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Abstract. We consider the asymmetric critical fractional p-Laplacian prob-
lem

(−∆)s
pu = λ|u|p−2u+ u

p∗s−1
+ , in Ω;

u = 0, in RN \ Ω;

where λ > 0 is a constant, p∗s = Np/(N − sp) is the fractional critical Sobolev

exponent, and u+(x) = max{u(x), 0}. This extends a result in the literature

for the local case s = 1. We prove the theorem based on the concentration com-
pactness principle of the fractional p-Laplacian and a linking theorem based

on the Z2-cohomological index.

1. Introduction

Beginning with the seminal paper of Ambrosetti and Prodi [2], elliptic boundary
value problems with asymmetric nonlinearities have been extensively studied (see,
e.g., Berger and Podolak [5], Kazdan and Warner [17], Dancer [8], Amann and
Hess [1], and the references therein). In particular, Deng [9], De Figueiredo and
Yang [11], Aubin and Wang [3], Calanchi and Ruf [7], and Zhang et al. [32] have
obtained existence and multiplicity results for semilinear Ambrosetti-Prodi type
problems with critical nonlinearities using variational methods. And the results for
the quasilinear Ambrosetti-Prodi type problems can be found in Perera et al. [29].

Recently, a lot of attention has been given to the study of the elliptic equa-
tions involving the fractional p-Laplacian, which is the nonlinear nonlocal operator
defined on smooth functions by

(−∆)spu(x) = 2 lim
ε↘0

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+sp

dy,

where p ∈ (1,+∞), s ∈ (0, 1) and N > sp. Some motivation that have led to the
study of this kind of operator can be found in Caffarelli [6]. The operator (−∆)sp
leads naturally to the quasilinear problem

(−∆)spu = f(x, u), in Ω;

2010 Mathematics Subject Classification. 35B33, 35J92, 35J20.
Key words and phrases. Fractional p-Laplacian; critical nonlinearity; asymmetric nonlinearity;

linking; Z2-cohomological index.
c©2017 Texas State University.

Submitted November 9, 2016. Published April 18, 2017.

1



2 L. HUANG, Y. YANG EJDE-2017/103

u = 0, in RN \ Ω;

where Ω is a domain in RN . There is currently a rapidly growing literature on
this problem when Ω is bounded with Lipschitz boundary. In particular, fractional
p-eigenvalue problems have been studied in [12, 16, 18, 26], global Hölder regularity
in [15, 22], existence theory in the critical case in [27, 19, 20, 21, 22].

Motivated by [29], in this article, we consider the asymmetric critical fractional
p-Laplacian problem

(−∆)spu = λ|u|p−2u+ u
p∗s−1
+ , in Ω;

u = 0, in RN \ Ω;
(1.1)

where Ω is a bounded domain in RN with Lipschitz boundary, λ > 0 is a con-
stant, p∗s = Np/(N − sp) is the fractional critical Sobolev exponent, and u+(x) =
max{u(x), 0}.

We call that λ ∈ R is a Dirichlet eigenvalue of (−∆)sp in Ω if the problem

(−∆)spu = λ|u|p−2u, in Ω;

u = 0, in RN \ Ω;
(1.2)

has a nontrivial weak solution. The first eigenvalue λ1 is positive, simple, and has
an associated eigenfunction ϕ1 that is positive in Ω. And if λ ≥ λ2 is an eigenvalue,
u is a λ-eigenfunction, then u changes sign in Ω. For problem (1.1) when λ = λ1,
tϕ1 is clearly a negative solution for any t < 0. So here we focus on the case λ is
not an eigenvalue of (−∆)sp, and our result is the following.

Theorem 1.1. Let 1 < p <∞, s ∈ (0, 1), N > sp, and λ > 0. Then problem (1.1)
has a nontrivial weak solution in the following cases

(i) N = sp2 and 0 < λ < λ1;
(ii) N > sp2 and λ is not an eigenvalue of (−∆)sp.

