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ALEKSANDROV-TYPE ESTIMATES FOR A PARABOLIC
MONGE-AMPÈRE EQUATION

DAVID HARTENSTINE

Abstract. A classical result of Aleksandrov allows us to estimate the size of a
convex function u at a point x in a bounded domain Ω in terms of the distance

from x to the boundary of Ω if
∫
Ω det D2u dx < ∞. This estimate plays a

prominent role in the existence and regularity theory of the Monge-Ampère
equation. Jerison proved an extension of Aleksandrov’s result that provides

a similar estimate, in some cases for which this integral is infinite. Gutiérrez
and Huang proved a variant of the Aleksandrov estimate, relevant to solutions
of a parabolic Monge-Ampère equation. In this paper, we prove Jerison-like

extensions to this parabolic estimate.

1. Introduction

In studying the regularity and existence of weak solutions (in the sense of Alek-
sandrov) to the Dirichlet problem for the Monge-Ampère equation:

det D2u = µ in Ω,

u|∂Ω = g,
(1.1)

where µ is a Borel measure on the convex domain Ω and g ∈ C(∂Ω), the following
estimate of Aleksandrov plays a critical role. For its applications to this problem,
see, for example, [12], [3], and [6]. A variant of this estimate appears in [2].

Theorem 1.1 (Aleksandrov’s estimate). Let Ω be a bounded convex domain in Rn,
and let u ∈ C(Ω̄) be convex, with u = 0 on ∂Ω. Then for all x ∈ Ω,

|u(x)|n ≤ Cn(diam Ω)n−1 dist(x, ∂Ω) Mu(Ω), (1.2)

where Cn is a dimensional constant and Mu is the Monge-Ampère measure asso-
ciated to u.

This estimate allows one to estimate the size of u at a point x in terms of the
distance from x to the boundary of the domain. However, if u is such that Mu(Ω) =
∞ (which can occur if |Du| → ∞ at ∂Ω), (1.2) does not give any information about
the size of u(x). Jerison, in [10], extended this inequality, using an affine-invariant
normalized distance to the boundary, to an estimate (Theorem 2.6) that is useful
even if Mu(Ω) = ∞, provided Mu does not blow up too quickly at the boundary.
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This result allows for a Caffarelli-style regularity theory for such problems, provided
Mu satisfies a technical requirement, weaker than the doubling condition, on the
cross-sections of u; see [10] and [7].

The parabolic Monge-Ampère operator ut detD2
xu was introduced in [11]. It is

related to the problem of deformation of surfaces by Gauss curvature (see [13]).
This operator is also considered in the following works: [16, 8, 5, 4, 14, 9, 15].

When studying entire solutions of the parabolic Monge-Ampère equation
−ut det D2

xu = 1, Gutiérrez and Huang ([8]) extended the Aleksandrov estimate
(Theorem 1.1) to parabolically convex functions on bounded bowl-shaped domains.
This estimate again degenerates when the parabolic Monge-Ampère measure asso-
ciated to u of the entire domain is infinite. The purpose of this note is to extend
the estimates of Jerison to the parabolic setting. These estimates are given below
in Lemma 3.1 and Theorem 3.2. Because Jerison’s estimates allow for a regularity
theory for problem (1.1) when µ(Ω) = ∞, it is our hope that the estimates pre-
sented here will allow one to deduce regularity properties of parabolically convex
solutions of the Dirichlet problem:

−ut detD2u = f in E

u
∣∣
∂pE

= g,

where f ≥ 0 may fail to be in L1(E), E ⊂ Rn+1 is bowl-shaped, and ∂pE is
the parabolic boundary of E. This would extend the regularity theory found in
[5, 4, 14, 15], all of which assume that f is bounded.

2. Preliminaries

We begin this section by reviewing the basic theory of weak or generalized solu-
tions, in the Aleksandrov sense, to the (elliptic) Monge-Ampère equation. Proofs
of these results and historical notes indicating their original sources can be found
in the books [1] and [6].

Given u : Ω → R we recall that the normal mapping (or subgradient) of u is
defined by

∂u(x0) = {p ∈ Rn : u(x) ≥ u(x0) + p · (x− x0), ∀x ∈ Ω};

and if E ⊂ Ω, then we set ∂u(E) =
⋃

x∈E ∂u(x). Note that the normal map of u at
a point x0 is the set of points p which are normal vectors for supporting hyperplanes
to the graph of u at x0.

If Ω is open and u ∈ C(Ω) then the family of sets

S = {E ⊂ Ω : ∂u(E) is Lebesgue measurable}

is a Borel σ–algebra. The map Mu : S → R̄ defined by Mu(E) = |∂u(E)| (where
|S| indicates the Lebesgue measure of the set S) is a measure, finite on compact
subsets, called the Monge–Ampère measure associated with the function u. The
convex function u is a weak (Aleksandrov) solution of detD2u = ν if the Monge–
Ampère measure Mu associated with u equals the Borel measure ν.

