

CUSTOMIZED DATA COMPRESSION - AUTOMATICALLY SYNTHESIZING

EFFECTIVE DATA COMPRESSION AND DECOMPRESSION

ALGORITHMS

by

Hari Santhosh Manikanta Kumar Mukka, B.S.

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment

of the requirements for the degree of

Master of Science

with a Major in Computer Science

December 2014

Committee Members:

 Martin Burtscher, Chair

 Anne Ngu

 Dan Tamir

COPYRIGHT

by

Hari Santhosh Manikanta Kumar Mukka

2014

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgment. Use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Hari Santhosh Manikanta Kumar Mukka,

authorize duplication of this work, in whole or in part, for educational or scholarly

purposes only.

DEDICATION

I would like to dedicate this thesis to my family.

v

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Dr. Martin Burtscher,

for his continuous support throughout my research. I am glad that I worked under a

professor who understood me in my odd times and whose guidance helped me in all the

time of research and writing this thesis.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr.

Anne Ngu and Dr. Dan Tamir for their encouragement and support.

I would like to thank my parents for encouraging me to study abroad and helping

me in all the possible ways they can. Last but not least, I thank my uncle, without whose

support I would not have started my thesis.

This project was funded in part by the U.S. National Science Foundation under

Grant No. 1217231.

vi

TABLE OF CONTENTS

 Page

ACKNOWLEDGEMENTS ...v v

LIST OF TABLES ...viii vi

LIST OF FIGURES ...ix vii

ABSTRACT ..x viii

CHAPTER

1. INTRODUCTION ...1

1.1 Data Compression ..1

 1.1.1 Compression Techniques ..1

 1.1.2 Measures of Performance ...2

 1.1.3 Modeling and Coding ...3

1.2 Contributions..4

2. BACKGROUND ...6

2.1 Huffman Coding ..6

2.2 Arithmetic Coding ...7

2.3 Run-Length Coding ...7

2.4 Dictionary-Based Compression ...8

 2.4.1 LZ77 ..8

 2.4.2 LZ78 ..9

2.5 Integer Compression Algorithms ...9

 2.5.1 Golomb Codes ..9

 2.5.2 Elias Gamma Coding ..10

 2.5.3 Fibonacci Coding ..10

3. RELATED WORK ..11

4. COMPONENTS ..15

4.1 Mutators ...15

4.2 Predictors ...15

4.3 Reducers ...17

4.4 Shufflers ...19

4.5 Expanders ...20

vii

4.6 Search for Effective Algorithms ..21

4.6.1 Exhaustive Search ...21

4.6.2 Genetic Algorithm ..21

5. EVALUATION METHODS ...24

5.1 System and Compiler ...24

5.2 Performance Metrics ..24

5.2.1 Timing Measurement ..25

5.3 Compression Algorithms ...25

5.4 Datasets Used ...29

6. RESULTS ..32

6.1 Compression Ratio ...32

6.2 Comparison ..33

6.3 Throughput ...34

6.4 Exhaustive Search ..38

6.5 Pure Entropy Based Compression ...38

6.6 Discussion ..39

6.6.1 Best Combinations ..39

6.6.2 Repeated Combinations ..40

6.7 Customization Benefits ..41

7. SUMMARY ...42

 LITERATURE CITED ..43

viii

LIST OF TABLES

Table Page

5.4.1 Statistical information about each dataset...31

6.1.1 Compression ratio for stages 1 to 10 using genetic ..32

6.2.1 Compression ratio comparison ...33

6.3.1 Compression throughput comprarison ..35

6.3.2 Decompression throughput comparison ...37

6.4.1 Comparison of genetic and exhaustive ...38

6.5.1 Compression ratio using pure entropy based compression ...39

6.6.1 Best combinations ...40

ix

LIST OF FIGURES

Figure Page

1.1 Overview of the approach ..4

2.1 LZ77 algorithm ..8

2.2 LZ78 algorithm ..9

4.1 FCM predictor ..17

4.2 Crossover ...22

5.1 FPC compression algorithm ...27

6.1 Compression throughput ..36

6.2 Decompression throughput ..37

x

ABSTRACT

With the exponential increase in the amount of data humans are generating, there

is a progressive need for developing effective high-speed data compression techniques.

However, developing an algorithm that just compresses data well is not sufficient. A

good compression technique should also minimize the compression and decompression

time. This project focuses on automatically synthesizing compression and decompression

algorithms for a given data type. In particular, it employs search techniques to mix and

match different transformation, prediction, and encoding components to determine the

most efficient configurations.

11

CHAPTER 1

INTRODUCTION

1.1 Data Compression

Data compression is reducing the size of data for faster data transfer and to store

data using less storage space. It is ubiquitous. For example, most of the images on web

pages are compressed, typically using JPEG or GIF, modems and fax machines use

compression, HDTV uses MPEG-2 for compression, and several file systems

automatically compress files when they are stored.

1.1.1 Compression Techniques

A compressor is usually a combination of two algorithms, one that takes an input

“X” and generates “Xc” that requires fewer bits and a reconstruction algorithm that

operates on the compressed representation to generate “Y”, which may or may not be the

same as the original data. Based on this reconstruction requirement, compression

techniques are divided into lossless and lossy compression algorithms.

Lossless Algorithms

 These algorithms can reconstruct the original data exactly from the compressed

data. For example, lossless compression is required for program executables where every

bit matters. It is employed in winzip, gzip, and other compression utilities. There are

many situations where we require the decompressed file to be same as the original file. In

situations where this requirement is not necessary, we can use lossy compression.

12

Entropy

Entropy is a measure of the average number of bits required to encode each

symbol in the output of the source. The best that lossless compression can do (in the

absence of a data model) is to encode the output of a source with an average number of

bits equal to the entropy of the source.

 Lossy Algorithms

These algorithms typically compress better but can only approximate the original

data. In many applications this approximation is not a problem. For example, when

storing or transmitting speech, the exact value of each sample of speech is not necessary

similarly for video and image compression, data can be reconstructed depending on the

quality required.

1.1.2 Measures of Performance

Once an algorithm is developed, we need to be able to measure its performance.

Because of different areas of application, different terms have been developed to describe

and measure the performance of compression algorithms. We could measure the relative

complexity of the algorithm, the memory required to implement the algorithm, how fast

the algorithm performs on a given machine, the amount of compression, and how close

the reconstruction resembles the original. In this thesis, I have used the amount of

compression achieved and the algorithm speed to measure the performance.

13

1.1.3 Modeling and Coding

At a high level, most data compression algorithms comprise two stages, a data

model and a data encoder. Roughly speaking, the goal of the model is to accurately

predict the data. The residual between this prediction and the actual data is then

compressed with the encoder. The encoder maps the input data to bit sequences in such a

way that frequently encountered values will produce shorter output than infrequently

encountered data. This project’s objective is to develop a suite of different generic data

models that can be chained to create more sophisticated models.