2. Preliminaries and some known results

Let

[u]s,p =
(∫

R2N

|u(x)− u(y)|p

|x− y|N+sp
dxdy

)1/p

be the Gagliardo seminorm of a measurable function u : RN → R, and let

W s,p(RN ) = {u ∈ Lp(RN ) : [u]s,p <∞}
be the fractional Sobolev space endowed with the norm

‖u‖s,p =
(
|u|pp + [u]ps,p

)1/p
,

where | · |p is the norm in Lp(RN ). We work in the closed linear subspace

W s,p
0 (Ω) = {u ∈W s,p(RN ) : u = 0 a.e. in RN \ Ω},

equivalently renormed by setting ‖ · ‖ = [·]s,p, which is a uniformly convex Banach
space. The imbedding W s,p

0 (Ω) ↪→ Lr(Ω) is continuous for r ∈ [1, p∗s] and compact
for r ∈ [1, p∗s). Weak solutions of problem (1.1) coincide with critical points of the
C1-functional

Iλ(u) =
1
p

∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dx dy − λ

p

∫
Ω

|u|p dx− 1
p∗s

∫
Ω

u
p∗s
+ dx,
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for u ∈W s,p
0 (Ω).

We recall that Iλ satisfies the Cerami compactness condition at the level c ∈ R, or
the (C)c condition for short, if every sequence {uj} ⊂W s,p

0 (Ω) such that Iλ(uj)→ c
and (1 + ‖uj‖)I ′λ(uj)→ 0, called a (C)c sequence, has a convergent subsequence.

Let

S = inf
u∈W s,p

0 (Ω)\{0}

‖u‖p

|u|pp∗s
be the best constant in the Sobolev inequality. From [4], we know that for 1 < p <
∞, 0 < s < 1, N > ps, there exists a minimizer for S, and for every minimizer U ,
there exist x0 ∈ RN and a constant sign monotone function u : R → R such that
U(x) = u(|x− x0|). In the following, we shall fix a radially symmetric nonnegative
decreasing minimizer U = U(r) for S. Multiplying U by a positive constant if
necessary, we may assume that

(−∆)spU = Up
∗
s−1. (2.1)

For any ε > 0, the function

Uε(x) =
1

ε(N−sp)/p U
( |x|
ε

)
is also a minimizer for S satisfying (2.1). In [20, Lemma 2.2], the following asymp-
totic estimates for U were provided.

Lemma 2.1 ([20, Lemma 2.2]). There exist constants c1, c2 > 0 and θ > 1 such
that for all r ≥ 1,

c1
r(N−sp)/(p−1)

≤ U(r) ≤ c2
r(N−sp)/(p−1)

,

and
U(θ r)
U(r)

≤ 1
2
.

Assume, without loss of generality, that 0 ∈ Ω. For ε, δ > 0, let

mε,δ =
Uε(δ)

Uε(δ)− Uε(θδ)
,

let

gε,δ(t) =


0, 0 ≤ t ≤ Uε(θδ),
mp
ε,δ (t− Uε(θδ)), Uε(θδ) ≤ t ≤ Uε(δ),

t+ Uε(δ) (mp−1
ε,δ − 1), t ≥ Uε(δ),

and let

Gε,δ(t) =
∫ t

0

g′ε,δ(τ)1/p dτ =


0, 0 ≤ t ≤ Uε(θδ),
mε,δ (t− Uε(θδ)), Uε(θδ) ≤ t ≤ Uε(δ),
t, t ≥ Uε(δ).

The functions gε,δ and Gε,δ are nondecreasing and absolutely continuous. Consider
the radially symmetric non-increasing function

uε,δ(r) = Gε,δ(Uε(r)),

which satisfies

uε,δ(r) =

{
Uε(r), r ≤ δ,
0, r ≥ θδ.
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We have the following estimates for uε,δ which were proved in [20, Lemma 2.7].

Lemma 2.2 ([20, Lemma 2.7]). There exists a constant C = C(N, p, s) > 0 such
that for any ε ≤ δ/2,

‖uε,δ‖p ≤ SN/sp + C(
ε

δ
)(N−sp)/(p−1),

|uε,δ|pp ≥

{
1
C ε

sp log( δε ), if N = sp2,
1
C ε

sp, if N > sp2,
(2.2)

|uε,δ|
p∗s
p∗s
≥ SN/sp − C(

ε

δ
)N/(p−1),

‖uε,δ‖p − λ|uε,δ|p

|uε,δ|pp∗s
≤

S −
λ
C εsp log

(
δ
ε

)
+ C

(
ε
δ

)sp
, N = sp2,

S − λ
C εsp + C

(
ε
δ

)(N−sp)/(p−1)

, N > sp2.
(2.3)

For p > 1, and the eigenvalues of problem (1.2), we define a non-decreasing
sequence λk by means of the cohomological index. This type of construction was
introduced for the p-Laplacian by Perera [23]. (see also Perera and Szulkin [25]),
and it is slightly different from the traditional one, based on the Krasnoselskii
genus (which does not give the additional Morse-theoretical information that we
need here).

