PRODUCT INTEGRALS AND MATRICES

THESIS

Presented to the Graduate Council ofSouthwest Texas State College in Partial Fulfillment of
 the Requirements
 For the Degree of
 MASTER OF ARTS
 BY
 WILLIAM J. MARETH, JR.。B.S.
 San Marcos, Texas
 May, 1966

ACKNOWLEDGMENTS

The subject of this paper was suggested to the writer by Dr．Burrell W．Helton．The writer wishes to express his sincere appreciation to Dr．Helton for his suggestion and for his patience and guidance in the preparation of this paper．The guidance rendered by Drs．Lynn H．Tulloch and David 2 ．Lippmann is also gratefully acknowledged． WILLIAM J．MARETH。JR。

SAN MARCOS \quad TEXAS
MAY 1966 。

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. DEFINITIONS, NOTATIONS, AND
FUNDAMENTAL THEOREMS 2
III. ROOTS OF A SQUARE, NON-SINGULAR MATRIX 8
IV. TWO EQUIVALENT STATEMENTS 12
BIBLIOGRAPHY 32

CHAPTER I

INTRODUCTION

Two problems are solved in this paper by use of product integrals. First, it is proven that any square, nonosingular matrix has n distinct nth roots, for each positive integer n. Secondly, conditions are established under which $\sum_{i=1}^{\infty} A_{i}$ converges if, and only if $\underset{i=1}{i f\left(1+A_{i}\right)}$ converges, where $\left\{A_{i}\right\}_{i=1}^{\infty}$ is a sequence of commutative square matrices.

CHAPTER II

DEFINITIONS, NOTATIONS, AND FUNDAMENTAL THEOREMS

Proofs of most of the theorems stated may be found in the references cited in the bibliography.

Notation 2, 1 . The symbol R denotes the set of $n \times n$ matrices of complex numbers, where n is a positive integer.

Definition 2.2. A ring N is complete means for each
sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of elements in N such that $\operatorname{mim}_{0} n_{n \rightarrow \infty}\left|x_{m}-x_{n}\right|=0_{0}$
there exists an x_{0} belonging to N such that $\lim _{m \rightarrow \infty} x_{m}=x_{0}$. Notation 2.3. $|\circ|$ is a norm for R such that R is complete with respect to $|0|,|1|=1,|0|=0$ and $|a \circ b| \leqq|a| 0|b|$ for elements a and b in R 。

Notation 2.4. The symbol S denotes the set of real numbers and $S x$ denotes the set of ordered pairs of real numbers.

Notation 2.5. The symbol [a,b] denotes a closed real number interval, where $b>a$.

Definition 2.6. D is a subdivision of [a,b] means D is a
finite subset $\left\{x_{i}\right\}_{i=0}^{n}$ of $[a, b]$ such that

$$
a=x_{0} \leq x_{1} \leq \cdots \leq x_{i-1} \leq x_{i} \leq \cdots 0 \leq x_{n}=b
$$

Definition 2．7．H is a refinement of a subdivision D of $[a, b]$ means H is a subdivision of $[a, b]$ and D is a subset of H 。

Notation 2．8．If g is a function from S to R and $\left\{x_{i}\right\}_{i=0}^{n}$ is a subdivision of an interval $[a, b]$, then Δg_{i} denotes $g\left(x_{i}\right)-g\left(x_{i=1}\right)$.

Definition 2．9．If F is a function from $S x$ to R_{0} the statement that F belongs to $O B$ on $\left[a_{0} b\right]$ means there is a positive number M such that，if $\left\{x_{i}\right\}_{i=0}^{n}$ is a subdivision of $[a, b]$ ，then $\sum_{i=1}^{n}\left|F\left(x_{i-1}, x_{i}\right)\right|<M$ ．

Definition 2．10．If G is a function from $S x S$ to R and a and b belong to S ，the statement that $\int_{a}^{b} G$ exists means there is an element A belonging to R such that $i f \varepsilon \geqslant 0$ 。 there is a subdivision D of $[a ; b]$ such that，if $\left\{x_{i}\right\}_{i=0}^{n}$ is a refinement of D_{0} then $\left|\sum_{i=1}^{n} G\left(x_{i=1} \cdot x_{i}\right)-A\right|<\varepsilon$ 。 Definition 2．11．If G is a function from $S x S$ to R and
a and b belong to S, the statement that $a I^{b}{ }_{G}$ exists means there is an element A belonging to R such that, if $\varepsilon>0_{0}$ there is a subdivision D of $[a, b]$ such that, if $\left\{x_{i}\right\}_{i=0}^{n}$ is a refinement of D, then $\left|\prod_{i=1}^{n} G\left(x_{i-1}, x_{i}\right)-A\right|<\varepsilon$ 。

Notation 2.12. If f and g are functions from S to R_{p} then the function fdg is the function G from $S x S$ to R such that $G(x, y)=f(x)[g(y) \circ g(x)]$ for (x, y) belonging to SxS.

Definition 2.13. If $\left\{A_{i}\right\}_{i=1}^{\infty}$ is a sequence of elements of ∞
R_{D} the statement that $\underset{i=1}{\operatorname{II}}\left(1+A_{i}\right)$ converges means there is an element A of R such that $\lim _{n \rightarrow \infty} \lim _{i=1}^{n}\left(1+A_{i}\right)=A$ and A^{-1} exists.

Notation 2.14. If A belongs to R, then det A denotes the determinant of A.

Theorem 2.15. If n is a positive integer, the complex number (1,0) has n distinct nth roots.

Theorem 2.16. If n is a positive integer and $\left\{x_{i}\right\}_{i=1}^{n}$ and $\left\{y_{i}\right\}_{i=1}^{n}$ are subsets of R, then

$$
\operatorname{li}_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}=\sum_{i=1}^{n}\left[\sum_{j=1}^{i=1} y_{j}\right]\left[x_{i} \otimes y_{i}\right]\left[\prod_{j=i+1}^{n} x_{j}\right]
$$

Theorem 2.17. Suppose a and b are real numbers and F and G are functions from $S x S$ to R such that $\int_{a}^{b}|F \cdot G|=0$ 。 $\int_{a}^{b}\left|G^{2}\right|=0, F$ and G belong to $O B, a^{I} I^{b}(1+F)$ and $I^{b}(1+G)$ exist, and all elements commute.