For example, value predictors are a good source for such data models. Various

value predictors exist that “guess” the next value in a sequence. The difference between

the actual value and the predicted value will be close to zero if the model is good for the

given data. As the resulting sequence of differences is simply another sequence of values,

the output of one predictor can be used as input to another predictor and so forth. The

output of the last predictor is then encoded. Search techniques decide the best

combinations and permutations of predictors to be used to generate an effective

compression technique for a given data set.

Each component will have a corresponding inverse component. For instance, for

each value predictor there exists an inverse predictor that takes the residual sequence as

input and regenerates the original sequence of values. This ensures that, for any

synthesized combination of predictors, there not only exists a decompression algorithm

but it can, in fact, be synthesized as well. In other words, the de-compressor can

14

automatically be generated based on the chosen compression configuration.

Figure 1.1 represents an overview of the thesis idea; components A, B, and C are

chained to compress an input file and then the complements of each component are used

in reverse order to decompress the file.

Figure 1.1 Overview of the approach

1.2 Contributions

 I combined different algorithmic components to form novel, effective

compression algorithms.

 I used exhaustive search to determine the best possible solutions within the given

search domain.

 I used a genetic algorithm to find good solutions quickly.

 This approach is flexible and can easily be extended to include more, fewer, or

different components to improve the performance.

15

The rest of the thesis is organized as follows. Chapter 2 summarizes related work.

Chapter 3 describes the different components used in the thesis. Chapter 4 presents the

evaluation methods. Chapter 5 discusses the results. Chapter 6 provides a summary and

conclusions.

16

CHAPTER 2

BACKGROUND

2.1 Huffman Coding

The Huffman code is an optimal prefix code and the process of using a Huffman

code is called Huffman coding (Huffman 1952). It is a common technique employed in

entropy encoding and in lossless compression. In this technique, the values that occur

more frequently have shorter code words than less frequent values. Huffman coding

works by creating a binary tree of nodes. The simplest construction algorithm uses a

priority queue where the value with the lowest probability is given the highest priority.

The procedure for building this tree is:

1. Start with a list of free nodes, where each node corresponds to a symbol in the

alphabet.

2. Select the two free nodes with the lowest weight from the list.

3. Create a parent node for these two nodes selected where the weight is equal to the

sum of the weights of the two child nodes.

4. Remove the two child nodes from the list and insert the parent node into the list of

free nodes.

5. Repeat the process starting from step 2 until only a single tree remains.

After building the tree, the prefix code for each symbol is created by traversing the

tree from the root to the corresponding leaf node. It assigns 0 for a left branch and 1 for a

right branch.

17

In Adaptive Huffman coding, the Huffman tree includes a counter for each

symbol and is updated each time the corresponding symbol is encoded. This algorithm

generates codes that are much more effective than static Huffman coding. This algorithm

requires only one pass over the input and adds little or no overhead to the output. This

version is slower than static Huffman coding as the tree is potentially rebuilt for each

symbol.

2.2 Arithmetic Coding

 Arithmetic coding (Langdon 1984) is a form of entropy coding. It is similar to

Huffman coding except that it encodes the entire message in a single number, a fraction n

where (0.0 < n < 1.0).

 Arithmetic coding generates a unique identifier or tag to encode the sequence. In

the first phase, a unique identifier or tag is generated for a given sequence of symbols.

This tag is then given a binary code. Thus, a unique arithmetic code can be generated for

a sequence of length m without the need of generating code words for all sequences of

length m as in Huffman coding.

2.3 Run-Length Coding

 This model is derived from the Capon model, a two state Markov model with

states Sw and Sb (Sw corresponds to the case where the pixel that has just been encoded is

a white pixel and Sb corresponds to the case where the pixel that has just been encoded is

a black pixel.) The transition probabilities (P(w/b) and P(b/w)) and the probability of

being in each state (P(Sw) and P(Sb)) completely specify this model. The main idea of this

18

model is that a pixel of a particular color is likely to be followed by the same color pixels.

So, it is better to code the repeated length rather than coding each pixel. For example, if

there are 190 white pixels followed by 200 black pixels we can simply code them as the

two values “190, 200” instead of coding each pixel.

2.4 Dictionary-Based Compression

2.4.1 LZ77

 Jacob Ziv and Abraham Lempel presented a dictionary-based compression

algorithm in 1977 (Lempel and Ziv 1977). It works on the fact that words and phrases

within a text file are likely to be repeated. A pointer is used to point to the previous

occurrence of the current element and a number specifies the number of elements to be

matched. The dictionary is simply a portion of the previously sequence of elements. A

sliding window is used to encode the sequence, which consists of a search buffer that

contains the portion of the previously encoded sequence and a look-ahead buffer that

contains the portion of the sequence to be encoded. The algorithm searches for the

longest match and outputs a triplet <o, l, c>, where o is the offset of the match, l is the

length of the match, and c is the next element to be encoded. Figure 2.1 presents the

LZ77 algorithm.

Figure 2.1 LZ77 algorithm

19

2.4.2 LZ78

 Ziv and Lempel presented another dictionary-based compression scheme in 1978

(Ziv and Lempel 1978), which maintains an explicit dictionary. This dictionary has to be

built both at the encoding and the decoding side and must follow common rules. A code

word in this algorithm consists of two elements <i, c>, where i is the index referring to

the longest non-matching literal and c is the first non-matching symbol. In addition to

outputting each code word, it is also added to the dictionary. When a symbol that is not

yet in the dictionary is encountered, then a code word with index value 0 is added to the

dictionary. The only drawback of this version is that the dictionary keeps on growing,

which is limited in the later versions. Figure 2.2 presents the LZ78 algorithm.

Figure 2.2 LZ78 algorithm

2.5 Integer Compression Algorithms

2.5.1 Golomb Codes

 This compression technique belongs to the family of codes designed for integer

compression. It works on the assumption that the larger the integer, the lower its

probability of occurrence. The simplest code for this situation is a unary code. The unary

20

code for a positive integer n is n 1s followed by 0. For example, the code for 3 is 1110.

For each input value, the Golomb code outputs a code word that is a combination

of a quotient code and a remainder code of that value. The quotient code is the unary

encoding of the quotient obtained by dividing the input value by some fixed value and the

remainder code is the binary encoding of the remainder.

2.5.2 Elias Gamma Coding

 This coding algorithm is used for integers whose upper bound cannot be

determined beforehand. In this technique, each binary representation of the input is

prepended with zeros whose count is equal to the difference of the number of bits

required to represent the value and 1. The Elias gamma code of 7 is 00111.

2.5.3 Fibonacci Coding

 The Fibonacci code is a universal code that encodes positive integers into binary

code words. Fibonacci coding works as follows.

1. The input value N is subtracted from the largest Fibonacci number equal to or less

than N.

2. If the result is the i
th

Fibonacci number, then 1 is placed at position i-2 in the code

word.

3. These steps are repeated until the result is zero.

4. Finally, an additional 1 is placed after the rightmost digit in the code word.

21

CHAPTER 3

RELATED WORK

Ahmed Kattan and Riccardo Poli proposed a system called GP-zip3 (Kattan and

Poli 2010) that uses genetic programming to find optimal ways to combine standard

compression algorithms. GP-zip3 evolves programs with multiple components. One

component divides the data into blocks. These blocks are then projected onto a two-

dimensional Euclidean space via two further (evolved) program components. Similar data

blocks are grouped using the K-means clustering algorithm. Each cluster is then labeled

with the optimal compression algorithm for its member blocks. Once a program that

achieves good compression has been evolved, it can be used without further evolution.

Automatic synthesis of compression technique for heterogeneous files (Hsu and

Zwarico 1995) is presented by William H. Hsu and Amy E. Zwarico in 1995. Each block

of data is compressed using a different algorithm, which is determined using a statistical

method. The actual compression is accomplished in two phases. The first phase

determines the compressibility of each block using some quantitative metrics. A block of

data is considered to be fully compressed if the metrics fall below a certain threshold

value. The compression shifts to the next block when the threshold value is reached. In

the second phase, adjacent blocks that use the same compression algorithm are grouped

together for better performance. A compression history, required for decompression, is

automatically generated in this phase.

22

Wenbin Fang, Bingsheng He, and Qiong Luo presented “Database Compression

on Graphics Processors” (Fang, He and Luo 2010) to overcome the data transfer

overhead, which is an important factor for query co-processing performance on GPU.

Their approach uses a compression planner along with a cost model to find an optimal

combination among nine different compression schemes. The compression planner is a

combination of a tactical planner and a strategic planner. The tactical planner uses a rule-

based method to automatically prune the search space for a predefined maximum number

of schemes, and the strategic planner allows the developers to specify their goals. The

cost model estimates the execution time based on the parallel execution mechanism of

CUDA-based GPUs.

Burtscher Martin and Sam Nana B presented TCgen (Burtscher and Sam 2006), a

trace compression tool that automatically generates portable, customized, high-

performance trace compressors. The user provides a description of the trace format and

selects one or more predictors for compression. TCgen then translates this description

into C source code and optimizes it for the specified trace format and predictors.

Suman K. Mitra, Murthy C. A, and Malay K. Kundu proposed a methodology for

compressing fractal images using a genetic algorithm (Mitra, A and Kundu 1998).

Initially, fractal codes (Fi) are computed for each domain block (Dk). Then these blocks

are classified into two types based on the variability of the pixels in each block. A block

belongs to the smooth type if its variance is below a given threshold and is considered

rough if it is above the threshold. The main aim of this classification is to obtain higher

23

compression and to reduce the encoding time. The final step uses a genetic algorithm to

find a good match (optimal solution) to the rough domain blocks.

“Automatic generation of parallel sorting algorithms” (Garber, et al. 2008) by

Brian A. Garber, Dan Hoeflinger, Xiaoming Li, Maria Jesus Garzaran, and David Padua

discusses a library generator that examines the input characteristics for selecting the best

sorting algorithm. The sorting routine uses a training phase, in which an empirical search

is employed to determine the values of the parameters on the target machine, and a

runtime phase, which examines the input for certain characteristics and selects the

appropriate sorting routine.

The Fastest Fourier Transform in the West (FFTW) (Frigo and Johnson 1997) is a

free software library for computing discrete Fourier transform (DFT). FFTW uses a

planner to maximize the performance, whose input is a problem and a loop of DFTs. The

planner measures the actual runtime of many different plans and selects the fastest one.

Plans are generated according to rules that recursively decompose problems into smaller

sub problems.

Except for “Database compression on graphic processors”, the papers described

above either do not target data compression at all or only consider complete compression

algorithms as components. Moreover, they all use an imprecise method to select

components. In contrast, this thesis 1) uses an exhaustive search to determine the truly

best solution with small numbers of components (in addition to a genetic algorithm for

24

larger numbers of components), 2) presents a general approach that works in any domain

(though we evaluate it on floating-point data because floating-point data are both widely

used and hard to compress losslessly), 3) considers a much larger number of components

than the related work, and 4) does not only study combinations of existing compression

algorithms but also synthesizes brand new algorithms by combining parts of algorithms

in ways that have never before been tried.

25

CHAPTER 4

COMPONENTS

 This section describes the various components that are used to synthesize the

compression algorithms. Each component has a corresponding inverse component that

performs the opposite action, which is needed to synthesize the decompression algorithm.

4.1 Mutators

 Mutators simply change bit value(s) of an element.

INV (Inverse)

This component flips all the bits in every element.

NEG (Negation)

This component negates each element.

MSB (Most Significant Bit)

If the most significant bit of an element is 1, then all the remaining bits are

flipped.

4.2 Predictors

Predictors predict (or extrapolate) the next value in a sequence based on previous

values. The predicted value is then subtracted from or XORed with the true value. This

operation results in many zero bits if the prediction is accurate.

26

LNVn (Last n Value)

 This component divides the input into chunks of 1024 elements and, in each

chunk, each element is predicted using the n
th

previous element, starting from (n+1)
st

element.

PLYn (Polynomial)

This component works by fitting an order n polynomial through the previous

values and uses the resulting polynomial to extrapolate the next value.

SELn (Select)

The SEL component predicts the elements using the most recent element that has

the same n
th

 byte value as the present element.

FCMn (Finite-Context-Method Predictor)

The FCM predictor contains two tables. A hash value computed using the n most

recently encountered values is stored in the predictor’s first-level table. The number of

values per line, i.e., n, determines the order of the predictor. The hash is then used to

index the predictor’s second-level table. During predictions, a hash table lookup is

performed in the hope that the next value will be equal to the value that followed last

time the same sequence of n previous values (i.e., the same hash) was encountered. Thus

FCMn predictor can memorize long arbitrary sequences of values and accurately predict

them when they repeat.

27

Figure 4.1 FCM predictor

DFCMn (Differential Finite Context Method Predictor)

The differential finite context method predictor is similar to FCM predictor except

that it predicts and is updated with the differences (strides) between consecutive trace

entries rather than original values. To form the final prediction, the predicted stride is

added to the most recently seen value. DFCM predictors often make better use of hash

tables and, unlike FCM predictors, can predict values that have never been seen before.

4.3 Reducers

 Reducers are the components that perform actual compression to reduce the

length of the sequence. They attempt to replace sequences of values with different

sequences that are shorter.

ZE (Zero Eliminator)

This component divides data into chunks of size equal to the number of bits in the

input data type. For each chunk, it emits a bitmap indicating whether the corresponding

element was a zero or not. This bitmap is followed by all non-zero values.