We use the notation Br(y) for the open Euclidean ball of radius r with center y.
The dimension of Br(y) should be clear from context.

Definition 2.1. A convex domain Ω ⊂ Rn with center of mass at the origin is said
to be normalized if Bαn

(0) ⊂ Ω ⊂ B1(0), where αn = n−3/2.
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The following lemma allows us to carry out our analysis in a normalized setting.
It is a consequence of a result of John on ellipsoids of minimum volume. See Section
1.8 of [6] and its references for more detail.

Lemma 2.2. If Ω is a bounded convex domain, there exists an affine transformation
T such that T (Ω) is normalized.

We now introduce the normalized distance to the boundary used by Jerison in
[10].

Definition 2.3. Let Ω ⊂ Rn be bounded, open and convex. The normalized
distance from x ∈ Ω to the boundary of Ω is

δ(x, Ω) = min
{ |x− x1|
|x− x2|

: x1, x2 ∈ ∂Ω and x, x1, x2 are collinear
}
.

The most important properties of this distance for our purposes are summarized
in the following lemma.

Lemma 2.4. Let Ω be a bounded convex domain.
(a) If T is an invertible affine transformation on Rn, then

δ(x,Ω) = δ(Tx, T (Ω)).

(b) If Ω is normalized, δ(x,Ω) is equivalent to dist(x, ∂Ω), i.e. there exist
constants C1 and C2 (depending only on the dimension) such that

C1δ(x, Ω) ≤ dist(x, ∂Ω) ≤ C2δ(x,Ω)

for all x ∈ Ω, where dist is the Euclidean distance.
(c) For all x ∈ Ω, dist(x, ∂Ω) ≤ diam(Ω)δ(x,Ω).

We now state Jerison’s estimates. The first (Lemma 2.5) is [10, Lemma 7.2].
Estimate (2.1) is similar to Aleksandrov’s estimate (1.2), with the normalized notion
of distance replacing the standard one, and the Lebesgue measure of Ω replacing
the diameter term.

Lemma 2.5. Let Ω be an open convex set and suppose u ∈ C(Ω) is convex and
zero on ∂Ω. Then, for all x ∈ Ω,

|u(x)|n ≤ Cδ(x, Ω)|Ω|Mu(Ω) (2.1)

where C is a constant depending only on the dimension.

Note that the estimate (2.1) gives no information when Mu(Ω) = ∞. If this is
the case, Mu must blow up near ∂Ω, but this is precisely where δ(·,Ω) is small. As a
consequence, the estimate in the next result ([10, Lemma 7.3]) may be meaningful.

Theorem 2.6. Let Ω be bounded, open, convex and normalized, and suppose u ∈
C(Ω) is convex and zero on ∂Ω. For each ε ∈ (0, 1], there exists a constant C(n, ε)
such that

|u(x0)|n ≤ C(n, ε)δ(x0,Ω)ε

∫
Ω

δ(x,Ω)1−ε dMu(x) (2.2)

for all x0 ∈ Ω.

We now introduce some terminology and notation for the parabolic problem.
Let D ⊂ Rn+1 and let t ∈ R. Then define

D(t) = {x ∈ Rn : (x, t) ∈ D}.
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Definition 2.7. The domain D is said to be bowl-shaped if D(t) is convex for every
t and D(t1) ⊂ D(t2) whenever t1 ≤ t2. If D is bounded, let t0 = inf{t : D(t) 6= ∅}.
Then the parabolic boundary of D is defined to be

∂pD = (D̄(t0)× {t0}) ∪
( ⋃

t∈R
(∂D(t)× {t})

)
.

For a bowl-shaped domain D we define the set Dt0 to be Dt0 = D ∩ {(x, t) : t ≤
t0}.

Definition 2.8. A function u : Rn × R → R, u = u(x, t), is called parabolically
convex (or convex-monotone) if it is continuous, convex in x and non-increasing in
t.

We now define the parabolic normal map and parabolic Monge-Ampère measure.
As in the elliptic case, this will lead to the notion of weak solution for this operator.
Let D ⊂ Rn+1 be an open, bounded bowl-shaped domain, and u be a continuous
real-valued function on D. The parabolic normal mapping of u at a point (x0, t0)
is the set-valued function Pu(x0, t0) given by

{(p, h) : u(x, t) ≥ u(x0, t0) + p · (x− x0) for all t ≤ t0 and x ∈ D(t),

h = p · x0 − u(x0, t0)}.
As before, the parabolic normal mapping of a set E ⊂ D is defined to be the union of
the parabolic normal maps of each point in the set. The family of subsets E of D for
which Pu(E) is Lebesgue measurable is a Borel σ-algebra and the map Mp(E) =
|Pu(E)| is a measure, called the parabolic Monge-Ampère measure associated to
the function u. These results are proved in [16]. We remark that, because of
the translation invariance of the Lebesgue measure, the parabolic Monge-Ampère
measure of a function u is identical to the parabolic Monge-Ampère measure of
u− λ for any constant λ.

