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ABSTRACT 

Behavioral interactions between predators and prey are a significant component 

of balance in ecological communities. Prey must be able detect, recognize, and respond to 

predators to decrease threat of predation. However, investment in antipredator behavior 

diverts costly resources away from other behaviors such as foraging and mating.  

Therefore, it is expected that antipredator behavior is threat sensitive and that prey invest 

an optimal amount of time and energy in antipredator behavior, minimizing energetic 

costs of behavior. This optimum is not constant through time because it is dependent on 

threat of predation, which varies throughout the diel cycle of the predator. Therefore, we 

studied the effect of the diel cycle on the antipredator behavior of the San Marcos 

salamander, Eurycea nana to a nocturnal and a diurnal predator. We found that diel cycle 

of predators does not influence antipredator behavior, suggesting threat-sensitive 

behavior is uncoupled from the diel cycle of predators. The ability of prey to respond 

optimally to predators is dependent on the ability of prey to detect predators, and 

multimodal cues are often used to increase detection and recognition of predators. Use of 

multimodal cues can be affected by the sensory environment, and increased turbidity is 

an increasingly common problem in aquatic systems, which can have effects on predator-

prey interactions. We studied the use of multimodal cues in the Barton Springs 

salamander, Eurycea sosorum, and the effects of turbidity on antipredator behavior in 

response to a predator and non-predator. We found that E. sosorum uses chemical cues, 

but not visual cues, to detect predators, and that turbidity decreases antipredator behavior.
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CHAPTER I 

PREDATOR-PREY INTERACTIONS IN FLUCTUATING ENVIRONMENTS 

 

Predator Detection in Aquatic Habitats 

Animal communication is defined as a transfer of signals or cues from a signaler 

that affect the sensory systems and behavior of the receiver (Johnstone 1997; Ruxton & 

Schaefer 2011). Signals and cues differ in that the former have been under selection as an 

intentional mode of communication granting a fitness advantage to the signaler, whereas 

cues have not undergone selection that is advantageous to the signaler (Higham & Hebets 

2013). Communication often involves a direct and intentional interaction between 

signaler and receiver, although indirect communication is common, especially in 

predator-prey interactions. Prey must be able to detect predator cues, recognize those 

cues as a threat, and respond effectively as this would increase their ability of avoiding 

predation.  

Depending on the spatiotemporal sensory environment and the receiver’s sensory 

system, aquatic prey may use multiple sensory mechanisms, alone or in conjunction, to 

detect predator cues (Partan & Marler 1999; Stynoski & Noble 2012). Multi-modal 

communication can exist either as multiple cue types emanating from a single predator, 

or one cue type emanating from a predator that stimulates multiple sensory organs of the 

prey (Higham & Hebets 2013). For example, zebrafish, Danio rerio, can detect 

soundwaves using both their ear and specialized neuromasts (Dambly-Chaudière et al. 

2003). Use of multi-modal cues by prey often increases detection of predators. Johnstone 
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(1996) proposed the backup signal hypothesis, which states that cues are often used in 

combination to provide greater accuracy for response to predators. For example, 

mosquitofish (Gambusia holbrooki) avoided predation more successfully when presented 

with both visual and chemical cues than when presented either cue alone (Ward & 

Mehner 2010). Similarly, wall lizards (Podarcis muralis) increased antipredator behavior 

when exposed to both visual and chemical predator cues simultaneously than either cue 

alone (Amo et al. 2004).  

The use of multi-modal communication is particularly prevalent when one 

signaling modality is obstructed by environmental variables such as turbidity (Endler 

1993; Leahy et al. 2011), or if the use of multiple sensory organs can increase chance of 

survival (Higham & Hebets 2013). The sensory compensation hypothesis states that 

response to a particular cue or combination of cues is mediated by both the level of risk 

associated with the cue and the availability of information (Hartman & Abrahams 2000). 

The concentration of chemical cues needed to elicit an antipredator response decreases 

with reduced visual information, suggesting prey are able to alter their response to cues 

depending on their sensory environment (Hartman & Abrahams 2000). Atlantic salmon 

(Salmo salar) exhibit heightened response to visual cues when exposed to low pH (which 

reduces chemical cue efficacy), as compared to neutral pH, showing their ability to 

compensate for environmental shifts in information through use of multi-modal 

communication (Elvidge et al. 2013).  

Aquatic animals are exposed to many stimuli in their environment, only some of 

which are used for communication. This includes various communication modalities 

including chemical, visual, mechanical, and electric cues (Dodson et al. 1994; Bradbury 
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& Vehrencamp 1998).  Mechanical signal sensing is used in response to hydrodynamic 

pressure waves or sound generated by other organisms.  Although many aquatic 

amphibians have a well-developed mechanosensory lateral line system to detect 

vibrational signals, few studies have been conducted on their reliance on mechanical cues 

for predator recognition (Lannoo 1987; Fritzsch & Neary 1998; Paoletti et al. 2011). 

Visual cues are commonly used as primary cues for antipredator detection and 

recognition in many aquatic organisms (Kelley & Magurran 2003; Brown et al. 2004; 

Hemmi 2005). However, visual cues are often less relevant in predator detection in 

amphibians than other sensory modalities (Petranka et al. 1987 Takahara et al. 2013). 

Tadpoles of R. lessonae and R. esculenta did not exhibit different antipredator response 

to a fish predator when exposed to visual cues alone or visual cues paired with 

mechanical signals (Stauffer & Semlitsch 1993). Tadpoles of Hyla japonica exhibited 

significant antipredator behavior when exposed to chemical cues, but not visual cues, of a 

predatory dragonfly nymph, Anax parthenope julius (Takahara et al. 2013). A few studies 

have shown that visual cues elicited antipredator behavior in amphibians, but did not give 

individuals the ability to discern level of predatory threat (Kiesecker et al. 1996; Mathis 

& Vincent 2000; Hickman et al. 2004). Therefore, the combination and singular use of 

chemical and visual cues in predator detection should be further explored. 

The role of chemical cues in detection of predators of aquatic organisms has been 

studied extensively, including chemicals of not only aquatic predators, but piscivorous 

terrestrial predators (Ferrari 2010; Rosell et al. 2013). Chemical cues can disseminate 

information into the environment, such as size of predators (Kusch et al. 2004), proximity 

of predators (Ferrari et al. 2006a), and threat-level associated with predators (Wisenden 
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2000).  The three main classes of cues common in predator-prey interactions are 

kairomones, disturbance cues, and alarm cues. These are all considered semiochemicals 

(chemicals that relay information among living organisms) and allelochemicals 

(specifically used in predator-prey interactions) (Dodson 1994).  Kairomones are 

chemicals that are produced by a species, either as pheromones for conspecific 

interaction or as a secondary metabolite, and may be used for eavesdropping by predators 

on prey (Branco et al. 2011) or prey on predators (Mathis et al. 2003). Detection of 

kairomones can allow prey to detect and evade distant predators or predators waiting in 

ambush (Ferrari 2009a). Although kairomones are always present as background 

chemicals, prey are able to detect threshold concentration level that reflect significant 

threat (Dodson 1994). For example, coral reef damselfish (Pomacentrus amboinensi) had 

a marginal response to low concentrations of kairomones but increased their response at a 

threshold concentration (Holmes & McCormick 2011). Alarm cues are released by the 

skin of some prey when injured and often cause strong antipredator responses in 

conspecific or heterospecific prey (Chivers and Smith 1998; Wisenden 2000). Some 

studies have shown that amphibian prey respond to conspecific alarm cues, but not 

kairomones alone (Gonzalo et al. 2010; Gonzalo et al. 2012).  A study by Wisenden 

(2008) found that redbelly dace (Phoxinus eos) had stronger antipredator response when 

exposed to alarm cues than when exposed to kairomones alone. It is thought that 

responding to alarm cues increases probability of survival because alarm cues signify 

threat level, unlike kairomones, which are more general (Smith 1992). McCarthy and 

Dickey (2002) found that although prey showed increased antipredator behavior in 

response to alarm cues, they did not confer any survival advantage for the prey or 
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disadvantage to the predator. Diet cues are a specific, and potentially more informative, 

form of alarm cue chemicals released after a predator digests prey and they are important 

in predator detection for many aquatic species, potentially because they allow prey to 

identify threat level (Pettersson et al. 2001; Brown & Dreier 2002; Roberts & Garcia de 

Leaniz 2011). One study found that diet cues, rather than kairomones alone, elicited a 

behavioral and morphological antipredator response in leopard frog tadpoles, Rana 

pipiens (Schoeppner & Relyea 2009). Diet cues may be important for identifying 

congeneric predators because the magnitude of response to diet cues is higher when the 

prey is a more closely related species (Mathis & Smith 1993; Schoeppner & Relyea 

2005). The combination of alarm cues and kairomones may elicit behavioral antipredator 

response, aid in generalization of predators, and facilitate recognition of predators. 

 

Learning and Innate Recognition in Predator-Prey Interactions 

 Despite the multitude of background cues, most organisms are able learn to 

respond to specific cues that represent a significant threat. Most studies achieved learning 

in prey when a naïve individual was exposed to a predatory cue paired with conspecific 

alarm cues, or in some instances, diet cues and heterospecific alarm cues (Mathis et al. 

1996; Crane & Mathis 2013; Ferrari & Chivers 2013).  Although alarm cues are most 

commonly paired with predator kairomones, a few studies have successfully paired alarm 

cues with visual and mechanical cues (Wildy & Blaustein 2001; Kelley & Magurran 

2003). Some prey can learn to recognize multiple predators simultaneously. For example, 

Darwish et al. (2005) conditioned tetras (Hemigrammus erythrozonus) using a 

combination of cues from three predators and found that they subsequently exhibited 
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antipredator behavior to each predator individually. Learning can be threat sensitive; prey 

can learn to respond more strongly to certain predators based on concentration of alarm 

cues (Puttlitz et al. 1999; Ferrari et al. 2009a; Brown et al. 2014; but see Sullivan & 

Jensen 2013). Prey are also able to generalize antipredator behavior if the predators are 

closely related (Ferrari et al. 2009b; Davis et al. 2012). Learning is thought to allow prey 

to dynamically adjust their antipredator response in variable environments, which 

increase chances of survival (Ferrari et al. 2009a). However, multiple studies have found 

that latent inhibition, the event in which prey are unable to learn if previously exposed to 

predator cues without alarm cues, may impede the ability of prey to learn predators in a 

dynamic situation (Ferrari & Chivers 2009). Latent inhibition, however, may help prevent 

prey from associating alarm cues with non-predatory species (Hazlett 2003). 

 A few aquatic species respond innately to predators; they do not require learning 

or exposure to predators to elicit an antipredator response (Gallie et al. 2001; Epp & 

Gabor 2008; Dixson et al. 2012; Kempster et al. 2013). Innate recognition may be 

advantageous because it alleviates potential costs of learning by not requiring an initial 

naïve encounter with a predator. Therefore, innate recognition is expected in 

environments with high predation risk, or in environments with a static predator 

community (Brown & Chivers 2005). Innate antipredator response is expected to be less 

advantageous in changing environments with novel predators. Therefore, some prey 

possess innate predator recognition with the added ability to alter their response with 

experience (Gonzalo et al. 2007; Epp & Gabor 2008; Epp 2013). No studies in aquatic 

organisms to date have demonstrated true innate recognition by accounting for both 

embryonic learning and maternal effects. In a few aquatic species, embryos have the 
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ability to learn predator chemical cues (Ferrari & Chivers 2009; Mathis et al. 2009), 

which was not accounted for in some studies claiming innate predator recognition. 

Offspring of mothers exposed to predators exhibit morphological and behavioral changes 

resonant with antipredator defense (Storm & Lima 2010; Giesing et al. 2011; Coslovsky 

et al. 2012). Regardless of the mechanism, exploring the ability of prey to respond to 

predators without previous experience is important to understanding the complexities of 

predator-prey interactions.  

 

Prey Response to Predators in Aquatic Systems 

 The way in which prey respond to predatory cues depends on the amount of 

exposure to cues (chronic or acute), the life history of an organism, and the 

spatiotemporal environment. The most commonly studied antipredator responses are 

behavioral, life history, and morphological changes. There is a wide range of behavioral 

responses to predatory cues, including increased use of refugia (Kats et al. 1988), 

aggregation (Holomuzki & Short 1990), defensive posturing (Shave et al. 1994), and 

change in activity (Kats & Dill 1988). In many amphibian studies, activity is reduced in 

response to predators because it reduces chance of attack by sit and wait predators (Skelly 

1994; Kats & Dill 1998; Takahara et al. 2008; Epp & Gabor 2008; DeSantis et al. 2013). 

However, there is also evidence that reduced activity may reduce chance of survival if 

predators can detect immobile prey (Altwegg 2003). In many fish studies, increased 

escape behavior is more common (Kats & Dill 1998). However the strategy of 

antipredator defense depends on the ontogeny of an organism, the type of predator, and 

the level of threat. For example, Crane & Mathis (2012) found that juvenile hellbenders 
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(Cryptobranchus alleganiensis) decreased activity to learned predator cues, while adults 

increased activity.  Additionally, the complexity of a habitat (DeBoom & Wahl 2013) and 

the predation strategy of a predator (i.e. ambush predator versus active predation) 

(Botham et al. 2006) may also influence the antipredator strategy of prey. It is therefore 

important to consider the biology of the prey and the predator in determining the 

expected antipredator response.  

 Many studies have examined the role of inducible morphological defenses in 

response to predators (Kishida et al. 2010). Tadpoles respond to chronic exposure to 

kairomones without alarm signals with increased tail length and brighter tail color 

(Schoeppner & Relyea 2005; Richardson 2006; El Balaa & Blouin-Demers 2013). 

Having inducible defenses due to increased plasticity is more important in variable 

habitats than constant environments because it gives prey the flexibility to develop traits 

suited to the given predatory environment (LaFiandra & Babbitt 2004). Plasticity in life 

history characteristics in response to predator chemical cues in aquatic species are 

common but conflicting. Although studies have found delayed hatching, faster 

development, and earlier reproduction (Kiesecker et al. 2002; Pollock et al. 2005), others 

have found delayed development (Teplitsky et al. 2005; Mogali et al. 2011), and these 

conflicting findings may reflect differential spatiotemporal risk patterns (Oriazola et al. 

2012).  

 

Effects of Diel Cycle on Predation Threat and Antipredator Behavior 

 Risk of predation is not constant through time and is variable throughout 

seasons, diel cycles, and lunar cycles (Sih & Ziemba 2000). The risk allocation 
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hypothesis states that prey should alter their level of antipredator behavior in response to 

temporal variation in predator behavior (Lima & Bednekoff 1999). This hypothesis stems 

from the threat-sensitivity hypothesis, which predicts that antipredator behavior of prey is 

relative to perceived predatory threat (Helfman 1989). The model for the risk allocation 

hypothesis was designed by measuring foraging behavior of prey once conditioned to 

high and low risk environments, with the prediction that prey vigilance and foraging will 

depend on the amount of time predators are near and on risk of attack (Higginson et al. 

2012). Since then, studies tested this hypothesis by examining foraging behavior under 

high and low risk of predation and found mixed results, though many studies may have 

not granted prey enough time to assess risk, and many did not work under the assumption 

that prey are energy limited (Ferrari et al. 2009a). The mixed support for the risk 

allocation hypothesis can also be explained by behavioral correlation, in which 

individuals possess behaviors independent of predatory threat, and that the behavior is 

correlated in the absence or presence of a predator (Sih et al. 2002; Slos & Stoks 2006). 

Sih et al. (2003) found that if an individual spends more time out of refuge in the absence 

of a predator, that individual will most likely spend more time out of refuge in the 

presence of a predator, regardless of risk. This behavioral correlation can reduce the 

effect that risk of predation has on the behavior of prey. Thus, the risk allocation 

hypothesis can be expanded by accounting for these issues and by assessing direct 

antipredator behaviors rather than focusing on just the foraging tradeoffs associated with 

predation risk (Bednekoff & Lima 2011). 

The threat level of predators changes throughout the diel cycle and is dependent 

on whether predators follow a diurnal, nocturnal, or crepuscular cycle (Thorpe 1978). 
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Diel periodicity differs from circadian rhythm in that the latter is endogenous and often 

less flexible to alteration (Daan & Koene 1981). Circadian rhythm has been shown to be 

a factor in the antipredator response of some species; they continued to exhibit cyclical 

antipredator behavior despite constant exposure to either light or dark (Kronfeld-Schor & 

Dayan 2003; Fraker 2008; Jones et al. 2011). Since diel periodicity is more plastic, one 

would predict that prey would minimize their risk of predation by expressing more 

intense antipredator behavior when predators are most active. Presence of predators cause 

shifts in diel periodicity of prey (Holopainen et al. 1991; Fraser et al. 1993; Culp 1988; 

Jedrzejewska & Jedrzejewski 1990; Daly et al. 1992; Fenn & MacDonald 1995; 

Pettersson et al. 2000; Kronfeld & Dayan 2003; Stuart-Smith et al. 2008; Bool et al. 

2011; Bosiger et al. 2012). Damselfly larvae, Enallagma cyathigerum, change their diel 

periodicity of foraging behavior in response to chemical and chemical/visual cues of a 

fish predator (Koperski 1997). Mayfly (Baetis spp.) nymphs primarily drift during the 

night, correlating with reduced visual predator activity at night and avoidance of benthic 

foragers that are often nocturnal (Huhta et al. 2000).  Rahlfs & Fichtel (2010) found that 

the circadian activity of prey effected their antipredator strategies; crypsis, freezing, and 

use of visual detection versus alarm cues was more common in nocturnal species. Red-

backed salamanders (Plethodon cinereus) only avoided garter snakes (Thamnophis 

sirtalis) fed conspecifics but avoided garter snakes fed conspecifics and snakes fed a 

neutral diet during the day, in both a lab and field setting, reflecting risk assessment 

based on diel patterns of predators (Madison et al. 1999a,b; Madison et al. 2002; Sullivan 

et al. 2002, 2005). Plethodon cinereus responded more significantly to cues of snakes 

during periods of peak foraging activity of snakes than non-peak periods, suggesting that 
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predator biorhythms are responsible for determining antipredator behavior (Maerz et al. 

2001). These studies demonstrate that it is important to consider peak activity times of 

predators when examining antipredator response in prey. 

The risk allocation hypothesis also predicts that the level of predation risk is 

dependent not only on predator activity, but also on prey susceptibility, which varies 

throughout the season and through ontogenetic development. Prey under chronically high 

predation are more energy limited than prey under low predation and show a greater 

increase foraging during times of low predator activity compared to prey under 

chronically low predation (Lima & Bednekoff 1999).  Therefore, diel activity of prey can 

be state dependent: salmon (Salmo salar) exhibit more diurnal behavior (higher risk) 

when their risk of starvation was higher and if they were part of the migrating cohort that 

year (Metcalfe et al. 1998). When Greylag geese (Anser anser) undergo molting, a stage 

which increases risk of predation, they shift to nocturnal foraging to reduce predation 

risk, reflecting state-dependent alterations in diel activity (Kahlert et al. 1996). Although 

much focus has been placed on the effect of predators on prey diel cycles, it is 

hypothesized that predator activity patterns depend on the cycles of their prey (Daan & 

Koene 1981). Worischka et al. (2012) found that the patterns of predator and prey 

behavior based on spatiotemporal factors result in variable predation risk, and that both 

predators and prey affect each other’s foraging activity. Therefore, it is important to 

consider both predator and prey diel cycles in defining whether a predator-prey 

interaction is high or low risk.  

 

 



 

12 
 

Effects of Turbidity on Antipredator Behavior 

Increased turbidity is the phenomenon in which water decreases in clarity due to 

suspended organic or inorganic solids, and can arise from natural or anthropogenic causes 

(Nixon 1995). Some anthropogenic activities that can increase turbidity are changes in 

nearby land use, pollution, and recreational activities (Davies-Colley & Smith 2001; 

Schwartz et al. 2008) Although turbidity is common in aquatic environments, its 

dynamics are variable in that it can be constant through space and time, or have dynamic 

shifts, primarily due to rainfall (Chow-Fraser 1999). The dynamics of turbidity in aquatic 

systems are expected to alter due to climate change because of increased precipitation 

events that contribute to erosion and run-off (Nelson et al. 2009). Turbidity affects the 

visual environment in aquatic systems by both decreasing penetration of light and 

increasing the scattering of light (Bruton1985). This can decrease the transmission of 

visual information within a system, which has been shown to have impacts on community 

structure in streams (Davies-Colley & Smith 2001; VanLandeghem et al. 2011).  

One way in which turbidity alters community structure is by affecting predator-

prey dynamics; predators and prey may use different modalities to detect one another that 

may alter in sensitivity due to turbidity in a non-parallel way. For example, 

VanLandeghem et al. (2011) found that the proportion of prey caught by ambush 

predators and cruising predators did not differ in clear and intermediate levels of 

turbidity, but that cruising predators caught significantly more prey in high turbidity 

situations. This suggests that turbidity can change the ability of certain prey/predators to 

respond to cues accordingly, with potential to shift community dynamics. The negative 

effects of turbidity on a predator’s ability include decreasing specificity of attack of 
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species and of size classes within a species (Crowl 1989; Jönsson 2011; Shoup & Wahl 

2011). The negative effects of turbidity on prey include a reduction of the reaction 

distance of prey to predators (Miner & Stein 1996; Abrahams & Kattenfeld 1997), 

increased conspicuousness of clear-bodied prey (Rowe 1998), decreased foraging in prey 

in the presence of predator cues (Leahy et al. 2011), lack of antipredator behavior 

(Gregory 1993; Swanbrow-Becker & Gabor 2012), decreased ability to generalize 

learned recognition (Ferrari et al. 2010; Chivers et al. 2013), and increased mortality 

(Gadomski & Parsley 2005). However, turbidity may shield prey from predators by 

providing camouflage and reduced visibility, which may increase use of suitable habitat 

by prey (Abrahams & Kattenfeld 1997; Van de Meutter 2005; VanLandeghem et al. 

2011), but this effect depends on the evolutionary history of the predator (Heimstra et al. 

1969). For example, bluegill sunfish (Lepomis macrochirus) are commonly found in 

turbid habitats and have increased foraging efficiency in intermediate turbidity (Miner & 

Stein 1993). The effects of turbidity on prey survival depends on their ontogeny; larvae 

and small aquatic animals tend to benefit from less predation due to decreased 

conspicuousness in turbid conditions (Utne-Palm 2002; Lehtiniemi et al. 2005; Pekcan-

Hekim & Lappalainen 2006; but see Ohata et al. 2011).  

 

Study System and Habitat 

 The Edwards Plateau is a region of Central Texas that includes the Edwards 

Aquifer, an artesian aquifer composed primarily of karst, which creates localized springs 

and water-filled caves, many of which are thermostable (USFWS 1996). It is thought to 

be one of the most diverse aquifers in the world, supporting blind catfish, aquatic 
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crustaceans, fish, and terrestrial cave invertebrates (HCP 2012). The springs are also 

habitat for many species of Eurycea, a group of neotenic, fully-aquatic plethodontid 

salamanders, many of which are endangered (Chippendale et al. 2000). The phylogenetic 

and phylogeographic relationships of these Eurycea have been examined (Chippindale et 

al. 1998; Chippindale et al. 2000; Hillis et al. 2001; Bendik 2006; Lucas et al. 2009) and 

there is growing research on their antipredator behavior (Epp & Gabor 2008; Davis et al. 

2012; Epp 2013). The Barton Springs salamander (Eurycea sosorum) is a federally 

endangered species, endemic to Barton Springs, Travis County, Texas (Chippindale et al., 

1993). It is an epigean species, with largest population sizes in Eliza and Parthenia Spring 

(HCP 2013). Predators of E. sosorum include birds, aquatic invertebrates, and fish, with 

documented sightings of predation by crayfish, sunfish and bass (HCP 2013). Gillespie 

(2011) argued that E. sosorum responds to visual and bioelectric cues of bass 

(Micropterus salmoides) and crayfish (Procambarus clarkii), but not olfactory cues of 

either in the day time. However, using more standardized methods DeSantis et al. (2013) 

found that E. sosorum shows antipredator response (freezing) to chemical cues of three 

fish, with greater response towards the native M. salmoides than the introduced 

redbreasted sunfish (Lepomis auritus) and the non-predatory mosquitofish (Gambusia 

affinis), indicating that they exhibit a threat sensitive response to kairomones. 

 The San Marcos salamander (Eurycea nana) is a federally threatened species 

endemic to the San Marcos River, San Marcos, Texas (Nelson 1993). Water quality 

degradation, drought, recreational activity, and invasive predators threaten them. They 

are primarily found in rocky areas rich with vegetation and have not been found in silty, 

unvegetated areas (USFWS 1996). They are also primarily found in flowing water that is 
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stenothermal (Norris et al. 1963). Their main predators are sunfish (Lepomis cyanellus), 

the redbreast sunfish (Lepomis auritus), crayfish (Procambarus clarkii), and largemouth 

bass (Micropterus salmoides) (USFWS 1996). Wild-caught and first generation captive-

bred E. nana respond to chemical cues of the native M. salmoides, and to the chemical 

cues of the non-native L. auritus (Epp & Gabor 2008; Davis et al. 2012; Epp 2013). Their 

antipredator response is a reduction of general activity. It was also found that captive-

bred salamanders show risk-sensitive antipredator behavior in response to diet cues 

paired with cues of L. auritus and M. salmoides, but that wild-caught salamanders 

showed less response in general and exhibited no threat-sensitive response (Epp 2013). 

Davis et al. (2012) examined the antipredator response of E. nana to chemical cues of a 

native sunfish predator (L. cyanellus), a sympatric introduced sunfish (L. auritus), an 

allopatric sunfish (L. gibbosus), and a sympatric, non-native cichlid (Herichthys 

cyanoguttatum) and found that each cue caused a reduction in activity, indicating ability 

to generalize predator response. Additionally, E. nana exhibited similar antipredator 

behavior to M. salmoides as L. auritus, but stress hormone levels (CORT) were elevated 

in response to M. salmoides alone (Davis & Gabor in press). Both E. sosorum and E. 

nana are captive bred at the San Marcos Aquatic Resources Center for the purposes of 

potential reintroduction.  
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CHAPTER II 

ANTIPREDATOR RESPONSE OF EURYCEA NANA TO A NOCTURNAL AND A 

DIURNAL PREDATOR 

 

Abstract 

Predators and prey exhibit shifts in activity reflective of their diel cycle, which 

causes the risk posed by predators to vary through time This represents a temporally 

variable threat for prey, and it is expected that prey would change their antipredator 

behavior based on the circadian foraging cycles of their predators. We examined 

whether Eurycea nana, a federally threatened neotenic salamander, exhibits a differential 

anti-predator response to kairomones of a diurnal predator (Lepomis cyanellus) and a 

nocturnal predator (Procambarus clarkii). In concordance with the threat sensitivity 

hypothesis, we predicted that E. nana would match their level of antipredator behavior 

with the perceived threat level. We predicted that E. nana would show increased 

antipredator behavior (reduced activity) to the diurnal predator during the day, and 

increased antipredator behavior to the nocturnal predator at night. We found that although 

there was significant antipredator behavior of E. nana toward L. cyanellus, there was no 

significant response to P. clarkii and no significant effect of time of day towards either 

predator. It is an important conservation initiative to study the effect of diel cycles on 

antipredator behavior for potential reintroduction purposes and to better understand the 

intricacies of behavior that can affect the vulnerability of a species. 

 

 



 

28 
 

 

Introduction 

In natural habitats, the risk of predation often varies across space and time and 

between predator species. The threat sensitivity hypothesis (Helfman 1989) suggests that 

prey should alter the intensity of their antipredator behaviors to match the risk posed by a 

predator because it minimizes the costs associated with predator avoidance, such as 

missed foraging or mating opportunities (Sih 1992; Lima & Bednekoff 1999). Thus, 

when the patterns of variation in threat posed by predators are cyclic or predictable, prey 

may exhibit matching cyclic variations in the intensity of their antipredator behaviors. 

One cyclic and predictable pattern is the threat posed by most predators as they shift 

through diel cycles of foraging activity (Kronfeld-Schor & Dayan 2003). Because of this 

cycle of threat, selection should favor prey that respond more intensely to stimuli of a 

given predator during the peak foraging times of that species and less intensely at other 

times, thereby maximizing benefits and minimizing costs of predator avoidance.  

Many studies have examined chemically-mediated shifts in foraging activity of 

prey as related to temporal shifts in predation threat, and found a decrease in prey 

foraging during diel periods with high predator activity (e.g. Emallagma cyanthella; 

Koperski 1997; Salmo salar; Metcalfe et al. 1998; Vargula annecohenae; Gerrish et al. 

2009). Fewer studies, however, have examined directly the effect of diel cycles on 

antipredator behaviors. In those that did, heavy presence of diurnal predators caused prey 

to exhibit more nocturnal behavior and more intense antipredator responses during the 

day (Lima 1998; Kronfeld & Dayan 2003; Bosiger et al. 2012). Further, it has been 

demonstrated that some aquatic prey shift the intensity of their antipredator behavior after 
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experiencing diel fluctuations in predation threat (Jachner 1996; Koperski 1997; Sullivan 

et al. 2005; Ferrari 2008), demonstrating the importance of cyclic variation in predation 

threat for prey.  

Learning provides an effective way for prey to exhibit threat-dependent 

antipredator behavior because prey can learn the spatio-temporal dynamics of their 

predators (Kelley & Magurran 2003). Therefore, most studies examining the role of diel 

cycles on antipredator behavior first conditioned prey using different concentrations of 

predation cues (chemical alarm cues) at differing times and tested subsequent 

antipredator response (Ferrari 2008; Ferrari & Chivers 2009; Bosiger et al. 2012). Field 

studies have examined how diel cycles of predator-experienced prey change due to the 

presence of introduced predators, differing migratory patterns of their predators, and 

environmental influences (Stuart-Smith et al. 2008; Nico 2010; Keefer et al. 2013). 

However, to our knowledge, no study has examined the effect of the diel cycle on threat-

sensitive antipredator behavior using predator-naive individuals and native prey. Flecker 

(1992) suggested that antipredator behavior could become hard-wired if prey face a high 

level of threat in natural habitats because that eliminates the need for potentially deadly 

encounters required for learning. It is therefore predicted that diel shifts in antipredator 

behavior, which minimize unnecessary energy costs of antipredator behavior, may be 

innate as well.  

In this study we explored whether predator-naïve San Marcos salamanders 

(Eurycea nana) reflected a difference in perceived threat level by exhibiting differential 

antipredator response to a diurnal predator (green sunfish, Lepomis cyanellus) and a 

nocturnal predator (crayfish, Procambarus clarkii) during the day and at night. Eurycea 
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nana is a federally threatened (USDI 1980) and IUCN red-listed (IUCN 2011) neotenic 

salamander endemic to the headwaters of the San Marcos River, Hays Co., TX. Eurycea 

nana is typically found along the benthos and uses vegetation and rocks as refuge. 

Although E. nana is presumed to be nocturnal (Thaker 2006), the prey of E. nana 

consists mostly of diurnal aquatic invertebrates and it has been found that E. nana has 

significantly more prey in their gut during the day than at night, suggesting they may at 

least forage diurnally (Diaz 2010).  

Predator-naïve individuals of E. nana exhibit antipredator responses (reduced 

activity) to the chemical cues of L. cyanellus during the night (Epp & Gabor 2008; Davis 

et al. 2012). While no study has examined the response of E. nana to crayfish, they are 

predators of Eurycea sp. and a congener, Eurycea sosorum, does respond to crayfish 

kairomones (Tupa & Davis 1976; Resetarits 1991; USFWS 1996; Davis et al. 

unpublished data). We predicted that the antipredator response of E. nana to a diurnal 

predator would be more intense (decreased ambulatory time) in the daytime as compared 

to nighttime, and conversely, that antipredator response to a nocturnal predator would be 

more intense at night, reflecting shifts in perceived predation threat.  

 

Methods 

We tested the antipredator response of predator-naïve, captive-bred Eurycea nana 

from the San Marcos Aquatic Resource Center (SMARC) to three treatments: (1) a 

diurnal predator, the green sunfish, (Lepomis cyanellus) (n=16) (2) a nocturnal predator, 

the crayfish (Procambarus clarkii) (n=16), and (3) a control, well water (n=16). We 

tested the antipredator response of E. nana to each of these three treatments during 
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daytime hours (2 hrs after sunrise - 2 hrs before sunset) and during nighttime hours (2 hrs 

past sunset - 2 hrs before sunrise).  

Housing and Stimulus Acquisition 

We acclimatized both male and female E. nana to their respective 12:12 

light:dark diel schedule for 2 weeks prior to testing at the SMARC. Test subjects were the 

adult offspring of captive salamanders and thus, were naïve to predators, which 

controlled the confounding factor of habituation to or learning of predators. To acquire 

predator cues, we collected crayfish from the San Marcos River and fed them a controlled 

diet of Kyorin™ sinking wafers for two weeks to ensure absence of salamander cues in 

their diet. We collected green sunfish from pools devoid of salamanders at SMARC, and 

thus, we did not feed them a controlled diet. We collected crayfish and sunfish chemical 

cues by separately placing predator individuals in a volume of water proportional to their 

body volume by displacement (230 ml of water per 1 ml of stimulus animal) for 24 hours, 

as per Epp & Gabor (2008). After 24 hours, we stirred and collected water from the 

containers in 60 ml portions, randomized and coded the cues, and then froze them until 

immediately prior to testing.  

Behavioral Assays 

We observed salamanders under dim red light during nighttime trials and under 

full-spectrum fluorescent lighting during the day. We tested salamanders in 9.5 l glass 

aquaria, which were filled with 4.5 l of well water and covered by black plastic on three 

sides to reduce external disturbance. We acclimatized individuals for at least 20 min 

before testing. Following acclimatization, we recorded the amount of time spent 

ambulatory (walking or swimming) for 8 min to determine pre-stimulus activity levels 
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(Epp & Gabor 2008). We then administered a treatment stimulus (crayfish, sunfish, or 

control) by injecting 50 ml of cue followed by 50 ml of well water into the aquarium at a 

rate of 2 ml/s via a 60-ml syringe attached to a plastic tube. The tube was attached to the 

side of the aquarium and extended from 2 cm below the water surface on the interior to 

just below the aquarium base on the exterior. After introduction of the stimulus, we 

recorded the amount of time E. nana spent active for another 8 min to determine post-

stimulus activity. After trial completion, we sexed subjects using a candling technique 

(Gillette and Peterson 2001) and measured their snout-vent length (SVL) before placing 

them into a separate tank for tested individuals. We did not use individuals more than 

once for any treatment. We cleaned all tanks and testing equipment with 3% hydrogen 

peroxide and fresh well water in between each trial to remove chemical stimuli (Epp & 

Gabor 2008).  

Data Analysis 

We calculated an activity index for each subject, defined as the difference 

between post-stimulus activity and pre-stimulus activity, such that positive values 

indicate increases in activity and negative values indicate decreases in activity in 

response to the stimulus. We compared activity indices using a two-factor Analysis of 

Variance and Tukey’s HSD (α = 0.05) with cue treatment and testing time (day vs. night) 

as factors. Additionally, to assess whether potential effects of testing time (day vs. night) 

were due to differences in general activity over the diel cycle, we compared pre-stimulus 

activity between day and night treatment groups. All analyses were performed in R 3.0.1 

(R Project for Statistical Computing, http://r-project.org/). 

 

http://r-project.org/
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Results 

Two-factor ANOVA showed a significant effect of predator treatment 

(F2,85=23.98, P <0.001) but not time of day (F1,85=0.29, P=0.59)  and no interaction 

between predator treatment and time of day (F2,85=1.32 ,P=0.27). (Fig.1). Post-hoc 

comparisons between all treatments revealed a significant difference only between the 

control and the sunfish cue, and a significant difference between the crayfish cue and 

sunfish cue (Tukey’s HSD, P<0.001), but all other pairwise comparisons were non-

significant. Finally, there was no difference in pre-stimulus activity levels of salamanders 

between day and night tested treatment groups (t = -0.03, df = 89, P = 0.97). 
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Figure 1. Activity Indices for Eurycea nana to a nocturnal (crayfish) and a diurnal 

(sunfish) predator, during the day and the night. Mean (± SE) activity index 

(difference between post-stimulus activity and pre-stimulus activity, in seconds) of E. 

nana in response to stimuli introduced in six treatments.  

 

 

Discussion 

There was no effect of day on the intensity of antipredator behavior of 

salamanders to either the nocturnal crayfish predator or diurnal sunfish predator. This is 

not consistent with the threat sensitivity hypothesis because E. nana did not exhibit a 

significant change in activity level based on temporally variable threat levels of 

predators. This lack of threat sensitivity to predation threat based on the time of day is 

consistent with a study of Percids (Perca fluviatilis and Gymnocephalus cernuus), which 

exhibited a lack of temporal difference in antipredator response to nocturnal and diurnal 
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piscivorous predators (Ylonen et al. 2007).  

One hypothesis for our findings is that predator-naïve individuals are unable to 

associate predator threat levels with their circadian rhythm because they need experience 

with predators to assess diel changes in threat. For example, Madison et al. (2002) found 

that predator-experienced salamanders (Plethodon cinereus) had a threat-sensitive 

response towards predators related to shifts in diel activity. Thus, E. nana may first need 

experience coupling kairomone presence or other threat indicators (e.g. conspecific alarm 

cues) with time of day before exhibiting diel patterns of antipredator behavior (Ferrari & 

Chivers 2006). Epp (2013) demonstrated that predator-experienced (wild-caught) E. nana 

exhibited less intense responses to high-risk predators than predator-naïve (captive-bred) 

salamanders, suggesting that experience is important for risk assessment in this species. 

However, predator-experienced E. nana individuals still respond to diurnal predators 

during the night at low-risk times (Epp & Gabor 2008; Davis et al. 2012; Epp 2013).  

Eurycea nana did not show antipredator response to crayfish chemical cues and it 

is a possibility that E. nana has not adapted an innate antipredator response to crayfish. 

Since it is unknown whether crayfish are native to the San Marcos River, a lack of innate 

response may be attributed to a shorter coevolutionary history than E. nana has with 

native sunfish.  It has previously been demonstrated that prey may lack innate 

antipredator strategies in response to introduced species (Schlaepfer et al. 2005). 

Tadpoles of the western spadefoot toad (Pelobates cultripes) were unable to innately 

recognize kairomones of the invasive P. clarkii, but were able to learn to recognize cues 

with associative learning (Polo-Cavia & Gomez-Mestre 2014). Thus, E. nana may 

require learning in order to recognize crayfish as a threat, and our use predator-naïve 
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(captive-bred) salamanders may not reflect actual antipredator response to crayfish in the 

wild. For example, it was found that the antipredator response of tadpole prey (Lithobates 

sylvaticus) reflects the temporal variation in level of predator threat, but multiple 

conditioning stages are first needed for L. sylvaticus to exhibit a continuous response 

(Ferrari et al. 2009; Ferrari et al. 2013).    

Fraker (2008) proposed that many species have circadian rhythms that correspond 

to predation risk, but because most prey have multiple predators which themselves vary 

in activity throughout the diel cycle, that prey should respond less strongly to threat 

during their period of high activity. However, E. nana does not have a clear circadian 

rhythm; there was no difference in pre-stimulus activity level of subjects between 

daytime and nighttime. Therefore, the lack of change in activity level of E. nana should 

be solely based on predatory threat, and not based on the diel periodicity of E. nana.   

The strong cessation of activity to sunfish kairomones was consistent with 

previous work (Epp & Gabor 2008; Davis et al. 2012). The continuous response to 

sunfish throughout the diel cycle does not reflect a threat sensitive response to diel cycle, 

but corroborates the fact that predator-naïve E. nana have a strong response to sunfish. It 

is possible that E. nana is exhibiting threat sensitive behavior based on species, not diel 

cycle, and that sunfish are generally a greater predatory threat than are crayfish. 

However, a hypothesis for a lack of response to crayfish is that E. nana may use other 

modalities, such as mechanical cues, to respond to crayfish, although other amphibians 

do respond to crayfish chemical cues (Nunes et al. 2013; Davis et al. unpublished data). 

Eurycea nana may require a combination of chemical cues, such as alarm or diet cues 

with predator kairomones in order to respond to crayfish, which would be consistent with 
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studies of other prey organisms (Ferrari et al. 2010; Nunes et al. 2013)  

 Since the foraging technique of crayfish and sunfish differs, it is possible that 

reduction of activity in E. nana is not an appropriate antipredator response to crayfish as 

it is to sunfish. The type of antipredator behavior exhibited by prey may vary based on 

both the foraging strategy of the predator (Rahlfs & Fitchel 2010) and the presence of 

refuge in the environment (Turner 1996).  Our experiment may not have provided an 

adequate test for antipredator behavior towards crayfish, which may require an additional 

variable such as use of refuge. 

 Eurycea nana are currently being bred at the San Marcos Aquatic Resource 

Center for potential reintroduction purposes, so the lack of response of E. nana to 

crayfish may have significant conservation implications in that E. nana may have to 

undergo associative learning before reintroduction.  Predator-naive, hatchery-reared fish 

have been successfully trained to recognize predators by coupling alarm cues with 

predator kairomones (Olson et al. 2012). It is important to determine whether wild-caught 

E. nana respond to crayfish cues in order to create an effective reintroduction 

management plan.  
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CHAPTER III 

MULTIMODAL COMMUNICATION AND THE EFFECTS OF TURBIDITY ON THE 

ANTIPREDATOR BEHAVIOR OF THE BARTON SPRINGS SALAMANDER, 

EURYCEA SOSORUM 

 

Abstract 

Multimodal cue use can increase predator detection by prey, which decreases 

predation risk. Multimodal cue use is especially significant in habitats where a unimodal 

cue is altered by environmental noise. Turbidity can affect the behavior of aquatic 

organisms by degrading visual and chemical information in their environment, which 

may impair the ability of prey to appropriately recognize and respond to a predator. In 

such cases, prey may require a combination of cues to respond to predators. We 

examined multimodal cue use in the fully aquatic, endangered Barton Springs 

salamander, Eurycea sosorum, by determining whether they use chemical and visual cues 

to respond to a predator, the green sunfish (Lepomis cyanellus) and compared response to 

a non-predator control, the green-throat darter (Ethostoma lepidum).  Further, we 

determined whether turbidity affected antipredator behavior. Our cue treatments included 

a fully crossed design including both chemical and visual cues of the predator and non-

predator across two vision levels; clear (0 NTU) and low turbidity (~20 NTU). We found 

that E. sosorum significantly reduced activity and distance moved and increased latency 

to first move to predator chemical cues compared to non-predator chemical cues. There 

was no difference in antipredator behavior between predators and non-predators when E. 

sosorum had access to visual cues only. We found that E. sosorum had decreased 

antipredator behavior in the form of decreased latency to first move in turbid conditions. 
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Introduction 

The use of multimodal cues by prey can improve localization, resolution, and 

amplification of predator cues (Partan & Marler 2005). Use of multimodal cues to 

recognize predators can either serve as a ‘back-up signal’ to increase accuracy of cue 

detection, or can function as ‘multiple messages’ to signify different aspects of predators 

(Johnstone 1996). Multimodal cue use as back-up signals is especially relevant in 

situations where one cue type compensates based on the sensory environment (Endler 

1993). Use of multimodal cues by prey can increase fitness benefits by either decreasing 

risk of predation, thus increasing survival probability, or by decreasing the secondary 

costs associated with unnecessary antipredator behavior (Stynoski & Noble 2012). 

Aquatic prey may use multiple cues such as visual, chemical, tactile, and electric cues, to 

improve predator detection (Collin & Whitehead 2004; Park et al. 2008; Ward & Mehner 

2010).  

Amphibians can use visual cues alone to detect predators, however accuracy of 

detection is increased if visual cues are paired with other cues, suggesting that 

multimodal cues are important in predator detection (Mathis & Vincent 2000; Hettyey et 

al. 2012; Stynoski & Noble 2012). However, more studies found that amphibians 

generally do not use visual cues for predator recognition, instead relying on chemical 

and/or tactile cues (Stauffer & Semlitsch 1993; Kiesecker et al. 1996; Parris et al. 2006; 

Takahara et al. 2013). However, these results are based on terrestrial amphibians. It has 

generally been found that aquatic organisms use visual cues for predator recognition 

(Kelley & Magurran 2003; Brown et al. 2004; Hemmi 2005). The aquatic salamander, 

Eurycea multiplicata griseogaster, discriminates between predators and non-predators in 
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response to chemical cues, but exhibits antipredator behavior to both predator and non-

predator in the presence of visual cues, suggesting the importance of multimodal cues in 

detection accuracy (Hickman et al. 2004). Thus, it is important to evaluate use of visual 

cues in amphibians to fully understand multimodal cue use in antipredator behavior. 

Use of multimodal cues is linked to the signaling environment; increased 

environmental noise may contribute to use of multimodal cue use as backup signals 

(Higham & Hebets 2013; Smith & Evans 2013). Turbidity is a form of environmental 

noise that decreases penetrability of light within the water column, and can affect the 

visual and chemical environment for prey (Utne-Palm 2002). As well, turbidity can 

reduce antipredator behavior in aquatic prey (Gregory 1993; Miner & Stein 1996) and 

decrease generalized predator recognition (Ferrari 2009; Chivers et al. 2013), which can 

increase mortality (Horppila et al. 2012). If multimodal cues are used as ‘multiple 

messages’ to increase resolution of predator detection in clear conditions, then turbidity 

would likely decrease accuracy of predator recognition if one modality is obstructed 

(Ferrari et al. 2010). However, if multimodal cues function as back-up signals, then 

turbidity could increase antipredator response through sensory compensation by 

increasing use of chemical over visual cues (Hartman & Abrahams 2000; Leahy et al. 

2011).  Therefore, turbidity can cause an increase or decrease in antipredator behavior, 

depending on whether prey make use of multimodal cues in combination to improve 

detection accuracy, or if prey use multimodal cues to compensate for reduced 

perceptibility of a cue. If prey use unimodal cues for predator detection, turbidity is 

predicted to decrease antipredator behavior because turbidity affects predator detection in 

response to both visual cues and chemical cues (Lehtiniemi et al. 2005).     
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It is well known that anthropogenic factors such as land development, severe 

storms, and recreational activity have increased turbid conditions in waterways making 

turbidity an increasing issue for aquatic organisms (Henley et al. 2000; Davies-Colley & 

Smith 2001). Much of the work examining behavioral and life history impacts of 

turbidity has been on fish (Abrahams & Kattenfeld 1997; Gadomski & Parsley 2005; 

Ferrari et al. 2010; Swanbrow Becker & Gabor 2012; Chivers et al. 2013), but 

amphibians also suffer from increased turbidity (Secondi et al. 2007; Schmutzer et al. 

2008).  One reason turbidity is less studied in amphibians is because most amphibians 

leave the water after reproduction and metamorphosis. However, understanding the 

effects of turbidity on antipredator behavior is important for amphibians because 

alteration in predation regime is considered a significant threat to the class (Scoccianti 

2004).  

The Barton Springs salamander, Eurycea sosorum, is a federally endangered, 

IUCN red list species (IUCN 2013) that is neotenic, fully aquatic, and endemic to Barton 

Springs, Austin, Travis County, Texas. Eurycea sosorum is threatened by water quality 

degradation due to increased recreational use, increased land development, and reduced 

spring flow, which can increase turbidity (Feng et al. 2012; Dries et al. 2013). The 

turbidity levels of Barton Springs are typically <1 Nephelometric Turbidity Units (NTU), 

but can spike to ~40 NTU after rain events (White et al. 2003). NTU’s measure how 

much light is reflected off of suspended solids, with higher reflectance (higher NTU’s) 

corresponding to more suspended solids in a water column. Eurycea sosorum is often 

found in clear conditions and avoids silty turbid habitat (Dries et al. 2013). Therefore, 

increased turbidity might affect the ability of E. sosorum to detect and respond to 
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predators if they are unable to compensate for loss of sensory information, potentially 

decreasing their likelihood of survival in a predatory situation. 

Eurycea sosorum shows antipredator response to kairomones, which are chemical 

cues emitted by a species that can be detected by prey, of redbreast sunfish (Lepomis 

auritus) in clear water (DeSantis et al. 2013). However, no study has determined whether 

E. sosorum can also use visual cues for antipredator response and whether turbidity has a 

significant effect on antipredator response. In this study, we examined the antipredator 

response of E. sosorum to the visual cues and chemical cues of two sympatric species, a 

green sunfish predator, Lepomis cyanellus and a greenthroat darter, Etheostoma lepidum, 

non-predatory control. We also determined whether turbidity had an impact on 

antipredator behavior and predator recognition.   

 

Methods 

Animal Maintenance 

We conducted trials at the San Marcos Aquatic Resources Center (SMARC) in 

San Marcos, Texas, from June to August 2014 between 0900-1600 h. We tested 200 

captive-bred, predator naïve, second-generation, adult Eurycea sosorum in response to a 

native predator, green sunfish (Lepomis cyanellus), and a non-predator control, 

greenthroat darter (Etheostoma lepidum). We housed salamanders in two flow-through 

tanks on a 12:12 h light/dark cycle and fed blackworms (Lumbriculus variegatus) and 

amphipods ad libitum. We collected three size-matched adult green sunfish on site at the 

SMARC, which were subsequently housed in a flow-through tank and fed a neutral diet 

of blackworms to control for diet cues. We collected fourteen size-matched adult 
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greenthroat darters from Comal Springs, TX, which we housed in three flow-through 

tanks and fed a neutral diet of blackworms and amphipods.   

Study Design and Cue Acquisition 

We examined the response of salamanders to cue treatments across two vision 

levels: (1) clear (0 NTU), and (2) turbid (20 NTU: mean ± SE: 20 ± 0.4 NTU). We tested 

the following combination of cue treatments: (1) predator chemical cues paired with non-

predator visual cues (n=25x2) (2) predator visual cues with non-predator chemical cues 

(25x2), (3) predator visual cues with predator chemical cues (25x2), (4) non-predator 

visual cues with non-predator chemical cues (n=25x2; Fig. 2). Individual salamanders 

were not used more than once for any treatment and were randomly assigned to their cue 

treatments using a random number generator. Chemical cues were collected by placing 

each fish in a volume of water proportional to their displacement (230 ml water per 1 ml 

displacement) for 24 hours, after which cues were pooled across individuals of the same 

species, and frozen until day of use (Mathis et al. 2003; Epp & Gabor 2008). The same 

individual recorded all behavior (KZ) and was blind to chemical cue treatment because 

chemical cues were coded.  

Experimental Protocol 

Our setup consisted of two adjacent 9.5 liter drip-flow tanks filled with 4.5 l of 

well water with an opaque divider between the tanks. Each tank had 12 3 x 3 cm squares 

drawn at the base. To quantify antipredator behavior in each trial we first allowed each 

salamander to acclimate for at least 20 min. Following acclimation, we recorded activity 

time (i.e. the amount of time of ambulatory activity (i.e. swimming or walking)) for 8 

min to determine pre-stimulus activity levels. We also recorded total distance moved 
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(cm) by counting the number of squares through which each individual passed. We then 

introduced the chemical stimulus by injecting 50 ml of chemical cues with a 60-ml 

syringe attached to airline tubing 10 cm below the surface of the water at a rate of 2 

ml/sec. We flushed the tubing with an additional 50 ml of well water at the same rate, 

following Epp & Gabor (2008). We introduced visual cues by removing the opaque 

divider and exposing the visual stimulus of either one adult green sunfish or four adult 

greenthroat darters (to provide similar size stimulus to a sunfish) in a clear tank adjacent 

to the focal salamander.  

After introduction of the stimulus we recorded the amount of time E. sosorum 

spent active and the total distance moved for another 8 min to determine post-stimulus 

antipredator behavior. Following introduction of the cue we also recorded latency to first 

move, defined as the number of seconds before ambulatory activity was observed. We 

recorded these behaviors because decreased activity and decreased distance travelled are 

directly related to reduced activity levels, which decreases risk of predation in many 

aquatic organisms when exposed to sit and wait predators (Skelly 1994; Kats & Dill 

1998). Latency to first move is also an important measure of antipredator behavior 

because the longer it takes for cryptic prey to resume activity; the more likely they are to 

avoid predation (Brown & Cowan 2000; Cooper et al. 2012). Following the experiment, 

individuals were sexed (Gillette and Peterson 2001) and had their snout-vent length 

(SVL) measured before being placed into a separate tank for tested individuals. We used 

3% hydrogen peroxide and water to clean tanks of chemical cues between trials (Epp & 

Gabor 2008).  For turbidity treatments, we added a measure of bentonite (Sturgis Rock 

Solid Solutions) to well water and stirred vigorously while using an aerator to maintain 
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suspension, prior to salamander acclimation. An aerator was placed in all treatment tanks 

to maintain consistency throughout the treatments. Turbidity levels were measured at the 

end of each trial using a calibrated turbidity meter (Hach 2100N Turbidimeter).  

Data Analysis 

Time spent moving (measured in seconds) in the pre- and post-stimulus trials was 

combined into an activity index for each individual, defined as the difference between 

post-stimulus activity and pre-stimulus activity, such that positive values indicate 

increases in activity. Distance index was calculated by taking the number of squares each 

individual moved pre- and post- stimulus and subtracting pre- from post-stimulus levels. 

We conducted information-theoretic model selection of linear models to assess the 

influence of turbidity, chemical cue, and visual cue treatments on activity index, distance 

index, and latency. We z-transformed the three variables in order to standardize the 

variables. To better-fit assumptions of normality, a constant was added to activity index 

(3.3) distance index (4.6) and latency (0.09) to make all values positive, then all three 

variables were (x0.5) transformed. Removing outliers did not significantly affect results 

and were left in the analysis. We calculated Akaike Information Criterion corrected for 

small sample size (AICc) and Akaike weights. Model averaging was used to obtain 

parameter estimates by averaging candidate modes with Akaike weights within 10% of 

the highest (Δ < 4.5) (Burnham & Anderson 2002; Symonds & Moussalli 2011). All tests 

were performed using R (3.0.1)  
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Figure 2: Schematic of experimental design involving chemical cues, visual cues, and 

turbidity. The predator treatment was in response to green sunfish (Lepomis cyanellus) 

while the green-throat dater (Etheostoma lepidum) was the non-predator. Turbidity 

treatments are either clear (0 NTU) or turbid (~20 NTU). 

 

 

Results 

We identified 8 plausible models to predict activity index in E. sosorum in 

response to treatments (Table1). Chemical cue was the most plausible explanation for 

change in activity and was a consistent predictor across all models, being 2.89 times more 

plausible than use of visual cues and 1.5 times more plausible than turbidity affecting 

activity (Table 2).  Salamanders reduced activity in response to predator chemical cues to 

a greater extent than non-predator chemical cues (Fig. 3). We identified 8 plausible 

models to explain distance index (Table 1). Chemical cue was also a consistent predictor 

in each model, and explained change in distance 1.56 times better than did visual cues 

(Table 2). Salamanders moved less distance when exposed to predatory sunfish chemical 

cues than to the non-predatory darter chemical cues (Fig. 4). Turbidity was included in 

six of the candidate models and explained change in distance 1.4 times better than did 

visual cues. Latency to first move was best predicted by chemical cue, which was present 

in all 9 candidate models (Table1) and explained 1.56 times better than did visual cues. 
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Turbidity was a predictor in 8 models and explained latency to move after cue 

introduction 1.38 times better than did vision (Table 2). Latency to move increased in 

response to predator cues as compared to non-predator cues, and latency to move was 

less in turbid conditions as compared to clear conditions, regardless of cue type (Fig. 5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

5
1 

 
Table 1: Values of AICc to determine the effects of turbidity, visual cues, and chemical cues on antipredator behavior. Values of the Akaike Information 

Criterion to determine the effect of chemical cue (Chem), visual cue (Vis), and turbidity (Turb) on antipredator behavior of Eurycea sosorum, for AIC < 4.5. We 

report the Akaike Information Criterion corrected for small sample size (AICc), number of parameter estimates (k), Akaike weight (w), and -2 log lik deviance 

(D) *’s indicate interactions between variables.  

 

Model AICc Δ AICc w D k 

Activity Index      

Chem+Turb 71.8 0.00 0.27 -31.79 4 

Chem 72.4 0.56 0.20 -33.11 3 

Chem+Turb+(Chem*Turb) 73.2 1.37 0.14 -31.42 5 

Chem+Vis+Turb 73.8 2.00 0.10 -31.74 5 

Chem+Vis 74.3 2.55 0.08 -33.07 4 

Chem+Vis+Turb+(Chem*Turb)+(Vis*Turb) 74.8 2.96 0.06 -30.08 7 

Chem+Vis+Turb+(Chem*Vis)+(Vis*Turb) 75.0 3.16 0.06 -30.18 7 

Chem+Vis+(Vis*Turb) 75.8 4.03 0.04 -32.75 5 

Distance Index      

Chem+Vis+Turb -10.3 0.00 0.25 10.31 5 

Chem+Turb -10.0 0.29 0.21 9.11 4 

Chem+Vis+Turb+(Chem*Turb)+(Vis*Turb) -8.8 1.47 0.12 11.72 7 

Chem+Vis+Turb+(Chem*Vis)+(Vis*Turb) -8.7 1.59 0.11 11.66 7 

Chem+Turb+(Chem*Turb) -8.1 2.26 0.08 9.19 5 

Chem+Vis -6.9 3.45 0.04 7.53 4 

Chem+Vis+Turb+(Chem*Vis)+(Chem*Turb)+(Vis*Turb) -6.7 3.62 0.04 11.73 8 

Chem -6.7 3.63 0.04 6.40 3 

Latency      

Chem+Turb 247.7 0.00 0.22 -119.74 4 

Chem+Vis+Turb 248.2 0.48 0.18 -118.92 5 

Chem+Vis+Turb+(Chem*Vis)+(Vis*Turb) 248.6 0.86 0.15 -116.96 7 

Chem+Vis+Turb+(Chem*Vis)+(Chem*Turb) 249.1 1.36 0.11 -117.20 7 

Chem+Turb+(Chem*Turb) 249.7 1.94 0.09 -119.65 5 

Chem+Vis+Turb+(Chem*Vis)+(Chem*Turb)+(Vis*Turb) 250.5 2.83 0.05 -116.84 8 

Chem+Vis+(Chem*Vis) 250.6 2.92 0.05 -120.14 5 

Chem 251.4 3.67 0.04 -122.63 3 

Chem+Vis+Turb+(Chem*Turb)+(Vis*Turb) 251.7 3.95 0.03 -118.50 7 
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Table 2: Model-averaged coefficients for comparison of effects of turbidity, visual cues, and chemical cues on antipredator behavior. Model-averaged 

coefficients (Δ < 4.5). Lower and Upper 95% CI reported.  

 

Model Estimate Adjusted SE z P Lower Upper 

Activity Index       

Chemical -0.148 0.044 2.967     0.003* -0.246 -0.050 

Visual  0.028 0.056 1.187 0.395 -0.092 0.148 

Turbidity 0.068 0.050 1.58 0.235 -0.044 0.179 

Chemical*Visual 0.062 0.082 0.754 0.451 -0.100 0.225 

Chemical*Turbidity 0.070 0.082 0.851 0.395 -0.092 0.232 

Visual*Turbidity -0.129 0.082 1.567 0.117 -0.291 0.032 

Distance Index       

Chemical -0.096 0.041 2.325 0.035* -0.177 -0.015 

Visual 0.074 0.051 1.437 0.161 -0.027 0.175 

Turbidity 0.096 0.050 1.948 0.085 -0.0005 0.198 

Chemical*Visual 0.010 0.067 0.150 0.597 -0.121 0.141 

Chemical*Turbidity -0.025 0.067 0.372 0.512 -0.156 0.106 

Visual*Turbidity -0.107 0.067 1.599 0.111 -0.237 0.024 

Latency       

Chemical 0.237 0.113 2.102  0.036* 0.016 0.457 

Visual -0.201 0.116 0.365 0.715 -0.270 0.185 

Turbidity -0.201 0.097 2.083  0.037* -0.391 0.012 

Chemical*Visual -0.261 0.146 1.777 0.076 -0.550 0.027 

Chemical*Turbidity 0.067 0.146 0.455 0.649 -0.222 0.356 

Visual*Turbidity 0.122 0.146 0.829 0.407 -0.166 0.410 
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Figure 3: Activity index in response to predator and non-predator visual and 

chemical cues in clear and turbid conditions. Mean (± SE) untransformed activity 

index (difference between post-stimulus activity and pre-stimulus activity, in seconds) of 

E. sosorum in response to stimuli introduced in eight treatments. Light grey denotes clear 

conditions, dark grey denotes turbid conditions.  
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Figure 4: Distance index in response to predator and non-predator visual and 

chemical cues in clear and turbid conditions. Mean (± SE) untransformed distance 

index (difference between post-stimulus distance moved and pre-stimulus distance 

moved) of E. sosorum in response to stimuli introduced in eight treatments. Light grey 

denotes clear conditions, dark grey denotes turbid conditions. 
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Chemical Cue 

  

 

Figure 5: Latency to first move in response to predator and non-predator visual and 

chemical cues in clear and turbid conditions. Mean (± SE) untransformed latency to 

first show ambulatory activity (s) of E. sosorum in response to stimuli introduced in eight 

treatments. Light grey denotes clear conditions, dark grey denotes turbid conditions. 

 

Discussion 

 Eurycea sosorum exhibited antipredator behavior in the form of decreased 

activity, decreased distance moved, and increased latency to first move, in response to 

predator chemical cues compared to non-predator chemical cues. The antipredator 

behavior of E. sosorum did not differ in response to visual cues of predator versus a non-

predator. This result, as well as lack of any interactions between chemical and visual 

cues, suggests they do not use multimodal cues as ‘back-up cues’ or as ‘mixed message’ 

cues in their anti-predator detection. Therefore, we predict that any effects of turbidity act 

Chemical Cue 



 

56 
 

on unimodal chemical cue detection.  Under turbid conditions, salamanders showed 

decreased antipredator behavior, in the form of decreased latency to first move, as 

compared to clear conditions.  

The lack of evidence of multimodal cue use in our experiment may be attributed 

to high neural cost of reducing uncertainty, which reduces reliance on multimodal cues in 

situations when unimodal cues can be used alone for predator detection (Bernays & 

Wcislo 1994; Santangelo et al. 2010; Munoz & Blumstein 2012). Another hypothesis is 

that visual cues do not contribute to antipredator detection due to the spatial range 

required for visual perception of predators (Utne-Palm 2002). It is also possible that our 

experimental design affected visual cue transmission, as previous experiments examining 

visual cues typically only have one pane of glass between stimulus and receiver rather 

than two (Hettyey et al. 2012; Swanbrow-Becker & Gabor 2012). Alternatively, the 

reliance on chemical cues alone could be phylogenetically constrained; reliance on 

chemical cues may be due to evolutionary persistence of specialized detection (Bernays 

& Wcislo 1994). Thaker & Gabor (2006) found that the closely related E. nana primarily 

uses chemical cues over visual to associate with conspecifics, suggesting a reliance on 

chemical cues, not visual cues, for detection. A fourth hypothesis for the lack of apparent 

multimodal cue use is that E. sosorum may use modalities other than vision, such as 

tactile or electric cues, to detect predators. Gillespie (2011) found that E. sosorum 

responded to visual and bioelectric cues crayfish predators, Procambarus clarkii and bass 

predators, Micropterus salmoides and did not respond to chemical cues of these 

predators. However, the study design had low sample size and lacked kairomone cue 

acquisition standardization. Further studies are required to determine whether other cues 
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are used for predator detection.   

The lack of antipredator behavior in our experiment in response to predator visual 

cues is consistent with the data that show that many amphibians rely primarily on 

chemical rather than visual cues in predator detection, but is unexpected considering that 

other aquatic species tend to rely on vision (Brown et al. 2004; Takahara et al. 2013). 

However, our result of increased antipredator behavior in response to predator 

kairomones corroborates previous work showing that E. sosorum exhibits antipredator 

behavior towards chemical cues of the redbreast sunfish, L. auritus (DeSantis et al. 

2013). The recognition of green sunfish as a predator is predicted given that Davis et al. 

(2012) found predator generalization using chemical cues to sunfish species in the closely 

related Eurycea nana. The reliance on chemical cues may be due to their ubiquitous 

nature and persistence in freshwater (Ward & Mehner 2010) although visual cues are 

perceived quicker than chemical signals (Endler 1993).  

In response to predator and non-predator chemical cues, salamanders showed a 

decrease in latency to first move. This is consistent with our prediction that antipredator 

behavior would diminish in turbid conditions if unimodal cues were used. However, 

activity and distance indices were not significantly different in clear and turbid 

conditions, suggesting turbidity does not affect all behavioral antipredator responses. One 

hypothesis for reduced antipredator behavior is the ‘turbidity as cover’ hypothesis, which 

predicts that predation risk decreases in turbid conditions due to decreased 

conspicuousness, therefore reducing antipredator is adaptive because it reduces costs of 

unnecessary antipredator behavior (Gregory 1993). Although turbidity can affect foraging 

of predators (Turesson & Brönmark 2007), it is unlikely that risk of predation on E. 
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sosorum is decreased in turbid conditions. In fact, predation risk is greater in turbid 

conditions in systems where only predators are adapted to turbid conditions (Abrahams & 

Kattenfeld 1997). Green sunfish are tolerant of turbidity extremes: high turbidity does not 

affect the ability of L. cyanellus to forage or attack (Heimstra et al. 1969). In addition, 

juveniles of the related bluegill sunfish, Lepomis macrochirus, had greatest foraging 

efficiency at an intermediate turbidity level (~20 NTU) (Miner & Stein 1993). Since E. 

sosorum is more adapted to clear environments, turbidity may have a greater impact on 

the ability of E. sosorum to detect predators and less of an impact on the ability of green 

sunfish to capture prey. Effects of turbidity on other behaviors, such as foraging and 

mating, need to be assessed to determine the impact of turbidity on these endangered 

species.  

The decreased antipredator behavior in turbid conditions has conservation 

implications for E. sosorum. We studied an intermediate turbidity range of 20 NTU, so 

our results are a conservative measure of changes in antipredator behavior because 

turbidity levels spike to double what we studied. Visual response to predators may be 

mediated by experience and turbidity could impact learning. For example, Chivers et al. 

(2013) found that prey were less able to learn and generalize predator recognition when 

raised in turbid conditions as compared to clear conditions. Van de Meutter (2005) found 

that antipredator behavior is unaffected if organisms are reared and subsequently tested in 

turbid conditions but antipredator behavior is decreased when reared in clear conditions 

and tested for response in turbid conditions. Munoz & Blumstein (2012) stress the 

importance of studying the interplay between learning and turbidity for reintroduction 

purposes, so determining the response of wild-caught salamanders that are predator-
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experienced and turbid-experienced, is of great importance. Therefore, experience with 

learning in turbid conditions may be important, which can have significant implications 

for hatchery-raised species especially those that are being raised with the potential to 

return them to the field.  
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