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Abstract: 

The need to enhance the STEM workforce and, in turn, the STEM educational pipeline is a prevailing issue in the U.S. One 

critical component in this pipeline is students’ interest in STEM majors and their persistence in such majors, theorized to be a 

function of both students’ perceived value and expectancy beliefs in the subject matter. Using an expectancy-value lens, we 

examined cross-domain patterns of high school students’ expectancy beliefs and values in both mathematics and science using 

a person-centered or profile approach. With data from the High School Longitudinal Study, latent profile analysis revealed five 

profiles characterized as Low Math/Low Science (i.e., endorsing low levels of expectancy and value beliefs in math and 

science), Moderate Math/Moderate Science, High Math/High Science, Low Math/High Science, and High Math/Low Science. 

Taking into account aspects of students’ background and school context, we found that motivational profile membership 

predicted math and science high school achievement, college persistence, and both STEM major intentions and decisions. 

Moreover, there were a number of gender and racial/ethnic differences and contextual variation in profile memberships as well. 

Implications for theory and educational practice are discussed in relation to study findings.  
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Increasing and broadening participation in STEM (Science, 

Technology, Engineering, Mathematics) disciplines has been an 

enduring concern in the United States. A balanced and more 

diverse STEM workforce is essential for the U.S. to meet growing 

demands alongside rapidly developing economies around the 

globe (National Science Board, 2018). Of particular interest to 

educational researchers has been the role of malleable factors such 

as students’ motivation toward math and science in students’ 

STEM educational pathways (Cromley et al., 2016; Eccles, 2005; 

Wang, 2012). A mounting body of literature supports the positive 

links between various STEM-related outcomes with students’ 

beliefs and perceptions informed by expectancy-value theory (e.g., 

Lauermann et al., 2015; Umarji et al., 2018; Wang & Degol, 

2013). As a dominant theory in motivation, expectancy-value 

theory (EVT) emphasizes how students’ expectancies of success 

and their values toward academic tasks drive students’ educational 

choices (Eccles et al., 1983; Eccles & Wigfield, 2020; Wigfield & 

Eccles, 2000; 2020), such as pursuing STEM-related majors and 

careers. However, many EVT studies have relied on variable-

centered approaches that measure how different forms of variables 

uniquely and independently predict student outcomes (Guo et al., 

2018). In contrast, person-centered approaches allow the 

integration of motivational qualities to shape academic outcomes 

and to consider simultaneous variations among multiple 

motivational indicators within students. 

EVT person-centered (or person-oriented) approaches often 

generate profiles to uncover the various ways individuals tap into 

expectancies and task values organized as intraindividual 

hierarchies (e.g., Rosenzweig & Wigfield, 2017). Eccles (2009) 

defined intraindividual hierarchies as the relative levels of 

students’ expectancy beliefs and subjective task values across 

domains. Although these person-oriented approaches in 

motivation are growing in popularity (e.g., Fong et al., 2018; 

Wormington & Linnenbrink-Garcia, 2017), most profile-based 

https://doi.org/10.1016/j.cedpsych.2021.101962
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studies drawing from EVT focus within a single domain such as 

math (e.g., Lazarides et al., 2020; Musu-Gilette et al., 2015). 

Among studies examining students’ expectancies and values 

across multiple domains, STEM fields such as math or science are 

often contrasted with languages, such as English (Gaspard et al., 

2020; Guo et al., 2018). These cross-domain comparisons assume 

that students choose STEM-oriented majors and careers based on 

their relatively weaker motivations for more language arts 

domains such as English (Eccles, 2009). However, this hypothesis 

does not fully account for students in STEM pathways with skills 

and interests in language arts (Wang & Degol, 2013) and the 

importance of verbal abilities in subjects like mathematics (Aiken, 

1971; Wang et al., 2013). An alternative hypothesis guiding the 

current study lies in the driving force of joint motivations in both 

math and science domains. Given the centrality of valuing both 

math and science for STEM interest (Funk & Parker, 2018; 

Simpkins & Davis-Kean, 2005), a specific focus on expectancies 

and values for math and science and how they function together in 

synergistic or compensatory ways to motivate STEM interest is 

needed. Previous studies have not fully examined (a) cross-domain 

profiles in both math and science specifically and (b) how 

membership in these profiles predict high school student 

achievement, academic persistence, and STEM major intentions 

and choices. Doing so would contribute to our knowledge of 

students’ hierarchies of individual expectancies and task values in 

a wider array of domains (Gaspard et al., 2019). 

Therefore, in a nationally representative sample of high 

school students, we investigated latent profiles of students’ 

expectancy and value beliefs in math and science. In particular, we 

examined how domain-specific expectancies and task values 

(intrinsic value, attainment value, and utility value) in both math 

and science function together intraindividually in contrast to 

separate math profiles and science profiles. We next explored 

sociodemographic characteristics such as students’ gender and 

race as antecedents of latent profile membership, given the 

underrepresentation of students of color and women in most 

STEM fields. Lastly, we tested if profile membership predicted a 

set of student outcomes including high school achievement in 

math and science, academic persistence, high school intent to 

major in STEM, and STEM major choice in college. 

 

Literature Review 

Expectancy-Value Theory 

As the basis for our study, expectancy-value theory (EVT) is one 

of the most influential motivational frameworks in education 

(Eccles et al., 1983; Wigfield & Eccles, 2000; 2020). Grounded in 

what a student is psychologically thinking (Eccles, 2006), EVT 

emphasizes how students’ perceptions are shaped over time by 

various personal factors or influences from different socializing 

agents (Eccles & Wigfield, 2002). These perceptions, in turn, can 

influence academic decision-making and achievement outcomes. 

In modern conceptions of EVT, there are two major kinds of 

beliefs, both of which are shown to be highly domain-specific 

(Trautwein et al., 2012). The first set of beliefs are expectancies, 

defined as students’ beliefs about how well they will do on future 

tasks. Motivation scholars have likened expectancy to self-

efficacy, defined as the personal judgment of their capacities to 

produce specific performance attainments (Bandura, 1997), or to 

academic self-concept, defined as one’s perception of one’s 

general ability in school (e.g., Shavelson et al., 1976). Given the 

substantial overlap among these constructs (Anderman, 2020; 

Linnenbrink-Garcia et al., 2016; Wigfield et al., 2020), we 

reference prior research using these variables in our review of 

literature to operationalize expectancy beliefs. 

The second set of beliefs encompasses the degree to which 

individuals value specific tasks or domains. EVT posits that there 

are four major categories of subjective task values: intrinsic value, 

attainment value, utility value, and cost (Wigfield & Eccles, 

2000). First, intrinsic value refers to inherent enjoyment gained 

from the task and bears conceptual similarity to intrinsic 

motivation from self-determination theory (Anderman, 2020), 

which posits that intrinsic motivation pertains to activities done 

for their inherent value (Ryan & Deci, 2020). Second, attainment 

value has been traditionally defined as the task’s perceived 

personal importance and more recently considered to reflect more 

of an identity-based importance (Eccles & Wigfield, 2020). In our 

study, we adopted a revised conceptualization of attainment value 

by Eccles (2009), where she stated, “In the past, I conceptualized 

attainment value in terms of the needs and personal values that an 

activity/behavior or task fulfills. Today I am conceptualizing it 

more in terms of personal and collective identities” (p. 83). Third, 

utility value is the perceived relevance or usefulness of a task with 

regard to a student’s future. Fourth, cost is generally 

conceptualized as the time and energy which must be given up in 

order to participate in an activity (Eccles, 2009). Cost was not 

included in our study due to the unavailability of items in the 

dataset, which we discuss in our limitations section. 

 

Expectancy-Value Theory with STEM-Related and Academic 

Outcomes 

Previous studies have emphasized how students’ expectancies and 

values influence student outcomes and choices associated with 

STEM as well as academic outcomes such as academic persistence 

(Schnettler et al., 2020). Specifically, with regard to expectancy 

beliefs in STEM disciplines, high school students’ perceived 

abilities in mathematics have been positively linked with future 

math course enrollment and math- or STEM-related occupation 

interests (Wang, 2012; Wang et al., 2013). Among college 

students, STEM major selection was positively linked with 

students’ expectancies (Sax et al., 2015; Wang, 2013). Although 

math expectancy beliefs have been more widely studied, prior 

studies have also indicated the salience of science expectancy for 

predicting STEM-focused career plans (Anderson & Ward, 2013). 

In general, higher subjective task values associated with math 

or science shape the academic choices that can lead to progress in 

the STEM career pipeline (Eccles et al., 2004; Robinson et al., 

2019), including outcomes such as STEM course enrollment, 

mathematics achievement, and STEM career aspirations 
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(Updegraff et al., 1996). For instance, intrinsic value for science 

was positively associated with higher STEM course enrollment 

(Watt et al., 2006), and science utility value positively predicted 

STEM career choices (Maltese & Tai, 2011). Similar patterns of 

results have been found with math intrinsic value and utility value 

(Fong & Asera, 2010; Wang, 2012). Math attainment value at the 

beginning of high school was a positive predictor of math 

achievement and intent to major in STEM at the end of high 

school (Fong & Kremer, 2020). 

Although a relatively clear picture exists of the independent 

linkages between students’ motivational beliefs and a variety of 

STEM outcomes, the influence of expectancy-value interactions 

on student outcomes is unclear, despite it being a main focus in 

Atkinson’s (1957) original model. Most research studies have 

either neglected these theorized multiplicative terms in their 

analyses (c.f., Nagengast et al., 2013) or presented inconsistent 

results regarding how these interaction terms influence student 

outcomes, including many nonsignificant interaction effects (see 

Wang et al., 2013). Also, it is unclear whether EVT interactions 

have a synergistic effect—that is, a student’s motivation is high 

only if both expectancy and task value are high—or a 

compensatory effect—when one of the expectancy components 

compensates for the value component when predicting student 

outcomes, or vice-versa (Guo et al., 2016). To further investigate 

how the interactions of expectancy and value beliefs operate at the 

intraindividual level and across multiple domains, person-centered 

approaches may provide critical insights. 

 

Person-Centered Approach Drawing from Expectancy-Value 

Theory 

Investigations of interactive effects via a person-centered approach 

(Bergman & El-Kouri, 2003; Bergman & Trost, 2006) allow the 

examination of the complex reciprocity among motivation 

variables (Shell & Husman, 2008). Studies using a profile 

approach identify coherent and coordinated patterns of 

motivations that inform a learner-centered approach. For instance, 

Conley (2012) provided a powerful example of employing a 

person-centered approach to examining learners’ co-occurring 

competence beliefs, task values, and achievement goals. In a 

sample of diverse middle school students, Conley generated seven 

clusters from various motivational factors based on achievement 

goal and expectancy-value perspectives. Results indicated that 

integrating motivational perspectives had more explanatory power 

than just using a goal orientation perspective alone to influence 

outcomes such as students’ academic achievement measured by a 

state standardized math exam and positive affect. 

There have been a number of EVT person-centered studies on 

academic outcomes and career aspirations in a variety of 

disciplines. Given our focus on motivational beliefs in math and 

science, our study builds upon the emerging group of person-

centered studies involving these STEM-related domains (e.g., 

Anderson & Chen, 2015; Bøe & Henriksen, 2013; Simpkins & 

Davis-Kean, 2005). As a recent example, in postsecondary science 

courses, Perez et al. (2019) identified motivational profiles using 

expectancies, values, and costs. Latent profile analysis revealed 

three profiles during students’ first semester in college: (1) 

Moderate all; (2) Very high competence/values with low effort 

cost; and (3) High competence/values with moderate costs. 