Conclusion:
(1) $a^{I I^{b}[1+(F+G)]}$ exists and is $a^{I I^{b}(1+F) \cdot} I^{I^{b}(1+G) \text { 。 }}$
(2) If n is a positive integer, then

$$
\left[a^{I I^{b}(1+G)}\right]^{\frac{1}{n}}=a^{b}\left(1+\frac{1}{n} G\right)
$$

(3) If $a^{I I^{b}}(1-G)$ exists, then

$$
\left[a^{\left.I I^{b}(1+G)\right]^{-1}=a^{I I^{b}}(1-G) .}\right.
$$

Theorem 2.18. If f is a function from S to R, a and b belong to S_{g} and $[f(x)]^{-1}$ exists for each x belonging to $[a, b]$ then

$$
f(x)=f(a) \cdot a^{I I^{x}\left(1+f^{-1} d f\right)}
$$

for each x belonging to $[a, b]$.
Theorem 2.19. If n is a positive integer and $\left\{a_{i}\right\}_{i=1}^{n}$ is a set of non-negative real numbers, then

$$
\operatorname{II}_{i=1}^{n}\left(1+a_{i}\right) \leqq \exp \left(\sum_{i=1}^{n} a_{i}\right)
$$

Theorem 2.20. If G is a function from $S X S$ to R, a and b are real numbers, and $I^{b}(1+G)$ and $I^{b}(1+|G|)$ exists. then

$$
\mid I^{I I^{b}(1+G) \mid \leq I^{b}(1+|G|) .}
$$

Theorem 2.21. If a, x, and y are real numbers and $y>x_{0}$ then $x^{I} I^{y}(1+a d t)$ exists and is exp $a(y-x)$.

Theorem 2, 22. If f is a continuous function from S to R such that $[f(x)]^{-1}$ exists for each x in S, then f^{-1} is continuous.

Theorem 2.23. If f and g are functions from S to R such
 each (x, y) belonging to SxS.

Theorem 2.24. If f is a function from S to R, a belongs to S, and α belongs to R, then the following two stateo ments are equivalent:
(1) If x belongs to S, then $\int_{a}^{x} f a d t$ exists and

$$
f(x)=1+\int_{a}^{x} f \alpha d t
$$

(2) If x belongs to S, then $\mathrm{II}^{\mathrm{x}}(1+\alpha d t)$ exists and

$$
f(x)=f(a) \cdot{ }_{a} I^{x}(1+\alpha d t)
$$

CHAPTER III

THE ROOTS OF A SQUARE, NON-SINGULAR MATRIX

Suppose A is a square, non-singular matrix of complex numbers and n is a positive integer greater than one. In this chapter it will be proven that A has n distinct nth roots.

First, a function g will be defined from the real interval $[0,1]$ to the complex numbers, with the properties:
(1) if x belongs to $[0,1]$, det $[1+(A-1) g(x)] \neq 0$,
(2) g is continuous and has bounded variation on $[0,1]$, and
(3) $g(0)=(0,0)$ and $g(1)=(1,0)$. For each x belonging to $[0,1]$, det $[1+(A-1) g(x)]$ is a polynomial of the form

$$
\begin{equation*}
b_{0} z^{n}+b_{1} z^{n-1}+\cdots+b_{n-1} z+b_{n} \tag{3,1}
\end{equation*}
$$

where $z=g(x)$. The polynomial (3.1) has only a finite number of roots (x, y) such that $|(x, y)| \leq 1 ; ~ l e t$ denote this set. Since $\operatorname{det}[1+(A-1)]=\operatorname{det} A \neq 0$ and since det $1 \neq 0$, then $(0,0)$ and $(1,0)$ are not elements of B. If B is empty, or if there exists no (x, y) in B such that $y=0$, then let $g(x)=(x, 0)$ for x in $[0,1]$. If, on the other hand, $y=0$ for every (x, y) in B, then let the graph
of g be the straight line extending from (0,0) to ($\frac{1}{2}, \frac{1}{2}$) plus the straight line extending from $\left(\frac{1}{2}, \frac{1}{2}\right)$ to (1,0). Finally, if there exists an (x, y) in B such that $|y|>0$, then there exists an (s, t) in B such that $|y| \geq|t|>0$ for all (x, y) in B. In this case let the graph of g be the straight line extending from (0,0) to

$$
\left(\sqrt{1-\frac{1}{4}|t|^{2}}, \frac{1}{2}|t|\right)
$$

plus that arc on the unit circle from

$$
\left(\sqrt{1-\frac{1}{4}|t|^{2}}, \frac{1}{2}|t|\right)
$$

to (1,0). In any of the three above cases, g is a cono tinuous function of bounded variation such that $g(0)=(0,0)$ and $g(1)=(1,0)$. Furthermore, no element of B belongs to the graph of g; therefore, for each x belonging to $[0,1]$, $\operatorname{det}[1+(A-1) g(x)] \neq 0$ and $[1+(A-1) g(x)]^{-1}$ exists.

Define f to be the function from the real interval
[0,1] to the ring of matrices such that

$$
f(x)=1+(A-1) g(x)
$$

for x belonging to $[0,1]$. Since g is continuous and of bounded variation, then f has these properties. Further.
more, since $[f(x)]^{-1}$ exists for each x belonging to $[0,1]$
and since f is continuous, then f^{-1} is continuous on [0,1] by Theorem 2.22. Hence, both f and f^{-1} are bounded; therefore $\int_{0}^{1}\left[f^{-1} d f\right]^{2}=0$.

```
If r and s are complex numbers, then [1+(A-1)r] and
``` \([1+(A-1) s]^{-1}\) commute because
\[
\begin{aligned}
{[1+(A-1) r] } & \cdot[1+(A-1) s]^{-1} \\
& =(1-r)[1+(A-1) s]^{-1}+A r[1+(A-1) s]^{-1} \\
& =\left\{[1+(A-1) s]^{-1}(1-r)\right\}+r\left\{[1+(A-1) s]^{-1}\right\}^{-1} \\
& =\{0\}+\left\{A^{-1}+\left(1-A^{-1}\right) s\right\}^{-1} r \\
& =\{0\}+\left\{A^{-1}+A^{-1}(A-1) s\right\}^{-1} r \\
& =\{0\}+\left\{A^{-1}[1+(A-1) s]\right\}^{-1} r \\
& =[1+(A-1) s]^{-1}(1-r)+[1+(A-1) s]^{-1} A r \\
& =[1+(A-1) s]^{-1}[1+(A-1) r] .
\end{aligned}
\]

The above manipulations prove that \(f\) and \(f^{-1}\) commute. Since the hypothesis of Theorem 2.18 is satisfied and
\(f(0)=1\), then
\[
f(1)=1 \cdot 0^{I I^{1}\left(1+f^{-1} d f\right)}
\]

