − 𝛿𝛿𝑘𝑘)  (41) 

The first term in this expression describes Rayleigh scattering, whereas the second 

and third terms describe Stokes and Anti-Stokes Raman scattering, respectively.  It 

should be noted that the induced dipole for Rayleigh scattering is in phase with the 

incident field, whereas the dipole involved with Raman scattering is phase shifted 

by 𝛿𝛿𝑘𝑘, which is the phase of the material dependent normal mode 𝑄𝑄𝑘𝑘.  This has 

important implications regarding the relative intensities of Rayleigh and Raman 

radiation.  The incident radiation, oscillating at 𝜔𝜔𝛾𝛾 , induces an electric dipole in the 

material which also oscillates at 𝜔𝜔𝛾𝛾, giving rise to Rayleigh scattering.  In Raman 

scattering, however, this oscillating dipole is modulated by a lattice vibration of a 
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different phase such that the radiated wave is analogous to a beat frequency 

between the two.  

4.2.2 Quantum Treatment 

 Although the classical model for Raman scattering is fairly simple and intuitive, 

it lacks the breadth of a complete theory.  The following section introduces a 

quantum mechanical theory of inelastic scattering of light by crystals. 

 The total Hamiltonian for a process in which light is scattered from a medium 

can be written as the sum of three terms 

    𝐻𝐻� = 𝐻𝐻�𝑒𝑒 + 𝐻𝐻�𝛾𝛾 + 𝐻𝐻�𝐿𝐿 + 𝐻𝐻�𝑒𝑒𝑒𝑒 + 𝐻𝐻�𝑒𝑒𝑒𝑒  (42) 

where 𝐻𝐻�𝑒𝑒 is the electron Hamiltonian, 𝐻𝐻�𝛾𝛾 is the photon Hamiltonian, 𝐻𝐻�𝐿𝐿 is the lattice 

vibration Hamiltonian, 𝐻𝐻�𝑒𝑒𝑒𝑒 is the electron-photon interaction Hamiltonian, and 𝐻𝐻�𝑒𝑒𝑒𝑒 

is the electron-phonon interaction Hamiltonian.  𝐻𝐻�𝑒𝑒 + 𝐻𝐻�𝛾𝛾 + 𝐻𝐻�𝐿𝐿 is considered here to 

be the zeroth-order approximation.29 The electron-photon interaction Hamiltonian 

can be written as  

   𝐻𝐻�𝑒𝑒𝑒𝑒 = 𝑒𝑒2

2𝑚𝑚
∑ 𝑨𝑨��𝒓𝒓𝑗𝑗� ∙𝑗𝑗 𝑨𝑨��𝒓𝒓𝑗𝑗� + 𝑒𝑒

𝑚𝑚
∑ 𝑨𝑨�(𝒓𝒓𝑗𝑗) ∙ 𝒑𝒑�𝑗𝑗𝑗𝑗   (43) 

where 𝑨𝑨�(𝒓𝒓𝑗𝑗)  is the second-quantized radiation vector potential and 𝒑𝒑�𝑗𝑗  is the 

momentum operator of the jth electron.  Note that because the vector potential 

operator is written in the second-quantization approach, the photon creation and 

annihilation operators are embedded within it.  The first term in this Hamiltonian 
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relates to scattering by electronic transitions in which the initial and final state is in 

the same band.30  

 The matrix element corresponding to a first order Raman scattering process is 

given by 

  𝐾𝐾𝑓𝑓𝑓𝑓 = ∑
�𝑓𝑓�𝐻𝐻�𝑒𝑒𝑒𝑒�𝛽𝛽��𝛽𝛽�𝐻𝐻�𝑒𝑒𝑒𝑒�𝛼𝛼��𝛼𝛼�𝐻𝐻�𝑒𝑒𝑒𝑒�𝑖𝑖�

(𝐸𝐸𝛽𝛽−ℏ𝜔𝜔𝑓𝑓)(𝐸𝐸𝛼𝛼−ℏ𝜔𝜔𝑖𝑖)𝛼𝛼,𝛽𝛽 + ⋯  (44) 

where the omitted terms all of the time ordering permutations. Note that the time 

ordering goes from right to left.  In this first term, a photon is absorbed by the 

material and promotes an electron to an intermediate state 𝛼𝛼.  Next, the electron 

interacts with the lattice, either creating or annihilating a phonon, resulting in 

different intermediate state 𝛽𝛽.  (The adiabatic approximation can be employed here 

to assume |𝛼𝛼⟩ = |𝛽𝛽⟩. )  This state then transitions to the final state, emitting the 

scattered photon.  The permuted time ordering terms (not shown) have a low 

transition probability, but must be accounted for when deriving transition rates and 

scattering cross-sections.  In this form, it is easy to see that the transition probability 

has a direct dependence on the incident radiation frequency; as the incident energy 

approaches the band gap energy, the transition probability approaches a large 

value.  This gives rationality for using UV (363.8 nm) as opposed to visible (514.5 

nm) excitation for Raman studies of high bandgap semiconductors such as diamond 

and hexagonal boron nitride. 

 The transition probability per unit time can be calculated via Fermi’s golden rule 

as 
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  𝑊𝑊𝑓𝑓𝑓𝑓 = 2𝜋𝜋
ℏ
�𝐾𝐾𝑓𝑓𝑓𝑓�

2
𝛿𝛿�𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑓𝑓�  (45) 

We can define the microscopic scattering cross-section as the transition probability 

per unit time divided by the photon velocity in the medium29  

   𝑑𝑑𝑑𝑑 =
∑ 𝑊𝑊𝑓𝑓𝑓𝑓𝑓𝑓,𝑖𝑖

𝑣𝑣𝑔𝑔
  (46) 

Substitution into Fermi’s golden rule yields 

  𝑑𝑑𝑑𝑑 = 2𝜋𝜋
ℏ𝑣𝑣𝑔𝑔

∑ ∑ �𝐾𝐾𝑓𝑓,𝑖𝑖�𝐸𝐸𝑖𝑖,𝐸𝐸𝑓𝑓
2
𝛿𝛿�ℏ𝜔𝜔𝑓𝑓 + 𝐸𝐸𝑓𝑓 − ℏ𝜔𝜔𝑖𝑖 − 𝐸𝐸𝑖𝑖�𝒌𝒌𝑓𝑓   (47) 

where the first summation is restricted to a shell in k-space defined by the solid 

angle 𝑑𝑑𝑑𝑑 and between 𝜔𝜔𝑓𝑓 and 𝜔𝜔𝑓𝑓 + 𝑑𝑑𝜔𝜔𝑓𝑓.  Thus, we can make the substitution 

  ∑ 1𝒌𝒌𝑓𝑓 =
𝑘𝑘𝑓𝑓
2𝑑𝑑𝑘𝑘𝑓𝑓𝑑𝑑𝑑𝑑
(2𝜋𝜋)3 = 𝑛𝑛3�ℏ𝜔𝜔𝑓𝑓�

2
𝑑𝑑�ℏ𝜔𝜔𝑓𝑓�𝑑𝑑𝑑𝑑

(2𝜋𝜋)3𝑐𝑐3ℏ3
  (48) 

where the last equality derives from the substitution 𝑘𝑘 = 𝑛𝑛𝑛𝑛
𝑐𝑐

.  Inserting this into the 

equation for the scattering cross-section yields 

  𝑑𝑑𝑑𝑑 = 𝑛𝑛3�ℏ𝜔𝜔𝑓𝑓�
2
𝑑𝑑�ℏ𝜔𝜔𝑓𝑓�𝑑𝑑𝑑𝑑

4𝜋𝜋2𝑐𝑐3ℏ4𝑣𝑣𝑔𝑔
∑ �𝐾𝐾𝑓𝑓,𝑖𝑖 �

2
�ℏ𝜔𝜔𝑖𝑖 + 𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑓𝑓�

2
𝐸𝐸𝑓𝑓,𝐸𝐸𝑖𝑖   (49) 

Now, the sum over Ef and Ei is restricted to ℏ𝜔𝜔𝑓𝑓 < ℏ𝜔𝜔𝑖𝑖 + 𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑓𝑓 < ℏ�𝜔𝜔𝑓𝑓 +

𝑑𝑑𝜔𝜔𝑓𝑓� due to the Dirac delta function. 

4.2.3 Kinematics of Raman Scattering 

 Although Raman scattering is inelastic, energy and momentum conservation still 

hold when discussing crystalline materials.  Conservation of energy requires that  
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  𝜔𝜔 = 𝜔𝜔𝐼𝐼 − 𝜔𝜔𝑆𝑆   (50) 

where 𝜔𝜔 is the scattered frequency, 𝜔𝜔𝐼𝐼 is the incident radiation frequency, and 𝜔𝜔𝑆𝑆 is 

the Stokes component frequency.  A similar equality holds for the anti-Stokes 

component.  This process must also conserve momentum, such that  

  ℏ𝒒𝒒 = ℏ𝒌𝒌𝑰𝑰 − ℏ𝒌𝒌𝑺𝑺  (51) 

where ℏ𝒒𝒒 represents the phonon momentum, and 𝒌𝒌𝑰𝑰 and 𝒌𝒌𝑺𝑺 are the incident and 

scattered photon momenta in the medium, respectively. 

 

 

 

 

 

Figure 4:  Momentum conservation in stokes scattering. 

 Light used in typical scattering experiments has a frequency of approximately 

𝜔𝜔𝐼𝐼
2𝜋𝜋
≈ 5 ∗ 1014 Hz.30 Assuming an approximate refractive index of 1.5, the wavevector 

corresponding to the incident radiation is 𝑘𝑘𝐼𝐼 ≈ 1.5 ∗ 107 m−1 .  The range of 

wavevectors accessible to light scattering experiments is approximately 

   0 < 𝑞𝑞 < 3 ∗ 107 m−1.  (52) 
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For a typical solid, the maximum wavevector in the first Brillouin zone (𝜋𝜋/𝑑𝑑) is 

typically of the order 3*1010 m-1, three orders of magnitude above the upper limit of 

the radiation wavevectors.  Therefore, 𝜔𝜔 ≪ 𝜔𝜔𝐼𝐼, an thus Raman scattering only 

probes phonons that are in the neighborhood 𝒒𝒒 ≈ 0. 

4.3 Anharmonic contributions to lattice dynamics 

 The harmonic approximation, although useful for determining phonon spectra, 

fails to predict temperature dependent phenomena such as thermal expansion, and 

the temperature and pressure dependence of phonons.  We can describe the full 

crystal potential as the sum 

   𝑉𝑉 = 𝑉𝑉𝑒𝑒𝑒𝑒 + 𝑉𝑉ℎ𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑉𝑉𝑎𝑎𝑎𝑎ℎ  (53) 

where the anharmonic term contains all of the higher order derivatives that were 

ignored in the harmonic approximation.  The thermal conductivity of a material is 

dependent on the finite lifetime of the heat carriers (phonons) due to scattering.  

Phonon scattering is fundamentally described by the anharmonic term, 𝑉𝑉𝑎𝑎𝑎𝑎ℎ, in 

equation (53).  Classically, thermal conductivity is given by  

   𝜅𝜅 = 1
3𝑁𝑁𝐴𝐴

𝑐𝑐𝑣𝑣𝑛𝑛〈𝑣𝑣〉𝜆𝜆  (54) 

where 𝑁𝑁𝐴𝐴 is Avagadro’s number, 𝑐𝑐𝑣𝑣 is the constant volume heat capacity, n is the 

phonon occupation number, 〈𝑣𝑣〉 is the thermal average phonon velocity, and 𝜆𝜆 is the 

phonon mean free path.  The low temperature behavior (T<<TD), phonons scatter 

from defects and boundaries.  At high temperature, phonon-phonon scattering plays 
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a large role in the thermal conductivity.  The Debye temperature is high enough that, 

for this experiment, the phonon population does not reach a level at which phonon-

phonon scattering is important.  Therefore, the thermal conductivity studied here is 

mainly dependent on the impurity and boundary density of the sample.   

 Phonon frequencies are dependent on temperature as 

   𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑
− 𝛼𝛼

𝛽𝛽
𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑

  (55) 

where 𝛼𝛼 = 1
𝑉𝑉
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 is the linear thermal expansion coefficient and 𝛽𝛽 = − 1
𝑉𝑉
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 is the 

compressibility.31 The first term on the right is known as the explicit term and is 

fundamentally due to the phonon-phonon interaction.  The second term is known as 

the implicit term, which arises from volume dilation due to changes in temperature.  

It is clear in this form that stress plays a crucial role in the temperature dependence 

of phonons.  When the phonon frequency of the diamond thin film is measured as a 

function of temperature, it is the total derivative that is measured.  Therefore, any 

stress that is produced by a measurement will impact the observed quantities.  For 

instance, the thermal expansion mismatch between the gold/titanium heater and 

diamond will produce a compressive stress of roughly 0.22 GPa, based on COMSOL 

simulations.  Because the bulk modulus, phonon pressure dependence, and other 

structural parameters are unknown in these samples, it is impossible to subtract the 

implicit term from the total derivative.  In order to accurately measure the thermal 

conductivity of diamond thin films, it is necessary to determine temperature 

through a measurement that correctly accounts for the stress induced in diamond.  
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Nanoparticles deposited on the surface of the sample act as surface temperature 

probes that do not depend on the stress in the film. 

4.4 Thermal Conductivity 

 Classically, heat flows in accordance with 

   𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝜅𝜅𝑨𝑨 ∙ 𝛁𝛁𝑇𝑇  (56) 

where 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 represents the heat flux, A is the cross sectional area vector, 𝛁𝛁𝑇𝑇 is the 

temperature gradient, and 𝜅𝜅 is the thermal conductivity.  When the quantity 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 is 

expressed in Watts, the units of 𝜅𝜅 are 𝑊𝑊𝑚𝑚−2𝐾𝐾−1.  This experiment is conducted such 

that the heat flux is quasi-one-dimensional, so 𝛁𝛁𝑇𝑇 can be reduced to 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

.  The rate 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 

can be reinterpreted as the dissipated power of the heater (𝑃𝑃 = 𝐼𝐼𝐼𝐼).  With these 

assumptions, we can rewrite  

   𝜅𝜅 = 𝐶𝐶 𝑃𝑃

𝐴𝐴 �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�
  (57) 

where C is a correction factor to account for the geometry of the device.  For devices 

for which heat flux will be symmetrically distributed, this factor should be 1
2
.  For 

asymmetric devices, this factor is used to force the calculated thermal conductivity 

to be equivalent on either side of the heater, and is therefore given by 

   𝐶𝐶 =
�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�1

�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�1
+�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�2

  (58)
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V. EXPERIMENTAL 

 A Coherent argon ion laser was used with a wavelength of 363.8 nm.  The beam 

was directed through a customized Olympus microscope with a 100x Mitutoya Plan 

Apo infinity corrected objective (N.A.=0.5).  The beam was focused onto the sample 

to a ~3µm diameter spot.  At maximum power, this gives a measured power at the 

sample of 1.1 mW and a .  The emission was directed into a SPEX 1406 spectrometer 

with a single 1800 gr/mm diffraction grating.  The signal was collected by a liquid 

nitrogen cooled Princeton Instruments CCD detector. 

 The samples used in this experiment, provided by the Naval Research 

Laboratory (NRL), were CVD diamond (nominally 1 micron thick) grown on a silicon 

substrate (~500 μm).  The actual thickness of diamond was measured to be 

approximately 865 ± 15nm via spectroscopic and backscattering ellipsometry.  Once 

the diamond was grown, channels were etched in the silicon from the back such that 

freestanding diamond membranes were formed.  The diamond side of the wafer was 

then patterned with an approximately 100 nm titanium/gold stack to form micro-

heaters, as shown in Figure 4.  The width and length of each membrane is 200 and 

1000 microns, respectively. 

 

 

 



 28 

 

 

Figure 5:  Side view of a typical diamond membrane on an NRL sample.  The black region indicates 
the silicon substrate, the white indicates CVD diamond (approximately 1 micron thick), and the 
silver/gold indicates the Ti/Au heater stack (approximately 100 nm thick). 

 A meta-stable suspension was generated by charging a vial with ~50 mg of h-BN 

and 2-5 mL of ethylene glycol.  The mixture was then placed in an ultrasonic bath for 

approximately five minutes to fully disperse h-BN platelets in the ethylene glycol.  A 

bead (~0.5 mL) of methanol was carefully placed on the sample surface.  A drop 

(~100 µL) of the h-BN-ethylene glycol suspension was dropped onto the methanol 

bead as shown in Figure 5.  The difference in surface tension between the two 

solvents causes the suspension to collapse, precipitating small (approximately 200-

1000 nm) particles of h-BN.  This process was repeated until the desired number of 

particles was reached. 

 

 

 

 

Figure 6: h-BN deposition method.  A bead of methanol (blue) is deposited on the sample.  A 
suspension of h-BN in ethylene glycol is dropped into the methanol bead via a micropipetter. The 
difference in surface tension between ethylene glycol and methanol collapses the suspension, 
precipitating h-BN micro-particles.  The sample is then washed with methanol. 
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 The Raman temperature coefficient (total derivative) was determined via a 

calibration method.  The sample was placed on a Peltier thermoelectric heater stage 

in which a thermistor was embedded.  The Raman shift for diamond was recorded 

for various substrate temperatures (measured by the calibrated thermistor) after 

allowing the stage to reach thermal equilibrium for approximately five minutes.  The 

temperature was swept from room temperature to approximately 200 °C.  The data 

was fit linearly to yield a Raman temperature coefficient of -0.01216 

± 0.00034 cm−1/°C for the sample reported in this work, as shown in Figure 6.  This 

was repeated for an h-BN microparticle located on the membrane, for which the 

temperature coefficient is 0.02025 ±0.00030 cm−1.  These results are presented in 

Figure 7 

 

 

 

 

 

 

 

Figure 7:  Diamond calibration.   Raman temperature coefficient calibration measurement for the 
NRL A5L3 membrane.  The sample was placed on a Peltier heater stage and the Raman shift was 
measured at various temperatures.   
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 The sample was placed on two orthogonal Newport peizioelectric linear 

translation stages each with a step resolution of approximately 70 nm.  Electrical 

contact probes were connected to either end of the heater structure.  A Keithley 

2401 was used to drive current through the heater while simultaneously measuring 

the voltage drop across the heater in order to calculate dissipated power.  The 

micro-heater power was tuned such that the difference in the Raman shift (and thus 

the temperature rise) at the edge of the membrane was zero when compared to the 

“off” state.  This was done in order to eliminate the need for accounting for thermal 

boundary resistance between the diamond film and the silicon substrate, thus 

simplifying the calculation.  The Raman shift of diamond and h-BN at the membrane 

edge was recorded at room temperature as the initial Raman shift, 𝜔𝜔0. 

 

 

 

 

 

 

   

Figure 8:  h-BN calibration.  Calibration for determination of h-BN microparticle Raman temperature 

coefficient. 
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VI. EXPERIMENTAL RESULTS AND DISCUSSION 

 The membrane used for this study was 1mm in length and 202 μm wide.  A 5 μm 

wide heater, centered at 95 μm from the edge, ran the length of the membrane.  A 

second heater was located 168 μm from the same edge, and was not used in this 

study.   

 The sample was moved in increments of approximately 5 µm.  The Raman 

spectrum was collected for 15 seconds at each point.  Between steps, the CCD was 

triggered continuously at one-second intervals to search for h-BN particles.  When 

h-BN was found, the stage was moved slowly in a single direction until the signal 

reached a maximum.  Changes in direction were avoided in order to reduce spatial 

error due to backlash of the translation stage.   

 The spectra were fit with a Lorentzian curve-fitting algorithm in OriginPro™ 15.  

Batch processing was used to analyze all spectra simultaneously.  The fitting 

parameters, such as peak position and linewidth, were constrained to limit 

misinterpreting cosmic ray peaks as real data.  For spectra containing no h-BN 

signal, the “fit” h-BN data was removed, as a real signal was absent.  The raw Raman 

shift data was converted to a temperature rise by dividing the difference in peak 

position by the calibration temperature coefficient. 

   𝛥𝛥𝛥𝛥 = (𝜔𝜔0−𝜔𝜔𝑖𝑖)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  (59) 
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The data was corrected for spectrometer drift by subtracting a slope connecting the 

initial and final points (left to right).  The results are presented below in Figure 8. 

 

 

 

 

 

 

 

 

 

Figure 9:  Temperature rise of diamond and h-BN.  Results from a scan of device L3 of sample NRL 
A5.  The slopes were fit linearly for diamond on either side of the heater.  The slope for h-BN was fit 
linearly for the left side only.  Thermal conductivities were calculated using the diamond and h-BN 
slopes, and are presented here. 

 An optical measurement of a material, especially at high laser power densities, 

will induce local heating of the sample at the precise location of the measurement.  

Therefore, it is necessary to verify that the laser power density used in this 

experiment is low enough that local heating is negligible.  An optical power meter 

was placed on the sample stage.  The power at the sample stage was measure as a 

function of laser current, which regulates output power, from approximately 10 μW 

to 1.2 mW at the sample.  The Raman shifts of silicon, diamond, and h-BN were then 
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measured simultaneously as a function of laser current.  The results are displayed in 

Figure 9. 

 

 

 

 

 

 

 

 

 

Figure 10: Power density considerations.  The change in Raman shift is plotted against laser power 
density for silicon, diamond and h-BN.  The data indicates that there is no significant local heating of 

the sample at high laser power.   

 The measured thermal conductivity of this diamond thin film is significantly 

smaller than for natural diamond (𝜅𝜅𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ≈ 2200 W
m∗K

).  This is presumably due to 

a greatly reduced phonon mean free path (due to surfaces, grain boundaries, 

defects, dislocations, etc.).  Surprisingly, the thermal conductivities calculated via 

diamond and h-BN particles are in good agreement.  This indicates that the induced 

stress in this measurement is small enough to be neglected.  
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 The h-BN data on top of the un-driven heater is elevated by ~10 °C compared 

with the diamond data.  It is likely that the high laser power used in this experiment 

induced local heating of the metal.  This can be eliminated by reducing the laser 

power to a low enough value. 

 The novel deposition method introduced here provides a stress free surface 

temperature measurement of any surface.  Although metal surfaces experience 

slight local heating, the laser power may be lessened to perform the measurement.  

The simplicity and cost efficiency of the deposition process may be extremely 

appealing for industry.  For example, a fully metalized, packaged, consumer-ready 

device may be temperature-mapped before distribution to ensure proper thermal 

management. 

 This work presents a novel micro/nano-particle deposition method to be used as 

surface Raman temperature probes.  The method was successfully applied to a CVD 

diamond thin film membrane and h-BN temperature probes were used to 

corroborate Raman temperature data of diamond.  The agreement of h-BN and 

diamond Raman temperature data suggests that the measurement was not 

perturbed by stress.  Careful investigation of the effect of laser power density on 

laser heating suggests that the h-BN particles and diamond film experienced no 

significant local heating. 
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