Compared to the latter two profiles, the first profile of students 

(Moderate all), consisting of a larger proportion of 

underrepresented minority students, completed less STEM courses 

and had lower STEM achievement. Examining math motivational 

beliefs from middle to high school, Lazarides et al. (2020) used 

latent profile analysis to identify four stable profiles using 

expectancy, intrinsic value, and importance (utility and attainment 

values combined). Three profiles with expected mean differences 

in motivational beliefs (low, medium, high) emerged along with a 

fourth profile with a different configuration of intraindividual 

levels (low intrinsic value with medium importance and 

expectancy). In general, in relation to other profiles, the low 

motivational beliefs profile had consistently lower levels of math 

achievement and consisted of fewer math-related majors. 

Individuals in this profile had less math-related occupational plans 

and had fewer math-related careers 22 years after high school. 

Although various patterns of expectancy-value beliefs within 

a single domain have been uncovered, our interests lie at the 

intersection of both math and science domains. A few studies have 

examined both of these domains together but only by creating 

separate profiles for math and for science. For instance, Simpkins 

and Davis-Kean (2005) used cluster analysis to identify four 

distinct groups of students based on self-concept and values in 

math and science, separately. In both math and science domains, 

they identified the same pattern of four clusters: (1) both self-

concept and value high; (2) high self-concept; (3) both moderate; 

and (4) both low. A similar approach has been taken among gifted 

or high ability populations as well (Anderson & Cross, 2014). In 

both of these studies, the same profile solution and pattern of 

results were found for math and science. However, it is unclear 

what profiles will emerge when multiple, domain-specific 

motivational beliefs are combined together in the same analysis, 

specifically with regard to math and science domains. 

Prior person-centered studies integrating motivational beliefs 

of multiple subjects together in cross-domain profiles have 

included either a sole focus comparing math to language-oriented 

subjects (e.g., English) or using a broader set of subjects including 

math and science among other domains. Under the assumption 

that students pursue STEM educational pathways when 

motivational beliefs toward math outweigh motivational beliefs in 

language arts such as English (see Eccles & Wigfield, 2020), 

researchers have examined cross-domain profiles combining math 

and English expectancies (Umarji et al., 2018) or expectancies, 

values, and costs in math and English (Gaspard et al., 2019). 

While these intraindividual hierarchies of expectancies and values 

across math and English are powerful mechanisms through which 

students decide to pursue STEM careers, the intraindividual levels 

of beliefs toward math and science may also factor into students’ 

propensity toward engaging in STEM. In the current study, we 

explore this possibility and heed a recommendation by Gaspard et 
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al. (2019): “Future research might investigate expectancies and 

values in a broader set of domains to deepen the understanding of 

intraindividual hierarchies across domains and how they predict 

students’ academic choices. When investigating STEM majors, 

students’ expectancies and values in the sciences might also be of 

interest” (p. 160). 

To our knowledge, only a handful of EVT-based profile 

studies have included math and science domains but often do so in 

conjunction with other domains (e.g., Viljaranta et al., 2009). For 

instance, measuring task values for subject domains in languages, 

math and science, social sciences, and practical subjects (e.g., 

music and physical education), Chow and Salmela-Aro (2011) 

distinguished between adolescent profiles varying in subjective 

task values (importance, usefulness, and interest) toward math and 

science as a combined domain from profiles with higher interest in 

just practical subjects or all subjects. In a subsequent study among 

Finnish secondary students, Chow et al. (2012) created profiles 

based on subjective task values in math and science combined, 

practical subjects (arts and physical education), and language (i.e., 

Finnish). There were three identified groups: (1) High math and 

science; (2) No preference; and (3) Low math and science. In both 

studies however, combining math and science together into one 

domain restricted the measurement of subject-specific values in 

math and science from freely varying within each individual.  

Partly addressing this issue, Chow et al. (2012) also examined U. 

S. high school student attainment, intrinsic, and utility task values 

associated with English, math, and physical science (as separate 

subjects). Across these domains, the three generated profiles only 

differed in task values for math and science: (1) High math and 

science; (2) Moderate math and science; and (3) Low math and 

science. Levels of task values for English were fairly equivalent in 

all groups. Although this study provided initial evidence of how 

math and science value beliefs function together even when 

treated as separate indicators, we include the additional component 

of expectancy beliefs as well as an expanded set of outcomes in 

the current study.  

In summary, EVT profile studies have either examined math 

and science domains separately (Andersen & Ward, 2013; 

Lazarides et al., 2020; Perez et al., 2019; Simpkins & Davis-Kean, 

2005; Watt et al., 2019) or included other domains such as 

language (Gaspard et al., 2019). Other profile studies exclusively 

focus on subjective task values for math and science domains 

along with subjects such as social sciences, arts and physical 

education, and language (Chow et al., 2012; Viljaranta et al., 

2009) or on expectancy beliefs in math and English (Umarji et al., 

2018). However, a clear focus on cross-domain profiles in math 

and science using both expectancy and value beliefs is 

conspicuously absent despite the importance of both math and 

science in STEM-related pursuits (Funk & Parker, 2018). 

Furthermore, treating math and science as separate domain 

indicators may allow the possibility of student profiles that favor 

motivation for math over science, or vice-versa. This additional 

nuance may inform motivational mechanisms for how beliefs 

toward both subjects shape their interests and outcomes associated 

with STEM. Moreover, to continue building on other EVT profile 

studies that examine the gender disparities in STEM attainment 

(e.g., Chow et al., 2012; see Wang & Degol, 2013), we also 

examined demographic and contextual antecedents of profile 

membership, with a particular focus on gender and race/ethnicity, 

given the underrepresentation of women and people of color in 

many STEM fields (e.g., Cheryan et al., 2016; National Science 

Foundation & National Center for Science and Engineering 

Statistics, 2019; Seymour, 1995). 

 

The Role of Cultural Milieu and Motivationally Supportive 

Environments 

Central to EVT and more so with the newly renamed situated 

expectancy-value theory (SEVT; Eccles & Wigfield, 2020) is the 

role of situative or contextual factors such as the cultural milieu 

through which students begin to make sense of roles, goals, and 

socializers, that together in turn shape their expectancies and 

values. Although this complex set of developmental factors tends 

to be difficult to measure, we were specifically interested in the 

role of gender and race/ethnicity in our current study, especially 

given the underrepresentation of women and students of color in 

most STEM fields. Expectancies and task values in a variety of 

disciplines including STEM fields have been examined with 

regard to gender differences (Wang & Degol, 2013) and culture 

(Tonks et al., 2018), but how these sociodemographic factors 

influence cross-domain motivation profiles is under-examined.  

Another situative factor of interest is the kind of motivationally 

supportive environments instructors and schools can create for 

students. Teachers are important socializers who can shape the 

perceptions of students regarding their expectancies and values 

(Eccles & Wigfield, 2020; Parrisius et al., 2019). In the current 

study, we included variables assessing the degree to which high 

school teachers emphasized the enhancement of interest in math 

and science and percent of college-bound students as potential 

contextual factors for students’ outcomes and profile membership. 

In addition, school norms and peers are also important socializing 

forces (Kremer et al., 2018). Given our interest in postsecondary 

outcomes, the percent of college-bound students was included in 

our study to serve as a proxy for a college-going school culture 

that may motivate higher attainment outcomes (Engberg & 

Gilbert, 2014). We hypothesized that situational cues in students’ 

learning environments, such as the degree to which their teachers 

value learning STEM-related subject matter and the extent to 

which their peers attend college after high school, might determine 

what is valued in their classrooms and schools and, in particular, 

shape their motivations toward math and science domains in high 

school and beyond (see Muenks et al, 2020).  

 

Present Study 

Given the importance of math and science in prerequisite courses 

for postsecondary STEM majors (Simpkins & Davis-Kean, 2005) 

and the link between both math and science motivations in K-12 

settings and future STEM occupations (e.g., Funk & Parker, 

2018), examining motivational beliefs in both of these domains is 
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critical. Using the High School Longitudinal Study of 2009 

(HSLS:09) dataset, a nationally representative dataset from the 

U.S., our study was guided by the following research questions: 

(1) What are the cross-domain profiles of students’ expectancy 

and value beliefs in math and science among high school students? 

(2) Do math and science achievement, rates of academic 

persistence, and intention and choice of STEM major in college 

differ as a function of intrapersonal profile membership? (3) How 

well do variables such as students’ gender and race predict profile 

membership? For the second research question, we included a 

wide range of outcomes relevant to students’ progression in the 

STEM pipeline that extend beyond prior EVT studies that solely 

focus on choosing a STEM major or career (Chow et al., 2011). 

Given EVT’s focus on achievement-related choices and 

performance over time, we included outcomes relevant to college-

bound students’ last year of high school and their academic 

progress at a postsecondary institution. Students’ high school 

achievement in math and science, particularly in higher level 

coursework, has been shown to be important predictors of 

postsecondary degree attainment in STEM (Tyson et al., 2007). 

Moreover, high school grades in math and science courses often 

determine what kinds of STEM courses they can enroll in while in 

college (e.g., Ngo & Kwon, 2015). In addition, we also measured 

students’ academic persistence both in college for the first three 

years after graduating high school and both their intentions to 

major in STEM and their choice of a STEM major in college. 

These outcomes are particularly important in light of the low 

academic persistence rates among STEM majors (Graham et al., 

2013). 

For the second and third research questions, we also 

controlled for a number of demographic and school-related 

covariates, but of particular interest was the role of motivational 

contexts. To explore how teachers’ motivational influences along 

with profile membership may be associated with student 

outcomes, we examined teacher emphasis on increasing math and 

science interest (see Byrnes & Miller, 2007) as well as the 

percentage of college-bound students at their respective high 

schools. Including such contextual factors along with 

intraindividual profiles provides a more nuanced and holistic 

picture of the motivational dynamics occurring both within and 

surrounding individual students. 

In sum, the present study examines high school students’ 

cross-domain motivation profiles in math and science and how 

expectancy and value beliefs in these two domains may vary 

intraindividually, in contrast to the large majority of studies that 

focus on variable-centered approaches (e.g., Fong & Kremer, 

2020). One of the main contributions of this approach is to first 

extend prior studies on math- and science-specific profiles 

separately (Andersen & Ward, 2013). Combining these two 

domain-specific motivations together through a person-centered 

approach offers greater insight into how they may jointly function 

within students, as separate rather than combined domains 

(Snodgrass Rangel et al., 2020). Second, although cross-domain 

motivation profiles have been explored for math and English 

domains (Gaspard et al., 2019, 2020), our study extends work on 

intraindividual hierarchies of expectancies and values for two 

STEM-related fields. Third, our study’s addition of math- and 

science-specific expectancy beliefs improves on prior work that 

focuses on student profiles of task values across domains (Chow et 

al., 2011, 2012) by examining together these two sets of beliefs 

central to EVT. Fourth, we innovate beyond prior research by 

measuring a larger range of academic and STEM-related outcomes 

associated with profile membership and including contextual 

predictors that may contribute to students’ motivational 

development. 

 

Method 

Data and Sample Selection 

Our study sample included individuals who had both engaged in 

postsecondary education and participated in the High School 

Longitudinal Study of 2009 (HSLS:09). The HSLS:09 included a 

nationally representative group of 23,000 high school students 

surveyed across four waves. Along with surveying students, their 

school administrators, math teacher, and science teacher were also 

surveyed totaling 929 school administrators, 17,882 math teachers, 

and 16,269 science teachers across the full sample of participants. 

The HSLS:09 focused on students’ academic and career 

trajectories from ninth grade into postsecondary education and has 

been used to examine students’ STEM-oriented motivational 

beliefs (e.g., Anderman et al., 2018; Andersen & Ward, 2013; 

Fong & Kremer, 2020). The sampling process occurred in a 

stratified, two-stage random sample design (Ingels et al., 2013). In 

2009, the first wave of data was collected when students were 

enrolled in grade 9. The most recent wave of available data was 

collected in 2016, three years after on-time high school 

graduation. The present study used the HSLS’s public-use dataset 

from four waves of the HSLS:09: Wave 1) base year survey in 

2009; Wave 2) first follow-up in 2012; Wave 3) 2013 update; and 

Wave 4) second follow-up student interview from 2016. High 

school transcripts were also collected following their senior year 

of high school. 

Given the present study’s focus on latent profiles of STEM 

motivation and high school transition and college outcomes, 

students who had not completed any postsecondary coursework by 

the second follow-up three years after high school graduation were 

removed from analyses. This resulted in a sample size of 7,237 

students (53.11% women). White students made up the majority 

(56.21%), followed by Hispanic students (20.82%), Black/African 

American students (9.26%; we will use term Black/African 

American throughout manuscript), Asian students (5.06%), and 

students indicating Other for race (8.65%). Nearly half of students 

had parents with a bachelor’s degree or higher and an annual 

income greater than $75,000. Students attended schools that had 

an average of 78.25% students attending college after high school 

and participated in classrooms where the vast majority of teachers 

placed a moderate to heavy emphasis on increasing math and 

science interest. 
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Measures 

Questionnaires were developed by HSLS:09 study staff and 

reviewed by a Technical Review Panel of both technical and 

methodological experts. Survey items were field tested and 

subsequently re-evaluated by the Technical Review Panel. 

Because measures were collected via student self-interviews, the 

Likert-scale items were constructed with second-person pronouns. 

Similar construction in item wording is reflected in prior literature 

(Cass et al., 2011; Means et al., 2017). Moreover, our study’s 

approach was aligned with other educational psychologists who 

have used HSLS items in STEM motivation studies (e.g., 

Anderman et al., 2018). 

 

Latent Profile Indicators 

During the 2012 follow-up of the HSLS:09, when students were in 

grade 11, students completed psychological questionnaires to 

gauge their attitudes toward math and science along with attitudes 

toward their grade 11 math and science courses. Given differences 

in school requirements and course options, students completed 

various math and science courses. With regard to math courses 

during grade 11, 48% of students completed Algebra, 20% 

completed Calculus or Pre-Calculus, 14% completed Geometry, 

10% completed Trigonometry, and 8% completed another type of 

math course. Sixty-three percent of grade 11 math courses were 

classified as honors or advanced while 13% were Advanced 

Placement courses. With regard to science courses in grade 11, 

33% of students completed Biology, 23% completed Chemistry, 

11% completed Physics, 10% completed Physical Science, and 

23% completed another type of science course. Sixty percent of 

grade 11 science courses were classified as honors or advanced 

while 18% were Advanced Placement courses. 

Students indicated their level of agreement with a series of 

statements using a Likert scale with four options: 4 = Strongly 

agree, 3 = Agree, 2 = Disagree, or 1 = Strongly Disagree. 

Following data collection, HSLS:09 study researchers created and 

validated four psychological scales of math motivation and four 

psychological scales of science motivation using principal 

components factor analysis. Specifically, SAS® proc factor was 

used to create the scales, weighted and standardized to have a 

mean of zero and standard deviation of one.  

Using EVT as our theoretical framework, we selected scales 

that measured three subjective task values (intrinsic value, 

attainment value, and utility value) and one scale for expectancy 

for success. These scales were domain-specific for both math and 

science separately. Any negatively worded items were reverse-

scored. We then standardized the previously constructed scales to 

have a mean of zero and standard deviation of one. See Table 1 for 

intercorrelations and Table 2 for means and standard deviations. 

Subjective Task Values. Math intrinsic value and science 

intrinsic value included agreement with four statements regarding 

their intrinsic task values in their grade 11 math and science 

courses: “You are enjoying this class very much,” “You think this 

class is a waste of your time,” “You think this class is boring,” 

“You are taking this class because you really enjoy [Math OR 

Science].” Intrinsic value further included whether students listed 

math or science as their favorite or least favorite subject. 

Reliability scores for the intrinsic value scales (5 items) were 

acceptable for math intrinsic value (α = 0.69) and for science 

intrinsic value (α = 0.77). A measure for attainment value assesses 

the degree to which the subject aligns with one’s self-image or 

identity. Because the items we used captured the centrality of math 

and science to a student’s identity (rather than in relation to the 

value of mathematics or science), this measure served more as a 

proxy for attainment value instead of assessing attainment value 

directly. Items included "You see yourself as a [math OR science] 

person" and "Others see me as a [Math OR Xcience] person." 

Reliability scores for the attainment value scales (2 items) were 

high for math attainment value (α = 0.88) and science attainment 

value (α = 0.89). Math and science utility statements included 

three items that assessed the usefulness of mathematics and 

science: “[Math OR Science] is useful for everyday life,” “[Math 

OR Science] will be useful for college,” and “[Math OR Science] 

is useful for a future career.” Reliability scores for the utility 

scales (3 items) were acceptable for math utility value (α = 0.82) 

and science utility value (α = 0.82).  

We conducted our latent profile analysis with all three task 

values for math and for science as separate latent factor indicators; 

levels of all three task values did not meaningfully distinguish 

profiles. Thus, we also created a math value scale using principal 

components factor analysis with the three math value subscales 

(intrinsic value, attainment value, and utility value). Due to the 

equivalent patterns of findings, we reported results using both 

individual subscales and the composite subjective task value 

measure, which averaged all three task value scales together. 

Expectancy of Success. Expectancy of success in math and 

in science was measured using the HSLS:09 self-efficacy scales. 

These items were more analogous to performance expectations as 

conceived by EVT, rather than how self-efficacy is generally 

assessed which is at a more microanalytic level (Pajares, 1996). 

The scale comprised of four statements with specificity toward 

their math and science courses: “You are confident that you can do 

an excellent job on tests in this course,” “You are certain that you 

can understand the most difficult material presented in the 

textbook used in this course,” “You are certain that you can master 

the skills being taught in this course,” and “You are confident that 

you can do an excellent job on assignments in this course.” 

Reliability scores for the expectancy scales (4 items) were high for 

math expectancy (α = 0.89) and excellent for science expectancy 

(α = 0.92). 

 

Outcomes and Covariates 

 

Achievement and Academic Persistence 

Students’ grade 12 GPAs in mathematics and science were 

collected from their high school transcripts and ranged from 0.25 

to 4.00. GPAs were calculated from course grades in high school 

math and science courses. We also measured academic persistence 

in college using the 2016 second follow-up (three years following 
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on-time high school graduation). Based on the 2016 interview, if 

students were either still enrolled in postsecondary courses or had 

completed a college degree, they were coded as persisting in 

college. If they were no longer enrolled in postsecondary 

coursework nor had completed a college degree, they were coded 

as non-persisting. 

 

STEM Major Intentions and Choice 

Obtained in 2012 (the spring semester of students’ expected high 

school graduation year), students were asked whether they 

intended to pursue a STEM major upon entering postsecondary 

education. In the 2016 second follow-up three years after high 

school graduation, students were asked if their current major was 

in a STEM field. For both outcome variables, majors were 

classified using the U.S. Department of Education's Classification 

of Instructional Programs, 2010 edition (NCES, 2010).  

Because a shift from major intention and major choice may 

represent a potential motivational shift, we calculated change in 

STEM major based on student responses to their STEM intentions 

in grade 12 and whether they were majoring in a STEM field three 

years later. We identified four groups of students: 1) students who 

intended to major in a STEM field in grade 12 and were majoring 

in a STEM field three years later; 2) students who intended to 

major in a STEM field in grade 12 but were not majoring in a 

STEM field three years later (dropped STEM); 3) students who 

did not intend to major in a STEM field in grade 12 and were 

majoring in a STEM field three years later (added STEM); and 4) 

students who did not intend to major in a STEM field in grade 12 

and were not majoring in a STEM field three years later. For 

analyses including the change in STEM major variable, 4,990 

students who had no intentions to major in STEM and did not 

major in STEM were dropped from analyses. This allowed us to 

compare students whose STEM intentions were consistent with 

major selection from grade 12 to three years later with those who 

dropped their STEM intention and those who added a STEM 

major while in college. 

 

Contextual Variables 

School characteristics included the percent of graduating high 

school students attending some form of postsecondary education, 

i.e., a proxy for the college-going culture at the school. School 

administrators during 2012 follow-up interviews when participants 

were in grade 11 provided these data. We also examined teachers’ 

emphasis on increasing students’ interest in math and science, 

based on interviews with students’ math teacher and science 

teacher from base year surveys in 2009. In teacher surveys, math 

teachers and science teachers reported on their level of emphasis 

in increasing students' interest in mathematics and science, 

respectively, for the course in which the identified student was 

enrolled. Response options for this single item consisted of “no 

emphasis,” “minimal emphasis,” “moderate emphasis,” and 

“heavy emphasis.” 

 

Covariates 

Demographic and contextual variables were included as 

antecedents for profile membership and covariates to predict 

student outcomes. For student characteristics, we included 

race/ethnicity and gender. Parent characteristics consisted of 

parents’ highest level of education and combined family income. 

Covariates were collected in 2011 during the second wave of data 

collection. 

 

Analytic Approach 

Using our sample of students who had engaged in postsecondary 

coursework, statistical analyses were employed in several steps. 

First, latent profile analysis (LPA) was carried out to identify 

latent profiles using the patterns of observed indicators. LPA is a 

statistical procedure in which individual cases are assigned to 

underlying subgroups based on input variables. For the present 

study, we used expectancies and values for math and science as 

input variables. The latent profiles were conducted through a 

series of models with the robust maximum-likelihood estimator 

ranging from 1 to 6 classes using Stata 16.1/IC (StataCorp, 

2019a). To select the best fitting model, the Bayesian Information 

Criterion (BIC) and entropy were considered. Lower BIC values 

and higher entropy values indicate better model fit (Celeux & 

Soromenho, 1996). BIC values were the key referencing indicators 

given their high reliability for model fit (see Nylund et al., 2007). 

Entropy values (ranging from 0 to 1) indicate classification 

accuracy with values greater than .70 as preferable (Reinecke, 

2006). We also took into consideration sample sizes of profiles 

and theoretically compatible solutions. By referencing other EVT-

based profiles from prior studies (i.e., Andersen & Ward, 2013; 

Chow et al., 2011, 2012; Gaspard et al., 2019), we triangulated our 

proposed profiles, aiming for the most parsimonious solution that 

aligned with past research and forming clusters of students of 

substantive sample size. After the latent profile solution was 

identified, students were assigned to profiles based on the 

probability of membership as indicated by the model, with 

students assigned to the cluster with highest membership 

probability. To label each profile, we evaluated the relative scores 

of the indicator variables among the profiles. 

Profile membership was, in turn, used to examine 

associations with student STEM and college outcomes. Math GPA 

and science GPA were predicted from profile membership and 

covariates using linear regression. College persistence, STEM 

major intentions, STEM major choice, and change in STEM 

majors were predicted from profile membership and covariates 

using logistic regression. Analyses utilized probability sampling 

weights and a Taylor series linearization to adjust standard errors 

of estimates for complex survey sampling design effects. 

To maximize the analytic sample and account for missing data, 

multiple imputations were utilized for participants with missing 

information on a college outcome or a covariate. Compared to 

conventional approaches such as listwise deletion, in which 

observations with data missing on any variable are removed from 

analyses, multiple imputation allows for observations with missing 

data to be included and has been found to be less biased (Allison, 



MATH & SCIENCE MOTIVATION PROFILES 

 

8 

2001). Fundamentally, data imputation is a process wherein 

missing data are substituted for a set of reasonable estimates by 

predicting values for missing cases using observed values on the 

other variables in the model. For the present study, 20 imputed 

datasets were created. StataCorp recommends a minimum of 20 

imputations to reduce sampling error (StataCorp, 2019b). 

Statistical analyses were performed on all 20 datasets and 

combined using Stata’s standard multiple imputation procedures 

which accounts for uncertainty within predicted values. 

 

Results 

Identification of Latent Profiles 

         Based on statistical analyses of the latent models, the 

five-profile solution emerged as the best fitting model. 

Specifically, as Figure 1 indicates, the BIC and entropy scores 

began to flatten out from the four-profile to five-profile solution. 

There was minimal reduction in scores from the five-profile to six-

profile solution. While the BIC scores improved most significantly 

from the one-profile to two-profile solution, our theory indicated 

that the sample would not fall into two homogenous groups. The 

five-profile solution had more theoretical support and was more 

aligned with prior research. Although most of the sample fell into 

either Profile 4 (48%) or Profile 5 (29%), the remaining sample in 

Profile 1 (11%), Profile 2 (6%), and Profile 3 (7%) represent 

distinct groups when considering students’ math and science 

motivational beliefs. To further understand the relationships 

between the indicators, we calculated correlations (see Table 1) 

that revealed all indicators to be significantly correlated to one 

another (p < 0.001). As expected, the indicators related to math 

had stronger correlations to one another while the indicators 

related to science had stronger correlations to one another. The 

relatively lower correlations between math and science motivation 

variables provides additional justification for the existence of 

profiles with differentiated levels of motivation for these two 

domains.  

The standardized values of the indicator variables by profile 

are displayed in Figure 2, and Table 2 displays means and 

standard deviations of indicator variables by profile. The five-

profile solution consisted of Profile 1: Low Math/Low Science (n = 

769, 10.63%), characterized by students’ relative low math value 

and expectancy and low science value and expectancy; Profile 2: 

High Math/Low Science (n = 453, 6.26%), was comprised of 

students with high math value and expectancy yet low science 

value and expectancy; Profile 3: Low Math/High Science wherein 

students reported low math value and expectancy and high science 

value and expectancy (n = 485, 6.70%); Profile 4: Moderate 

Math/Moderate Science with students moderately motivated in 

math and science (n = 3,455, 47.74%); and Profile 5, consisting of 

students highly motivated in both math and science, the High 

Math/High Science (n = 2,075, 28.67%). 

 

Sociodemographic and Contextual Characteristics of Profiles 

 

Descriptive Statistics 

Table 3 displays sociodemographic characteristics of each latent 

profile. The High Math/Low Science profile had the highest 

proportion of women (64.32% of profile), while the High 

Math/High Science profile had the lowest proportion of women 

(43.73% of profile). The lowest proportion of White students was 

in the High Math/Low Science profile (45.88% of profile). The 

Low Math/Low Science profile had the fewest Asian students 

(3.13% of profile). To further explore how gender and race 

predicted expectancy-value profile membership, we examined 

whether there were significant differences between the groups 

with regard to gender and race/ethnicity (see Table 8). For these 

analyses, we used logistic regression analyses in which 

race/ethnicity and gender were separately inputted as independent 

variables predicting the odds of being in one profile compared to 

another. The reported odds ratios are unadjusted for any 

covariates. For each pairing of profiles, the first reported profile 

was inputted as the base outcome. 

 

Gender 

Using men as the reference group, we found that the High 

Math/High Science profile had significantly fewer women than the 

Low Math/Low Science profile (OR = 0.55, SE = 0.08) and the 

Moderate Math/Moderate Science profile (OR = 0.63, SE = 0.06). 

An odds ratio of 0.55 implies that a woman was 45% less likely to 

be in the High Math/High Science profile compared to the Low 

Math/Low Science profile. The Moderate Math/Moderate Science 

profile (OR = 0.69, SE = 0.13) and High Math/High Science (OR = 

0.43, SE = 0.08) profile were also comprised of significantly fewer 

women than the High Math/Low Science profile. 

 

Race/Ethnicity 

With regard to race/ethnicity and using White students as the 

reference group, the High Math/Low Science profile (OR = 2.48, 

SE = 0.73) and the High Math/High Science profile (OR = 1.78, 

SE = 0.39) had significantly more Asian students than the Low 

Math/Low Science profile. Asian students were disproportionately 

underrepresented in the Low Math/High Science profile compared 

to the High Math/Low Science profile (OR = 0.32, SE = 0.12). 

Both Asian students (OR = 2.21, SE = 0.81) and Black/African 

American students (OR = 2.26, SE = 0.82) were also 

disproportionately overrepresented in the High Math/High Science 

profile compared to the Low Math/High Science profile. Hispanic 

students were disproportionately underrepresented in the High 

Math/High Science profile compared to the Low Math/Low 

Science profile (OR = 0.53, SE = 0.12), the High Math/Low 

Science profile (OR = 0.45, SE = 0.11), and the Moderate 

Math/Moderate Science profile (OR = 0.66, SE = 0.12). 

 

School Context 

We also assessed school contextual factors, namely the degree to 

which high school teachers emphasized the enhancement of 

interest in math and science and percent of college-bound students 

were significantly associated with profile membership. We found 

small but significant differences between profiles by percent of 
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college-going students: the High Math/High Science profile had a 

significantly higher percent of college-going students than the 

Moderate Math/Moderate Science profile (OR = 1.01, SE = 0.00) 

and the Low Math/Low Science profile (OR = 1.01, SE = 0.00). No 

other contextual variables were found to differentiate the 

frequency of students in profiles. 

 

Outcomes Across Profiles 

Table 4 displays STEM outcomes across the latent profiles. The 

High Math/High Science profile had the highest math GPA (M = 

3.04, SD = 0.74), science GPA (M = 3.10, SD = 0.71), academic 

persistence rate (86% of profile), STEM major intentions in grade 

12 (45% of profile), STEM major choice three years post-high 

school (48% of profile), and were the most likely to have STEM 

intentions in grade 12 and continue to be a STEM major three 

years later (40% of profile). Meanwhile, the Low Math/Low 

Science profile had the poorest outcomes, including lowest math 

GPA (M = 2.11, SD = 0.77), science GPA (M = 2.30, SD = 0.78), 

academic persistence rate (78% of profile), STEM intention in 

grade 12 (9% of profile), STEM major three years after high 

school (7% of profile), and were the least likely to continue to be a 

STEM major three years later if they had STEM intentions in 

grade 12 (5% of profile). 

 

Math and Science GPA 

Table 5 shows predictors of math GPA and science GPA using 

linear regression analyses with additional sociodemographic 

covariates. With the High Math/High Science profile as the 

reference group, all of the other profiles had significantly lower 

math GPA (βs = -.26 to -.88) and science GPA (βs = -.35 to -.75). 

Students also had significantly higher GPAs in math (βs = .20 to 

.25) and in science (βs = .13 to .21) if they had math teachers who 

placed moderate and heavy emphasis on increasing student 

interest in math, were women (βs = math: .23, science: .24), and 

had parents with increasing levels of education (βs = math: .19 to 

.28, science: .22 to .29). Meanwhile, math GPA and science GPA 

were significantly lower among students who were Black/African 

American (βs = math: -.51, science: -.50), Hispanic (βs = math: -

.34, science: -.38), and from the lowest-income households (βs = 

math: -.23, science: -.25).  

 

College and STEM Major Outcomes 

Results of logistic regression predicting academic persistence, 

STEM major intentions, and STEM major choice are displayed in 

Table 6. Compared to the High Math/High Science profile, 

students in the Low Math/High Science profile (OR = 0.37, 95% 

CI = .21, .67) and Moderate Math/Moderate Science profile (OR = 

0.69, 95% CI = .51, .92) had significantly lower odds of persisting 

in college three-years after high school graduation. All of the 

profiles had significantly lower odds of STEM major intentions 

(ORs = 0.13–.34) and STEM major choice (ORs = 0.10–.44) than 

the High Math/High Science profile.  

 

Shifts from STEM Major Intentions to STEM Major Choice 

Table 7 further displays predictors of student change in STEM 

major. First, we used logistic regression to predict whether 

students dropped STEM (i.e., intended to major in STEM at grade 

12 but were not majoring in STEM three years later) compared to 

students whose STEM intentions remained (i.e., intended to major 

in STEM at grade 12 and were majoring in STEM three years 

later). Students in the Low Math/Low Science profile (OR = 4.13, 

95% CI = 1.47, 11.54) and the Moderate Math/Moderate Science 

profile (OR = 2.00, 95% CI = 1.30, 3.07) were significantly more 

likely than the High Math/High Science profile to have dropped 

STEM as a major. Additionally, women were significantly more 

likely to drop STEM than men (OR = 1.77, 95% CI = 1.22, 2.56), 

while Asian students were less likely than White students (OR = 

0.34, 95% CI = 0.24, 0.49). Students from middle-income 

households were significantly more likely to drop STEM as their 

major compared to the highest-income households (OR = 1.84, 

95% CI = 1.11, 3.05). 

Second, we predicted whether students added STEM (i.e., did 

not intend to major in STEM at grade 12 but were majoring in 

STEM three years later) compared to students whose STEM 

intentions remained (i.e., intended to major in STEM at grade 12 

and were majoring in STEM three years later). We found no 

significant differences between the profiles compared to High 

Math/High Science as the reference group. Although, we did find 

that women were significantly more likely than men to add STEM 

(OR = 2.40, 95% CI = 1.70, 3.40) as were Black/African 

American students compared to White students (OR = 3.90, 95% 

CI = 2.07, 7.35). Meanwhile, students whose parents had a 

bachelor’s degree (OR = .53, 95% CI = .35, .81) and master’s 

degree (OR = .37, 95% CI = .24, .59) were significantly less likely 

to add STEM as a major compared to students whose parents had 

a high school diploma or less. 

 

Differences in Outcomes Between Profiles 

Table 9 displays differences in outcomes by pairs of each of the 

profiles. For these analyses, we conducted a series of linear and 

logistic regression analyses to predict the outcomes from the 

profiles. The profile pairings were inputted as independent 

variables with the outcomes as dependent variables. Given that 

math GPA and science GPA were continuous variables, analyses 

with these variables were conducted through linear regression 

analyses with Cohen’s d as a standardized mean difference effect 

size. Analyses with academic persistence, STEM major intent, 

STEM major choice, and adding/dropping STEM as dependent 

variables were conducted through logistic regression analyses. The 

reported beta coefficients and odds ratios are unadjusted for any 

covariates; odds ratios also serve as effect sizes when converted to 

percentages of likelihood. For each pairing of profiles, the first 

reported profile was inputted as the reference group.  

 

Math and Science GPA 

With regard to math GPA and science GPA, significant 

differences emerged between nearly every pairing of profiles. 

Overall, profiles with higher levels of motivation in math and 
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science outperformed profiles with lower levels of cross-domain 

motivation in math GPA and science in a monotonic fashion. In 

other words, the High Math/High Science had higher GPAs than 

the Moderate Math/Moderate Science profile (βs = math: .69, 

science: .63), which had higher GPAs than the Low Math/Low 

Science profile (βs = math: .48, science: .43). The exceptions 

included no significant difference in math GPA between the Low 

Math/Low Science and Low Math/High Science profiles; no 

difference in science GPA between the High Math/Low Science 

and Low Math/High Science profiles; no difference in math GPA 

or science GPA between the High Math/Low Science and 

Moderate Math/Moderate Science profiles; and no difference in 

science GPA between the Low Math/High Science and Moderate 

Math/Moderate Science profiles. In sum, profiles with higher 

levels of motivation outperformed profiles with lower levels of 

cross-domain motivation in math GPA and science GPA. 

 

College and STEM Major Outcomes 

Further differences emerged with regard to college outcomes and 

STEM major outcomes (see Table 9). For academic persistence, 

the High Math/High Science profile persisted at significantly 

higher rates than the Low Math/High Science (OR = 2.62), Low 

Math/Low Science (OR = 1.71), and Moderate Math/Moderate 

Science (OR = 1.59) profiles. For high school intent to choose a 

STEM major, once again the High Math/High Science profile was 

significantly more likely to indicate a STEM major intent than 

Low Math/High Science (OR = 3.04), High Math/Low Science 

(OR = 3.47), Low Math/Low Science (OR = 8.47), and Moderate 

Math/Moderate Science (OR = 3.41) profiles. Additionally, the 

Low Math/Low Science profile was significantly less likely to 

intend to major in STEM than the Low Math/High Science (OR = 

2.79) and Moderate Math/Moderate Science (OR = 2.49) profiles. 

A similar pattern emerged for choosing a STEM major in college 

with the addition of the High Math/Low Science profile having 

significantly more students declare a STEM major compared to 

the Low Math/Low Science (OR = 3.16) profile. With regards to 

students changing their intent from a non-STEM major to 

choosing a STEM major, the High Math/High Science profile was 

less likely to add STEM compared to the Low Math/High Science 

profile (OR = .46) and Moderate Math/Moderate Science profile 

(OR = .57). There were also significant contrasts between the Low 

Math/Low Science with High Math/Low Science (OR = 0.40) and 

Low Math/High Science (OR = .47) profiles for dropping a STEM 

major after intending to study STEM upon high school graduation. 

In sum, profiles with higher levels of motivation outperformed 

profiles with lower levels of cross-domain motivation in STEM 

major intent (ORs = 2.44–8.47) and STEM major choice (ORs = 

3.16–11.46). Moreover, the High Math/High Science profile had 

the highest levels of academic persistence through college (ORs = 

1.59–2.62) and lower rates of changing their intent to major in a 

STEM field (ORs = .21–.47). 

 

Discussion 

In light of the increasing demand to enhance students’ STEM 

educational and career-oriented trajectories, the current study 

sought to identify cross-domain profiles of math and science 

motivational beliefs among high school students and explore both 

their sociodemographic antecedents and academic and STEM-

related outcomes linked with profile membership. Guided by 

expectancy-value theory, our findings revealed five distinct 

profiles of math and science expectancies and values. We also 

found that gender, race, and school context differentially predicted 

profile membership, which was also associated with a range of 

students’ academic and STEM-related outcomes.  

 

The Significance of Cross-Domain Motivation Profiles in Math 

and Science 

To our knowledge, expectancies and values in math and science 

have not been examined together in cross-domain profiles until the 

current study. Overall, we found evidence for five profiles 

consisting of various intraindividual hierarchies of math and 

science motivation. Three of the five profiles reflected similar 

findings to prior studies examining task value profiles in math and 

science and other subjects (Chow et al., 2012). Namely, there were 

profiles that exhibited high, moderate, and low levels of 

motivation in both math and science. Representing the majority of 

the sample, these profiles were consistent with profile patterns 

found in prior studies (Lazarides et al., 2020; Simpkins & Davis-

Kean, 2005). Most students were members of the Moderate 

Math/Moderate Science or High Math/High Science profiles. 

While this finding is encouraging, students may have endorsed 

relatively high levels of math and science motivation due to the 

restriction of our high school sample to students enrolling in some 

form of postsecondary education. 

It should also be noted that across all five profiles, there was 

little differentiation of expectancies and value components within 

domains, i.e., high expectancy but low value, indicating that 

students had endorsed well-aligned expectancies and values in 

science and mathematics. Prior profile-based EVT studies have 

revealed profiles with differentiated expectancies and values (e.g., 

Perez et al., 2019; Watt et al., 2019), which illuminate the 

interactive elements of a high expectancy and low task value, or 

vice versa. However, this was not the case in the current study, in 

which student profiles were characterized by consistent levels of 

endorsement for both EVT components. Moreover, our results 

overall suggested that interactions of higher levels of expectancies 

and values resulted in better academic outcomes compared to 

interactions of lower expectancies and values. One possible 

explanation for our findings could be the high number of input 

variables in the profile analysis when combining science and math 

motivation variables together in the same LPA, which might limit 

the degree to which profile indicators can vary. A similar pattern 

was also reflected in Gaspard et al.’s (2019) study of motivation 

profiles for math and English. That being said, future research is 

needed to explore interactive differentiation of expectancy and 

value beliefs within cross-domain profiles. 

Although relatively smaller in sample size, the other two 

profiles exhibited contrasting levels of math and science 
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motivation, i.e., High Science/Low Math and High Math/Low 

Science. Given our interest in STEM-related outcomes, these 

findings shed light on the possible development of expectancies 

and values within some students who may have divergent 

motivations toward math and science. It challenges assumed 

practices that math and science motivational beliefs are to be 

measured as a single domain (Chow et al., 2011), or that they are 

to be assessed separately to create math-specific profiles and 

science-specific profiles (e.g., Simpkins & Davis-Kean, 2005). 

Cross-domain profiles allowed for the identification of a cluster of 

students who feel strongly motivated about math but not science, 

or vice-versa. The common understanding of STEM career pursuit 

resulting in joint motivation in math and science (Funk &   Parker, 

2018) and the importance of math and science for advanced 

STEM course-taking and course performance (Simpkins & Davis-

Kean, 2005) favors the examination of students with proclivities 

toward both domains. However, our study sheds light on the 

profiles of students with differentiated motivations for math and 

science. Furthermore, based on the outcomes associated with 

profile membership, which we discuss in a subsequent section, we 

examined if profiles with stronger motivations toward math or 

with stronger motivations toward science fare better or worse to 

profiles with higher or more consistent levels of motivation in 

both domains simultaneously.  

 

Outcomes Linked with Motivation Profiles 

Profile membership was associated with a number of academic 

and STEM-related outcomes. Overall, profiles with higher levels 

of motivation in math and science outperformed profiles with 

lower levels of cross-domain motivation in math GPA, science 

GPA, STEM major intent, and STEM major choice. Moreover, the 

High Math/High Science had the highest levels of academic 

persistence through college and lower rates of changing their 

intent to major in a STEM field, supporting the importance of high 

levels of expectancies and values for undergraduates’ decisions to 

persist or drop out (Schnettler et al., 2020). Altogether, reflecting 

moderate to large effect size differences, these findings highlight 

the benefit of having high to moderate levels of motivation for 

both math and science with the majority of the outcomes of 

interest, which are in line with other person-centered (e.g., Perez 

et al., 2019) and variable-centered research (e.g., Fong & Kremer, 

2020).  

Findings regarding the outcomes associated with profiles 

with differentiated motivations for math and science were mixed 

but mostly favorable. When compared to the High Math/High 

Science profile, the Low Math/High Science and High Math/Low 

Science profiles had lower math (ds = .34–.94) and science GPA 

(ds = .64) and lower rates of STEM major intent (26–35% less 

likely) and STEM major selection (23–30% less likely). 

Additionally, the Low Math/High Science had lower rates of 

academic persistence than the High Math/High Science profile 

(40% less likely). In contrast, although the results that students in 

the Low Math/High Science and High Math/Low Science profiles 

obtained a number of higher outcomes compared to those in the 

Low Math/Low Science profile were not too surprising, it was 

important to test whether students exhibiting differentiated 

hierarchies of motivation for science and math, on the whole, 

attained higher math and science achievement and endorsed 

greater STEM major intentions and choices as indicated by 

moderate to large effect size and odds ratio metrics. This finding 

suggests that having high motivation in either math or science is 

better than low motivation or at times moderate motivation in both 

these fields. Perhaps an intense enough interest or sense of 

competence in just one domain (math or science) can compensate 

for a lower motivation in the other domain. 

What was more noteworthy, the outcomes for the two 

differentiated motivation profiles were nearly equivalent to those 

for the Moderate Math/Moderate Science profile. As an 

unexpected finding, compared to the High Math/High Science 

profile, the Low Math/Low Science and Moderate Math/Moderate 

Science profiles were more likely to drop their STEM major in 

college, but this was not the case for the Low Math/High Science 

and High Math/Low Science profiles. Although the differentiated 

motivation profiles seemed to do as well as the Moderate 

Math/Moderate Science profiles with regard to many of the 

outcomes, having high motivation in either math or science may 

serve as a buffer from changing one’s intent to major in STEM 

and selecting a non-STEM major while in college. Thus, the 

relative placement of various tasks in an individual’s hierarchy of 

expectancies and values toward math and science matters to a 

certain extent, presumably when comparing against students who 

are weakly motivated in both of these domains. 

In sum, students with differentiated levels of motivation in 

math and science fared worse overall than those with high 

motivation in both domains, but maintenance of STEM major 

intentions from high school to college appeared to be consistent 

across all three groups. Moreover, these profiles had a higher 

likelihood of majoring in STEM than the Low Math/Low Science 

profile. One reason to explain this pattern of findings could be 

possible compensatory effects occurring for profiles with 

differentiated motivations toward science and math, so that high 

motivation in one of the domains compensates for lower 

motivation in the other. Altogether, differentiated hierarchies of 

motivation for these profiles may synergize together to attain 

outcomes tantamount to profiles of students with moderate levels 

of consistent motivation for math and for science.  

 

Predictors of Motivation Profiles 

In addition to identifying motivational profiles, we also examined 

if sociodemographic variables were associated with profile 

membership. In particular, we examined student characteristics of 

gender and race/ethnicity, in light of well-documented 

underrepresentation for women and people of color in the majority 

of STEM majors and careers (National Center for Science and 

Engineering Statistics, 2019). First, regarding gender, we found 

that among the profiles with consistent motivation toward math 

and science (i.e., Low Math/Low Science, Moderate 

Math/Moderate Science, High Math/High Science), women were 
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disproportionately underrepresented in profiles in the High 

Math/High Science profile. This pattern of findings is aligned with 

prior studies (Wang & Degol, 2013) and also fits the alternative 

explanation that women tend to endorse higher levels of 

motivation than men in non-STEM domains such as English (e.g., 

Eccles et al., 1998). When compared with the Moderate 

Math/Moderate Science and High Math/High Science, women 

were more likely to be members of the High Math/Low Science 

profile. This pattern of findings points to another possible reason 

for the underrepresentation of women in STEM fields, in that, 

women might have strong motivation toward math but not toward 

science. We encourage future research to examine women with 

differentiated motivations in math and science and explore ways to 

support their STEM attainment as well as cultivating greater 

expectancy and value in both fields. One potential and popular 

approach to increase motivation at relatively low cost in STEM 

contexts may be to cultivate the utility value or relevance of 

science content in math courses and vice-versa (i.e., Harackiewicz 

et al., 2016). 

Examining race/ethnicity as a predictor of profile 

membership, we also found disproportionate levels of particular 

racial/ethnic groups when contrasting pairs of profiles. With White 

students as the reference group, Hispanic students were 

underrepresented in the High Math/High Science profile compared 

to the Moderate Math/Moderate Science profile, High Math/Low 

Science, and the Low Math/Low Science profiles. One explanation 

for a lower representation of Hispanic students in high motivation 

profiles could be structural issues that might prevent Hispanic 

students and underrepresented minorities from cultivating 

motivation in math and science, such as diminished access to out-

of-school STEM activities, advanced STEM courses in high 

school, and adequate mentoring (see Dawson, 2014; Guerra & 

Rezende, 2017; Safavian, 2019). When comparing the Low 

Math/High Science profile with the High Math/High Science 

profile, Black/African American students were more likely than 

White students to belong to the High Math/High Science profile. 

Although Black/African American students had greater 

representation in a more adaptive profile, perhaps they may have 

equivalent or at times higher levels of motivation toward math 

(Cokley, 2003), but other structural barriers may exist that prevent 

them attaining equivalent STEM performance and career 

outcomes. For instance, Black/African American students in 

STEM with higher interaction with faculty members were more 

likely to experience racial discrimination from professors (Park et 

al., 2020). We also encourage future research to consider race-

reimaged (DeCuir-Gunby & Schutz, 2014; Matthews & Lopez, 

2020) constructs of expectancies and task values for enhanced 

interpretative power to explain the role of culture- or race-specific 

motivations toward STEM subjects (see Matthews, 2018). 

The only contextual variable that was associated with profile 

membership was the percentage of high school students going to 

college. Specifically, students in schools with a greater percentage 

of college-bound students were more likely to be in the High 

Math/High Science profile compared to the Moderate 

Math/Moderate Science profile and the Low Math/Low Science 

profile. This finding suggests that a college-going culture may be 

positively related to students exhibiting higher motivation for 

math and science. High schools with high college attendance tend 

to be wealthier with a greater number of resources (Jez, 2014), 

which can contribute to the promotion of advanced math- and 

science-related pursuits. 

 

Contextual and Sociodemographic Predictors of Outcomes 

In addition to the significant associations between profile 

membership and nearly all student outcomes, there were a number 

of contextual variables and sociodemographic variables that were 

significantly linked with student outcomes that are worth noting. 

A frequently overlooked aspect is the role of motivationally-

supportive environments on students’ motivational development 

and academic outcomes; therefore, in our study, we examined the 

role of teacher emphasis on increasing math interest and science 

interest as well as the percent of college-bound students as a proxy 

for a college-going school culture. We found that teachers’ 

emphasis on increasing math interest (not for science interest) was 

positively associated with students’ math and science GPA. 

Although the link between teachers’ interest development in math 

and students’ math grades was intuitive, the spillover effects of 

teacher-driven math interest to students’ science grades was 

unexpected. To explain some of these results, we want to mention 

that there was little variance on both of these variables but more so 

with regard to teachers emphasizing science interest, with the vast 

majority of teachers indicating a heavy emphasis. Also, students’ 

perceptions (rather than a teacher-report) of teachers’ emphasis on 

math and science interest might be a more fruitful measure (see 

Schiefele & Schaffner, 2015). Social desirability bias may cause 

teachers to overestimate how much they try to emphasize interest 

in math and science to avoid reporting themselves as boring 

instructors; we expect students to provide a more accurate 

reporting of this kind of emphasis. 

Furthermore, the school context variable of college-bound 

students positively predicted students’ academic persistence in 

college, which supports the notion that the greater the number of 

high school peers enroll in postsecondary education, the more 

likely students are to persist in college overall. This finding is 

well-aligned with how a college-going school culture may 

motivate students not only to attend college but also to persist in 

college as well (Knight & Duncheon, 2020). 

With regard to sociodemographic aspects, compared to men, 

women had higher GPA in math and science but lower rates of 

intending to major in STEM in high school and selecting STEM 

majors in college. This seemingly contradictory result has been 

supported by prior studies that suggest how women may 

outperform men in STEM-related courses yet do not major in 

STEM disciplines (Duckworth & Seligman, 2006). Contrary to 

many assumptions about gender differences, intellectual aptitude 

and academic performance are not main contributors to the 

underrepresentation of women in STEM compared to varying 

occupational preferences and work/family imbalance (Wang & 
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Degol, 2013). This pattern was also aligned with the 

overrepresentation of women in the Low Math/Low Science 

profile, suggesting that women may have alternative interests and 

motivations toward either verbal or more human-oriented (vs. 

task-oriented) domains. However, women did persist at higher 

rates while in college, which is consistent with prior research on 

gender differences and college attendance and academic 

persistence patterns (e.g., Kuh et al., 2008). Notably, women who 

intended to major in STEM also switched out from STEM at 

higher rates; conversely, women who did not intend to major in 

STEM later chose to major in STEM in college at higher rates. 

These seemingly diverging patterns point to the importance of 

postsecondary learning environments as contexts that can cause 

women to forgo their initial STEM major intentions or possibly 

switch from their original intent while in high school into a STEM 

major. We encourage future research to examine the high school 

to college transition for women with regard to STEM majors and 

the relevant supports that can either maintain or trigger STEM 

career paths for women. 

Turning to the predictor of racial/ethnic group membership, 

we found that Black/African American students, Hispanic 

students, and students in the “Other” category had lower high 

school GPAs (with White students as the reference group). With 

regard to STEM major intentions and selection, some noteworthy 

patterns emerged. Compared to White students, Asian students 

were more likely to choose a STEM major and less likely to shift 

away from a STEM major from their intent in high school. 

Although Black/African American students on average had lower 

math and science GPAs, they were also more likely than White 

students to be in the High Math/High Science profile compared to 

the Low Math/High Science profile. Interestingly, this greater 

representation of Black/African American students in profiles 

higher in math motivational beliefs did not translate into higher 

intentions to major in STEM. One plausible explanation may be 

related to stereotype threat that harms both math performance 

(Steele & Aronson, 1995) and academic persistence in STEM 

fields (Beasley & Fisher, 2002). However, because they were 

more likely to add a STEM major while in college, this finding 

suggests the critical importance of the high school to college 

transition and potential opportunities for Black/African American 

students to enhance STEM-oriented motivation that may lead to 

switching into STEM majors. 

  

Study Limitations 

Despite the strengths of this study, it is not without its limitations. 

As with any longitudinal study, participants were lost due to 

sample attrition which may bias findings. Although we attempted 

to maximize the sample size through multiple imputation and 

utilized sampling weights to maintain the study sample’s 

representative nature, we were unable to include all participants 

from the study’s first wave. There are likely sociodemographic 

differences between participants who left the study which may 

have biased findings. For instance, there are disproportionately 

lower rates of college enrollment for men and Students of Color 

(National Center for Education Statistics, 2019) in the U.S. Thus, 

it would be beneficial for future scholars to examine STEM 

attainment and career pathways of the motivational profiles of 

students who do not enroll at postsecondary institutions within the 

first few years after high school graduation. 

The present study is further limited by information collected 

by the original study authors. Because we used secondary data 

with instruments selected by other researchers, there are likely 

variables not included in the HSLS:09 which would have been 

valuable to the present study. Particularly, HSLS:09 did not 

include explicit measures of students’ perceived cost regarding 

science and math, a component of expectancy-value theory that 

was omitted from our study. The HSLS:09 dataset contains a few 

items that assess how students perceive effort and time in 

mathematics and science takes them away from extracurricular 

activities, time with friends, being unpopular, and being made fun 

of. Although these items measure potential costs students pay for 

engaging in math and science, we did not think they adequately 

captured psychological cost, which may be a fruitful direction for 

latent profile research (see Gaspard et al., 2019; Perez et al., 

2019). In addition, math intrinsic task value had a moderately low 

scale reliability. Perhaps students reported enjoyment in 

mathematics but may not have listed it as their favorite subject, 

particularly given a common perception that math is frequently 

thought of as a least favorite subject (i.e., Boaler, 2008). In 

addition, although we described the type of math and science 

courses students reported on when assessing their motivation, a 

finer-grained analysis comparing differences at the course level 

(i.e., honors, elective courses) could be a fruitful direction for 

future research. 

We also want to acknowledge that our STEM major 

outcomes were limited to high school intent and college major 

selection variables. Collecting data on students’ STEM-related 

degree and career attainment is a fruitful direction for future 

research to explore longer-term outcomes associated with profile 

membership. Moreover, our measure of students’ retaining or 

changing their STEM major did not account for whether students 

actively chose to leave their major, which could be attributed to 

structural forces. We encourage additional research into if and 

why students leave STEM disciplines (see Rosenzweig et al., 

2020). We also found limited evidence for contextual variables 

influencing profile membership among the data made available to 

us through the High School Longitudinal Study. Perhaps our 

measure of teachers’ emphasis on cultivating math and science 

interest could be enhanced with a more robust measure (beyond a 

single item). Other variables such as teacher autonomy support, 

teacher-provided rationales to increase utility value, identity-based 

motivation interventions as well as instructor mindset (see Muenks 

et al., 2020) are potentially relevant predictors of profile 

membership. 

 

Conclusion 

Given the important role of student motivation in STEM 

education, our study revealed that although most students seemed 
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to have consistent levels of motivation toward both math and 

science, there is a possibility for students’ expectancy and value 

beliefs toward math to diverge from the same beliefs toward 

science. Theoretically, our results shed light on the process of 

intraindividual differentiation of expectancies and values for more 

closely related disciplines such as math and science. Lastly, we 

integrated in our study contextual factors that may support 

students’ motivation such as teachers’ interest enhancement and 

peers’ college-going behaviors. Despite having little association 

with profile membership, contextual factors were linked with 

students’ outcomes. We encourage additional scholarship that 

combines person-centered approaches and contextual determinants 

of students’ motivation. 
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Figure 1 

 

Fit Statistics Across Latent Profiles 
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Figure 2 

 

Indicators Across Latent Profiles 

 
 

 



Table 1.  

 

Pairwise Correlations Between Latent Indicators 
 

 Math 

Attainment 

Math 

Utility 

Math 

Intrinsic 

Math 

Expectancy 

Science 

Attainment 

Science 

Utility 

Science 

Intrinsic 

Math Attainment 1.00       

Math Utility 0.45*** 1.00       

Math Intrinsic 0.63*** 0.46*** 1.00      

Math Expectancy 0.57*** 0.38*** 0.58*** 1.00     

Science Attainment 0.27*** 0.18*** 0.16*** 0.21*** 1.00    

Science Utility 0.24*** 0.44*** 0.24*** 0.23*** 0.56*** 1.00   

Science Intrinsic 0.13*** 0.18*** 0.21*** 0.15*** 0.57*** 0.47*** 1.00 

Science Expectancy 0.18*** 0.18*** 0.14*** 0.29*** 0.49*** 0.37*** 0.57*** 

Note. *p < 0.05, **p < 0.01, ***p < 0.001  



Table 2.  

 

Latent Indicators Across Profiles 

Variable Total Sample 

Profile 1: Low 

math-Low science 

Profile 2: High 

math-Low science 

Profile 3: Low 

math-High science 

Profile 4: Moderate 

math-Moderate science 

Profile 5: High 

math-High science 

Math identity 0.16 (1.00) -1.01 (0.69) 0.84 (0.74) -0.94 (0.72) -0.01 (0.77) 1.00 (0.71) 

Math utility 0.08 (0.98) -0.86 (1.01) 0.54 (0.79) -0.74 (1.02) -0.09 (0.83) 0.79 (0.60) 

Math interest -0.04 (0.99) -1.10 (0.62) 0.70 (0.83) -1.09 (0.60) -0.18 (0.75) 0.80 (0.81) 

Total math value 0.12 (0.99) -1.31 (0.61) 0.75 (0.71) -1.23 (0.61) -0.21 (0.63) 0.96 (0.62) 

Math expectancy 0.13 (0.97) -1.23 (0.76) 0.73 (0.71) -1.01 (0.79) 0.01 (0.59) 0.98 (0.65) 

 

Science identity 0.15 (1.00) -0.77 (0.83) -0.92 (0.86) 0.81 (0.83) -0.02 (0.78) 0.87 (0.83) 

Science utility 0.13 (0.98) -0.77 (1.00) -0.68 (1.11) 0.49 (0.83) -0.03 (0.78) 0.83 (0.72) 

Science interest 0.05 (1.00) -0.92 (0.84) -1.20 (0.75) 0.88 (0.70) -0.07 (0.79) 0.71 (0.79) 

Total science value 0.09 (1.00) -1.13 (0.79) -1.27 (0.8) 0.74 (0.70) -0.19 (0.69) 0.84 (0.71) 

Science expectancy 0.09 (1.00) -1.13 (0.79) -1.44 (0.73) 1.02 (0.62) -0.04 (0.63) 0.87 (0.70) 

 N = 7,237  n = 769 (10.63%) n = 453 (6.26%) n = 485 (6.70%) n = 3,455 (47.74%) n = 2,075 (28.67%) 

Note. Results of analyses of variance found each variable to be significantly different across profiles at p < 0.001. Standardized mean and 

deviations. 

  



Table 3. Socio-demographic Characteristics of Latent Profiles 

Variable Total Sample 

Profile 1: Low 

math-Low science 

Profile 2: High 

math-Low science 

Profile 3: Low 

math-High science 

Profile 4: Moderate 

math-Moderate science 

Profile 5: High 

math-High science 

% higher education 78.25 (21.05) 77.23 (20.19) 78.73 (20.09) 78.47 (20.28) 77.63 (21.81) 80.15 (20.35) 

Teacher emphasis on 

increasing math interest 

 

     
None or minimal 918 (12.69%) 120 (15.62%) 36 (7.87%) 67 (13.86%) 456 (13.20%) 239 (11.50%) 

Moderate 3554 (49.12%) 359 (46.74%) 230 (50.76%) 248 (51.11%) 1704 (49.33%) 1008 (48.60%) 

Heavy 2763 (38.19%) 289 (37.64%) 187 (41.37%) 165 (34.03%) 1295 (37.47%) 828 (39.90%) 

Teacher emphasis on 

increasing science interest 

 

     
None or minimal 311 (4.30%) 22 (2.87%) 22 (4.79%) 35 (7.25%) 159 (4.60%) 73 (3.51%) 

Moderate 3301 (45.62%) 390 (50.74%) 217 (47.92%) 205 (42.34%) 1569 (45.42%) 910 (43.87%) 

Heavy 3625 (50.09%) 357 (46.38%) 214 (47.29%) 245 (50.42%) 1727 (49.99%) 1092 (52.62%) 

Gender       
Male 3393 (46.89%) 319 (41.54%) 162 (35.68%) 228 (46.93%) 1545 (44.73%) 1168 (56.27%) 

Female 3843 (53.11%) 450 (58.46%) 291 (64.32%) 257 (53.07%) 1910 (55.27%) 907 (43.73%) 

Race       
White 4067 (56.21%) 419 (54.43%) 208 (45.88%) 303 (62.48%) 1932 (55.92%) 1221 (58.86%) 

Asian 366 (5.06%) 24 (3.13%) 30 (6.66%) 14 (2.90%) 175 (5.06%) 125 (6.03%) 

Black/African American 670 (9.26%) 56 (7.26%) 40 (8.93%) 27 (5.52%) 309 (8.95%) 243 (11.73%) 

Hispanic 1507 (20.82%) 202 (26.30%) 119 (26.26%) 104 (21.40%) 750 (21.71%) 314 (15.11%) 

Other 626 (8.65%) 68 (8.87%) 56 (12.38%) 37 (7.70%) 288 (8.34%) 172 (8.28%) 

Parent education       

High school or less 2362 (32.64%) 304 (39.50%) 159 (35.18%) 162 (33.48%) 1156 (33.46%) 564 (27.18%) 

Some college 1554 (21.47%) 167 (21.70%) 115 (25.38%) 77 (15.89%) 786 (22.76%) 401 (19.34%) 

Bachelor’s 1924 (26.59%) 181 (23.56%) 114 (25.27%) 159 (32.72%) 890 (25.76%) 587 (28.28%) 

Master’s or higher 1397 (19.30%) 117 (15.23%) 64 (14.17%) 87 (17.91%) 623 (18.02%) 523 (25.19%) 

Income       
<$15,000 595 (8.22%) 99 (12.92%) 38 (8.39%) 35 (7.17%) 274 (7.94%) 142 (6.83%) 

$15,000-$35,000 1218 (16.83%) 100 (13.05%) 93 (20.43%) 110 (22.67%) 566 (16.39%) 350 (16.87%) 

$35,000-$55,000 1143 (15.80%) 157 (20.45%) 82 (18.17%) 56 (11.56%) 556 (16.09%) 282 (13.61%) 

$55,000-$75,000 1018 (14.07%) 87 (11.31%) 47 (10.41%) 71 (14.62%) 519 (15.03%) 300 (14.46%) 

$75,0001-$95,000 907 (12.54%) 104 (13.57%) 49 (10.84%) 61 (12.62%) 443 (12.81%) 250 (12.05%) 

>$95,000 2355 (32.54%) 221 (28.69%) 99 (21.76%) 152 (31.36%) 1097 (31.74%) 751 (36.19%) 

 N = 7,237  n = 769 (10.63%) n = 453 (6.26%) n = 485 (6.70%) n = 3,455 (47.74%) n = 2,075 (28.67%) 



Table 4 

 

STEM Outcomes Across Latent Profiles 
 

Variable Total Sample 

Profile 1: Low 

math-Low science 

Profile 2: High 

math-Low science 

Profile 3: Low 

math-High science 

Profile 4: Moderate 

math-Moderate science 

Profile 5: High 

math-High science 

Math GPA 2.65 (0.82) 2.11 (0.77) 2.76 (0.74) 2.29 (0.79) 2.59 (0.80) 3.04 (0.74) 

Science GPA 2.76 (0.79) 2.30 (0.78) 2.58 (0.78) 2.62 (0.75) 2.73 (0.78) 3.10 (0.71) 

College persistence       

No 1437 (19.86%) 171 (22.21%) 89 (19.60%) 147 (30.38%) 724 (20.96%) 296 (14.28%) 

Yes 5799 (80.14%) 598 (77.79%) 364 (80.40%) 338 (69.62%) 2731 (79.04%) 1779 (85.72%) 

STEM intention       

No 5477 (75.69%) 700 (91.03%) 365 (80.65%) 379 (78.22%) 2777 (80.37%) 1133 (54.60%) 

Yes 1832 (25.32%) 69 (8.97%) 88 (19.35%) 106 (21.78%) 678 (19.63%) 942 (45.40%) 

STEM major       

No 5328 (73.63%) 712 (92.64%) 362 (79.96%) 354 (73.02%) 2757 (79.80%) 1087 (52.39%) 

Yes 1908 (26.37%) 57 (7.36%) 91 (20.04%) 131 (26.98%) 698 (20.20%) 988 (47.61%) 

Change in STEM intention       

No change-not STEM major 4990 (68.96%) 682 (88.70%) 344 (75.99%) 336 (69.32%) 2599 (75.22%) 971 (46.78%) 

No change-STEM major 1494 (20.64%) 39 (5.04%) 70 (15.38%) 88 (18.18%) 520 (15.05%) 826 (39.79%) 

Dropped STEM 338 (4.67%) 30 (3.94%) 18 (3.97%) 17 (3.60%) 158 (4.58%) 116 (5.61%) 

Added STEM 415 (5.73%) 18 (2.32%) 21 (4.66%) 43 (8.80%) 178 (5.15%) 162 (7.82%) 

 N = 7,237  n = 769 (10.63%) n = 453 (6.26%) n = 485 (6.70%) n = 3,455 (47.74%) n = 2,075 (28.67%) 

       

 

 

 



Table 5 

 

Results of Regression Analyses Predicting Science GPA and Math GPA 

 

Variables 

Math GPA 

β (95% CI) 

Science GPA 

β (95% CI) 

Predicted class   
Low math-Low science -0.88 (-0.96, -0.80)*** -0.75 (-0.85, -0.65)*** 

High math-Low science -0.26 (-0.42, -0.10)** -0.48 (-0.66, -0.31)*** 

Low math-High science -0.76 (-0.86, -0.65)*** -0.48 (-0.61, -0.35)*** 

Moderate math-Moderate science -0.43 (-0.49, -0.37)*** -0.35 (-0.42, -0.28)*** 

High math-High science Reference Reference 

Math teacher emphasis on 

increasing math interest   
None or minimal Reference Reference 

Moderate 0.20 (0.07, 0.32)** 0.13 (0.02, 0.24)* 

Heavy 0.25 (0.11, 0.40)** 0.21 (0.10, 0.33)** 

Science teacher emphasis on 

increasing science interest   
None or minimal Reference Reference 

Moderate 0.02 (-0.16, 0.20) 0.03 (-0.14, 0.21) 

Heavy 0.02 (-0.16, 0.20) 0.06 (-0.12, 0.24) 

School % college-going 0.00 (-0.00, 0.00) 0.00 (-0.00, 0.00) 

Gender – Female 0.23 (0.18, 0.29)*** 0.24 (0.19, 0.30)*** 

Race   
White Reference Reference 

Asian 0.03 (-0.14, 0.20) 0.07 (-0.02, 0.17) 

Black/African American -0.51 (-0.62, -0.39)*** -0.50 (-0.61, -0.38)*** 

Hispanic -0.34 (-0.43, -0.24)*** -0.38 (-0.47, -0.29)*** 

Other -0.30 (-0.41, -0.18)*** -0.33 (-0.44, -0.21)*** 

Income   
<$15,000 -0.23 (-0.38, -0.09)** -0.25 (-0.39, -0.12)*** 

$15,000-$35,000 -0.12 (-0.25, -0.00)* -0.14 (-0.28, 0.00) 

$35,000-$55,000 -0.07 (-0.16, 0.02) -0.07 (-0.15, 0.01) 

$55,001-$75,000 -0.01 (-0.10, 0.08) -0.03 (-0.10, 0.04) 

$75,0001-$95,000 -0.01 (-0.09, 0.07) -0.02 (-0.09, 0.06) 

>$95,000 Reference Reference 

Parent education   
High school or less Reference Reference 

Some college 0.01 (-0.08, 0.11) 0.02 (-0.10, 0.14) 

Bachelor's 0.19 (0.11, 0.27)*** 0.22 (0.14, 0.30)*** 

Master's or higher 0.28 (0.19, 0.36)*** 0.29 (0.21, 0.38)*** 

Note. *p < 0.05, **p < 0.01, ***p < 0.001 

  



Table 6 

 

Results of Regression Analyses Predicting College Outcomes 

 

Variables 

Persistence 

OR (95% CI) 

STEM Intentions 

OR (95% CI) 

STEM Major 

OR (95% CI) 

Predicted class    
Low math-Low science 0.68 (0.44, 1.05) 0.13 (0.08, 0.21)*** 0.10 (0.06, 0.16)*** 

High math-Low science 0.77 (0.45, 1.32) 0.33 (0.21, 0.52)*** 0.31 (0.20, 0.50)*** 

Low math-High science 0.37 (0.21, 0.67)** 0.34 (0.15, 0.74)** 0.44 (0.22, 0.87)* 

Moderate math-Moderate science 0.69 (0.51, 0.92)* 0.31 (0.24, 0.39)*** 0.30 (0.24, 0.36)*** 

High math-High science Reference Reference Reference 

Teacher emphasis on increasing 

math interest    
None or minimal Reference Reference Reference 

Moderate 0.88 (0.58, 1.33) 1.19 (0.75, 1.90) 1.09 (0.73, 1.60) 

Heavy 0.97 (0.64, 1.46) 1.40 (0.88, 2.23) 1.23 (0.81, 1.85) 

Teacher emphasis on increasing 

science interest    

None or minimal Reference Reference Reference 

Moderate 0.86 (0.41, 1.82) 0.97 (0.49, 1.93) 0.98 (0.50, 1.93) 

Heavy 0.87 (0.41, 1.86) 0.82 (0.43, 1.58) 1.04 (0.52, 2.066) 

School % college-going 1.01 (1.00, 1.01)** 1.00 (0.99, 1.01) 1.00 (1.00, 1.01) 

Gender – Female 1.31 (1.05, 1.62)* 0.36 (0.28, 0.45)*** 0.40 (0.32, 0.51)*** 

Race    

White Reference Reference Reference 

Asian 1.15 (0.66, 2.01) 1.53 (1.00, 2.34)* 2.12 (1.47, 3.05)*** 

Black/African American 0.82 (0.56, 1.20) 0.47 (0.28, 0.77)** 0.86 (0.57, 1.29) 

Hispanic 0.73 (0.50, 1.09) 0.91 (0.62, 1.34) 0.94 (0.72, 1.24) 

Other 0.65 (0.44, 0.96)* 1.00 (0.69, 1.44) 1.11 (0.81, 1.52) 

Income    

<$15,000 0.74 (0.46, 1.17) 0.81 (0.51, 1.27) 0.76 (0.48, 1.18) 

$15,000-$35,000 0.60 (0.43, 0.85)** 1.00 (0.62, 1.62) 0.92 (0.67, 1.25) 

$35,000-$55,000 0.48 (0.33, 0.68)*** 1.45 (1.05, 1.99)* 1.38 (1.05, 1.76)* 

$55,001-$75,000 0.77 (0.55, 1.09) 1.26 (0.93, 1.70) 0.96 (0.74, 1.26) 

$75,0001-$95,000 0.72 (0.51, 1.03) 1.23 (0.92, 1.64) 1.02 (0.77, 1.35) 

>$95,000 Reference Reference Reference 

Parent education    

High school or less Reference Reference Reference 

Some college 1.19 (0.77, 1.84) 1.09 (0.73, 1.64) 1.04 (0.68, 1.58) 

Bachelor's 2.07 (1.47, 2.90)*** 1.61 (1.19, 2.18)** 1.45 (1.10, 1.92)** 

Master's or higher 2.01 (1.41, 2.87)*** 1.66 (1.23, 2.25)** 1.44 (1.06, 1.97)* 

Note. *p < 0.05, **p < 0.01, ***p < 0.001  



Table 7 
 

Change in STEM Major from Grade 12 to Three Years Post-High School Graduation 
 

 

Model 1: 

Dropped STEM 

Model 2: 

Added STEM 

Variable OR (95% CI) OR (95% CI) 

Predicted class   
Low math-Low science 4.13 (1.47, 11.54)** 1.61 (0.50, 5.18) 

High math-Low science 1.34 (0.56, 3.20) 1.54 (0.62, 3.82) 

Low math-High science 2.12 (0.97, 4.66) 2.01 (1.12, 3.59) 

Moderate math-Moderate science 2.00 (1.30, 3.07)** 1.71 (1.12, 2.63) 

High math-High science Reference Reference 

Teacher emphasis on increasing 

math interest   
None or minimal 0.77 (0.41, 1.44) 0.72 (0.34, 1.75) 

Moderate 0.88 (0.44, 1.72) 0.74 (0.33, 1.98) 

Heavy   
Teacher emphasis on increasing 

science interest   
None or minimal Reference Reference 

Moderate 0.89 (0.30, 2.66) 0.67 (0.29, 1.56) 

Heavy 0.63 (0.21, 1.87) 1.07 (0.45, 2.27) 

School % college-going 0.99 (0.98, 1.00)** 0.99 (0.99, 1.00) 

Gender – Female 1.77 (1.22, 2.56)** 2.40 (1.70, 3.40)*** 

Race   
White Reference Reference 

Asian 0.34 (0.24, 0.49)* 1.45 (0.68, 3.13) 

Black/African American 1.09 (0.55, 2.13) 3.90 (2.07, 7.35)** 

Hispanic 0.55 (0.28, 1.08) 0.62 (0.35, 1.10) 

Other 0.72 (0.38, 1.37) 1.26 (0.79, 2.00) 

Income   
<$15,000 0.93 (0.44, 1.97) 0.99 (0.38, 2.07) 

$15,000-$35,000 3.30 (1.80, 6.04)** 1.53 (0.69, 2.47) 

$35,000-$55,000 1.44 (0.90, 2.30) 1.02 (0.54, 1.53) 

$55,001-$75,000 1.84 (1.11, 3.05)* 0.61 (0.34, 1.08) 

$75,0001-$95,000 1.05 (0.68, 2.30) 0.61 (0.40, 0.93) 

>$95,000 Reference Reference 

Parent education   
High school or less Reference Reference 

Some college 0.72 (0.42, 1.21) 0.67 (0.42, 1.07) 

Bachelor's 0.77 (0.49, 1.22) 0.53 (0.35, 0.81)* 

Master's or higher 0.60 (0.34, 1.04) 0.37 (0.24, 0.59)** 

Note. *p < 0.05, **p < 0.01, ***p < 0.001 



Table 8 

 

Covariates Predicting Latent Profile Membership 

 

Variables 

Low Math-

Low Science 

vs 

High Math-

Low Science 

OR(SE) 

Low Math-

Low Science 

vs 

Low Math-

High Science 

OR(SE) 

Low Math-

Low Science 

vs                           

Mod Math-

Mod Science 

OR(SE) 

Low Math-

Low Science  

vs 

High Math-

High Science 

OR(SE) 

High Math-

Low Science 

vs 

Low Math-

High Science 

OR(SE) 

High Math-

Low Science 

vs 

Mod Math-

Mod Science 

OR(SE) 

High Math-

Low Science 

vs 

High Math-

High Science 

OR(SE) 

Low Math-

High Science 

vs 

Mod Math-

Mod Science 

OR(SE) 

Low Math-

High Science 

vs  

High Math-

High Science 

OR(SE) 

Mod Math-

Mod Science  

vs 

High Math-

High Science 

OR(SE) 

Gender           

Male Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference 

Female 1.28(0.29) 0.80(0.20) 0.88(0.14) 0.55(0.08)*** 0.63(0.21) 0.69(0.13)* 0.43(0.08)*** 1.08(0.29) 0.69(0.18) 0.63(0.06)*** 

Race           

White Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference 

Asian 2.48(0.73)** 0.80(0.26) 1.57(0.41) 1.78(0.39)** 0.32(0.12)* 0.63(0.20) 0.72(0.22) 1.95(0.73) 2.21(0.81)* 1.13(0.19) 

Black/AA 1.46(0.63) 0.66(0.30) 1.20(0.53) 1.49(0.71) 0.45(0.19) 0.82(0.27) 1.02(0.40) 1.81(0.68) 2.26(0.82)* 1.24(0.29) 

Hispanic 1.18(0.24) 0.71(0.36) 0.80(0.16) 0.53(0.12)** 0.60(0.26) 0.68(0.15) 0.45(0.11)** 1.13(0.48) 0.75(0.33) 0.66(0.12)* 

Other 1.66(0.93) 0.76(0.19) 0.92(0.20) 0.88(0.21) 0.46(0.28) 0.55(0.33) 0.52(0.32) 1.21(0.29) 1.14(0.27) 0.94(0.13) 

Note. Unadjusted odds ratios, for each paired comparison first group represents the baseline group; AA = African American; *p < 0.05, **p < 0.01, ***p < 0.001  



Table 9. Latent profiles predicting outcomes 

Note: Unadjusted beta coefficients and odds ratios, for each paired comparison first group represents the baseline group; *p<0.05, **p<0.01, ***p<0.001  

 

 

Low Math-

Low Science 

vs 

High Math-

Low Science 

Low Math-

Low Science 

vs 

Low Math-

High Science 

Low Math-

Low Science 

vs                           

Mod Math-

Mod Science 

Low Math- 

Low Science  

vs 

High Math-

High Science 

High Math-

Low Science 

vs 

Low Math-

High Science 

High Math-

Low Science 

vs 

Mod Math-

Mod Science 

High Math-

Low Science 

vs 

High Math-

High Science 

Low Math-

High Science 

vs 

Mod Math-

Mod Science 

Low Math-

High Science 

vs  

High Math-

High Science 

Mod Math-

Mod Science  

vs 

High Math-

High Science 

Outcomes β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) β (SE) 

Math GPA 0.65(0.10)*** 0.18(0.10) 0.48(0.05)*** 0.93(0.05)*** -0.82(0.15)*** -0.25(0.13) 0.46(0.14)** 0.45(0.13)*** 1.15(0.14)*** 0.69(0.05)*** 

Cohen’s d 0.79 0.23 0.61 1.23 1.07 0.22 0.38 .38 0.98 0.58 

Science GPA 0.28(0.12)* 0.32(0.12)** 0.43(0.05)*** 0.80(0.05)*** 0.06(0.10) 0.23(0.15) 0.85(0.16)*** 0.17(0.16) 0.77(0.16)*** 0.63(0.07)*** 

Cohen’s d 0.36 0.42 0.55 1.07 0.05 0.19 0.70 0.14 0.66 0.50 

Outcomes OR (SE) OR(SE) OR(SE) OR(SE) OR(SE) OR(SE) OR(SE) OR(SE) OR(SE) OR(SE) 

Persistence 1.17(0.35) 0.65(0.21) 1.08(0.21) 1.71(0.37)* 0.56(0.24) 0.92(0.23) 1.46(0.36) 1.56(0.47) 2.62(0.94)* 1.59(0.22)** 

STEM intent 2.44(0.74)** 2.79(1.10)* 2.49(0.69)** 8.47(2.23)*** 1.14 (0.53)*** 1.02(0.23) 3.47 (0.74)*** 0.89(0.38) 3.04(1.25)** 3.41(0.36)*** 

STEM major 3.16(0.78)*** 4.66(1.57)*** 3.19(0.78)*** 11.46(2.84)*** 1.48 (0.66)*** 1.01(0.23) 3.63 (0.80)*** 0.69(0.26) 2.46(0.88)* 3.59(0.34)*** 

Dropped STEM 0.40(0.13)** 0.47(0.15)* 0.44(0.22) 0.21(0.09)*** 1.17 (0.47) 1.09(0.47) 0.51 (0.23) 0.93(0.39) 0.44(0.15)* 0.47(0.11)** 

Added STEM 0.94(0.25) 1.12(0.33) 0.91(0.37) 0.51(0.28) 1.19 (0.34) 0.97(0.50) 0.55 (0.29) 0.81(0.25) 0.46(0.14)* 0.57(0.14)* 
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