Furthermore, since the hypothesis of Theorem 2.17 is satisfied and since \(f(1)=A\), then
\[
\left[\left(1 \cdot \alpha_{i}\right) \cdot o_{0}^{\left.I I^{1}\left(1+\frac{1}{n} f^{-1} d f\right)\right]^{n}=1 \cdot I^{1}\left(1+f^{-1} d f\right)=A, ~}\right.
\]
where \(\alpha_{i}, i=1,2, \ldots, n\), is one of the \(n\) distinct \(n\)th roots of the complex number (1,0). Therefore, if \(1 \leq i \leq n\), then \(\left(1 \cdot \alpha_{i}\right) \cdot o^{I I^{1}\left(1+\frac{1}{n} f^{-1} d f\right)}\) is an nth root of \(A\). We now prove that these roots are distinct. Let \(K\) denote \(0^{I I^{1}\left(1+\frac{1}{n} f^{-1} d f\right) .} K \neq 0\), for, if it were, then \(A=K^{n}=0^{n}=0\), which is false. Also, if \(1 \leq i<j \leq n\), then \(\left(1 \circ \alpha_{i}\right) K \neq\left(1 \circ \alpha_{j}\right) K\). If this last statement were false。 then there exist positive integers \(i\) and \(j\) such that \(1 \leq i<j \leq n\) and \(\left(1 \cdot \alpha_{i}\right) K=\left(1 \cdot \alpha_{j}\right) K\), from which it follows that \(1 \circ\left(\alpha_{i}-\alpha_{j}\right) K=0\). Since \(10\left(\alpha_{i}-\alpha_{j}\right)\) is a diagonal matrix with no zeros on the diagonal, it has a multiplicative inverse and it follows that \(K=0\), which is false. Therefore, the roots are distinct and we conclude that \(A\) has \(n\) distinct \(n t h\) roots.

\section*{CHAPTER IV}

TWO EQUIVALENT STATEMENTS

Theorems involving product integrals may be used to prove that, if \(\left\{A_{i}\right\}_{i=1}^{\infty}\) is a sequence of commutative edements of \(R\) and \(\sum_{i=1}^{\infty}\left|A_{i}\right|^{2}\) converges, then the infinite
 verges. The following theorems and lemmas are used in the proof of Theorem 4.7.

Theorem 4.1. If \(A\) is an element of \(R\) and \(|A|<1\), then \((1+A)^{-1}\) exists and is \(1+\sum_{i=1}^{\infty}(-A)^{i}\).

Proof:
Since \(|A|<1, \sum_{i=1}^{\infty}|A|^{i}\) converges. Let \(\varepsilon>0\), then there exists a positive integer \(N\) such that \(\sum_{i=n}^{m}|A|^{i}<\varepsilon\) for \(m>n>N\). Let \(m>n>N\), then
\[
\left|\sum_{i=n}^{m}(-A)^{i}\right| \leq \sum_{i=n}^{m}|A|^{i}<\varepsilon ;
\]
hence, the series \(\sum_{i=1}^{\infty}(-A)^{i}\) converges by the Cauchy criterion. Since
\[
\begin{aligned}
(1+A)[1+ & \left.\sum_{i=1}^{\infty}(-A)^{i}\right] \\
& =(1+A)\left(1-A+A^{2}-A^{3}+\cdots\right) \\
& =\left(1+A-A^{2}+A^{2}+A^{3}-A^{3}-A^{4}+\cdots\right) \\
& =1 ;
\end{aligned}
\]
then
\[
(1+A)^{-1}=1+\sum_{i=1}^{\infty}(-A)^{i}
\]

Theorem 4.2. If \(A\) is an element of \(R\), then \(I^{1}(1+A d t)\) exists and \(O^{I I}(1+A d t)=1+\sum_{n=1}^{\infty} \frac{1}{n}!A^{n}\).

Proof:
\(0^{1} I^{1}(1+A d t)\) exists by Theorem 2.23 because the fence cion \(F(x, y)=A(y-x)\) belongs to \(O B\). Also, by Theorems 2.20 and 2.21.
\(\left|D_{0} I I^{x}(1+A d t)\right| \leq I^{x}(1+|A| d t)=\exp |A| \cdot x \leq \exp |A|\)
for \(0 \leq x \leq 1\). Define \(f(x)=o^{I}(1+\) Mdt \()\), then by
Theorem 2.24
\[
\begin{aligned}
0^{I I^{1}(1+\text { Ad })} & =f(1) \\
& =1+\int_{0}^{1} A f d t
\end{aligned}
\]
\[
\begin{aligned}
& =1+A \int_{0}^{1} f d t \\
& =1+A \int_{0}^{1}\left[1+\int_{0}^{t} A f d p\right] d t \\
& =1+A \int_{0}^{1} d t+A^{2} \int_{0}^{1} \int_{0}^{t} f d p d t \\
& =1+A+A^{2} \int_{0}^{1} \int_{0}^{t}\left[1+\int_{0}^{p} A f d r\right] d p d t \\
& =1+A+A^{2} \int_{0}^{1} \int_{0}^{t} d p d t+A^{3} \int_{0}^{1} \int_{0}^{t} \int_{0}^{p} f d r d p d t \\
& =1+A+\frac{1}{2}!A^{2}+A^{3} \int_{0}^{1} \int_{0}^{t} \int_{0}^{p} f d r d p d t .
\end{aligned}
\]

If this process is continued, then for each positive integer \(n\),
\[
0^{I I^{1}(1+A d t)}=1+\sum_{k=1}^{n-1} \frac{1}{k}!A^{k}+r_{n}
\]
where
\[
r_{n}=A^{n} \int_{0}^{1} \int_{0}^{x_{1}} \cdots \int_{0}^{x_{n-1}} f d x_{n} d x_{n-1} \cdots d x_{1}
\]
and
\[
\left|r_{n}\right| \leq \frac{|A|^{n} \exp |A|}{n!}=s_{n} .
\]

Since \(\sum_{n=1}^{\infty} s_{n}\) converges, then \(\sum_{n=1}^{\infty} \frac{1}{n}!A^{n}\) converges and

Lemma 4.3. If \(\left\{A_{i}\right\}_{i=1}^{\infty}\) is a sequence of commutative elea=
ments of \(R\) and \(\sum_{i=1}^{\infty} A_{i}\) and \(\sum_{i=1}^{\infty}\left|A_{i}\right|^{2}\) converge, then there is a positive number \(M\) such that \(\underset{i=n}{m}\left(1+A_{i}\right) \mid \leq M\) and
\[
\mid \operatorname{II}_{i=n}^{m} 0^{I I^{1}\left(1+A_{i} d t\right) \mid \leq M}
\]
for positive integers \(m>n\).

Proof:
Since \(\sum_{i=1}^{\infty}\left|A_{i}\right|^{2}\) converges, there is a positive integer
X such that \(\sum_{i=n}^{m}\left|A_{i}\right|^{2}<1\) form >n>X. Also, since
\(\sum_{i=1}^{\infty} A_{i}\) converges, there exists a positive integer \(y\) such that \(\left|\sum_{i=n}^{m} A_{i}\right|<\frac{1}{2}\) for \(m>n>Y\). Choose \(N=X+Y\) and let \(M=\exp \left(\sum_{i=1}^{N}\left|A_{i}\right|+3\right)\). Let \(m\) and \(n\) be positive intergers such that \(m>n\).

If \(m\) and \(n\) are both less than \(N\), then
\[
\begin{align*}
\left|\underset{i=n}{m}\left(1+A_{i}\right)\right| & \left.\leq{\underset{i=n}{m}\left(1+\left|A_{i}\right|\right)}^{\mid I \sum_{i=n}} \underset{i=n}{m}\left|A_{i}\right|\right)
\end{align*}
\]
and
\[
\begin{equation*}
\left|\sum_{i=n}^{m} 0^{I I^{1}\left(1+A_{i} d t\right)|=|}\right| I^{1}\left(1+\sum_{i=n}^{m} A_{i} d t\right) \mid \tag{Th.2.17}
\end{equation*}
\]
\[
\begin{aligned}
& \leq o_{0}^{I I}\left(1+\sum_{i=n}^{m}\left|A_{i}\right| d t\right) \\
& =\exp \left(\sum_{i=n}^{m}\left|A_{i}\right|\right)
\end{aligned}
\]
(Th. 2.20)
(Th. 2.21)
but
\[
\exp \left(\sum_{i=n}^{m}\left|A_{i}\right|\right) \leq \exp \left(\sum_{i=1}^{N}\left|A_{i}\right|\right)<M ;
\]
hence,
\[
\left|\underset{i=n}{m}\left(1+A_{i}\right)\right|<M
\]
and
\[
\mid \operatorname{II}_{i=n}^{m} 0^{I I^{1}\left(1+A_{i} d t\right) \mid<M .}
\]

If \(m\) and \(n\) are both greater than \(N\), then for each positive integer \(i>N\) define \(f_{i}\) to be the function such that, if \(t\) belongs to \([0,1]\), then \(f_{i}(t)=1+A_{i} t\). If
\(i>N\), then \(\left|A_{i}\right|<\frac{1}{2} ;\) therefore, by Theorem 4.1
\[
\begin{aligned}
f_{i}(t)^{-1} & =\left(1+A_{i} t\right)^{-1} \\
& =1+\sum_{n=1}^{\infty}\left(-A_{i} t\right)^{n}
\end{aligned}
\]
for each \(t\) in \([0,1]\). For each \(i>N\) let \(B_{i}=\sum_{n=1}^{\infty}\left(-A_{i} t\right)^{n}\).
then, since \(f_{i}(0)=1\) and \(f_{i}(1)=1+A_{i}\),
\[
\left|\underset{i=n}{m}\left(1+A_{i}\right)\right|=\mid \underset{i=n}{m} 0^{I I^{1}\left(1+f_{i}^{-1} d f_{i}\right) \mid}
\]
(Th. 2.18)
\[
\begin{align*}
& =\left|I I_{i=n}^{m} I^{I I}\left[1+\left(1+A_{i} t\right)^{-1} A_{i} d t\right]\right| \\
& =\left.\right|_{0} I I^{1}\left[1+\sum_{i=n}^{m}\left(1+A_{i} t\right)^{-1} A_{i} d t\right] \mid \tag{Th,2.17}\\
& =\left.\right|_{0} I I^{1}\left[1+\sum_{i=n}^{m}\left(1+B_{i}\right) A_{i} d t\right] \mid \\
& \leq\left.\right|_{0} I^{1}\left(1+\sum_{i=n}^{m} A_{i} d t\right)|\cdot|_{0} I^{1}\left(1+\sum_{i=n}^{m} B_{i} A_{i} d t\right) \mid
\end{align*}
\]
(Th. 2.17).
Furthermore,
\[
\begin{aligned}
\left|B_{i} A_{i}\right|=\left|A_{i} B_{i}\right| & =\left|A_{i} \sum_{n=1}^{\infty}\left(-A_{i} t\right)^{n}\right| \\
& =\left|A_{i}{ }^{2} \sum_{n=1}^{\infty}(-1)^{n} A_{i}{ }^{n-1} t^{n}\right| \\
& \leq\left|A_{i}\right|^{2} \sum_{n=1}^{\infty}\left|A_{i}\right|^{n-1}|t|^{n} \\
& <\left|A_{i}\right|^{2} \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} \quad\left(\left|A_{i}\right|<\frac{1}{2}\right) \\
& =2\left|A_{i}\right|^{2} .
\end{aligned}
\]

Hence,
\[
\left|\underset{i=n}{m}\left(1+A_{i}\right)\right| \leq o_{0}^{I I^{1}\left(1+\left|\sum_{i=n}^{m} A_{i}\right| d t\right) \cdot I_{0} I I^{1}\left(1+\sum_{i=n}^{m} 2\left|A_{i}\right|^{2} d t\right), ~(1)}
\]
(Th. 2.20)
\[
\begin{aligned}
& <0_{0}^{I I^{1}(1+1 d t)} 0_{0}^{I I^{1}(1+2 d t)} \\
& =(\exp 1)(\exp 2)
\end{aligned}
\]
\[
(m>n>N)
\]
< M.
Also,
\[
\left|I_{i=n}^{m} 0 \leq I^{1}\left(1+A_{i} d t\right)\right| \leq o^{I I^{1}\left(1+\left|\sum_{i=n}^{m} A_{i}\right| d t\right)<M .}
\]

Finally, if \(N\) is between \(m\) and \(n\),
\[
\left|\operatorname{II}_{i=n}^{m}\left(1+A_{i}\right)\right| \leq \exp \left(\sum_{i=1}^{N}\left|A_{i}\right|\right) \cdot \exp 3=M
\]
and
\[
\operatorname{|II}_{i=n}^{m} 0^{I I^{1}\left(1+A_{i} d t\right) \mid \leq \exp \left(\sum_{i=1}^{N}\left|A_{i}\right|\right) \cdot \exp 1<M .}
\]

Lemma 4.4. Suppose \(\left\{A_{i}\right\}_{i=1}^{\infty}\) is a sequence of commutative elements of \(R, \operatorname{II}_{i=1}^{\infty}\left(1+A_{i}\right)=A, A^{-1}\) exists, and \(\left(1+A_{j}\right)^{-1}\) exists for each positive integer j. Conclusion: There exists a positive number \(M\) and a positive integer \(N\) such that
\[
\left|\left[I_{i=1}^{n}\left(1+A_{i}\right)\right]^{-1}\right|<M
\]
for \(n>N\).