We conclude this section with a parabolic analog of Aleksandrov’s estimate (The-
orem 1.1) due to Gutiérrez and Huang ([8]).

Theorem 2.9. Let D ⊂ Rn+1 be an open bounded bowl-shaped domain, and let
u ∈ C(D̄) be a parabolically convex function with u = 0 on ∂pD. If (x0, t0) ∈ D,
then

|u(x0, t0)|n+1 ≤ Cn dist(x0, ∂D(t0)) diam(D(t0))n−1Mp(Dt0)
where Cn is a dimensional constant, and Mp is the parabolic Monge-Ampère mea-
sure associated to u.

3. Parabolic estimates

In this section, we prove parabolic versions of Jerison’s estimates. We adapt the
arguments given in [10] to our situation. The first is the analog of Lemma 2.5.

Lemma 3.1. Let D be a bounded, open bowl-shaped domain in Rn+1. Suppose
u ∈ C(D̄) is parabolically convex and u|∂pD = 0. Then there exists a dimensional
constant Cn such that

|u(x0, t0)|n+1 ≤ Cnδ(x0, D(t0))|D(t0)||Pu(Dt0)|
for all (x0, t0) ∈ D, where δ(x0, D(t0)) is the normalized distance from x0 to the
boundary of the n-dimensional convex set D(t0), and |Pu(Dt0)| = Mp(Dt0) is the
Lebesgue measure of the set Pu(Dt0) ⊂ Rn+1.



EJDE-2005/11 AN ALEKSANDROV-TYPE ESTIMATE 5

Proof. D(t0) is a bounded convex subset of Rn. By Lemma 2.2, we may choose
an affine transformation T of Rn that normalizes D(t0). Define T̃ : Rn+1 → Rn+1

by T̃ (x, t) = (Tx, t). Then T̃ (Dt0) ⊂ B1(0) × (−∞, t0]. Let v(z) = u(T̃−1z) for
z ∈ T̃ (D). Then T̃ (D) is a bowl-shaped domain, v is continuous on the closure of
T̃ (D), is parabolically convex, and is zero on ∂pT̃ (D).

Now apply the parabolic Aleksandrov estimate (Theorem 2.9) to v in T̃ (D) to
obtain

|u(x0, t0)|n+1 = |v(T̃ (x0, t0))|n+1

≤ Cn dist(Tx0, ∂T̃ (D(t0)))[diam(T̃ (D(t0)))]n−1|Pv(T̃ (Dt0))|.
(3.1)

Next, we establish the change-of-variable formula

|Pv(T̃ (Dt0))| = |detT−1| |Pu(Dt0)|. (3.2)

For simplicity, we make the following abuse of notation: when we write u or v as
functions of x only, we mean the restrictions of u and v to D(t0). Let p ∈ ∂u(x0).
Then

u(x, t0) ≥ u(x0, t0) + p · (x− x0)

for all x ∈ D(t0). Since u is non-increasing in t,

u(x, t) ≥ u(x, t0) ≥ u(x0, t0) + p · (x− x0)

for all t ≤ t0 and x ∈ D(t), so (p, h) ∈ Pu(x0, t0) where h = p · x0 − u(x0, t0). If
p 6∈ ∂u(x0), then (p, h) 6∈ Pu(x0, t0); therefore, p ∈ ∂u(x0) if and only if (p, h) ∈
Pu(x0, t0). It is not hard to see that p ∈ ∂u(x0) if and only if (T−1)tp ∈ ∂v(Tx0).
Then as above, for t ≤ t0 and y ∈ T̃ (D)(t),

v(y, t) ≥ v(y, t0) + (T−1)tp · (y − Tx0).

Hence, (T−1)tp ∈ ∂v(Tx0) if and only if ((T−1)tp, h̃) ∈ Pv(Tx0, t0), where h̃ =
(T−1)tp · Tx0 − v(Tx0, t) = p · x0 − u(x0) = h. In other words, (p, h) ∈ Pu(x0, t0)
if and only if ((T−1)tp, h) ∈ Pv(Tx0, t0). We also have ((T−1)tp, h) = (T̃−1)t(p, h)
which implies that

(T̃−1)tPu(E) = Pv(T̃ (E))

for any Borel set E ