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CHAPTER I

INTRODUCTION

Two problems are solved in this paper by use of
product integrals, First, it is proven that any square,
non-singular matrix has n distinct nth roots, for each

positive integer n. Secondly, conditions are established

converges if, and only if, II (1+Ai)
i=1

under which | A

j=1 &

converges, where {Ai} is a sequence of commutative
i=1

square matrices.,



CHAPTER 11
DEFINITIONS, NOTATIONS, AND FUNDAMENTAL THEOREMS

Proofs of most of the theorems stated may be found in

the references cited in the bibliography.

Notation 2,1, The symbol R denotes the set of nxn matrices

of complex numbers, where n is a positive integer,

Definition 2,2, A ring N is complete means for each

lim
sequence {x }  of elements in N such that |x_-x_|=0,
n n=1 m,noe m n
there exists an x_belonging to N such that lim Xpm ® X
(3] mee R o°

Notation 2.3, |°| is a norm for R such that R is complete

with respect to |°|, |1] = 1, |0| = 0, and [acb] < |a]-|b]|

for elements a and b in R,

Notation 2.47 The symbol S denotes the set of real numbers

and SxS denotes the set of ordered pairs of real numbers,

Notation 2.5, The symbol [a,b] denotes a closed real

number interval, where b > a,

Definition 2,6, D is a subdivision of [a,b] means D is a




finite subset {xi}n of [a,b]l such that
i=0

Definition 2,7, H is a refinement of a subdivision D of

[a,b] means H is a subdivision of [a,b] and D is a subset

of H.

n
Notation 2.8, If g is a function from S to R and {xi}
i=0

is a subdivision of an interval [a,b], then Ag; denotes

- 8(x3) - g(x3.q).

Definition 2,9, If F is a function from SxS to R, the

statement that F belongs to OB on [a,b] means there is a

n
positive number M such that, if {x;} is a subdivision
i=0
‘ n
i=1

Definition 2,10, If G is a function from Sx8 to R and a

b
and b belong to S, the statement that f G exists means
a
there is an element A belonging to R such that, if € > 0,
n
there is a subdivision D of [a,b] such that, if 1xi}
i=0

n
is a refinement of D, then | ] G(x5.10 X3) = Al < e,
=

Definition 2,11, If G is a function from SxS to R and




b
a and b belong to S, the statement that aII G exists means

there is an element A belonging to R such that, if ¢ > 0,
n,
there is a subdivision D of [a,b] such that, if {xi}i 6 is

n
a refinement of D, then III G(xi-l’ xi) - AI < g,
i=1 o

' Notation 2,12, If f and g are functions from S to R, then
the function fdg is the function G from SxS to R such that
G(x,y) = £(x)[g(y)-g(x)] for (x,y) belonging to SxS.

Definition 2,13, 1If {Ai} is a sequence of elements of
‘ i=1

o
R, the statement that II (1+Ai) converges means there is

i=1

lim 7 =1
an element A of R such that - II (1¢Ai) = A and A
i=1

exists,

Notation 2,14, If A belongs to R, then det A denotes the

determinant of A,

Theorem 2,15, If n is a positive integer, the complex

number (1,0) has n distinct nth roots,

n
Theorem 2,16. If n is a positive integer and {xi} © and
i=1
n
{yi}‘ . are subsets of R, then
i=

n n f' i-1 n
IT x, = II y, = (11 y,Jlx,-y.][II >
i=1 *  is1 Y i=1 =1 P T yaia



Theorem 2,17, Suppdse a and b are real numbers and F and

b
G are functions from SxS to R such that faIFoGl =0,
b o2 b b
fale | = 0, F and G belong to OB, _II (14F) and JI1 (1+6)

exist, and all elements commute.
Conclusion:

. b b
(1) aIIb[1+(F+G)J exists and is aII (1+F)°aII (1+G).,
(2) If n is a positive integer, then
b & b 1
[aII (1+G6) 1" = aII (1+ EG)°
b
(3) 1If aII (1-G) exists, then

1

, b - b
[311 (1+6)] = aII (1-6).

Theorem 2,18, If f is a function from S to R, a and b

-1
belong to S, and [f(x)] exists for each x belonging to

[a,b], then

x -1
£(x) = £(a)e II (1+f "df)

for each x belonging to [a,b].

n
Theorem 2,19, If n is a positive integer and {ai} is.
i=1

a set of non-negative real numbers, then

n n
II (1+a;) s exp ( ) agl)e.
i=1 i=1



Theorem 2,20, If G is a function from SxS to R, a and b

b b
are real numbers, and II (1+G) and aII (1+4]G|) exists,
a

Theorem 2,21. If a, x, and y are real numbers and y > x,

then xIIy(1+adt) exists and is exp a(y-x).

Theorem 2,22, If £ is a continuous function from S to

-1 G1
R such that [f(x)] exists for each x in S, then £ is

continuous,

Theorem 2,23, If f and g are functions from S to R such

that df and dg belong to OB, then xIIy(1+fdg) exists for
each (x,y) belonging to SxS.

Theorem 2,24, If f is a function from S to R, a belongs

to §, and o belongs to R, then the following two state-
ments are equivalent:

(1) If x belongs to S, then f fadt exists and

£(x) = 1 + [ fadt,

(I I R

X
(2) If x belongs to S, then aII (1+adt) exists and



f(x) = f(a)*aIIx(1+adt)‘



CHAPTER II1

THE ROOTS OF A SQUARE, NON-SINGULAR MATRIX

Suppose A is a square, non-singular matrix of complex
numbers and n is a positive integer greater than one.
In this chapter it will be proven that A has n distinct
nth roots.

First, a function g will be defined from the real
interval [0,1] to the complex numbers, with the properties:

(1) if x belongs to [0,1], det [1+(A-1)g(x)] # O,

(2) g is continuous and has bounded variation on
{0,1], and

(3) g(0) = (0,0) and g(1) = (1,0).
For each x belonging to [0,1], det [1+(A-1)g(x)] is a
polynomial of the form
(3.1) bozn + blzn'1 # see b,z + b,
where z = g(x). The polynomial (3.1) has only a finite
number of roots (x,y) such that |(x,y)| s 1; let B denote
this set. Since det [1+(A-1)] = det A # 0 and since
det 1 # 0, then (0,0) and (1,0) are not elements of B,
If B is empty, or if there exists no (x,y) in B such that
y=0, then let g(x) = (x,0) for x in [0,1]. If, on the

other hand, y=0 for every (x,y) in B, then let the graph



of g be the straight line extending from (0,0) to (%3%
plus the straight line extending from (%,%) to (1,0).
Finally, if there exists an (x,y) in B such that |y| > 0,
then there exists an (s,t) in B such that |y| 2 |t| > 0
.for all (x,y) in B. In this case let .the graph of g be

the straight line extending from (0,0) to

/1 - I0e%, 7 e

plus that arc on the unit circle from

1
(/71 -2 115 3 1eh

to (1,0). In any of the three above cases, g is a con-
tinuous function of bounded variation such that
g(0) = (0,0) and g(1) = (1,0)., Furthermore, no element

of B belongs to the graph of g; therefore, for each x

belonging to [0,1], det [1+(A-1)g(x)] # 0 and

-l
[1+(A=-1)g(x)] exists.

Define £ to be the function from the real interval
[0,1] to the ring of matrices such that '
£(x) = 1 + (A-1)g(x)
for x belonging to [0,1], Since g is continuous and of

bounded variation, then f has these properties. Further-
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-1
more, since [f(x)] exists for each x belonging to [0,1]

-1
and since f is continuous, then f is continuous on

[0,1] by Theorem 2,22, Hence, both f and f'1 are bounded;
1 . 2

therefore [ [f "df] = 0,
[o]

If r and s are complex numbers, then [1+(A-1)r] and

- 1 .
[1+(A-1)s] commute because

=1
[1+(A-1)s]

[1+(A-1)r]

1 1

= (1-r)[1+(A-1)s]- + Ar[l#(Aal)s]-

-1 -1 =1
= {[1+(A=1)s]) (1-1)} + r{[1l+(A=1)s]A }

1. =1

= (o} + A" Yvaa-aths)y

- - -1
= (o)« (ANt aen)s) r

-1 -1
= {¢} + {A "[1+(A-1)s]} «r

-1 =1
= [1+(A-1)s] (l-r) + [1+(A-1)s] Ar

-1
= [1+(A-1)s] ([1+(A-1)r].

The above manipulations prove that f and g1 commute.

Since the hypothesis of Theorem 2,18 is satisfied and



£(0) = 1, then

1 -
£(1) = 1« II (1+f ligy.

Furthermore, since the hypothesis of Theorem 2,17 is

satisfied and since f(1) = A, then
1 1 .1 n 1 -1
[(1°ui) . 011 (147 "df)] =1 o11 (1+f “df) = A,

where L) i=1,2,¢¢9,n, is one of the n distinct nth roots

of the complex number (1,0). Therefore, if 1 s i g n,
then (lea;) - o111(1+%f'1df) is an nth root of A, We now
prove that these roots are distinct, Let K denote
0111(1+%f'1df). K # 0, for, if it were, then A=K"=0"=0,

which is false, Also, if 1 s i < j s n, then

(loai)K # (loaj)K. If this last statement were false,
then there exist positive integers i and j such that

1 i< jsnand (l*ag)K = (1°aj)K, from which it
follows that lo(ai-aj)K = 0, Since lo(aioaj) is a
diagonal matrix with no zeros on the diagonal, it has a
multiplicative inverse and it follows that K=0, which is
false. Therefore, the roots are distinct and we conclude

that A has n distinct nth roots.

11



CHAPTER 1V

TWO EQUIVALENT STATEMENTS

Theorems involving product integrals may be used to

prove that, if {A;} is a sequence of commutative ele-~
i=1

® 2
ments of R and ] |A;| converges, then the infinite
i=1

[} - «©
product II (1+Ai) converges if, and only if, 2 A, cone-
i
i=1 i=1
verges. The following theorems and lemmas are used in

the proof of Theorem 4,7,

Theorem 4,1, If A is an element of R and |A| < 1, then

-1 ® i
(1+A)  exists and is 1+ ) (-A) .
i=1

Proof:

©

Since |A] <1, } IAIi converges., Let ¢ > 0, then
i=1

n i
there exists a positive integer N such that Z IA]™ < ¢
i=n

for m > n > N, Let m > n > N, then

| 1 -7 s ianAl < e;
i=n =

12
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b i
hence, the series ) (-A) converges by the Cauchy
i=1 ‘

criterion, Since

(1+A)[1 + zlc-A)ij

= (1+A)(1-A¢A2.A3+oo.)

2 2 3 3 4
2 (1+A<A +A +A A «A +04s)

then

o s 1 -mi,

i=1

(1+A)°

- 1
Theorem 4,2, If A is an element of R, then oII (1+Adt)

exists and 0111(1¢Adt) =1+ ) %, A",
n=1 '

Proof:

o111(1+Adt) exists by Theorem 2,23 because the func-
tion F(x,y) = A(y-x) belongs to OB, Also, by Theorems
2,20 and 2,21,

X X .
[ IT (1+Adt) | s o11 (1+]A]dt) = exp |A]+*x < exp |A]

X
for 0 £ x s 1., Define f(x) = °II (l1+Adt), then by

Theorem 2,24
1
oII (1+Adt) = £(1)

1
=1+ [ Afdt
(¢
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1
= 1 + Afofdt
1t
=1+ Af [1+] Afdpldt
o] (¢}
1 , 1t
=1+ Af dt + A £dpdt
+ A[ dt + A°[ [ fap
2 1 t[ P
=1+A+A
+ A+ Iolo 1+ foAfdr]dpdt
A+ A2 [Capar + A% P earapa
=1+ A+ A" [ dpdt + A7[ [ [ fdrdpat

2

11t
1 3 P
=1+ A+35 AT+ A fofofofdrdpdt.

If this process is continued, then for each positive

integer n,

1 n-1l 1 k
oII (1#Adt) = 1 + k§1 1 A+,
where
1 Xl X
n n-1
r, = A folo soe fo £ dx, dxp_q ccc dx,
and

n
'rnl < [A] n?xP|A‘ = s

o«
Since )} s converges, then ] %, A" converges and
n=1 n=1 "°
1 e 1 n
II"(1+Adt) =1 + § = A",
) n!
: n=1

[ ]

Lemma 4.3, If {Ai} is a sequence of commutative ele-

i=1



@0 .
ments of R and z Ai and 2 IAiIZ converge, then there is
i=1 i=1
m
a positive number M such that |II (1+A{)| s M
i=n
and

m 1
|11 IT (1+A.dt)| s M
i=n © i

for positive integers m > n.

Proof:

[ ]
Since Z IAiI2 converges, there is a positive integer

i=1
3 2
X such that ) |Ail <1 form>n > X, Also, since
i=n

-}
Z Ai converges, there exists a positive integer Y such
i=1

m
that | ] A;] < % for m > n > Y, Choose N = X + Y and
i=n
N
let M = exp( [ |A;| + 3). Let m and n be positive inte-
i=1
gers such that m > n,

If m and n are both less than N, then

m m
|11 (1+45)] s 1T (1+]A,])
i=n i=n
m
sexp (I 1a]) (Th, 2.19)
i=n
and
m 1 1 m
|11 OII (1+Aidt)| = IOII (1+.2 Aidt)l (Th. 2,17)

i=n i=n

15
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1 m
s 1T (1+ ] |A;]de) (Th. 2.20)
[+] i=n .
n
=exp (1 A1), (Th., 2,21)
i=n
but
n N
exp (] A1) s exp (1 A1) < M5
i=n i=1
hence,
m
|11 (1+Ay)]| < M
i=n
and

n 1
|11 II (1+A.dt)| < M,
i=n © 1

If m and n are both greater than N, then for each
positive integer i > N define fi to be the function such

that, if t belongs to [0,1], then f;(t) = 1 + A;t, If
i > N, then IAil < %4 therefore, by Theorem 4,1

-1 -1
£(8) = (1+A;t)
=1+ J (-a,t)"
n=1 i

® n
for each t in [0,1]. For each i > N let B, = ) (-A;t) ,
n=1

then, since fi(O) = ] and fi(l) = 1+Ai,
m m 1 -1
|11 (1+A)] = [II 11 (1+£, df,) |

i=n i=n ©
(Th. 2.18)
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m 1 -1
|§£n JIT [1 + (1+a41) Agdt]]

1 m -1
1011 [1 « izn(1+Ait) Aidt]l (Th, 2.17)

1 m
loxr (1« izn(1¢Bi)Aidt]|

| itae Aol ata e 3 |
s I°(1 + A dt)|e] 1171 «+ B,A,dt)
) jep 1 ) jep b1
(Th., 2.17),
Furthermore,
v n
IBiAiI = lAiBil = lAi ngl (‘Ait) I
2 9 n n-1 g
= |Ai n§1 (-1)  Ag t |
2 3 =
s IAiI nzl IAil Itl
2 T 1 1
< IAiI ngl zn_l (lAil<§')
2
= 2|A ]
Hence,
m 1 m 1 n 2
|11 (1+A) ] s I17(1¢] § Aglde)e II7(1 + § 2]A, |%dt)
i=n ° i=n ° i=n i

(Th, 2.20)
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1
< ox: (1+1dt) 0111(1¢2dt) (m>n>N)

= (exp 1) (exp 2) (Th, 2.21)
< M,

Also,

11 1! | Liiel 3 ayl
I II"(1+A.dt) < II7(1+ A;ldt) < M,
imn © : o i=n i

Finally, if N is between m and n,

m N
|11 (1+A,)| < exp( { |A;[)eexp 3 = M
i=n i i=1
and
m 1 N
|11 11 (1+Aidt)| < exp( ] [Aj])eexp 1 < M,
i=n © i=1
o
Lemma 4,4. Suppose {Ai} is a sequence of commutative

i=1

® - -l
elements of R, II (1+Ai) = A, A 1 exists, and (1+Aj)
i=1

exists for each positive integer j., Conclusion: There
exists a positive number M and a positive integer N such

thgt

n -1
[[I1 (1+A,)] | < M
i=1 :

for n » N,



Proof:

Let M = 2|A"1|, Since II (1+A;) = A, there exists a
i=1

positive integer N such that
n 1
|A - g:lcmi)l <=
for n > N, Let n be a positive integer such that n > N
n 1
and let k = §:1(1+Ai) - A; therefore, |k| < y and
n

A+ k = II (I*Ai).
i=]

n -1
(A+k)[IT (1+A;)] © = 1;

i=1
hence,
- n “1 -
1+l [IT (144017 = A !
i=1
Since IA-lkl < |A-1|% = %, then by Theorem 4,1
ST S S RIS U B SR L
n=]}
theérefore,
[11 (1+Ai)] = (1+A 1k) A
i=]
and

-1

I

n -1 -1, .=1
|11 (14400 7] s [ (1+A77K) 7oA
i=1

19
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o

=1+ § A"l At

n=1
< 2|A"1|
= M,
Lemma 4.5, Suppose {A‘,'.}:,’1 is a sequence of commutative

- . .1
elements of R, II (1+A;) = A, A"  exists, and (1+4,)
j=1

exists for each positive integer j. Conclusion: There

n
exists a positive integer N such that |II (1+Ai)| < 2 for
i=n

m>n > N,

Proof:

By Lemma 4.4 there exist a positive integer X and a
n -1
positive number Q such that [[II (1+4A;)1°7| < Q for
i=1

n > X, Also, by the Cauchy criterion for products, there

exists a positive integer Y such that

m n
|11 (1+A)) - I1I (1+Ai)| <
i=1 i=1 )

O |

for m >n > Y, Let N = X + Y and let m > n > N, then

1= Qo o> [[I1 (1+a3)] |¢|I1 (14A,) - II (1+A;)]
Q i=1 i=1 i=1



m
2 [II (1+A)) - 1];

ian
therefore,
n
|11 (1+A) | < 2.
i=n
©
Lemma ' 4.6. Suppose {A;} is a sequence of commutative
i=1

[}
elements of R, II (1+A;) exists and is A, Al exists,

i=1
w0 2 -1
) lAiI converges, and (1+Aj) exists for each positive
i=1
integer j. Conclusion: There exist a positive number M
and a positive integer N such that

1 m
|II°(1 + [ Adt)| <M
i=n

for m > n > N,

Proof:
By Lemma 4,5 there exists a positive integer X such
m «© 2
that [II (1+A;)| < 2 for m > n > X, Since ] |A;]" con-
i=n i=1
verges, there exists a positive integer Y such that
v 2 1
) IAil <> form>n>Y, Let M= 2(exp 1), N = X + Y,

i=n

and let m and n be integers such that m > n > N; then, if

21
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t belongs to [0,1] and i > N,

I (A" (Th. 4.1).

-1
(1+Ait) =1 +
n=1

-]
Define B, = Z (-A.t)n. If we define £f,(t) = 1 + A, t for
i n=1 i i i

each i > N and each t in [0,1] and use manipulations
similar to those used in Lemma 4,3, then

1 m
;dt) I (1 + ] A

m 1 m
|11 (1+Ay)] = |°11 (1 + } Ay L

B, dt) |
i=n i=n i

i

and |A;B;| < 2|Ai|2 for i > N; therefore, by Theorem 2,17

1 B n 1 m
1 I17(1 - 1 A at)|efI1 (eag)| 2 | IT (1« ] Ade)].

i=n i=n i=n
Also,
|- ar ¢ mtae 1 o2la %
l - A B, kdt < 1+ 21A t
o jsp 11 o i=n i
1
< oII (1+1dt)
= exp 1;
m
therefore, since |II (1+A;)| < 2, then
i=n
1 m
M= 2(exp 1) > | II7(1 + Aidt)l.
° i=n
-]
Theorem 4,7, 1If {Ai} is a sequence of commutative

i=1
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(- -] 2 [
elements of R such that [ |A;|° cenverges, then ] Ay
i=1 i=1

converges if, and only‘if, 11 (1+Ai) converges.
i=1

Proof:
o

Since the convergence of | |Ai|2 implies there are
i=1
-]

only a finite number of terms of the sequence {Ai}
i=1

for which [A;| > % and since a finite number of the terms
of a series or the factors of a product may be "discarded"

without altering convergence, it will be assumed in the

proof of this theorem that [A;]| < % for each positive

integer i, It follows by Theorem 4,1 that (1+Ai) exists
for each positive integer i,