Proof:
\[
\text { Let } M=2\left|A^{-1}\right| . \quad \text { Since }{\underset{i=1}{\infty}\left(1+A_{i}\right)=A, \text { there exists a }}_{\infty}
\]
positive integer \(N\) such that
\[
\left|A-\sum_{i=1}^{n}\left(1+A_{i}\right)\right|<\frac{1}{M}
\]
for \(n>N\). Let \(n\) be a positive integer such that \(n>N\) and let \(k={\underset{i=1}{n}\left(1+A_{i}\right)-A ; ~ t h e r e f o r e, ~}^{n} k \left\lvert\,<\frac{1}{M}\right.\) and
\[
A+k=\sum_{i=1}^{n}\left(1+A_{i}\right)
\]
\[
(A+k)\left[\prod_{i=1}^{n}\left(1+A_{i}\right)\right]^{-1}=1 ;
\]
hence,
\[
\left(1+A^{-1} k\right)\left[\sum_{i=1}^{n}\left(1+A_{i}\right)\right]^{-1}=A^{-1}
\]

Since \(\left|A^{-1} k\right|<\left|A^{-1}\right| \frac{1}{M}=\frac{1}{2}\), then by Theorem 4.1
\[
\left(1+A^{-1} k\right)^{-1}=1+\sum_{n=1}^{\infty}\left(-A^{-1} k\right)^{n} ;
\]
therefore,
\[
\left[\operatorname{Ii}_{i=1}^{n}\left(1+A_{i}\right)\right]^{-1}=\left(1+A^{-1} k\right)^{-1} A^{-1}
\]
and
\[
\left|\left[\sum_{i=1}^{n}\left(1+A_{i}\right)\right]^{-1}\right| \leq\left|\left(1+A^{-1} k\right)^{-1}\right| \cdot\left|A^{-1}\right|
\]
\[
=\left|1+\sum_{n=1}^{\infty}\left(-A^{-1} k\right)^{n}\right| \cdot\left|A^{-1}\right|
\]
\(<2\left|A^{-1}\right|\)
\(=M\).
Lemma 4.5. Suppose \(\left\{A_{i}\right\}_{i=1}^{\infty}\) is a sequence of commutative elements of \(R, \operatorname{II}_{i=1}^{\infty}\left(1+A_{i}\right)=A, A^{-1}\) exists, and \(\left(1+A_{j}\right)^{-1}\) exists for each positive integer \(j\). Conclusion: There exists a positive integer \(N\) such that \(\underset{i=n}{\operatorname{II}}\left(1+A_{i}\right) \mid<2\) for \(m>n>N\). Proof:

By Lemma 4.4 there exist a positive integer \(X\) and a positive number \(Q\) such that \(\left|\left[\begin{array}{l}i=1 \\ n \\ i=1\end{array}\left(1+A_{i}\right)\right]^{-1}\right|<Q\) for \(n>X\). Also, by the Cauchy criterion for products, there exists a positive integer \(Y\) such that
\[
\operatorname{II}_{i=1}^{m}\left(1+A_{i}\right)-\sum_{i=1}^{n}\left(1+A_{i}\right) \left\lvert\,<\frac{1}{Q}\right.
\]
for \(m>n>Y\). Let \(N=X+Y\) and let \(m>n>N\), then
\[
1=Q \cdot \frac{1}{Q}>\left|\left[\underset{i=1}{n}\left(1+A_{i}\right)\right]^{-1}\right| \cdot\left|\sum_{i=1}^{m}\left(1+A_{i}\right)-\sum_{i=1}^{n}\left(1+A_{i}\right)\right|
\]
\[
\geq\left|\operatorname{II}_{i=n}^{m}\left(1+A_{i}\right)-1\right| ;
\]
therefore,
\[
\left|\sum_{i=n}^{m}\left(1+A_{i}\right)\right|<2 .
\]

Lemma 4.6. Suppose \(\left\{A_{i}\right\}_{i=1}^{\infty}\) is a sequence of commutative
 \(\sum_{i=1}^{\infty}\left|A_{i}\right|^{2}\) converges, and \(\left(1+A_{j}\right)^{-1}\) exists for each positive integer j. Conclusion: There exist a positive number \(M\) and a positive integer \(N\) such that
\[
\left|0 I I^{1}\left(1+\sum_{i=n}^{m} A_{i} d t\right)\right|<M
\]
for \(m>n>N\).

Proof:
\[
\text { By Lemma } 4.5 \text { there exists a positive integer } X \text { such }
\] that \(\left|\operatorname{II}_{i=n}^{m}\left(1+A_{i}\right)\right|<2\) for \(m>n>X\). Since \(\sum_{i=1}^{\infty}\left|A_{i}\right|^{2}\) converges, there exists a positive integer \(Y\) such that \(\sum_{i=n}^{m}\left|A_{i}\right|^{2}<\frac{1}{2}\) for \(m>n>Y\). Let \(M=2(\exp 1), N=X+Y_{0}\) and let \(m\) and \(n\) be integers such that \(m>n>N\); then, if
\(t\) belongs to \([0,1]\) and \(i>N\),
\[
\left(1+A_{i} t\right)^{-1}=1+\sum_{n=1}^{\infty}\left(-A_{i} t\right)^{n} \quad(T h, 4.1)
\]