28

RLE (Run Length Encoding)

In this compressor, repetitions of the same value are replaced with a single datum

and a count. For example, consider a single scan line of a screen containing black text on

white background, with B representing black pixel and W representing white pixel.

 WWWWBBBBBBWWWBBBWWWWWWWWWWWWWBBWWWWWW.

If run-length-encoding is applied to the above line, we obtain the following output.

4W6B3W3B13W2B6W.

After this compression, the number of characters stored is 15 rather than 37.

RLEa

One problem of the RLE component above is that it greatly expands the output if

there are no repeating values. This happens because every value is preceded with a count

of one. To reduce the number of one counts, RLEa alternately records a repeating count

plus the repeated value followed by a non-repeating count plus all the non-repeating

values. In RLEa, both the repetition count and the count of the number of non-repeating

elements are stored together in a single word using half the bits each.

RLEb

The only difference between RLEa and RLEb is that both counts are stored in

separate words, thus requiring more space for storing counts but also extending the range

of representable counts.

29

LZBn (Lempel Ziv Burtscher)

This component is a variation of the well-known and widely used Lempel Ziv

algorithm (Shanmugasundaram and Lourdusamy 2011). It works on the principle that

patterns of values are likely to be repeated. Most of the Lempel Ziv algorithms output a

triple <o, l , c>, where o is the offset of the match, l is the length of the match and c is the

next symbol of the match. Other versions output two elements <i, c>, where i is the index

of the longest matching pattern and c is the first non-matching literal. LZB does not use

any of the above mentioned methods for matching instead uses a hash table to figure out

where a previous match might be, but only considers the match if the first n values do, in

fact, match.

4.4 Shufflers

Shufflers are used to change the order of values or bits from their original position

to some other position.

SWP

This component reverses the endianess of every other element.

DIM

This component reorders the elements based on the given dimensionality. For

example, with a dimension of three, then the elements at positions 0, 3, 6, … are copied

to the output array followed by elements at 1, 4, 7, ... followed by elements at 2, 5, 8, ….

This puts elements from the same dimension next to each other.

30

BIT

This component divides data into chunks of size equal to the number of bits of the

selected data type. From each chunk, the first bit values of all the elements are stored in

the first element of the output sequence, the second bit values to the second element and

so on till the last bit values of all the elements of the chunk are processed. This puts the

n
th

 bits of each element next to each other.

4.5 Expanders

These components increase the length of the output in the hope that, by doing so,

they expose patterns that allow the following components to compress better. The two

expanders discussed below double the size of input sequence.

hPLY (hybrid Polynomial)

This component records which of the several PLY components gave the best

prediction as well as the sign bit of the difference between the predicted and the actual

value. This value is followed by the difference between the predicted and the actual

value, i.e., every original value is converted into two values.

hLNV (hybrid Last n Value Predictor)

This component is similar to hPLY except that this component uses multiple last

n value predictors instead of PLY predictors.

31

4.6 Search for Effective Algorithms

Two approaches are used to automatically determine the most effective

compression algorithms.

4.6.1 Exhaustive Search

 Exhaustive search generates all possible combinations of components using a

given number of chained components and output the best solution. Once the optimal

solution within the search space has been determined, the compression ratio and the

runtime of the found algorithm are presented in the output. Since the search time is

exponential in the number of chained components, this approach is only tractable for

short chains of components.

4.6.2 Genetic Algorithm

A genetic algorithm (GA) (Genetic Algorithm n.d.) is a heuristic search algorithm

that is based on the evolutionary ideas of natural selection and genetics. Heuristics are

often used for generating useful solutions to optimization and search problems. Genetic

algorithms employ techniques like crossover and mutation in an iterative process that

comprises four steps.

Initialization of Genetic Algorithm

In the initialization phase, many individual solutions are generated randomly to

form an initial population. The population size depends on the nature of problem.

32

Selection of Solutions

Each individual solution is evaluated using a provided fitness function. In my

case, the fitness is simply the compression ratio. A portion of the existing population is

then selected based on their fitness to “breed” a new generation using different genetic

operators.

Genetic Operators

Every next generation of solutions is generated using genetic operators like

crossover (recombination) and mutation (random changes) applied to the previous

generation’s solutions. In crossover, two parents are selected with a probability that is

proportional to their fitness. Then some of the components from one parent are combined

with the remaining component of the other parent. In mutation, a single parent is chosen

and one or a few of its components are randomly changed. This process continues until a

new population of solutions of the desired size has been generated. The new generation

thus produced will share many of the characteristics from the previous generation. As the

best solutions are selected to generate the new population, the resulting new generation

will likely also yield good results.

Figure 4.2 Crossover

33

Termination

The genetic algorithm terminates in the following cases.

1) After a fixed number of generations.

2) When a solution is found that meets a minimum fitness requirement.

3) When sufficiently many successive iterations do not produce better results.

34

CHAPTER 5

EVALUATION METHODS

5.1 System and Compiler

 I have used a 64-bit system with 3.4 GHz Intel Xeon X5690 24 CPU, which has 6

cores, 64 kB L1 cache, 256 kB unified L2 cache, 12 MB L3 cache and 24 GB of main

memory. The operating system is Red Hat Enterprise Linux and the compiler is gcc

version 4.4.7. I used “-march=native -O3” compiler flags for each compressor.

5.2 Performance Metrics

Three different performance metrics are used in the thesis for evaluating the

quality of the compression algorithms. They are the compression ratio, the

decompression speed, and the compression speed. They are all higher-is-better metrics.

They are defined as follows.

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝑑𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

Note that the compression ratio has no unit while the decompression and compression

speeds are throughputs measured in bytes per second.

35

5.2.1 Timing Measurement

All timing measurements in this thesis refer to the sum of the user and system

time reported by the UNIX shell command time. In other words, the idle time such as

waiting for disk operations is ignored.

5.3 Compression Algorithms

 This section describes the different compression algorithms used in the thesis to

compare the compression ratios.

BZIP2

BZIP2 (bzip2 2006) is a lossless, general-purpose file compression algorithm that

operates at byte granularity. It implements the block sorting algorithm described by

Burrows and Wheeler. It compresses data in blocks, where the block size is adjustable. It

uses the Burrows-Wheeler transform to convert frequently occurring character sequences

into strings and then uses a move-to-front transform and Huffman coding for

compressing the data.

GZIP (GNU zip)

GZIP (The gzip home page 2006) implements a variant of the LZ77 algorithm

and operates at byte granularity. It looks for repeating strings of length not greater than

256 bytes within a 32kB sliding window. It uses two Huffman trees, the first tree

compresses the distances in the sliding window and the second one is used to compress

the length of strings. The second tree is also used to compress individual bytes that were

36

not part of any sequence. Duplicated strings are found using chained hash tables whose

maximum length is determined by the command line argument.