We briefly recall the definition of Z2-cohomological index by Fadell and Rabi-
nowitz [10]. Let W be a Banach space and let A denote the class of symmetric
subsets of W \ {0}. For A ∈ A, let A = A/Z22 be the quotient space of A with
each u and −u identified, let f : A → RP∞ be the classifying map of A, and let
f∗ : H∗(RP∞)→ H∗(A) be the induced homomorphism of the Alexander-Spanier
cohomology rings. The cohomological index of A is defined by

i(A) =

{
0, if A = ∅,
sup{m ≥ 1 : f∗(ωm−1) 6= 0}, if A 6= ∅,

where ω ∈ H1(RP∞) is the generator of the polynomial ring H∗(RP∞) = Z22[ω].
See Perera et al. [24] for details.

So the eigenvalues of problem (1.2), coincide with critical values of the functional

Ψ(u) =
1
|u|pp

, u ∈M = {u ∈W s,p
0 (Ω) : ‖u‖ = 1}.

Let F denote the class of symmetric subsets of M, and set

λk := inf
M∈F, i(M)≥k

sup
u∈M

Ψ(u), k ∈ N.

Then 0 < λ1 < λ2 ≤ λ3 ≤ · · · → +∞ is a sequence of eigenvalues of problem (1.2),
and

λk < λk+1 =⇒ i(Ψλk) = i(M\Ψλk+1) = k,

where

Ψa = {u ∈M : Ψ(u) ≤ a}, Ψa = {u ∈M : Ψ(u) ≥ a}, a ∈ R.

From [20, Proposition 3.1], the sublevel set Ψλk has a compact symmetric subset
E(λk) of index k that is bounded in L∞(Ω). We may assume without loss of
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generality that 0 ∈ Ω. Let δ0 = ( 0, ∂Ω), take a smooth function η : [0,∞)→ [0, 1]
such that η(s) = 0 for s ≤ 3/4 and η(s) = 1 for s ≥ 1, set

vδ(x) = η(
|x|
δ

)v(x), v ∈ E(λk), 0 < δ ≤ δ0
2
,

and let Eδ = {π(vδ) : v ∈ E(λk)}, where π : W s,p
0 (Ω) \ {0} → M, u 7→ u/‖u‖ is

the radial projection onto M.

Lemma 2.3 ([20, Proposition 3.2]). There exists a constant C = C(N,Ω, p, s, k) >
0 such that for all sufficiently small δ > 0,

(i) 1
C ≤ |ω|q ≤ C, for all ω ∈ Eδ, 1 ≤ q ≤ ∞,

(ii) supω∈Eδ Iλ(ω) ≤ λk + CδN−sp,
(iii) Eδ ∩Ψλk+1 = ∅, i(Eδ) = k,
(iv) suppω ∩ suppπ(uε,δ) = ∅ for all ω ∈ Eδ,
(v) π(uε,δ) /∈ Eδ.

We need the following two lemmas for the fractional p-Laplacian.

Lemma 2.4 ([14, P.161]). If {un}n∈N ⊂W s,p
0 (Ω) is such that un ⇀ u in W s,p

0 (Ω),
and∫∫

R2N

|un(x)− un(y)|p−2(un(x)− un(y))((un − u)(x)− (un − u)(y))
|x− y|N+ps

dx dy → 0,

as n→∞, then un → u in W s,p
0 (Ω) as n→∞.

Lemma 2.5 ([19, Theorem 2.5]). Let {un} be a bounded sequence in W s,p
0 (Ω), let

|Dsun|p(x) :=
∫

RN
|un(x)−un(y)|p
|x−y|N+ps dy, for a.e.x ∈ RN . Then, up to a subsequence,

there exists u ∈ W s,p
0 (Ω), two Borel regular measures µ and ν, Λ denumerable,

xj ∈ Ω, νj ≥ 0, µj ≥ 0 with µj + νj > 0, such that

un ⇀ u weakly in W s,p
0 (Ω), and un → u strongly in Lp(Ω),

|Dsun|p
w∗−−→ dµ, |un|p

∗
s
w∗−−→ dν,

dµ ≥ |Dsu|p +
∑
j∈Λ

µjδxj , µj := µ({xj}),

dν = |u|p
∗
s +

∑
j∈Λ

νjδxj , νj := ν({xj}),

µj ≥ Sν
p/p∗s
j .

