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ABSTRACT. We consider the asymmetric critical fractional p-Laplacian prob-
lem

(—A)u=AulP2u+ a2 i@

w=0, inRN \ @
where A > 0 is a constant, pf = Np/(N — sp) is the fractional critical Sobolev
exponent, and u4 (z) = max{u(z),0}. This extends a result in the literature
for the local case s = 1. We prove the theorem based on the concentration com-

pactness principle of the fractional p-Laplacian and a linking theorem based
on the Zs-cohomological index.

1. INTRODUCTION

Beginning with the seminal paper of Ambrosetti and Prodi [2], elliptic boundary
value problems with asymmetric nonlinearities have been extensively studied (see,
e.g., Berger and Podolak [5], Kazdan and Warner [I7], Dancer [8], Amann and
Hess [I], and the references therein). In particular, Deng [9], De Figueiredo and
Yang [11], Aubin and Wang [3], Calanchi and Ruf [7], and Zhang et al. [32] have
obtained existence and multiplicity results for semilinear Ambrosetti-Prodi type
problems with critical nonlinearities using variational methods. And the results for
the quasilinear Ambrosetti-Prodi type problems can be found in Perera et al. [29].

Recently, a lot of attention has been given to the study of the elliptic equa-
tions involving the fractional p-Laplacian, which is the nonlinear nonlocal operator
defined on smooth functions by

u(x) — w2 (@) — uw) ,

p eN\.0 RN\ B, (z)
where p € (1,400), s € (0,1) and N > sp. Some motivation that have led to the
study of this kind of operator can be found in Caffarelli [6]. The operator (—A)3
leads naturally to the quasilinear problem

(=A)ju = f(x,u), in;
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u=0, inRY\Q;

where Q is a domain in RY. There is currently a rapidly growing literature on
this problem when 2 is bounded with Lipschitz boundary. In particular, fractional
p-eigenvalue problems have been studied in [12}, [16], (18, 26], global Holder regularity
n [15] 22], existence theory in the critical case in [27), [19] 20} 2T, 22].

Motivated by [29], in this article, we consider the asymmetric critical fractional
p-Laplacian problem

(=A)ju = AulP~%u + ufﬁl, in €

. (1.1)
u=0, inR"Y\Q;

where Q is a bounded domain in RY with Lipschitz boundary, A > 0 is a con-
stant, p¥ = Np/(N — sp) is the fractional critical Sobolev exponent, and uy (z) =
max{u(z),0}.
We call that A € R is a Dirichlet eigenvalue of (—A)5 in € if the problem
(—A)su = AufP"u, in
N (1.2)
u=0,in R™ \ Q;

has a nontrivial weak solution. The first eigenvalue A; is positive, simple, and has
an associated eigenfunction ¢; that is positive in 2. And if A > A5 is an eigenvalue,
u is a A-eigenfunction, then u changes sign in Q. For problem when A = Aq,
tpy is clearly a negative solution for any ¢ < 0. So here we focus on the case A is
not an eigenvalue of (—A)?, and our result is the following.

Theorem 1.1. Let 1 < p < oo, s € (0,1), N > sp, and A > 0. Then problem (1.1)
has a nontrivial weak solution in the following cases

(i) N=sp? and 0 < XA < Aq;
(ii) N > sp? and X is not an eigenvalue of (—A)

S
p*

2. PRELIMINARIES AND SOME KNOWN RESULTS

[l p = (JQZN|7ifzgﬂiﬁﬁir'dzdy)l/p

be the Gagliardo seminorm of a measurable function v : RV — R, and let
WeP(RY) = {u e LP(RY) : [u]s,p < 00}
be the fractional Sobolev space endowed with the norm

1
lulls.p = (ful? + [u]2,) "7,
P vy

Let

where | - |, is the norm in LP(RY). We work in the closed linear subspace
WP (Q) = {u € WSP(RY) : u =0 a.e. in RNV \ Q},

equivalently renormed by setting || - || = [-]s,p, which is a uniformly convex Banach
space. The imbedding W (Q2) — L"() is continuous for r € [1,p*] and compact
for r € [1,p%). Weak solutions of problem (1.1)) coincide with critical points of the

C!-functional
dx d Pdex — —
=L R e e = G [
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for u € WP (Q).

We recall that I, satisfies the Cerami compactness condition at the level ¢ € R, or
the (C). condition for short, if every sequence {u;} C Wy*(Q) such that I (u;) — ¢
and (1 + [Ju;]|)I4(u;) — 0, called a (C). sequence, has a convergent subsequence.

Let
[[ul[P

wews P (@\{0} [ulp.

S:

be the best constant in the Sobolev inequality. From [4], we know that for 1 < p <
00, 0 < s <1, N > ps, there exists a minimizer for S, and for every minimizer U,
there exist o € RY and a constant sign monotone function u : R — R such that
U(z) = u(]z — xo|). In the following, we shall fix a radially symmetric nonnegative
decreasing minimizer U = U(r) for S. Multiplying U by a positive constant if
necessary, we may assume that

(—A)U =UP-t, (2.1)

For any € > 0, the function

1 ||
Ue@) = -m—prm U<?>

is also a minimizer for S satisfying (2.1)). In [20, Lemma 2.2}, the following asymp-
totic estimates for U were provided.

Lemma 2.1 ([20, Lemma 2.2]). There exist constants c1,c2 > 0 and 6 > 1 such
that for all r > 1,

C C
= U0 S e
and Ur) 1
r
Ut =2
Assume, without loss of generality, that 0 € Q. For £, > 0, let
Ue(9)
e T UL(6) - UL(00)°
let
0, 0 <t<U(09),
9=,5(t) = q m¥ 5 (t — U(69)), U.(09) <t <U.(9),
t+U(0) (mE 5 = 1), t>UL(6),
and let
. 0, 0 <t<U(0)),
Gesl®) = [ Lo dr = {6 U.009)), U.09) <t < U9,
0 t, t> U.(5).

The functions g. s and G, s are nondecreasing and absolutely continuous. Consider
the radially symmetric non-increasing function

u675(7") = GE,é(UE(T))v
which satisfies
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We have the following estimates for u. s which were proved in [20, Lemma 2.7].

Lemma 2.2 ([20] Lemma 2.7]). There exists a constant C = C(N,p,s) > 0 such
that for any e < §/2,

e g7 < SN/ 4 € (5 )N =0/ (0D,

5
1esplo §7 iN:S2’
Jucslh >3, e o v (2.2)
65 p, ZfN > sp7,
s N/s E\N/(p—1
Jue sy > SN — C(5)M @D,
A s ) P o 2
e slP = Ml? _ Scepbg@)+0@), Newf,
lue 5|2 = N (N—sp)/(p—1) ) (2.3)
=0l S—2ev+0(5) . N> sp?.

For p > 1, and the eigenvalues of problem , we define a non-decreasing
sequence \; by means of the cohomological index. This type of construction was
introduced for the p-Laplacian by Perera [23]. (see also Perera and Szulkin [25]),
and it is slightly different from the traditional one, based on the Krasnoselskii
genus (which does not give the additional Morse-theoretical information that we
need here).

We briefly recall the definition of Z;-cohomological index by Fadell and Rabi-
nowitz [I0]. Let W be a Banach space and let A denote the class of symmetric
subsets of W\ {0}. For A € A, let A = A/Z52 be the quotient space of A with
each v and —u identified, let f : A — RP> be the classifying map of A, and let

f*: H*(RP*) — H*(A) be the induced homomorphism of the Alexander-Spanier
cohomology rings. The cohomological index of A is defined by

(A) = 0, if A=0,
YT Lsupfm = 1 r@m) £ 0, i AAD,

where w € HY(RP*) is the generator of the polynomial ring H*(RP>) = Z52[w].
See Perera et al. [24] for details.
So the eigenvalues of problem (1.2]), coincide with critical values of the functional

1 s
p

Let F denote the class of symmetric subsets of M, and set

A = inf sup ¥(u), keN.
MeF, i(M)>k yeM

Then 0 < Ay < Ay < A3 < -+ — 400 is a sequence of eigenvalues of problem ([1.2)),
and

Mo < App1 = i(TM) =i(M\ Uy,,,) =k,
where

U ={ueM:¥u)<a}, VY,={ueM:¥u)>a}, ack.

From [20, Proposition 3.1], the sublevel set ¥** has a compact symmetric subset
E(A\) of index k that is bounded in L*°(€2). We may assume without loss of
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generality that 0 € Q. Let 69 = (0,09), take a smooth function 7 : [0, 00) — [0, 1]
such that n(s) =0 for s < 3/4 and n(s) =1 for s > 1, set

6

ws@) = (@), ve B 0<0< X,

and let E5 = {m(vs) : v € E(\g)}, where m : WP (Q) \ {0} — M, u — u/|u| is
the radial projection onto M.

Lemma 2.3 (|20, Proposition 3.2]). There exists a constant C = C(N,Q, p, s, k) >
0 such that for all sufficiently small § > 0,
(i) $ <|wlg <C, forallw e Es5,1 < q< o0,
(i) supyep, Ir(w) < A + CoN =P,
(iii) EsNWy,,, = 0,i(Es) =k,
(iv) suppw Nsupp m(ues) =0 for all w € Ey,
(v) 7(ue5) ¢ Es.

We need the following two lemmas for the fractional p-Laplacian.

Lemma 2.4 ([14, P.161]). If {un tnen C WGP(Q) is such that u, — u in WP (Q),
and

// [n () = n ()72 (un () = un () ((n = w) () = (Un — u)(y))
R2N

|z —y| Ve

dxdy — 0,

as n — oo, then u, — u in Wg*(Q) as n — .

Lemma 2 5 ([19 Theorem 2.5]). Let {u,} be a bounded sequence in W3 (), let
|Dfuy |P(z) == [pn %dy, for a.e.x € RYN. Then, up to a subsequence,
there eansts u € WyP(Q), two Borel regular measures pn and v, A denumerable,
z; € Qv; >0, >0 with u; +v; >0, such that

u, —=u  weakly in WgP(Q), andu, — u strongly in LP(Q),

* w*
Ps — dy,

Dl 2 dpt, un
dp > [D*ulP +3 pide,, = p{;}),
JEA
dv = |uf’s + 3 vide,,  vy=v({a;}),
JEA
We will prove Theorems using the following abstract critical point theorem

proved in Yang and Perera [31, Theorem 2.2], which was also used successfully in
[28, 29, 20], and generalizes the well-known linking theorem of Rabinowitz [30].

Lemma 2.6 ([3I, Theorem 2.2]). Let W be a Banach space, let S = {u € W :
|lul| = 1} be the unit sphere in W, and let w : W\ {0} — S,u — u/||ul|| be the radial
projection onto S. Let I be a C'-function on W and let Ay and By be disjoint
nonempty closed symmetric subsets of S such that

Assume that there exist R>1r >0 and v € S\ Ay such that
supI(A) <infI(B), supl(X) < oo,
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where
A={tu:ue Ay,0 <t < R}U{Rn((1 —t)hu+tv):u € Ap,0 <t <1},
B={ru:ue By}, X={tu:uecA|ul|=R,0<t <1}
LetT'={y € C(X,W) : y(X) is closed and y|a = ida}, and set

c:=inf sup I
YEL ey (X) (w).

Then
inf I(B) < ¢ <supI(X),
in particular, ¢ is finite. If, in addition, I satisfies the (C). condition, then c is a
critical value of I.
3. Proor or THEOREM [L.1]
First, we will give our main lemma.

Lemma 3.1. If A # Ay, then I satisfies the (C). condition for all ¢ < %SN/SP,

Proof. Let ¢ < £SN/*P_ and let {u;} be a (C). sequence. First we show that {u;}
is bounded. We have

XAWﬁx—Néa dx dy — /Wwwdz—gf/ dr=c+o(1), (3.1)

[ ) =@ ) )0 =) o,
RQN

o — gl
— /\/ ui [P~ 2w, dr — / u;;‘:flv dx (3.2)
Q Q
_ ol
L+ [Juy
Taking v = u; in (3.2)) and combing with (3.1)) gives
* N
/ u?i dx = —c+o(1). (3.3)
Q S
Taking v = ;1 in (3.2)), and using the equality
ur(z) = ur (Y)IP < Ju(z) — uly) P (u(z) — u(y))(us (@) = us(y)), (3.4)

gives

|U]+ u]+(y)|p p:
//Rw |a:—y\N+ps drdy < A Qu§+dx+ ufy dx + o(1).

So {u;4} is bounded in Wy (Q). Suppose p; : |uj|| = ([Jgen %)1/1’ —
oo for a renamed subsequence. Then @; = ”u—;” converges to some u weakly in
WyP(82), strongly in L(2) for 1 < ¢ < p¥, and a.e. in  for a further subsequence.
Since the sequence {w; } is bounded, dividing (3.1) by p¥ and (3.2) by pﬁ»’_l and
passing to the limit then gives
A/WPM:L
Q
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[ )= M) _ ) i) o

|z —y|NHes

- )\/ [a[P~2av de, Yo € W5P(Q),
Q

respectively. Moreover, since 4,4 = ujt+/p; — 0, @ < 0 a.e. Hence @ = ty;
for some ¢ < 0 and A = Ay, this is a contradiction with assumption. So {u;}
is bounded, and for a renamed subsequence, it converges to some u weakly in
WP(Q) and LP: (). Since {u;j;} is bounded, according to Lemma a renamed
subsequence of which then converges to some v > 0 weakly in Wy (Q), strongly in
L1(Q) for 1 < g < p% and a.e. in Q, and

P d, (3.5)

Dy P dpy g

then there exists an at most countable index set A and points x; € Q, i € A, such
that

dp > ‘stlp + Zuiéww Wi = N({mi})7

) €A (36)
= |v|Ps +lei6x-;7 Vi == I/({xl})7
i€A
where p;, v; >0, p; +v; > 0, and p; > Syp/pﬁ.
Now for any p > 0, let ¢; , € Cg° (ng(Il)) satisfy
0< Pips <Pi,p|Bp =1, |90i,p‘oo <1, |V90i,p‘oo < C/p.

From [19, (2.14)], for all w € LP:(RN),

lim |w[P|D*p; ,|Pdx = 0. (3.7

p\(] RN
Testing equation (3.2) with ¢; ,u;4, which is also bounded in Wy*(Q), from
(3.4), we obtain

(3.8)
_ 1 (2) =y () [P~ 15 (2) = w3 (0)) (10 (@)1 (2) = Pip(W)us (9)
- /L. -y e dy
- A/Q | [P~y i puj da — /Quﬁ_l%puﬁ dx
_ 1 () — w2 (5 (@) = (@) (e (2) = @) o
B //]RzN |z — y|Ntps (p”p( ) dz dy
— /Q“;)«:k@im dzx
+f / o) - uj<y>|p-2<uj<x|>x—_u5|<]g>+>pij+(y)(soz—,pu) = ¢io®) 4 g

- )\/ lu; [P~ 205 puj v da

-] uj+|x_—|m<sy> piaydody = [ i, de
o () — ) P2 (1 (%) — () s () (2(2) = 01, ()
+ //RzN dz dy

|z — y|NFps
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- )‘/Q |Uj|p72Uj<Pi,puj+ dx. (3.9)
By (3.5), we have
luji (z) — uji (y)|? /
//sz |x—|—y|N+9p pip(x)da dy — RN%O,p iz

/ U?_j_goz,pdx - / @i,pdl/a
Q Q

/“§+%,pd$—>/v”%,pdx.

Q Q

Moreover, by Holder’s inequality, we obtain

[ o) = a0 00) ) ) = 2200 g

|z —y|Nes

@) = w5 ()P~ (13 () = 10, (5) 51 () (@i (&) = 01 (1)
<J[. | dz dy

|z — y|NFPs

N o N B=2(s (N e /(p—1) (p—1)/
/ / 5(0) =t 2s(0) = @) 710D g )00
R2N ‘m_y|f

p S P 1/17
X (/ luj+ P D% @i pl dy) :
RN

(3.10)
Notice that |[D%p; ,[P € L=(RY), since
. _ w0 P ' _ylP
[ gl g, C [ mintl )y, Oy
ry |z —y[NAPS pr Jen o —y| NP PP

then
1imsup/ i [P|D%p; |7 dy :/ V| D%p; [P dy,
RN RN

j—4o0

passing to the limit in (3.9) gives,
/ i pdp < / ©ipdv + C’(/ vP|D%p; P dy)'/? + /\/ P pdx.
RN Q RN Q

Letting p \, 0 and using , gives v; > p;, which together with u; > Sl/f/p:,
then give v; =0 or v; > SN/sp.

We claim that 1/1 > SN/sP is not possible to hold. Indeed, passing to the limit
in and by (3.5) and ( . then v; < —c < SN/sP_ S0 v; = 0, A is empty, and

/upﬁ dzﬂ/vps dx,
i+
Q Q

then uj — v strongly in LP:(Q) by uniform convexity. Combining the fact that
u; converges to u weakly in LPs(Q),

/ uﬁ_l(uj —u)dzr — 0.
Q
Now we have
(I3 (1), (uj —w))
[ ) () ) = ) = s =0
R2N

|z — y|NFps
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—)\/ i [P~ 2 (uj — ) dx—/u?i_l(uj —u)dx — 0.
Q Q

Therefore
[ B0 0~ )3 =00~ 05 =00 4,
R2N |z — y|Ntes
By Lemma we obtain u; — u in W;*(9Q). O

Proof of Theorem[I.1. We now give the proof for the case when A > \; is not one
of the eigenvalues. For 0 < A < A1, the proof is similar and simpler. Fix A’ such
that Ay < M < A < Agp1, and let 6 > 0 be so small such that A\, + C6N 7P < X,
in particular,

U(w) <N, Yw€E Es. (3.12)
Then take Ay = Es and By = ¥,,,,, and note that Ay and By are disjoint
nonempty closed symmetric subsets of M such that

i(Ag) = i(M\Bo) = k.

Now, let 0 < e <§/2, let R > r >0, and let vy = m(u.5) € M\Es, and let A, B,
and X be as in Lemma 2.6

For u € ¥y,
A 1 «

1- rP— —————rPs,
( )\k+1) prSP:/p

Since A < Agy1, it follows that inf I (B) > 0 if = is sufficiently small. Next we show
Iy <0 on Aif R is sufficiently large. For w € E5 and ¢t > 0,

1 A 1
R s
P A
<“an- -2 <o,
=0 ee) =

by (3.12). Now let w € E5, 0 < ¢t < 1, and set u = 7((1 — t)w + tvy). Clearly,
[[(1 — t)w + tve|| < 1, and since the supports of w and vy are disjoint by Lemma
B3,

(1= t)w + tuo 52 = (1= )P wl: + 17 [uo 2%,
1—-1 tvg|P PAYS _ )P
ul? = I ) + v0|p > (1-1) > (1-17) .
P =tw +twollP T P (w) N
Since
* |UE 5 be 1
=t (N—sp)/(p—1)
[vol3 ps 2 NNy T O, (3.13)

 ues
it follows that
= ot 2

P; _
ps (1 — t)w + tvg||Ps

> (1 _ t)p:

|uy

(3.14)

2 * 2
W lpt + 17 |vops

P
p3>t5
P —

>t ok

Vo
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if € is sufficiently small, where C = C(N, €, p, s, k) > 0. Then

*

RP ARP RP

Iy(Ru) = =l = = =l = =
- (3.15)
RP .\ tPs .

— | —(1 =t — — Ps
< p[/\,(l )P —1] pj;CR'

The above expression is clearly non-positive if t <1 — ()\’/)\)1/1’ =: tg. For t > tg,
it is non-positive if R is sufficiently large.
Now, it only remains to show that

sup Iy(X) < %SN/SP, (3.16)
if € is sufficiently small, where
X ={pr(1-thw+tv):we FE5,0<t<1,0<p<R}.

Set again u = 7((1 — t)w + tvg). From (3.15), Ix(pu) < 0, for all 0 < p < R, if
0 <t <tp. So we only need to consider the case that 1 >t > t3. Then

sup I(pu) < sup [ 2 (1 = AJulf) - P, v
0<p<R p>0 LD s s
S 1— Aul? N/sp
-2 [( Iplp)w (3.17)
|u+|p§
s [(||(1 — tw + tug]|P — A|(1 — w + tv0|g)+}N/sp
N (1 = t)w + two] 1 [~ '
From the arguments in [20, pp.17-18 (3.15)-(3.17)],
A —(N-s
(1= t)w+tuo|” < 5 (1= )"+ + CeN—(N=sp)a/p, (3.18)
where g € (N(p—1)/(N — sp),p),
|(1—t)w + twolh = (1 —t)P|w|h + tP|vo b, (3.19)
11— t)w + o] [25 > (1 — )P oo [ + 77 g 2. '

By (3.13), |vg|p+ is bounded away from zero, if ¢ is sufficiently small, so the last
expression in (3.19) is bounded away from a certain number for 1 > ¢t > t3. It

follows from ([3.18)), and |w|, > {7 by (3.12), that
11— t)w -+ tuoll? = A|(1 — ) + tuol?

[(1 = t)w + tvo] ¢

L= Awolh
|volp:

[ue s|I” — Aue 5"

|ua,6

P
p3

+ CeN—(N—=sp)a/p

4+ CeN-(N=sp)a/p

P
P
<s5_ (% W) (0-1) _ e (N=sp)(1=a/p)) oo

by vo = Ues/||ue s, and ([2.3). Since N > sp? and ¢ < p, it follows from this that
the last expression in (3.17) is strictly less than % SN/sp if ¢ is sufficiently small.
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So 0 < ¢ < £SN/sP. Then I, satisfies the (C), condition by Lemma and hence
c is a critical value of I by Lemma|2.6 (]
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