First, the Cauchy criterion will be used to prove that,

L4
if Z Ai converges, then II (1+Ai) converges, Let ¢ > 0,
i=1 i=1

From Lemma 4,3 there exists a positive number such that

n 1
|11 II (1+A,dt)]| < M
i=zn © i
and

m
|IT (1+A.)] < M
i=n 1
bod 2
for positive integers m > n. Since Z IAiI converges,
i=1



there exists a positive integer X such that

(4.1) 2 |A; l e
i=n 2M
and
m
I 1ag1% <1
i=n

for m > n > X, Also, since Z A converges, there

i=1

exists a positive integer Y such that

(4.2) IZAI T TS
i=n 4M(exp 1)
and
ZA!<1
i=n

for m > n > Y, Let N =X + Y and let
gers such that m > n > N, Since OII

T
exists there is a subdivision {ti}

i=0
(4.3)

T m 1
|11 (1 + ] AjAt.) - TIT(1 +
j=1 i=n+l J

Therefore,
|11 (1+4y) - 11 (1+A ) |
i=

i=1

m
|11 (1+A;)| - |II
i=1 i=n+

m and n be inte-

n

Ya e ] ajan

i=n+l

of [0,1] such that

m
A.dt)| < &,
i=§+1 i 4M

(1+A;) - 1|
1

24
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n m 1
< M|II (1+A;) - II 011 (1+A;de) |

i=n+l i=n+l
m 1
+ M|II II"(1+A,dt) - 1],
i=n+1 +
Now,
m m 1
M|II (1+A,) - II I17(1+A,dt) |
N 1 N 1
i=n+l i=n+1l
m i-1 1
=M ] [I1I IT (1+A.dt) J0(1+A,)
i=n+l j=n+l J
1 m
- IIT(1+A.dt)](II (1+A.) 1] (Th. 2.16)
o) i . j
j=i+l
3 B 1
s M ) | (1+A;) = JII (1+A;dt)]|
i=n+l
3 B T 1 .n
= M T J(1+a;) = (1+A.+ § = A
i=n+1 1 LR I
(Th, 4.2)
3 W 2 1 n-2
L A W e 1L
i=n+l n=2
3 B 2§ 1
3 A N Y T (1A, ]<1)
i=n+l . n=1 2 1
m
3 2
= M 2 IAil
i=n+1
€
< = Eq. 4.2
2 (Eq ).
Also,

m 1
M|II o1 (1#A;dt)-1]
i=n+l
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1 m
= M| II"(1+ A dt) - 1| (Th, 2.,17)
° i=n+1
1 m r m
s M| I1(1+ ] Agdt) - II (14 ] AiAtj)l
° i=n+l j=l  i=n+l

T m
+ M|II (1+ ) Aj0t) -1
j=1  i=n+l J

s .ml it ] 1 ) |
< Mo 2= 4 M A ot Je[11 (1+ A Aty )]
M o1 i=ne1 ¥ 37 Tkaje1  dene1r * K

(Eq. 4.3 and Th, 2,16)

erm T m
s+MI 1T Al oty o+ I1 (1+] T Ajlat))
j=1 i=n+l k=j+1 i=n+1
Fen ] RN
< T+ M — ¢ AT, ¢ €X A, |At
47 L Wexp D j Ppadel jabey 30K
(Eq. 4.2)
; : ] atyCexp D) BIEARES
< = 4 FE———— At (exp 1 ( Al <1
4 Alexp 1) 42y 7 | i=nel G
ge
70

When the two preceding inequalities are combined, we

obtain

m n
[IT (1+A,) - II (1+A3)] < ¢;
. b 8 N
i=1 : i=1

-]
hence, II (1+Ai) exists,
i=1l
- .1
It remains to show the existence of [II (1+A;)] . To
i=1 ’
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do this, define f;(t) = 1+A;t for each positive integer

i and for t belonging to [0,1]; then,

n 1} ST
I1 (1+A,) = I1 [1+ § (1+A,t)7 A dt
i1 2 © j=1 17

as in Lemma 4,3, Since |Ai| < %, then

o0
(1) ) (1+Ait)-1Ai converges uniformly on [0,1],
i=1

(- J al ©
(2) o111[1+_z (1+A;t) A dt] = II (1+A;)
i=1 i=1
and

1 > i
(3) II [1- § (1+A.t) YA,dt] exists and is the
° j=1 1 i |

multiplicative inverse of

1

1 bt .
oIl [1+i§1(1*Ait) Agdt].