We will prove Theorems 1.1 using the following abstract critical point theorem
proved in Yang and Perera [31, Theorem 2.2], which was also used successfully in
[28, 29, 20], and generalizes the well-known linking theorem of Rabinowitz [30].

Lemma 2.6 ([31, Theorem 2.2]). Let W be a Banach space, let S = {u ∈ W :
‖u‖ = 1} be the unit sphere in W , and let π : W \{0} → S, u 7→ u/‖u‖ be the radial
projection onto S. Let I be a C1-function on W and let A0 and B0 be disjoint
nonempty closed symmetric subsets of S such that

i(A0) = i(S \B0) <∞.
Assume that there exist R > r > 0 and v ∈ S \A0 such that

sup I(A) ≤ inf I(B), sup I(X) <∞,
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where

A = {tu : u ∈ A0, 0 ≤ t ≤ R} ∪ {Rπ((1− t)u+ tv) : u ∈ A0, 0 ≤ t ≤ 1},
B = {ru : u ∈ B0}, X = {tu : u ∈ A, ‖u‖ = R, 0 ≤ t ≤ 1}.

Let Γ = {γ ∈ C(X,W ) : γ(X) is closed and γ|A = idA}, and set

c := inf
γ∈Γ

sup
u∈γ(X)

I(u).

Then
inf I(B) ≤ c ≤ sup I(X),

in particular, c is finite. If, in addition, I satisfies the (C)c condition, then c is a
critical value of I.

3. Proof of Theorem 1.1

First, we will give our main lemma.

Lemma 3.1. If λ 6= λ1, then Iλ satisfies the (C)c condition for all c < s
N S

N/sp.

Proof. Let c < s
N S

N/sp, and let {uj} be a (C)c sequence. First we show that {uj}
is bounded. We have

1
p

∫∫
R2N

|uj(x)− uj(y)|p

|x− y|N+ps
dx dy − λ

p

∫
Ω

|uj |p dx−
1
p∗s

∫
Ω

u
p∗s
j+ dx = c+ o(1), (3.1)∫∫

R2N

|uj(x)− uj(y)|p−2(uj(x)− uj(y))(v(x)− v(y))
|x− y|N+ps

dx dy

− λ
∫

Ω

|uj |p−2ujv dx−
∫

Ω

u
p∗s−1
j+ v dx

=
o(1)‖v‖
1 + ‖uj‖

.

(3.2)

Taking v = uj in (3.2) and combing with (3.1) gives∫
Ω

u
p∗s
j+ dx =

N

s
c+ o(1). (3.3)

Taking v = uj+ in (3.2), and using the equality

|u+(x)− u+(y)|p ≤ |u(x)− u(y)|p−2(u(x)− u(y))(u+(x)− u+(y)), (3.4)

gives ∫∫
R2N

|uj+(x)− uj+(y)|p

|x− y|N+ps
dx dy ≤ λ

∫
Ω

upj+ dx+
∫

Ω

u
p∗s
j+ dx+ o(1).

So {uj+} is bounded in W s,p
0 (Ω). Suppose ρj := ‖uj‖ = (

∫∫
R2N

|uj(x)−uj(y)|p
|x−y|N+ps )1/p →

∞ for a renamed subsequence. Then ũj = uj
‖uj‖ converges to some ũ weakly in

W s,p
0 (Ω), strongly in Lq(Ω) for 1 ≤ q < p∗s, and a.e. in Ω for a further subsequence.

Since the sequence {uj+} is bounded, dividing (3.1) by ρpj and (3.2) by ρp−1
j and

passing to the limit then gives

λ

∫
Ω

|ũ|p dx = 1,
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R2N

|ũ(x)− ũ(y)|p−2(ũ(x)− ũ(y))(v(x)− v(y))
|x− y|N+ps

dx dy

= λ

∫
Ω

|ũ|p−2ũv dx, ∀v ∈W s,p
0 (Ω),

respectively. Moreover, since ũj+ = uj+/ρj → 0, ũ ≤ 0 a.e. Hence ũ = tϕ1

for some t < 0 and λ = λ1, this is a contradiction with assumption. So {uj}
is bounded, and for a renamed subsequence, it converges to some u weakly in
W s,p

0 (Ω) and Lp
∗
s (Ω). Since {uj+} is bounded, according to Lemma 2.5, a renamed

subsequence of which then converges to some v ≥ 0 weakly in W s,p
0 (Ω), strongly in

Lq(Ω) for 1 ≤ q < p∗s and a.e. in Ω, and

|Dsuj+|p
w∗−−→ dµ, |uj+|p

∗
s
w∗−−→ dν, (3.5)

then there exists an at most countable index set Λ and points xi ∈ Ω, i ∈ Λ, such
that

dµ ≥ |Dsv|p +
∑
i∈Λ

µiδxi , µi := µ({xi}),

dν = |v|p
∗
s +

∑
i∈Λ

νiδxi , νi := ν({xi}),
(3.6)

where µi, νi ≥ 0, µi + νi > 0, and µi ≥ Sν
p/p∗s
i .

Now for any ρ > 0, let ϕi,ρ ∈ C∞c (B2ρ(xi)) satisfy

0 ≤ ϕi,ρ, ϕi,ρ|Bρ = 1, |ϕi,ρ|∞ ≤ 1, |∇ϕi,ρ|∞ ≤ C/ρ.

From [19, (2.14)], for all w ∈ Lp∗s (RN ),

lim
ρ↘0

∫
RN
|w|p|Dsϕi,ρ|pdx = 0. (3.7)

Testing equation (3.2) with ϕi,ρuj+, which is also bounded in W s,p
0 (Ω), from

(3.4), we obtain

o(1) (3.8)

=
∫∫

R2N

|uj(x)− uj(y)|p−2(uj(x)− uj(y))(ϕi,ρ(x)uj+(x)− ϕi,ρ(y)uj+(y))
|x− y|N+ps

dx dy

− λ
∫

Ω

|uj |p−2ujϕi,ρuj+ dx−
∫

Ω

u
p∗s−1
j+ ϕi,ρuj+ dx

=
∫∫

R2N

|uj(x)− uj(y)|p−2(uj(x)− uj(y))(uj+(x)− uj+(y))
|x− y|N+ps

ϕi,ρ(x) dx dy

−
∫

Ω

u
p∗s
j+ϕi,ρ dx

+
∫∫

R2N

|uj(x)− uj(y)|p−2(uj(x)− uj(y))uj+(y)(ϕi,ρ(x)− ϕi,ρ(y))
|x− y|N+ps

dx dy

− λ
∫

Ω

|uj |p−2ujϕi,ρuj+ dx

≥
∫∫

R2N

|uj+(x)− uj+(y)|p

|x− y|N+ps
ϕi,ρ(x) dx dy −

∫
Ω

u
p∗s
j+ϕi,ρ dx

+
∫∫

R2N

|uj(x)− uj(y)|p−2(uj(x)− uj(y))uj+(y)(ϕi,ρ(x)− ϕi,ρ(y))
|x− y|N+ps

dx dy
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− λ
∫

Ω

|uj |p−2ujϕi,ρuj+ dx. (3.9)

By (3.5), we have∫∫
R2N

|uj+(x)− uj+(y)|p

|x+ y|N+sp
ϕi,ρ(x)dx dy →

∫
RN

ϕi,ρdµ,∫
Ω

u
p∗s
j+ϕi,ρdx→

∫
Ω

ϕi,ρdν,∫
Ω

upj+ϕi,ρdx→
∫

Ω

vpϕi,ρdx.

Moreover, by Hölder’s inequality, we obtain∣∣ ∫∫
R2N

|uj(x)− uj(y)|p−2(uj(x)− uj(y))uj+(y)(ϕi,ρ(x)− ϕi,ρ(y))
|x− y|N+ps

dx dy
∣∣

≤
∫∫

R2N
| |uj(x)− uj(y)|p−2(uj(x)− uj(y))uj+(y)(ϕi,ρ(x)− ϕi,ρ(y))

|x− y|N+ps
| dx dy

≤
(∫∫

R2N

∣∣∣ |uj(x)− uj(y)|p−2(uj(x)− uj(y))

|x− y|
(p−1)(N+ps)

p

∣∣∣p/(p−1)

dx dy
)(p−1)/p

×
(∫

RN
|uj+|p|Dsϕi,ρ|p dy

)1/p

.

(3.10)
Notice that |Dsϕi,ρ|p ∈ L∞(RN ), since∫

RN

|ϕi,ρ(x)− ϕi,ρ(y)|p

|x− y|N+ps
dy ≤ C

ρp

∫
RN

min{1, |x− y|p}
|x− y|N+ps

dy ≤ C

ρp
, (3.11)

then
lim sup
j→+∞

∫
RN
|uj+|p|Dsϕi,ρ|p dy =

∫
RN

vp|Dsϕi,ρ|p dy,

passing to the limit in (3.9) gives,∫
RN

ϕi,ρ dµ ≤
∫

Ω

ϕi,ρ dν + C(
∫

RN
vp|Dsϕi,ρ|p dy)1/p + λ

∫
Ω

vpϕi,ρdx.

Letting ρ ↘ 0 and using (3.7), gives νi ≥ µi, which together with µi ≥ Sν
p/p∗s
i ,

then give νi = 0 or νi ≥ SN/sp.
We claim that νi ≥ SN/sp is not possible to hold. Indeed, passing to the limit

in (3.3) and by (3.5) and (3.6), then νi ≤ N
s c < SN/sp. So νi = 0, Λ is empty, and∫

Ω

u
p∗s
j+ dx→

∫
Ω

vp
∗
s dx,

then uj+ → v strongly in Lp
∗
s (Ω) by uniform convexity. Combining the fact that

uj converges to u weakly in Lp
∗
s (Ω),∫

Ω

u
p∗s−1
j+ (uj − u) dx→ 0.

Now we have

〈I ′λ(uj), (uj − u)〉

=
∫∫

R2N

|uj(x)− uj(y)|p−2(uj(x)− uj(y))((uj − u)(x)− (uj − u)(y))
|x− y|N+ps

dx dy
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− λ
∫

Ω

|uj |p−2uj(uj − u) dx−
∫

Ω

u
p∗s−1
j+ (uj − u) dx→ 0.

Therefore∫∫
R2N

|uj(x)− uj(y)|p−2(uj(x)− uj(y))((uj − u)(x)− (uj − u)(y))
|x− y|N+ps

dx dy → 0.

By Lemma 2.4, we obtain uj → u in W s,p
0 (Ω). �

Proof of Theorem 1.1. We now give the proof for the case when λ > λ1 is not one
of the eigenvalues. For 0 < λ < λ1, the proof is similar and simpler. Fix λ′ such
that λk < λ′ < λ < λk+1, and let δ > 0 be so small such that λk + CδN−sp < λ′,
in particular,

Ψ(ω) < λ′, ∀ω ∈ Eδ. (3.12)

Then take A0 = Eδ and B0 = Ψλk+1 , and note that A0 and B0 are disjoint
nonempty closed symmetric subsets of M such that

i(A0) = i(M\B0) = k.

Now, let 0 < ε ≤ δ/2, let R > r > 0, and let v0 = π(uε,δ) ∈ M\Eδ, and let A,B,
and X be as in Lemma 2.6.

For u ∈ Ψλk+1 ,

Iλ(ru) ≥ 1
p

(1− λ

λk+1
)rp − 1

p∗sS
p∗s/p

rp
∗
s .

Since λ < λk+1, it follows that inf Iλ(B) > 0 if r is sufficiently small. Next we show
Iλ ≤ 0 on A if R is sufficiently large. For ω ∈ Eδ and t ≥ 0,

Iλ(tω) =
1
p
‖tω‖p − λ

p
|tω|pp −

1
p∗s
|tω+|

p∗s
p∗s

≤ tp

p
(1− λ

Ψ(ω)
) ≤ 0,

by (3.12). Now let ω ∈ Eδ, 0 ≤ t ≤ 1, and set u = π((1 − t)ω + tv0). Clearly,
‖(1 − t)ω + tv0‖ ≤ 1, and since the supports of ω and v0 are disjoint by Lemma
2.3(iv),

|(1− t)ω + tv0|
p∗s
p∗s

= (1− t)p
∗
s |ω|p

∗
s
p∗s

+ tp
∗
s |v0|

p∗s
p∗s
,

|u|pp =
|(1− t)ω + tv0|pp
‖(1− t)ω + tv0‖p

≥ (1− t)p

Ψ(ω)
≥ (1− t)p

λ′
.

Since

|v0|
p∗s
p∗s

=
|uε,δ|

p∗s
p∗s

‖uε,δ‖p∗s
≥ 1
SN/(N−sp)

+O(ε(N−sp)/(p−1)), (3.13)

it follows that

|u+|
p∗s
p∗s

=
|[(1− t)ω + tv0]+|

p∗s
p∗s

‖(1− t)ω + tv0‖p∗s

≥ (1− t)p
∗
s |ω+|

p∗s
p∗s

+ tp
∗
s |v0|

p∗s
p∗s

≥ tp
∗
s |v0|

p∗s
p∗s
≥ tp

∗
s

C
,

(3.14)
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if ε is sufficiently small, where C = C(N,Ω, p, s, k) > 0. Then

Iλ(Ru) =
Rp

p
‖u‖p − λRp

p
|u|pp −

Rp
∗
s

p∗s
|u+|

p∗s
p∗s

≤ −R
p

p

[ λ
λ′

(1− t)p − 1
]
− tp

∗
s

p∗sC
Rp
∗
s .

(3.15)

The above expression is clearly non-positive if t ≤ 1 − (λ′/λ)1/p =: t0. For t > t0,
it is non-positive if R is sufficiently large.

Now, it only remains to show that

sup Iλ(X) <
s

N
SN/sp, (3.16)

if ε is sufficiently small, where

X = {ρπ((1− t)ω + tv0) : ω ∈ Eδ, 0 ≤ t ≤ 1, 0 ≤ ρ ≤ R}.

Set again u = π((1 − t)ω + tv0). From (3.15), Iλ(ρu) ≤ 0, for all 0 ≤ ρ ≤ R, if
0 ≤ t ≤ t0. So we only need to consider the case that 1 ≥ t ≥ t0. Then

sup
0≤ρ≤R

Iλ(ρu) ≤ sup
ρ≥0

[ρp
p

(1− λ|u|pp)−
ρp
∗
s

p∗s
|u+|

p∗s
p∗s

]
=

s

N

[ (1− λ|u|pp)+

|u+|pp∗s

]N/sp
=

s

N

[ (‖(1− t)ω + tv0‖p − λ|(1− t)ω + tv0|pp)+

|[(1− t)ω + tv0]+|pp∗s

]N/sp
.

(3.17)

From the arguments in [20, pp.17-18 (3.15)-(3.17)],

‖(1− t)ω + tv0‖p ≤
λ

λ′
(1− t)p + tp + CεN−(N−sp) q/p, (3.18)

where q ∈ (N(p− 1)/(N − sp), p),
|(1− t)ω + tv0|pp = (1− t)p|ω|pp + tp|v0|pp,

|[(1− t)ω + tv0]+|
p∗s
p∗s
≥ (1− t)p

∗
s |ω+|

p∗s
p∗s

+ tp
∗
s |v0|

p∗s
p∗s
.

(3.19)

By (3.13), |v0|p∗s is bounded away from zero, if ε is sufficiently small, so the last
expression in (3.19) is bounded away from a certain number for 1 ≥ t ≥ t0. It
follows from (3.18), (3.19) and |ω|p ≥ 1

λ′ by (3.12), that

‖(1− t)ω + tv0‖p − λ|(1− t)ω + tv0|pp
|[(1− t)ω + tv0]+|pp∗s

≤
1− λ|v0|pp
|v0|pp∗s

+ CεN−(N−sp)q/p

≤ ‖uε,δ‖
p − λ|uε,δ|p

|uε,δ|pp∗s
+ CεN−(N−sp) q/p

≤ S − (
λ

C
− Cε(N−sp2)/(p−1) − Cε(N−sp)(1−q/p))εsp,

by v0 = uε,δ/‖uε,δ‖, and (2.3). Since N > sp2 and q < p, it follows from this that
the last expression in (3.17) is strictly less than s

N SN/sp if ε is sufficiently small.
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So 0 < c < s
N S

N/sp. Then Iλ satisfies the (C)c condition by Lemma 3.1, and hence
c is a critical value of Iλ by Lemma 2.6. �
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