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CHAPTER I 
INTRODUCTION

Two problems are solved in this paper by use of 
product integrals. First, it is proven that any square, 
non-singular matrix has n distinct nth roots, for each 
positive integer n. Secondly, conditions are established

under which £ A. converges if, and only 
i»l 1

00

converges, where {A^} is a sequence of
i= 1

if, II (1+A,) 
i»l 1

commutative

square matrices.

1



CHAPTER II

DEFINITIONS, NOTATIONS, AND FUNDAMENTAL THEOREMS

Proofs of most of the theorems stated may be found in 
the references cited in the bibliography.

Notation 2.1. The symbol R denotes the set of nxn matrices 
of complex numbers, where n is a positive integer.

Definition 2.2. A ring N is complete means for each

to 1 i JR | .sequence {x } of elements in N such that x “X *0,n n= 1 m , n W  m n'
11nthere exists an xQ belonging to N such that xm « xQ.

Notation 2.3. |«| is a norm for R such that R is complete

with respect to |«|, |l| * 1, |o| ■ 0, and |a°b| < |a|°|b| 
for elements a and b in R.

Notation 2.4. The symbol S denotes the set of real numbers 
and SxS denotes the set of ordered pairs of real numbers.

Notation 2«5. The symbol Ca,b] denotes a closed real 
number interval, where b > a.

Definition 2»6. D is a subdivision of Ca,b] means D is a

2



of [a,b3 such thatfinite subset {x.}n
1 i=0

a • < x, < • •• < x. , < Xi j «• • < x„* b„

Definition 2t7» H is a refinement of a subdivision D of 
[a*b] means H is a subdivision of ta,b] and D is a subset 
of H.

nNotation 2«8, If g is a function from S to R and {x^>

is a subdivision of an interval [a,b]* then ¿g^ denotes 

g(xi) - g(Xi.i).

Definition 2»9. If F is a function from SxS 
statement that F belongs to OB on Ca*b] means

positive number M such that* if {Xi}” is a
i«0

n
of [a*b]* then \ lF(xi-i» xi) I < M*

to R* the 
there is a

subdivision

Definition 2»10. If G is a function from SxS to R and a
b

and b belong to S* the statement that / G exists means
fit

there is an element A belonging to R such that* if e > 0*

there is a subdivision D of [a,b] such that* if {x.>
1 i = 0 

n
is a refinement of D, then | £ ®(xi-iJ> x$) ** A| < e«i«l

Definition 2,11. If G is a function from SxS to R and
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a and b belong to S, the statement that ^11 G exists means

there is an element A belonging to R such that, if e > 0,
n

there is a subdivision D of Ca,b3 such that, if {x4} is
1 i-0 

n
a refinement of D, then |I1 G(x. x,) - A| < e.

i»l ./ 1

Notation 2,12« If f and g are functions from S to R, then 
the function fdg is the function G from SxS to R such that 
G(x,y) * £(x)Cg(y)~g(x)3 for (x,y) belonging to SxS.

Definition 2.13. If {A.} is a sequence of elements of
1 i«l
m

R, the statement that II (1+A.) converges means there is
i»l x

1 i m  ̂ “1an element A of R such that _ II (1+A.) = A and A
n'M* i»l 1

exists.

Notation 2.14, If A belongs to R, then det A denotes the 
determinant of A,

Theorem 2.15. If n is a positive integer, the complex 
number (1,0) has n distinct nth roots.

n
Theorem 2.16. If n is a positive integer and {x.} and

1 i-1
n

are subsets
i = 1

n n
II x. - II 

1 i.i® 1
nn i “.1

l C11 y_j3Cx.~y.3Cll x,3< 
i = l j = l •’ j*i+1 3
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Theorem 2.17. Suppose a and b are real numbers and F and
b

G are functions from SxS to R such that / IF®GI ■ 0.'a
I) 2 b b
/ |G | » 0, F and G belong to OB, II (1+F) and II (1 + G) a a a

exist, and all elements commute.
Conclusion:

(1) IIb[1+(F+G)] exists and is II (1+F)« II (1+G).8. » |

(2) If n is a positive integer, then

CaIIb(l+G),]^ * IIb (l+
ft ft ”

b(3) If II (1-G) exists, then

r b _ “ i b[ II (1+G)] = II (1-G).a a

Theorem 2.18. If f is a function from S to R, a and b
-1

belong to S, and Cf(x)] exists for each x belonging to 
[a,b], then

f(x) = f(a)• IIX(l+f'1df) a

for each x belonging to Ca,b].
n

Theorem 2.19. If n is a positive integer and {a^} is
jm-wrftMiufl-j. it— e w  1  .1“ 1
a set of non-negative real numbers, then

n n
II (1+a.) < exp ( l a4). 
i*l i*1



Theorem 2,20, If G is a function from SxS to R, a and b

are real numbers, 
then

band II (1+G) a and
bIIa C1+|G |) exists,

| IIb(l+G) | < IIb (l+|G|).
ft ft

Theorem 2.21, If a, x, and y are real numbers and y > x, 

ythen xII (1+adt) exists and is exp a(y-x).

Theorem 2.22. If f is a continuous function from S to
-1 „1

R such that [f(x)] exists for each x in S, then f is
continuous«

Theorem 2«23« If f and g are functions from S to R such

ythat df and dg belong to OB, then ^11 (1+fdg) exists for 

each (x,y) belonging to SxS.

Theorem 2.24. If f is a function from S to R, a belongs 
to S, and o belongs to R, then the following two state» 
ments are equivalents

x
(1) If x belongs to S, then / fadt exists anda

x
f(x) - 1 + / fadt.a

x(2) If x belongs to S, then II (1+adt) exists anda



f(x) * f(a)« II (1+adt)» a



CHAPTER III

THE ROOTS OF A SQUARE, NON-SINGULAR MATRIX

Suppose A is a square, non-singular matrix of complex 
numbers and n is a positive integer greater than one.
In this chapter it will be proven that A has n distinct 
nth roots.

First, a function g will be defined from the real 
interval [0,1] to the complex numbers, with the properties:

(1) if x belongs to [0,1], det [1+(A-1)g(x)] i 0,
(2) g is continuous and has bounded variation on 

[0,1], and
(3) g(0) - (0,0) and g(l) - (1,0).

For each x belonging to [0,1], det [1+(A-l)g(x)] is a 
polynomial of the form
(3.1) b0z11 + bjZ11“1 + ••• + hn_jZ + bn,
where z = g(x). The polynomial (3.1) has only a finite 
number of roots (x,y) such that |(x,y)| s lj let B denote 
this set. Since det [l+(A-l)] = det A f 0 and since 
det 1 ^ 0 ,  then (0,0) and (1,0) are not elements of B.
If B is empty, or if there exists no (x,y) in B such that 
y*0, then let g(x) * (x,0) for x in [0,1], If, on the 
other hand, y=0 for every (x,y) in B, then let the graph
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of g be the straight line extending from (0,0) to (ytj)

plus the straight line extending from to (1,0).
Finally, if there exists an (x,y) in B such that |y| > 0 
then there exists an (s,t) in B such that |y| > |t| > 0  
for all (x,y) in B. In this case let the graph of g be 
the straight line extending from (0,0) to

c/i - \ hi'1. 7 |t|)

plus that arc on the unit circle from

c ' l  - i  |t|" .  \  |t|)

to (1,0). In any of the three above cases, g is a con* 
tinuous function of bounded variation such that 
g(0) * (0,0) and g(l) * (1,0). Furthermore, no element 
of B belongs to the graph of gj therefore, for each x

belonging to [0,1], det [1+ (A-l)g(x) ] j* 0 and
*> 1

[l+(A**l)g(x) ] exists.
Define f to be the function from the real interval 

[0,1] to the ring of matrices such that
f(x) * 1 ♦ (A-l)g(x)

for x belonging to [0,1]. Since g is continuous and of 
bounded variation, then f has these properties. Further

1 1



more, since [f(x)3 exists for each x belonging to [0,1]

-1
and since f is continuous, then f is continuous on

-1[0,1] by Theorem 2,22, Hence, both f and f are bounded 

1 -1 2therefore / [f df] * 0.

-1

If r and s are complex numbers, then [l+(A-l)r] and 
-1

[l+(A-l)s] commute because
-1

[1+(A-l)r] • [1+(A-l)s]
-1 -1 

■ (1-r)[l+(A-l)s] + Ar[l+(A-l)s]
«1 -1 »1 

« {[l+(A-l)s] (1-r)} + r{[1+(A-l)s]A }

-1 -l ~l= { * } + { A  ♦ ( 1-A )s> r

-1  -1  “ A» {•} ♦ {A 4A (A-l)s} r

* {•} + (A *[1 +(A-1)s]} r
« 1 »I

- [l+(A-l)s] (1-r) + [1+(A-l)s] Ar
-1

« Cl+(A-l)s] [l +(A-l)r],

The above manipulations prove that f and f "1 commute.
Since the hypothesis of Theorem 2.18 is satisfied and



£(0) » 1, then
£(1) « 1 • olI1(l+f"1d£).

Furthermore, since the hypothesis of Theorem 2.17 is 
satisfied and since f(l) = A, then

1 1 -l n 1 - 1[(La.) • QII (l+“f - 1 • oII (l+£ d£) « A,

where ou, i»l,2,*»*,n, is one of the n distinct nth roots 
of the complex number (1,0). Therefore, if 1 i i < n,

then (l»a^) • 0II*(l+if~*df) is an nth root of A. We now

prove that these roots are distinct. Let K denote

0II (l+~f~*df), K i 0, for, if it were, then A*Kn*0n*0,

which is false. Also, if 1 s i < j $ n, then 
(l«a^)K i (l»a^)K. If this last statement were false, 
then there exist positive integers i and j such that 
1 < i < j < n and (l*a^)K ■ (l*Oj)K, from which it 
follows that l»(o^-aj)K = 0. Since lo(â -oij) is a 
diagonal matrix with no zeros on the diagonal, it has a 
multiplicative inverse and it follows that K>0, which is 
false. Therefore, the roots are distinct and we conclude 
that A has n distinct nth roots.



CHAPTER IV
TWO EQUIVALENT STATEMENTS

Theorems involving product integrals may be used to
00

prove that« if {A*} is a sequence of commutative ele-
i ® 1

00 2
ments of R and T [A-| converges« then the infinite

i»l 1
00 00 

product II (1+A.) converges if, and only if, £ A. con- 
i-1 1 i=l 1

verges. The following theorems and lemmas are used in
the proof of Theorem 4.7.

Theorem 4,1. If A is an element of R and |A| <1, then

-1 “ i(1+A) exists and is 1+ I (-A) .
i« 1

Proof;
00

Since |A| <1, £ |A| converges. Let e
i* 1

there exists a positive integer N such that 

for ra > n > N. Let ra > n > N, then

I ! C-A)‘| 5 l |A|1 < e;
i=n i»n

> 0, then

i*n
e

12
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_ 1hence« the series I (-A) converges by the Cauchy
i«l

criterion. Since

(1+A)[1 + l (-A)1] 
i = 1
* (1+A)(l-A+A2-A3+*‘*)

2 2 3 3 4■ (1+A-A +A +A -A -A + •«•)

- 1;
then

00

(1+A)"1 - 1 + l (-A)1.
i* 1

1Theorem 4.2« If A is an element of R, then qII (1+Adt)
OKI

exists and II^(l+Adt) * 1 + J ~j An.
0 n*l

Proof:
QII*(l+Adt) exists by Theorem 2,23 because the func­

tion F(x,y) » A(y-x) belongs to OB. Also, by Theorems 
2 <i 20 and 2« 211

x x
| II (l + Adt) | < II (l+|A|dt) * exp |a |<>x < exp |a |0 o

xfor 0 < x < 1* Define f(x) * oII (1+Adt), then by 
Theorem 2.24

oII1(l+Adt) * f(1)
1

■ 1 ♦ / Afdt
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■ 1 ♦ A/ fdt o

1 t
1 + A/ [1+/ Afdp]dt o 0

1 7 1 t
1 + A/ dt + Az/ / fdpdt o o o

2 1 t p
1 + A + A / / [1 + / Afdrldpdt o o  o

1 t 1 t p
* 1 + A + A / / dpdt + A / / / fdrdpdt o o  o o o

1 5 3 1 t p■ 1 + A + j, + A /o/o/Qfdrdpdt.

If this process is continued, then for each positive 
integer n,

1 nZl i kII (1+Adt) * 1 + l r*t A + r , 
o k-1 k* n

where
1 Xi xn-lr * An/ / ••• / f dx„ dx , »0« dx,n o o  o n n - i  1

and
I rn | < lA l" j * P lA l - sn .

00 00 1 nSince £ sn converges, then £ — , A converges and
n*l n=1

. 00

II (1+Adt) * 1 + I k An. o v n!

Lemma 4,3,
00

If {Ai}i = 1
is a sequence of commutative eie»



ments of R and £ A. and £ |A.| converge, then there is
i-1 1 is1

m
a positive number M such that |XI (1+Aj)| < M

i*n
and

m 1
|II II (1+A.dt)| < M 
i*n 0 1

for positive integers m > n.

Proof:
2Since £ |A.| converges, there is a positive integer

i= 1

* 2such that ][ |A. | < 1 for m > n > X. Also, since* xi=n

l A. converges, there exists a positive integer Y such 
i=l

m
that | £ A. | < -r for m > n > Y. Choose N ■ X + Y and

l=n
N

let M ■ exp( ][ |A.| + 3). Let m and n be positive inte- 
i«l 1

gers such that m > n.
If m and n are both less than N, then

m m
[I
i**n x»n
|II Cl + A^l < II (1+|A.|)

m
< exp ( £ |A.|) CTh. 2.19)

i*n
and

m j  , m
(II II (l+Aidt)| = | II (1+ l Atdt)| 
i=n 0 0 4””

m
Ii»n

(Th. ?.17)
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but

hence,

and

1 m
< II (1+ l |A.Idt) (Th. 2.20)
0 i-n 1

m
- exp ( £ | A, |), (Th. 2.21)

i-n 1
m N

exp C I IA I) < exp ( l |A. |) < M; 
i-n 1 i—1

m
|II (1+Aj)| < M
i«n

ia i
|II II (1+A.dt)| < M. 
i-n 0 1

If m and n are both greater than N, then for each 
positive integer i > N define f. to be the function such 
that, if t belongs to [0,1], then f^(t) * 1 + A^t. If

i > N, then |Â | < yj therefore, by Theorem 4.1

-1 -1 fi(t) = (1+A.t)

00

= 1 + l C-A.t)n 
n-1 x

«0 n
for each t in [0,1]. For each i > N let B. * T (-A.t) ,

n*l
then, since f ̂ (0) * 1 and £^(1) * 1+A^,

m m 1 ml
|U Cl+A±) | « | II II (1 + f df.)| 
i-n i-n 0

(Th. 2.18)



17
m i  -1
II II [1 + (1+A^t) AAdt31
i*n

1 m -i
| QH  Cl ♦ l (1+A^) Aidt]| (Th. 2.17)

1 ®II Cl ♦ l (l+Bi)Aidt]|
m
Ii*n
m

< | II1C1 ♦ I A.dt) |-| H 1 Cl ♦ l B.A.dt) | 
0 i=n ° i*n

(Th. 2.17).
Furthermore,

IBiAiI ■ IAiBiI ■ l*i l (-Att) |n«l 

2 “I A.* I (-l)n Ai"“1 tn
n«l
2 00 n-1 n

i lAj2 I lAj |t|n=l

< lAj I  I  - j t t
1 n*l 2n 1 ll\

ZlAjl.
Hence,

|II (1+A^I < II1 (1+1 l A£ | dt) • II1 (1 + t 2|A |2dt) 
i«n ° i«n i«n A

(Th. 2.20)
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< II (1+ldt) II (l+2dt) o o (m>n>N)

■ (exp 1)(exp 2) (Th. 2.21)

< M.
Also«

m . , m
111 IIA (1+A. dt) | < II(1+| l A, Idt) < M.
i-n 0 1 0 i=n 1

Finally« if N is between m and n«

m N
III (1+A ) | < exp( l |Ai|)*exp 3 * M 
i*n 1 i»l ' 1

and
m 1 N

|IX II (1+A.dt)| < exp( I jA4|)»exp 1 < M. 
i*n 0 1 ' i■1

Lemma 4.4. Suppose {A„} is a sequence of commutative
1 i*i

00 -i -1elements of R« II (1+A.) ■ A, A exists« and (1+A^)
i-1 1 J

exists for each positive integer j. Conclusion: There
exists a positive number M and a positive integer N such
that

n -1
|[II (1+A.)] | < M
i = l 1

for n > N
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Proof:

Let M * 2IA*1!. Since II (1+A.) = A, there exists a
i»l 1

positive integer N such that

00

IA - II (1+A )| < i 
i = l 1 M

for n > N. Let n be a positive integer such that n > N

U 1 and let k « II (1+A.) - A; therefore, |k| < — and
i=l 1 M

n
A ♦ k • II (1+A.). 

i«l 1
n .i

(A+k)[II (l+Aj)] » li
i» 1

hence,

i  ̂ «*1 ■ 1(l+A“Ak)[II (1+A,)] » A .
i * 1 1

Since |A**k| < |A then by Theorem 4.1M 6

therefore,

n

-1 -1(1+A k) a 1 + l (-A*1k)"; 
n» 1

n .1 »1 “1 **1[II (1+A.)] 
i»l 1

a (1+A k) A

(1+A.)]“1] < 1 ~ * |(1+A*lk)“11•Ia“1
and
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■ |1 ♦ f C-A-lk)n |.|A'l|
n*l

< 2|A“1|

■ M.

Lemma 4*5* Suppose {A*> is a sequence of commutativei i = 1
* -i -1elements of R, II (1+A4) = A, A exists, and (1+A.)
i-1 1 J

exists for each positive integer j. Conclusion: There
m

exists a positive integer N such that |II (1+A.)| < 2 for
i»n 1

m > n > N.

Proof:
By Lemma 4.4 there exist a positive integer X and a

« 1positive number Q such that |ClI (1+A4)]“a| < Q for
i * 1

n > X. Also, by the Cauchy cri-terion for products, there 
exists a positive integer Y such that

m n i 
|II (1+Ai) - II (1+A.)| < - 
i=l i=l , "

for m > n > Y, Let N « X + Y and let m > n > N, then

1 * Q * “ > |CII Cl»Ai)]‘1|«|lI (1+A,) - II (1+A.)| 
i»l i=l 1 i=l 1
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therefore«
> |II (1+A.) - l|j 

i»n 1

m
| II (1+Ai)| < 2. 
i*n

Lemma 4,6» Suppose (A.) is a sequence of commutative
i=l

00 ielements of R, 11 (1+A.) exists and is A« A exists,
i® 1

• 2 -1
I |A.| converges, and (1+A.) exists for each positive 
i»l 1 3

integer j. Conclusion: There exist a positive number M
and a positive integer N such that

|0H l(l + 1 Atdt)| < Mi*n
for m > n > N.

Proof:
By Lemma 4.5 there exists a positive integer X such

m “ 2that |XI (1+A.)| < 2 for m > n > X. Since £ |Â | con- 
i=n i*l

verges, there exists a positive integer Y such that 

® 2 1J |A.| < T for m > n > Y. Let M ■ 2(exp 1), N a X + Y,
i=n 1 *

and let m and n be integers such that m > n > N; then, if
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t belongs 

Define B.
jL

each i > N 
similar to 

m
|1I (1+Aj 
i-n

and |A.B4|

l.“ V  -

Also,

I II1 o

therefore,

to [0,1] and i > N,
• 1 00

(1+A, t) ** = 1 ♦ l (-A.t)n (Th. 4.1).
1 n»l 1

* I (**A4t)n . If we define f. (t) » 1 + A . t for 
n»l 1 i i

and each t in [0,1] and use manipulations
those used in Lemma 4.3, then

1 m 1 m
)| - I n  (1 + l  A dt )  . II (1 + l A.B dt)| 

0 i-n 1 0 i-n 1 1

< 2|A^|2 for i > N; therefore, by Theorem 2,17

m ro i m
I A B.dt)|•|II CI+A4)| > III (1 ♦ I A dt)|. 
i-n 1 1  i-n 0 i»n 1

*(1 - I A.B dt)| < ^II1 (1 + l 21A 12dt) 
i-n 1 1 0 i-n 1

< oIIi(l+ldt)

* exp 1; 
m

since |II (1+A.)| < 2, then
i=n

1 mM » 2(exp 1) > | II (1 + l A.dt)|
0 i-n 1

i*l
Theorem 4,7« If {A^} is a sequence of commutative



— 2¡lements of R such that £ |A-| converges, then J A,
i * 1

converges if, and only if, II (1+A.) converges.
i=l 1

Proof i
* 2Since the convergence of Y |A.I implies there are. " « X1*1

oo

only a finite number of terms of the sequence {A.}
1» i

for which | |  > j and since a finite number of the terms 
of a series or the factors of a product may be "discarded" 
without altering convergence, it will be assumed in the

proof of this theorem that |Â | < j for each positive

-1integer i* It follows by Theorem 4.1 that (1+A^) exists 
for each positive integer i.

First, the Cauchy criterion will be used to prove that, 
00 00

if £ A. converges, then II (1+A.) converges. Let e > 0, 
i»l 1 i = 1 1

From Lemma 4.3 there exists a positive number such that
m i

| II II (1+A.dt) | < M  ̂ o *i=n
and

|II (1+A.)| < 
i=n

for positive integers m > n. Since £ |A.| converges
i® 1
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there exists a positive integer X such that
m 2

(4.1)

and

l I Mi*n 2M*

SI 9
l lAj < 1i*n

for m > n > X. Also, since £ A. converges, there
i»l 1

exists a positive integer Y such that
m

£4.2)

and
^i»n Ai  ̂ < 4M(exP !)

IS
II A,| < 1i*n

for m > n > Y, Let N ■ X + Y and let m and n be inte-

1 mgers such that m > n > N. Since II (1 + £ A4dt)
0 i*n+l
r

exists there is a subdivision (t.) of [0,1] such that
i*0

(4.3)
r m
:i
j»l i*n+l

Therefore,

i m 1 SI
| II (1 ♦ I A.At. ) - nII (1 + l A.dt) | < 

i —  •' x J ° i*n+l 1
e
4M‘

| II (1+A^ - II (1+Ai) | 
i*l i = 1

S |II (1+A.)| - |II (1+Ai) - 1|
i*l i*n+l
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Now,

Also,

n m l
< M111 (1+A.) - II II (1+A.dt)|

i=n+l i*»n+l 0
m

+ M111 II (1+A.dt) - 1 
i*n+1 0 1

m m ^
M|II (1 + A.) - II II (1+Aidt)|

i»n+l i»n+l 0
m i-1 i

- M| l [II II (l+A.dt)]C(l+Ai)
i®n+l j=n+l 0 J

1 ■II (l+Aidt)]ClI (1+A.)3|
j=i + l J

(Th,

m
< M° l |(l+Ai) - 0II (1+Aidt)| 

i»n+l
m

- M° I I d+A.) - (1+A.+ l I, A”) I 
i=n+l 1 1 n=2 n*

■ n<*2,< M3
m
l |Ai I2

‘ 00 
* t li»n+l n-2

< M3
m
I K i I2

” 1 
l  7»i=n+l n«l t

■ M3
m
I 1 A. |I2i»n+l 1

(Th,

( | A.

(Eq,

m i
M j11 II (1 + A.dt)•11

i*n+l

2.16)

4.2)

< 1 )

4.2).
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1 m- M| II (1+ l A.dt) - l| (Th. 2.17)

° i=n+l 1
l m r in

< M| II (1+ l A.dt) - II (1+ l A.At.)|
0 i*n+l j = l i»n+l J

r m
♦ M|II (1+ l AiAt.) -1| 

j = 1 i»n+l ^
r m r m

< M ‘ | r r + M | J [  l A. A t . 3 • C11 (1+ l A.Atk )]|
4M j»l i*n + l 1 3 k-j+I i*n+l 1

(Eq. 4.3 and Th. 2.16)

¡ 7 * «4 j = l
m

1 I Aji»n+l
r

• At. • II (1+| 
J k=j + 1

1 I A±|Atk) 
i*n+l K

< ? + M Ij«l
e r

* At. • exp l | 
J k=j+1 1 I AiUtk i=n+l 14M(exp 1)

(Eq. 4.2)
e e r m

* 4 * 4 (exp 1) .1, ¿ V exp 15 Cl. X , Ai I < 15r jl»1 ' i«n+l

* T

When the two preceding inequalities are combined; we 
obtain

m n
III (1+A.) - II (1+AA)I < a  
i*l i=l

00

hence, II (1+A.) exists. 
i»l 1

00 a 1
It remains to show the existence of [II (1+A*)3 . To

i*l
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do this, define f^(t) * 1+A^t for each positive integer 
i and for t belonging to [0,1]; then,

n 1 n .i
II (l+A,) « „II [1+ T (1+A.t) A.dt] 
i«l 1 0 i-1 1 1

as in Lemma 4.3. Since |Â | < j, then 

* -1(1) I (1+A.t) A. converges uniformly on [0,1],
i-1 1 1

oo
(2) II1[1+ I (1+A,t)-1A.dt] « II (l+A,)O • 1 # m 1i»l i«l

and
1 *(3) II [1- l (1+A.t) A.dt] exists and is the0 i=i i i

multiplicative inverse of

ftII1[l+ I (l+A.t)“1A.dt]. 
i*l

(Ths, 2.23, 2.17)
OO  ̂| 00

Therefore [II (l+A.)] exists and II (l+A.) converges by• A JL * *■ Ai-i i*i
Definition 2.13.

Now an indirect proof will be used to prove that, if

II (l+A,) converges, then £ A^ converges. If £ A, 
i = 1 i*l i=1
diverges, then by the Cauchy criterion there exists a posi°
tive number eQ such that, if N is a positive integer, there

m
exist integers m > n > N such that | ][ A^ | > e . Define

i*n 0
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e > 0 such that e < i and e < e .8 o
By Lemma 4.4 there exist a positive number P and a

positive integer X such that
n -1

(4.4) I ClI (1+A.)] I < P
i*l 1

for n > X. Since II (1+A.) converges, there exists a
i»l 1

positive integer Y such that
n m

|II (1+A.) - II (1+A.)| < ~  
i»l i*l

for m > n > Y. Also, by Lemmas 4.5 and 4.6 there exist 
a positive integer Y and a positive number Q such that

m
|II (1+A )| < 2
i»n

and
1 m(4.5) I n  (1+ l A.dt)I < Q

0 i«n 1
* 2for m > n > Y. Therefore, since £ |A.| converges, there
i = l
m 2 eis a positive integer Z such that l | A ̂| < -rx and
i*n ^

| An J < e < -g- for m > n > Z.

Let N « X ♦ Y + Z; then, from the denial, there exist
m

integers m > n > N such that | J A |̂ > eQ > c. Denote
i*n
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the set of positive integers {n,n+l,•»•,m»l,m} by A and

e} <

B is non-empty because m belongs to B and B is bounded

let B be the subset of A such that B ■ {j:| j[ A. | >
i»n 1

below by n because |An | < e; thus, B has a least element

r. Now, if r > p

least element in B

Furthermore,
r

i Ii*n
2e >

Now,
e
4F

therefore, 
e— > 4

n« 1
leui«l

x 
r-1
l=n

r 
II 
i s 1

i*n
r
I A.| > e si 
i=n 1

2e < ~ since 4
r
Ii=n

n-1
II (1+A.)|; 
i»l x

1 r n-1

2s > | l A.| ♦ |Ai| > II At\

T > |ClI (l+A )] 1•|II (1+A.) - II (1+A.)|
4 i«l 1 i«l 1 i»l

(Eq. 4.4)
> |XI (1+Ai) - 1

r
:i
i*n
r

> |II II1(l+Aidt) - l|
i»n

r i r
- |II II (1+A.dt) - II (1+A.)| 

i*n 0 1 i*n

1 r
I I I  U + I  A id t )  - 1|

i»n

l |II1(1+A )|o| II1(l+Aidt) 
i«n j =n J

d+Ai) 10
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r 1
II II (1+A.dt)|
j»i+l 0 3

r

(Ths« 2„17„ 2.16)

> | • | -2Q l 11+A + l ± Aj - CH-Aj) |
i-n 1 n=2 nl 1 1

S M-2Q Z l A j 2 Z F,|Aili=n n=2

(Th. 4.2 and Eq. 4.5) 

n-2

> I-I-2Q Z |At |2 Z Ti
r
li«n n® 1 2« C|a4I<i )

■ I-I-2Q Z IAj|2i=n

> l0H 1(l+ I A.dt) « 1| - “ i=n
Therefore,

f > I0H 1C1 ♦ l A.dt) - 1|
i»n

ci L |Ail < ^

1 r
l[1 * .1 Ai * ‘ n!‘>i=n n=2 i»n

n
Z »,( Z A.) 3 - 1

* I J  Ail - Ail"x»n
r

i  I Z At| - I I  A4|2
i=n i=n

(Th. 4.2)

(II A | < p
a*n

X rSince t  > 2e > | J A. | > t § the above inequality becomes
i*n
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hence, out assumption was false and converges.

Hence, both parts of the theorem are proven
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