Define \(B_{i}=\sum_{n=1}^{\infty}\left(-A_{i} t\right)^{n}\). If we define \(f_{i}(t)=1+A_{i} t\) for
each \(i>N\) and each \(t\) in \([0,1]\) and use manipulations similar to those used in Lemma 4.3, then
\[
\left|\operatorname{II}_{i=n}^{m}\left(1+A_{i}\right)\right|=\left|I_{0}^{1}\left(1+\sum_{i=n}^{m} A_{i} d t\right) \cdot I_{0}^{1}\left(1+\sum_{i=n}^{m} A_{i} B_{i} d t\right)\right|
\]
and \(\left|A_{i} B_{i}\right|<2\left|A_{i}\right|^{2}\) for \(i>N ;\) therefore, by Theorem 2.17
\[
\left|I_{0}^{1}\left(1-\sum_{i=n}^{m} A_{i} B_{i} d t\right)\right| \cdot\left|\sum_{i=n}^{m}\left(1+A_{i}\right)\right| \geq\left|0 I I^{1}\left(1+\sum_{i=n}^{m} A_{i} d t\right)\right|
\]

Also,
\[
\begin{aligned}
\left.\right|_{0} I I^{1}\left(1-\sum_{i=n}^{m} A_{i} B_{i} d t\right) \mid & \leqslant o_{0}^{I I^{1}\left(1+\sum_{i=n}^{m} 2\left|A_{i}\right|^{2} d t\right)} \\
& <o^{I I^{1}(1+1 d t)} \\
& =\exp 1 ;
\end{aligned}
\]
therefore, since \(\left|I_{i=n}^{m}\left(1+A_{i}\right)\right|<2\), then
\[
M=2(\exp 1)>\left.\right|_{0} I I^{1}\left(1+\sum_{i=n}^{m} A_{i} d t\right) \mid
\]

Theorem 4,7. If \(\left\{A_{i}\right\}_{i=1}^{\infty}\) is a sequence of commutative
elements of \(R\) such that \(\sum_{i=1}^{\infty}\left|A_{i}\right|^{2}\) converges, then \(\sum_{i=1}^{\infty} A_{i}\)
 Proof:

Since the convergence of \(\sum_{i=1}^{\infty}\left|A_{i}\right|^{2}\) implies there are only a finite number of terms of the sequence \(\left\{A_{i}\right\}_{i=1}^{\infty}\) for which \(\left|A_{i}\right|>\frac{1}{2}\) and since a finite number of the terms of a series or the factors of a product may be "discarded" without altering convergence, it will be assumed in the proof of this theorem that \(\left|A_{i}\right|<\frac{1}{2}\) for each positive integer i. It follows by Theorem 4.1 that \(\left(1+A_{i}\right)^{-1}\) exists for each positive integer i.

First, the Cauchy criterion will be used to prove that, if \(\sum_{i=1}^{\infty} A_{i}\) converges, then \(\operatorname{II}_{i=1}^{\infty}\left(1+A_{i}\right)\) converges. Let \(\varepsilon>0\). From Lemma 4.3 there exists a positive number such that
\[
\left|\operatorname{II}_{i=n}^{m} o^{1} I^{1}\left(1+A_{i} d t\right)\right|<M
\]
and
\[
\left|\operatorname{II}_{i=n}^{m}\left(1+A_{i}\right)\right|<M
\]
for positive integers \(m>n\). Since \(\sum_{i=1}^{\infty}\left|A_{i}\right|^{2}\) converges.
there exists a positive integer \(X\) such that
(4.1)
\[
\sum_{i=n}^{m}\left|A_{i}\right|^{2}<\frac{\varepsilon}{2 M^{3}}
\]
and
\[
\sum_{i=n}^{m}\left|A_{i}\right|^{2}<1
\]
for \(m>n>X\). Also, since \(\sum_{i=1}^{\infty} A_{i}\) converges, there exists a positive integer \(Y\) such that
\[
\begin{equation*}
\left|\sum_{i=n}^{m} A_{i}\right|<\frac{\varepsilon}{4 M(\exp 1)} \tag{4.2}
\end{equation*}
\]
and
\[
\left|\sum_{i=n}^{m} A_{i}\right|<1
\]
for \(m>n>Y\). Let \(N=X+Y\) and let \(m\) and \(n\) be inter gers such that \(m>n>N\). Since \(o^{I I^{1}\left(1+\sum_{i=n+1}^{m} A_{i} d t\right) ~}\) exists there is a subdivision \(\left\{t_{i}\right\}_{i=0}^{r}\) of \([0,1]\) such that
(4.3)
\[
\left\lvert\, \operatorname{II}_{j=1}^{r}\left(1+\sum_{i=n+1}^{m} A_{i} \Delta t t_{j}\right)-{ }_{0}^{I I^{1}\left(1+\sum_{i=n+1}^{m} A_{i} d t\right) \left\lvert\,<\frac{\varepsilon}{4 M} .\right.}\right.
\]

Therefore,
\[
\begin{aligned}
& \left|\operatorname{II}_{i=1}^{m}\left(1+A_{i}\right)-\sum_{i=1}^{n}\left(1+A_{i}\right)\right| \\
& \quad \leq\left|\sum_{i=1}^{n}\left(1+A_{i}\right)\right| \cdot\left|\underset{i=n+1}{m}\left(1+A_{i}\right)-1\right|
\end{aligned}
\]
\[
\begin{aligned}
&<\operatorname{M|I}_{i=n+1}^{n}\left(1+A_{i}\right)-I_{i=n+1}^{m} 0^{I I}\left(1+A_{i} d t\right) \mid \\
& \quad+M \mid \sum_{i=n+1}^{m} 0^{I I^{1}\left(1+A_{i} d t\right)-1 \mid}
\end{aligned}
\]

Now,
\[
\begin{align*}
& M \mid I_{i=n+1}^{m}\left(1+A_{i}\right)-\sum_{i=n+1}^{m} o^{I I^{1}\left(1+A_{i} d t\right) \mid} \\
& =M \left\lvert\, \sum_{i=n+1}^{m}\left[\begin{array}{l}
i-1 \\
j=n+1
\end{array} o^{\left.I I^{1}\left(1+A_{j} d t\right)\right]\left[\left(1+A_{i}\right)\right.}\right.\right. \\
& \left.-\quad I^{I}\left(1+A_{i} d t\right)\right]\left[I_{j=i+1}^{m}\left(1+A_{j}\right)\right] \mid \tag{Th,2.16}\\
& \leq M^{3} \sum_{i=n+1}^{m} \mid\left(1+A_{i}\right)-o^{I I^{1}\left(1+A_{i} d t\right) \mid} \\
& =M^{3} \sum_{i=n+1}^{m}\left|\left(1+A_{i}\right)-\left(1+A_{i}+\sum_{n=2}^{\infty} \frac{1}{n!} A_{i}^{n}\right)\right| \\
& \text { (Th. 4.2) } \\
& \leq M^{3} \sum_{i=n+1}^{m}\left|A_{i}\right|^{2} \cdot\left[\sum_{n=2}^{\infty} \frac{1}{n!}\left|A_{i}\right|^{n-2}\right] \\
& <M^{3} \sum_{i=n+1}^{m}\left|A_{i}\right|^{2} \sum_{n=1}^{\infty} \frac{1}{2^{n}} \\
& =M^{3} \sum_{i=n+1}^{m}\left|A_{i}\right|^{2} \\
& <\frac{\varepsilon}{2} \\
& \text { (Th. 4.2) } \\
& \leq M^{3} \sum_{i=n+1}^{m}\left|A_{i}\right|^{2} \cdot\left[\sum_{n=2}^{\infty} \frac{1}{n!}\left|A_{i}\right|^{n-2}\right] \\
& <M^{3} \sum_{i=n+1}^{m}\left|A_{i}\right|^{2} \sum_{n=1}^{\infty} \frac{1}{2^{n}} \\
& \left(\left|A_{i}\right|<1\right) \\
& =M^{3} \sum_{i=n+1}^{m}\left|A_{i}\right|^{2} \\
& <\frac{\varepsilon}{2} \\
& \text { (Eq. 4.2). }
\end{align*}
\]

Also,
\[
M \mid \underset{i=n+1}{m} o^{I I^{1}\left(1+A_{i} d t\right)-1 \mid}
\]
\[
\begin{aligned}
& =\left.M\right|_{0} I I^{1}\left(1+\sum_{i=n+1}^{m} A_{i} d t\right)-I \mid \\
& \leq\left. M\right|_{0} I I^{1}\left(1+\sum_{i=n+1}^{m} A_{i} d t\right)-\sum_{j=1}^{r}\left(1+\sum_{i=n+1}^{m} A_{i} \Delta t_{j}\right) \mid \\
& \quad+M\left|\underset{j=1}{r}\left(1+\sum_{i=n+1}^{m} A_{i} \Delta t_{j}\right)-1\right| \\
& <M \cdot \frac{\varepsilon}{4 M}+M\left|\sum_{j=1}^{r}\left[\sum_{i=n+1}^{m} A_{i} \Delta t_{j}\right] \cdot\left[I_{k=j+1}^{r}\left(1+\sum_{i=n+1}^{m} A_{i} \Delta t_{k}\right)\right]\right|
\end{aligned}
\]
\[
(T h, 2.17)
\]
(Eq. 4.3 and Th. 2.16)
\[
\begin{aligned}
& \leq \frac{\varepsilon}{4}+M \sum_{j=1}^{r}\left|\sum_{i=n+1}^{m} A_{i}\right| \cdot \Delta t_{j} \cdot \underset{k=j+1}{\mathbf{I}}\left(1+\left|\sum_{i=n+1}^{m} A_{i}\right| \Delta t_{k}\right) \\
& <\frac{\varepsilon}{4}+M \sum_{j=1}^{r} \frac{\varepsilon}{4 M(\exp 1)} \cdot \Delta t_{j} \cdot \exp \sum_{k=j+1}^{r}\left|\sum_{i=n+1}^{m} A_{i}\right| \Delta t_{k}
\end{aligned}
\]
(Eq. 4.2)
\(<\frac{\varepsilon}{4}+\frac{\varepsilon}{4(\exp 1)} \sum_{j=1}^{r} \Delta t_{j}(\exp 1)\)
(\(\left.\left|\sum_{i=n+1}^{m} A_{i}\right|<1\right)\)
\(=\frac{\varepsilon}{2}\).

When the two preceding inequalities are combined, we obtain
\[
\operatorname{II}_{i=1}^{m}\left(1+A_{i}\right)-{\underset{i=1}{n}\left(1+A_{i}\right) \mid<\varepsilon ; ~}_{i=1}
\]

It remains to show the existence of \(\left[\prod_{i=1}^{\infty}\left(1+A_{i}\right)\right]^{\infty}\). To
do this, define \(f_{i}(t)=1+A_{i} t\) for each positive integer \(i\) and for \(t\) belonging to \([0,1]\); then,
\[
\operatorname{II}_{i=1}^{n}\left(1+A_{i}\right)=I_{0}^{1}\left[1+\sum_{i=1}^{n}\left(1+A_{i} t\right)^{-1} A_{i} d t\right]
\]
as in Lemma 4.3. Since \(\left|A_{i}\right|<\frac{1}{2}\), then
(1)
\[
\sum_{i=1}^{\infty}\left(1+A_{i} t\right)^{-1} A_{i} \text { converges uniformly on }[0,1]_{0}
\]
(2)
and
(3) \(\quad o^{I I}\left[1-\sum_{i=1}^{\infty}\left(1+A_{i} t\right)^{-1} A_{i} d t\right]\) exists and is the
multiplicative inverse of
\[
o^{I I}\left[1+\sum_{i=1}^{\infty}\left(1+A_{i} t\right)^{-1} A_{i} d t\right]
\]
(Ths. 2.23. 2.17)
Therefore \(\left[\underset{i=1}{\infty}\left(1+A_{i}\right)\right]^{-1}\) exists and \(\operatorname{II}_{i=1}^{\infty}\left(1+A_{i}\right)\) converges by Definition 2.13.

Now an indirect proof will be used to prove that if
 diverges, then by the Cauchy criterion there exists a posie tive number \(\varepsilon_{0}\) such that, if \(N\) is a positive integer, there exist integers \(m>n>N\) such that \(\left|\sum_{i=n}^{m} A_{i}\right|>\varepsilon_{0}\) 。 Define
\(\varepsilon>0\) such that \(\varepsilon<\frac{1}{8}\) and \(\varepsilon<\varepsilon_{0}\).
By Lemma 4.4 there exist a positive number \(P\) and a positive integer \(X\) such that
\[
\begin{equation*}
\left|\left[\prod_{i=1}^{n}\left(1+A_{i}\right)\right]^{-1}\right|<P \tag{4.4}
\end{equation*}
\]
for \(n>x\). Since \(\underset{i=1}{\infty}\left(1+A_{i}\right)\) converges, there exists a positive integer \(Y\) such that
\[
\left|\sum_{i=1}^{n}\left(1+A_{i}\right)-\sum_{i=1}^{m}\left(1+A_{i}\right)\right|<\frac{\varepsilon}{4 P}
\]
for \(m>n>Y\). Also, by Lemmas 4.5 and 4.6 there exist a positive integer \(Y\) and a positive number \(Q\) such that
\[
\left|\operatorname{II}_{i=n}^{m}\left(1+A_{i}\right)\right|<2
\]
and
\[
\begin{equation*}
\left|I_{0}^{1}\left(1+\sum_{i=n}^{m} A_{i} d t\right)\right|<Q \tag{4.5}
\end{equation*}
\]
for \(m>n>Y\). Therefore, since \(\sum_{i=1}^{\infty}\left|A_{i}\right|^{2}\) converges there is a positive integer \(Z\) such that \(\sum_{i=n}^{m}\left|A_{i}\right|^{2}<\frac{\varepsilon}{8 Q}\) and \(\left|A_{n}\right|<\varepsilon<\frac{1}{8}\) for \(m>n>z\).

Let \(N=X+Y+Z ;\) then, from the denial, there exist integers \(m>n>N\) such that \(\left|\sum_{i=n}^{m} A_{i}\right|>\varepsilon_{0}>\varepsilon_{0}\) Denote
the set of positive integers \(\{n, n+1, \cdots, m-1, m\}\) by \(A\) and let \(B\) be the subset of \(A\) such that \(B=\left\{j:\left|\sum_{i=n}^{j} A_{i}\right|>\varepsilon\right\}\) 。 \(B\) is nonempty because \(m\) belongs to \(B\) and \(B\) is bounded below by \(n\) because \(\left|A_{n}\right|<\varepsilon ;\) thus, \(B\) has a least element r. Now, if \(r>p \geq n^{\prime}\) then \(\left|\sum_{i=n}^{p} A_{i}\right| \leq \varepsilon\) since \(r\) is the least element in \(B\) and \(\left|\sum_{i=n}^{r} A_{i}\right|>\varepsilon\) since \(r\) belongs to \(B\). Furthermore, \(\left|\sum_{i=n}^{r} A_{i}\right|<2 \varepsilon<\frac{1}{4}\) since
\[
2 \varepsilon>\left|\sum_{i=n}^{r-1} A_{i}\right|+\left|A_{i}\right| \geq\left|\sum_{i=n}^{r} A_{i}\right|
\]

Now,
\[
\left.\frac{\varepsilon}{4 P}>\operatorname{II}_{i=1}^{r}\left(1+A_{i}\right)-\prod_{i=1}^{n-1}\left(1+A_{i}\right) \right\rvert\, ;
\]
therefore,
\[
\begin{aligned}
& \left.\frac{\varepsilon}{4}>\left|\left[\sum_{i=1}^{n-1}\left(1+A_{i}\right)\right]^{-1}\right| \cdot \right\rvert\, \underset{i=1}{r}\left(1+A_{i}\right)={\underset{i=1}{n-1}\left(1+A_{i}\right) \mid}^{I} \\
& \geq\left|\underset{i=n}{\operatorname{I}}\left(1+A_{i}\right)-1\right| \\
& \geq\left|\operatorname{II}_{i=n}^{r} O^{1}\left(1+A_{i} d t\right)-1\right|
\end{aligned}
\]
\[
\begin{aligned}
& \geq\left|0 I^{1}\left(1+\sum_{i=n}^{T} A_{i} d t\right)-1\right| \\
& -\left.\sum_{i=n}^{T}\right|_{j=n} ^{i=1}\left(1+A_{j}\right)|\cdot|_{0} I I^{1}\left(1+A_{i} d t\right)-\left(1+A_{i}\right) \mid \cdot
\end{aligned}
\]
\[
\begin{aligned}
& -\mid \underset{j=i+1}{\mathbf{I}} 0^{I I^{1}\left(1+A_{j} d t\right) \mid \quad(T h s .2 .17 .2 .16)} \\
& \geq|\cdot|-2 Q \sum_{i=n}^{T}\left|1+A_{i}+\sum_{n=2}^{\infty} \frac{1}{n!} A_{i}^{n}-\left(1+A_{i}\right)\right| \\
& \text { (Th. 4.2 and Eq. 4.5) } \\
& \geq|\cdot|-2 Q \sum_{i=n}^{T}\left|A_{i}\right|^{2} \sum_{n=2}^{\infty} \frac{1}{n!}\left|A_{i}\right|^{n-2} \\
& >|\cdot|-2 Q \sum_{i=n}^{r}\left|A_{i}\right|^{2} \sum_{n=1}^{\infty} \frac{1}{2 n} \\
& \left(\left|A_{i}\right|<1\right) \\
& =|\cdot|-2 Q \sum_{i=n}^{T}\left|A_{i}\right|^{2} \\
& >\left.\right|_{0} I I^{1}\left(1+\sum_{i=n}^{r} A_{i} d t\right)-1 \left\lvert\,-\frac{\varepsilon}{4} \quad\left(\sum_{i=n}^{r}\left|A_{i}\right|^{2}<\frac{\varepsilon}{8 Q}\right) .\right.
\end{aligned}
\]

Therefore,
\[
\begin{aligned}
\frac{\varepsilon}{2} & >\left|0 I I^{1}\left(1+\sum_{i=n}^{r} A_{i} d t\right)-1\right| \\
& =\left|\left[1+\sum_{i=n}^{r} A_{i}+\sum_{n=2}^{\infty} \frac{1}{n!}\left(\sum_{i=n}^{r} A_{i}\right)^{n}\right]-1\right| \\
& \geq\left|\sum_{i=n}^{r} A_{i}\right|-\sum_{n=2}^{\infty} \frac{1}{n}\left|\sum_{i=n}^{r} A_{i}\right|^{n} \quad(T h \cdot 4,2) \\
& \geq\left|\sum_{i=n}^{r} A_{i}\right|-\left|\sum_{i=n}^{r} A_{i}\right|^{2} \quad\left(\left|\sum_{i=n}^{r} A_{i}\right|<\frac{1}{4}\right)
\end{aligned}
\]

Since \(\frac{1}{4}>2 \varepsilon>\left|\sum_{i=n}^{r} A_{i}\right|>\varepsilon\), the above inequality becomes
\(\frac{\varepsilon}{2}>\frac{\varepsilon}{2} ;\) hence, our assumption was false and \(\sum_{i=1}^{\infty} A_{i}\) converges.
Hence, both parts of the theorem are proven.

\section*{BIBLIOGRAPHY}

\section*{1. Helton, Burrell W., Integral Equations and Product Integrals, Pacific Journal of Mathematics. Vol. XVI, 1966 . \\ 2. MacNerney, J. S., Integral Equations and Semigroups. Illinois Journal of Mathematics, Vol. VII, 1963.}```