FSD

The FSD compressor (Engelson, Fritzson and Fritzson 2000) implements fixed

step delta algorithm proposed by Engelson, which iteratively generates difference

sequences as it reads in a stream of doubles. The order determines the number of

iterations. A zero suppress algorithm is then used to encode the final difference sequence,

where each value is expected to have many leading zeros. Rapidly changing data

compress better with lower orders whereas gradually changing data tend to benefit from

higher difference orders.

PLMI

Lindstorm and Isenberg proposed the PLMI (Lindstorm and Isenburg

2006)compression, which implements a Lorenzo predictor for predicting 2D and 3D

geometry data and a delta predictor for linear data. The delta predictor processes data

similar to first order FSD algorithm. The predicted and true floating-point values are

mapped to unsigned integers from which a residual is computed by a difference process.

In the final step, the residual is encoded based on Schindler’s quasi-static probability

model.

37

FPC

FPC (Martin and Ratanaworabhan, FPC: A High-Speed Compressor for Double-

Precision Floating-Point Data 2008) is a lossless compression algorithm for linear

sequences of double-precision floating point values. FCM and DFCM value predictors

are used for predicting new values. The more accurate value from the two predictions is

selected and is xored with the true value. As the XOR operation turns identical bits to

zeroes, the result will have many leading zeroes if the predicted value is close to the true

value. FPC encode the leading zeroes into a three bit code and is concatenated to a single

bit that specifies the predictor used. The output contains the four bit code followed by the

non-zero residual bytes. During decompression, FPC starts by reading the four-bit code,

decodes the three-bit field and reads the specified number of residual bytes. The value is

extended to 64-bits by adding zeroes to it. The resultant number is xored with either the

FCM or DFCM prediction based on the one-bit field to recreate the original value.

Figure 5.1 FPC compression algorithm

38

pFPC (parallel FPC)

pFPC (Martin and Paruj, pFPC: A Parallel Compressor for Floating-Point Data

2009) is a parallel implementation of the lossless FPC compression algorithm. In this

approach, data is divided into chunks and multiple instances of FPC compress or

decompress these chunks in parallel. The number of threads and the size of the chunk are

selected by the user. The chunk size determines the number of consecutive doubles that

make a full size chunk and the thread size determines the number of instances of FPC that

work together. Chunks are assigned in a round-robin fashion to the threads.

gFPC (genetic FPC)

gFPC (Martin and Paruj, gFPC: A Self-Tuning Compression Algorithm 2010) is

based on FPC and uses a genetic self-tuning approach. Each block of data is compressed

multiple times using different hash function configurations. The number of

configurations tested is called population size. Initial population can be random or it can

be seeded with, for example, the FPC configuration. The fitness function determines the

quality of each configuration based on the compression ratio. The configuration with

highest fitness is written to the compressed output along with the compressed block of

data. The next block is compressed with a new generation of configurations, which are

produced using the best configurations from the previous generation. The smaller the

block size, the more often a new generation is produced.

39

LZOP

LZOP (lzop n.d.) is a lossless data compression technique that focuses on

compression and decompression speed rather than compression ratio. It is similar to gzip

and uses LZO1X from the LZO (Lempel Ziv Oberhumer) [28] data compression library

for compressing files. It is a block compression algorithm that compresses a block of data

into matches (a sliding dictionary) and runs of non-matching literals. LZO produces good

results for redundant data and, for better performance, overlapping and in place

compression can be used. Decompression is performed in the reverse order. LZO1X is

five times faster than gzip’s Deflate algorithm.

5.4 Datasets Used

I used thirteen datasets from various scientific domains for evaluation. Each

dataset consists of a one-dimensional binary sequence of IEEE 754 double-precision

floating-point numbers and belongs to one of the following categories.

Observational Data

These datasets comprise measurements from scientific instruments.

 obs_error: data values specifying brightness temperature errors of a weather

satellite

 obs_info: latitude and longitude of the observation points of a weather satellite

 obs_spitzer: data from the Spitzer Space Telescope showing a slight darkening as

an extra-solar planet disappears behinds its star

40

 obs_temp: data from a weather satellite denoting how much the observed

temperature differs from the actual contiguous analysis temperature field

Numeric Simulations

These datasets are the results of numeric simulations.

 num_brain: simulation of the velocity field of a human brain during a head impact

 num_comet: simulation of the comet Shoemaker-Levy 9 entering Jupiter’s

atmosphere

 num_control: control vector output between two minimization steps in weather

satellite data assimilation

 num_plasma: simulated plasma temperature of a wire array z-pinch experiment

Parallel Messages

These datasets capture the messages sent by a node in a parallel system running

NAS Parallel Benchmark (NPB) (Bailey, et al. 1995) and ASCI Purple (2006)

applications.

 msg_bt: NPB computational fluid dynamics pseudo-application bt

 msg_lu: NPB computational fluid dynamics pseudo-application lu

 msg_sp: NPB computational fluid dynamics pseudo-application sp

 msg_sppm: ASCI Purple solver sppm

 msg_sweep3d: ASCI Purple solver sweep3d

41

Table 5.4.1 Statistical information about each dataset

Dataset
Size

(megabytes)

Doubles

(millions)

Unique

values

(percent)

1
st

order

entropy

(bits)

Randomness

(percent)

msg_bt 254 33.30 92.9 23.67 94.7

msg_lu 185.1 24.26 99.2 24.47 99.7

msg_sp 276.7 36.26 98.9 25.03 99.7

msg_sppm 266.1 34.87 10.2 11.24 44.9

msg_sweed3d 119.9 15.72 89.8 23.41 97.9

num_brain 135.3 17.73 94.9 23.97 99.5

num_comet 102.4 13.42 88.9 22.04 93.1

num_control 152.1 19.94 98.5 24.14 99.6

num_plasma 33.5 4.39 0.3 13.65 61.9

obs_error 59.3 7.77 18.01 17.80 77.8

obs_info 18.1 2.37 23.9 18.07 85.3

obs_spitzer 189.0 24.77 5.7 17.36 70.7

obs_temp 38.1 4.99 100.0 22.25 100.0

The size of each dataset in megabytes and in millions of double-precision floating

point values are listed in the first and second column, respectively. The third column

represents the percentage of values that are unique in each dataset. The fourth column

displays the first-order entropy of the values in bits. The last column displays the

randomness of the datasets in percent, that is, it reflects how close the first-order entropy

is to that of a truly random dataset with the same number of unique values.

42

CHAPTER 6

RESULTS

 This section compares the results of the genetic approach with other compressors

from the literature and compares the exhaustive search with the genetic algorithm. The

population size used is 2420 in all cases and the number of generations is 10. I generated

results for between 1 and 10 stages (i.e., the length of the component chain) and the best

result for each dataset is presented in this section. All thirteen datasets described in

Section 4.4 are used in the evaluation. The best result for each dataset is highlighted in

each table.

6.1 Compression Ratio

 Table 6.1.1 presents the best found compression ratios for up to ten stages when

using the genetic approach.

Table 6.1.1 Compression ratio for stages 1 to 10 using genetic

Trace
Compression ratios for corresponding stages

1 2 3 4 5 6 7 8 9 10

msg_bt 1.062 1.206 1.229 1.229 1.232 1.315 1.207 1.244 1.243 1.255

msg_lu 1.000 1.170 1.255 1.523 1.544 1.268 1.563 1.546 1.307 1.298

msg_sp 1.000 1.219 1.255 1.268 1.339 1.295 1.309 1.310 1.326 1.237

msg_sppm 4.141 5.179 5.544 5.563 6.049 6.137 6.149 6.141 6.166 6.274

msg_sweep3d 1.017 1.215 1.292 1.318 1.352 1.356 1.351 1.355 1.364 1.376

num_brain 1.132 1.158 1.214 1.220 1.235 1.217 1.234 1.222 1.232 1.232

num_comet 1.081 1.254 1.307 1.339 1.348 1.342 1.354 1.307 1.360 1.350

num_control 1.013 1.096 1.128 1.128 1.137 1.132 1.129 1.128 1.137 1.126

num_plasma 1.063 1.281 2.258 2.307 2.425 2.749 2.825 1.337 1.583 3.031

obs_error 1.225 1.289 1.338 1.350 1.384 1.487 1.397 1.527 1.561 1.523

obs_info 1.006 1.200 1.252 1.278 1.262 1.256 1.282 1.286 1.296 1.285

obs_spitzer 1.039 1.216 1.251 1.258 1.266 1.276 1.266 1.266 1.279 1.274

obs_temp 1.062 1.095 1.120 1.120 1.123 1.120 1.123 1.120 1.118 1.120

43

Nine of the thirteen datasets got the best compression ratio using more than seven

stages. No dataset achieved its best compression ratio with an algorithm that comprises

fewer than five stages. Expectedly, there is a gradual increase in compression ratio with

larger numbers of stages on most datasets. Initially, the increase is larger but quickly

starts to plateau off. For some datasets, it even drops off after peaking at five or six

stages. The best compression ratio is used in the rest of the evaluations.

6.2 Comparison

This section compares the compression ratios of my approach with the algorithms

described in Section 5.3. The “custom” column represents the results of my approach.

Table 6.2.1 Compression ratio comparison

Trace
Compression ratio

BZIP2 GZIP LZOP FPC pFPC gFPC DFCM FSD PLMI Custom

msg_bt 1.100 1.120 1.045 1.28 1.18 1.300 1.361 1.074 1.245 1.315

msg_lu 1.017 1.045 0.995 1.171 1.095 1.201 1.249 1.000 1.196 1.546

msg_sp 1.072 1.1068 0.998 1.257 1.167 1.275 1.256 0.997 1.198 1.339

msg_sppm 6.675 6.200 4.927 5.235 3.985 4.850 4.231 2.354 5.029 6.274

msg_sweep3d 1.061 1.081 1.016 2.850 1.212 1.250 1.565 1.212 1.215 1.576

num_brain 1.032 1.057 0.994 1.156 1.118 1.156 1.232 1.100 1.124 1.235

num_comet 1.137 1.15 1.066 1.137 1.125 1.163 1.174 1.113 1.181 1.36

num_control 1.027 1.0489 1.007 1.034 1.041 1.063 1.076 0.999 1.067 1.137

num_plasma 1.34 1.522 1.015 12.88 1.155 1.395 1.300 1.000 1.265 3.031

obs_error 1.28 1.411 1.235 2.280 1.186 1.411 1.522 1.167 1.260 1.561

obs_info 1.064 1.1325 0.952 2.033 1.064 1.1325 1.234 1.000 1.162 1.296

obs_spitzer 1.285 1.211 1.021 1.010 1.010 1.016 1.000 0.961 1.086 1.279

obs_temp 1.002 1.029 1.011 1.002 1.002 1.029 1.010 0.978 1.045 1.123

Harmonic

mean
1.068 1.068 1.061 1.328 1.054 1.061 1.061 1.040 1.065 1.13

44

On the thirteen datasets, the customized compressors outperformed all other

algorithms on six datasets. On the remaining data sets, they are outperformed by only one

of the nine other algorithms. FPC substantially outperformed custom on four datasets

because it uses much larger internal table sizes. Though bzip2 outperformed custom on

two datasets, there is not much difference between the ratios. DFCM outperformed

custom on msg_bt by a small margin.

Interestingly, custom achieves good compression ratios on the datasets on which

the rest of the algorithms are not performing well. For example, on msg_lu, custom

provides a thirty percent higher compression ratio than all of the other algorithms.

Similarly, on num_comet, it outperforms the other algorithms by twenty percent and on

obs_temp by around twelve percent. Of the studied algorithms, only custom provides

significant compression on every tested dataset.

Although my approach outperformed FPC on nine datasets, it does not achieve

the highest harmonic mean compression ratio as FPC outperforms all other algorithms by

a large margin on four datasets. However, my algorithm has a very good harmonic mean

compression ratio compared to the other algorithms.

6.3 Throughput

 This section examines the compression and decompression throughputs in

megabytes per second (i.e., the dataset size divided by the runtime). Table 6.3.1 shows

45

the compression throughputs of seven algorithms including my approach.

Table 6.3.1 Compression throughput comparison

Trace

Compression throughput

BZIP2 GZIP LZOP FPC pFPC gFPC Custom

msg_bt 6.451 24.11 619.512 104.527 154.501 74.772 58.878

msg_lu 6.224 22.491 485.827 110.415 126.781 75.183 29.831

msg_sp 6.531 23.776 652.482 105.707 159.573 77.097 77.075

msg_sppm 7.881 104.314 473.31 269.504 597.753 107.518 160.338

msg_sweep3d 4.353 18.724 666.667 187.207 377.358 62.533 51.086

num_brain 6.519 18.311 666.502 50.884 97.972 44.861 89.96

num_comet 3.906 16.474 620.606 38.266 73.722 37.034 95.522

num_control 6.428 25.658 664.192 64.313 78.442 57.116 62.031

num_plasma 7.986 40.557 440.789 281.513 118.794 69.072 63.567

obs_error 7.692 34.537 218.015 110.019 194.426 67.463 61.387

obs_info 6.662 28.504 646.429 108.383 76.695 63.287 39.434

obs_spitzer 7.661 27.563 252.674 75.904 109.438 58.154 92.465

obs_temp 6.422 25.468 635.000 55.378 78.557 47.27 61.551

Mean 6.515 31.578 541.692 120.155 172.616 64.72 65.435

My approach outperforms bzip2 and gzip on all datasets and performs better than

FPC on four datasets. It outperforms pFPC and gFPC on one dataset. The compressions

throughputs of my approach are close to FPC, pFPC, and gFPC on all datasets except

msg_bt and msg_lu. pFPC is faster as it uses a parallel approach. Note that my objective

was to achieve a good compression ratio. By using fewer components, custom can be

made faster while sacrificing some compression ratio.

Figure 6.1 provides a graphical comparison of the compression throughputs of

FPC, pFPC, gFPC, LZOP, and my approach on the thirteen datasets. LZOP is the fastest

approach in almost all cases, but it provides one of the worst compression ratios. The

mean throughput of my approach is better than bzip2 and gzip and is almost equal to

46

gFPC. FPC and pFPC outperform my version.

Figure 6.1 Compression throughput

Table 6.3.2 and Figure 6.2 below compare the decompression throughputs of

different algorithms. As shown in the table, my approach decompresses the files faster

than bzip2 on all datasets. As compression and decompression are largely symmetric in

my approach, the decompression time is close to the compression time whereas several of

the other algorithms have noticeably higher decompression throughputs than compression

throughputs.

The last row represents the arithmetic mean values of all the algorithms on the

datasets. LZOP has the highest mean and my approach outperforms bzip2.

0

100

200

300

400

500

600

700

800
Th

ro
u

gh
p

u
t

(M
B

/s
)

BZIP2

GZIP

FPC

pFPC

gFPC

LZOP

Custom

47

Table 6.3.2 Decompression throughput comparison

Trace

Decompression throughput

BZIP2 GZIP LZOP FPC pFPC gFPC Custom

msg_bt 16.279 114.157 460.980 175.293 725.714 644.670 75.192

msg_lu 14.712 105.051 383.230 97.267 443.885 642.708 35.727

msg_sp 15.680 104.258 432.344 189.521 700.506 641.995 60.100

msg_sppm 52.662 229.793 320.602 383.983 791.964 673.671 102.425

msg_sweep3d 10.717 77.569 685.714 265.487 810.811 563.380 43.306

num_brain 14.899 108.587 329.197 96.505 151.512 182.345 59.420

num_comet 15.817 114.158 613.174 91.921 249.756 158.760 100.986

num_control 15.270 117.543 551.087 73.195 128.789 185.488 35.923

num_plasma 16.742 131.890 229.452 265.873 531.746 179.144 64.547

obs_error 16.818 121.020 329.444 123.800 279.717 277.103 68.634

obs_info 14.946 115.287 624.138 148.361 489.189 489.189 29.672

obs_spitzer 15.884 98.643 317.647 72.860 173.554 147.887 51.724

obs_temp 15.131 114.414 552.174 90.499 508.000 501.316 39.037

Mean 18.120 119.413 448.399 159.582 460.396 406.743 58.976

Figure 6.2 Decompression throughput

0

100

200

300

400

500

600

700

800

900

Th
ro

u
gh

p
u

t
(M

B
/s

)

BZIP2

GZIP

FPC

pFPC

gFPC

LZOP

Custom

48

6.4 Exhaustive Search

 This section compares the exhaustive search results of up to three stages with the

genetic algorithm results. Table 6.4.1 represents the compression ratios of the exhaustive

and genetic approaches for 1, 2, and 3 stages. Exhaustive and genetic yield same results

with 1 and 2 stages, i.e., the genetic approach finds the best solution when just a few

stages are used. With three stages, exhaustive found a better solution than genetic on two

datasets. The genetic algorithm finds this solution when it is allowed to run for more than

ten generations.

Table 6.4.1 Comparison of genetic and exhaustive

Trace Exhaustive Genetic Genetic over Exhaustive

1 2 3 1 2 3 1 2 3

msg_bt 1.062 1.206 1.229 1.062 1.206 1.229 1.000 1.000 1.000

msg_lu 1.000 1.170 1.318 1.000 1.170 1.255 1.000 1.000 0.912

msg_sp 1.000 1.219 1.255 1.000 1.219 1.255 1.000 1.000 1.000

msg_sppm 4.141 5.179 5.544 4.141 5.179 5.544 1.000 1.000 1.000

msg_sweep3d 1.017 1.215 1.292 1.017 1.215 1.292 1.000 1.000 1.000

num_brain 1.000 1.158 1.214 1.000 1.158 1.214 1.000 1.000 1.000

num_comet 1.081 1.254 1.307 1.081 1.254 1.307 1.000 1.000 1.000

num_control 1.013 1.096 1.128 1.013 1.096 1.128 1.000 1.000 1.000

num_plasma 1.063 1.281 2.258 1.063 1.281 2.258 1.000 1.000 1.000

obs_error 1.229 1.289 1.342 1.229 1.289 1.338 1.000 1.000 0.997

obs_info 1.006 1.200 1.252 1.006 1.200 1.252 1.000 1.000 1.000

obs_spitzer 1.039 1.216 1.251 1.039 1.216 1.251 1.000 1.000 1.000

obs_temp 1.000 1.095 1.120 1.000 1.095 1.120 1.000 1.000 1.000

6.5 Pure Entropy Based Compression

 Table 6.5.1 compares compression ratios of each dataset that could be achieved

using pure entropy based compression algorithms before and after using my approach. It

49

is clear from the table that after using my approach, the compression ratio that could be

achieved further is very less which represents the effectiveness of the algorithm.

Table 6.5.1 Compression ratio using pure entropy based compression

Dataset
Compression ratio that could be achieved

Before After

msg_bt 2.703 1.024

msg_lu 2.615 1.000

msg_sp 2.556 1.031

msg_sppm 5.690 1.048

msg_sweep3d 2.733 1.003

num_brain 2.670 1.002

num_comet 2.903 1.002

num_control 2.651 1.000

num_plasma 4.688 1.012

obs_error 3.595 1.002

obs_info 3.541 1.004

obs_spitzer 3.686 1.002

obs_temp 2.876 1.000

6.6 Discussion

 This subsection discusses some of the above results in more detail.

6.6.1 Best Combinations

The best combinations of ten components for each dataset that the genetic

algorithm yielded are presented in Table 6.6.1. The results show that expanders and

predictors tend to be used in the first stages for predicting the values. They are followed

by shufflers to rearrange the elements to make compression easier. Finally, reducers

50

perform the actual compression operations. In some cases, predictors are directly

followed by a reducer and sometimes predictors are used after a first reducer.

Table 6.6.1 Best combinations

Dataset Best combination

msg_bt hLNV6s LZB4 | DIM8 LZB3

msg_lu DIM5 hPLY7s DIM8 LZB2 ZE PLY1s | PLY3x LZB4

msg_sp FCM7s hLNV6s LZB4 | DIM8 LZB3

msg_sppm LZB5 LZB4 LNV1x SEL3 MSB SEL7 BIT | NEG LZB2

msg_sweep3d NEG DFCM6s DIM4 LNV8s DIM8 LZB1 BIT | DIM2 DIM2 LZB2

num_brain LNV1s LNV2s BIT | LNV4x LZB2

num_comet LNV1s NEG RLEa DIM7 BIT DIM64 DIM4 | LZB3

num_comet LNV1s NEG RLEa DIM7 BIT DIM64 DIM4 | LZB3

num_plasma LNV2s hLNV4s SEL0 | NEG ZE DIM2 RLEb LNV1x MSB LZB5

obs_error DIM8 LZB2 DIM3 LZB1 BIT DIM64 LNV8x LNV8x | RLEb

obs_info hLNV2s DIM2 BIT DIM64 INV | RLEb DIM2 LNV1x LZB3

obs_spitzer ZE MSB LNV1x BIT DIM64 DIM4 | LZB2

obs_temp LNV8s DIM4 BIT INV | LNV4x LZB2 LZB5

6.6.2 Repeated Combinations

 Below I list some combinations of components that occur often.

BIT  LZB and RLE

 As BIT groups the n
th

bit values of each element in a chunk together, it is likely

that the output sequence has repeated values. These values can then be compressed easily

using reducers, which is why BIT is mostly followed by a reducer.

51

DIM  LZB

 This sequence occurs after a few predictors and shufflers. The reason for this is

that DIM groups values from the same dimension together and, due to the predictors and

shufflers employed before this component, there again is a higher chance of repetitions.

These repetitions can then be compressed using the best reducer, which is LZB.

LZB  LZB

 There are different versions of the LZB component that target different patterns.

Hence, it is sometimes necessary to use more than one such LZB component to capture

the redundancy in the data.

6.7 Customization Benefits

 Customization can provide a tailored algorithm for a specific file if desired.

Increasing the number of generations may yield better compression ratios. Also, the

customization approach described in this thesis can be applied to other types of data. New

components can be added easily to potentially improve the compression ratio and

components can be removed to speed up the search.

52

CHAPTER 7

SUMMARY

This thesis describes an approach to automatically synthesize a tailored

compression and decompression algorithm for a given input file. The algorithms are built

by chaining algorithmic components that were extracted from pre-existing lossless

compression algorithms. Each algorithmic component has an inverse component that

performs the opposite action, making it possible to automatically generate a de-

compressor for each synthesized compressor. Exhaustive search and a genetic algorithm

are used to find the best possible algorithm in the search domain. The presented approach

makes it easy to add additional components and can be applied to different data domains.

 When tested on thirteen difficult-to-compress real-world double-precision

floating-point datasets, the synthesizes algorithms I found yield the highest harmonic

mean compression ratio among X tested algorithm and is only outperformed by FPC. My

algorithms deliver a throughput of 65 MB/s for compression and 59 MB/s for

decompression.

53

LITERATURE CITED

2006. http://www.llnl.gov/asci/purple/benchmarks/limited/code_list.html.

Bailey David, Tim Harris, William Saphir, Rob Van Der Wijngaart, Alex Woo and

Maurice Yarrow. The NAS Parallel Benchmarks 2.0. Technical, Moffett Field:

NASA Ames Research Center, 1995.

Burtscher Martin and Sam Nana B. "TCgen: A tool to automatically generate lossless

trace compressors." ACM SIGARCH Computer Architecture News, 2006: 1-6.

bzip2. 2006. http://www.bzip.org/.

Vadim Engelson, Fritzson Dag and Fritzson Peter. "Lossless Compression of High-

volume Numerical Data from Simulations." Data Compression Conference.

Snowbird, UT: IEEE, 2000. 574-586.

Fang Webin, Bingsheng He and Qiong Luo. "Database Compression on Graphic

Processors." Proceedings of the VLDB Endowment, 2010: 670-680.

Frigo Matteo and Steven G. Johnson. The Fastest Fourier Transform in the West.

Technical, Massachusetts: Massachusetts, 1997.

Garber Brian A, Dan Hoeflinger, Xiaoming Li and Maria.Jesus. Garzaran. "Automatic

generation of parallel sorting algorithms." Parallel and Distributed Processing.

Miami, FL: IEEE, 2008. 1-5.

Genetic Algorithm. n.d. http://en.wikipedia.org/wiki/Genetic_algorithm.

William H. Hsu and Amy E Zwarico. "Automatic synthesis of compression thechnique

for heterogeneous files." Software - Practice and Experience , 1995: 1097-1116.

Huffman, David A. "A method for the construction of minimum redundancy codes."

Proceedings of the Institute of Radio Engineers, 1952: 1098-1101.

54

Kattan Ahmed and Poli Riccardo. "Evolutionary synthesis of lossless compression

algorithms with GP-zip3." IEEE, 2010: 1-8.

Langdon Glen G. "An Introduction to Airthmetic Coding." IBM Journal of Research and

Development, 1984: 135-149.

Lempel Abraham and Ziv Jacob. "A Universal Algorithm for Sequential Data

Compression." IEEE Transactions of Infromation Theory, 1977: 337-342.

Lindstorm Peter and Isenburg Martin. "Fast and Efficient Compression of Floating-Point

data." IEEE Transactions on Visualization and Computer Graphics, 2006: 1245-

1250.

lzop. n.d. http://www.lzop.org.

Burtscher Martin and Ratanaworabhan Paruj. "FPC: A High-Speed Compressor for

Double-Precision Floating-Point Data." IEEE Transactions on Computers, 2008:

18-31.

Burtscher Martin and Ratanaworabhan Paruj. "gFPC: A Self-Tuning Compression

Algorithm." Data Compression Conference, 2010: 396-405.

Burtscher Martin and Ratanaworbhan Paruj. "pFPC: A Parallel Compressor for Floating-

Point Data." Data Compression Conference. Snowbird: IEEE, 2009. 43-52.

Suman K. Mitra, C. A. Murthy, and Kundu Malay K. "Technique for Fractal Image

Compression using Genetic Algorithm." IEEE Transactions on Image Processing,

1998: 586-593.

Shanmugasundaram Senthil and Lourdusamy Robert. "A Comparative Study of Text

Compression Algorithms." International Journal of Wisdom Based Computing,

2011: 68-76.

The gzip home page. 2006. http://www.gzip.org/.

55

Ziv Jacob, and Lempel Abraham. "Compression of Individual Sequences via Variable-

Rate Coding." IEEE Transactions of Information Theory, 1978: 530-536.

Sayood Khalid. Introduction to Data Compression. San Francisco, CA: Morgan

Kauffmann, 2012.

	CUSTOMIZED DATA COMPRESSION - AUTOMATICALLY SYNTHESIZING EFFECTIVE DATA COMPRESSION AND DECOMPRESSION
	ALGORITHMS