(Ths. 2.23, 2.17)

[--] -1

Therefore [II (1+Ai)] exists and I1 (1+Ai) converges by
i=1 i=1

Definition 2,13,

Now an indirect proof will be used to prove that, if

w ® -
I1 (1+A;) converges, them ] A; converges. If [ Ay
i=] i=1 i=]

diverges, then by the Cauchy criterion there exists a posi-

tive number € such that, if N is a positive integer, there

m
exist integers m > n > N such that | } A;| > e . Define
i=n
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€ > 0 such that ¢ < % and € < €50
By Lemma 4.4 there exist a positive number P and a
positive integer X such that
n -1
(4.4) |11 (14403 | <P
i=1

for n > X, Since II (1+Ai) converges, there exists a
i=1

positive integer Y such that
| n m | e
II (1+A.) - II (1+A;)| < =—
T I 4P
form > n > Y, Also, by Lemmas 4,5 and 4,6 there exist
a positive integer Y and a positive number Q such that
m
|11 (1+A) | < 2
i=n
and

m
(4.5) |°111(1+.2 Aidt)| < Q
i=n

[ 4
. 2
for m > n > Y, Therefore, since |} IAil converges, there
i=1

m
- 2 €
is a positive integer Z such that X IAiI < 3Q and
i=n

ALl < e < % for m > n > Z,

Let N= X +«+ Y + Z; then, from the denial, there exist

m
integers m > n > N such that | J A;| > ¢, > . Denote
i=n
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the set of positive integers {n,n+l,¢e¢ ,m=1,m} by A and

let B be the subset of A such that B = {j:] i Al > el

—_

i=n

B is non-empty because m belongs to B and B is bounded

below by n because |A | < e; thus, B has a least element

P

r. Now, if r > p 2 n, then | J A,| < ¢ since r is the

i=n

r
least element in B and | ] Ail > & since r belongs to B,

i=n

r
Furthermore, | } Ail < 2¢ < % since

Now,

therefore,

€
-3
4

v

v

sv

i=n

2¢ >

€

77

ne-1
|11
i=1

|11 (1

i=n

T
|11
i=n

1
|11 (

r-1
|’2 Ail + IAi 2 | Z Ay |
i=n i=n
n-1
|11 (1+A3) = II (1+A, )
i=1 i=1
-1 n-1
(144,)] | o III (1+A,) = II (1+Ai)|
i=1 i=1 i
(Eq.r4.4)

*A.) - 1]

1
o1 (1+A,dt) - 1]

T
11 II (1+#A,dt) - 11 (1+4, )|
i=n © i=n

T
1+ § Ajdt) - 1]
i=n

r i-1
Y J11 (1+A, Yol 11 (1+A1dt) = (1+Ay) o
i=n j=n



Therefore,

Since

L

Sv

v

v

v

w

iv
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T 1
o| 11 II (1+A.dt)]
j=i+l © J

|o]-2 f [1+A, + E LA™ L 1eny|
) Qian igap nt i 1

(Ths, 2,17, 2,16)

(Th, 4,2 and Eq. 4.5)

L 2 % 1 ne2
lel-2Q § [A;1° 1 &0l
i=n i n=2 niloi
lel-2@ ] 1a,1° 1 = (la, |<1)
iz=n 1 p=1 20 :
I 2
|‘|'2Q.2 lAil
i=n
1 3 € T 2 ¢
| 117(1+ § A,dt) - 1| - £ (L 1Al <%=
(e] i=n 1 4 i=n i 8Q
€ 1 T
=> | II'(1+ J A.,dt) - 1}
2 0 i=n i
T g | T n
Itr+ 1 A+ 1 701 A T1-1]
i=n n=2 i=n
(Th, 4,2)
T © T n
| 1 Al - T =11 Al
i=n i n=2 n! i=n i
T T 2 Y 1
L oAl - 11 agl (1l Al <D
i=n i=n i=n

> 2¢

T
| I Ayl > ¢, the above inequality becomes
i=n
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[
; hence, our assumption was false and 2 Ai converges,

E‘ >
2 i=1

Nijm

Hence, both parts of the theorem are proven,



1,

2,
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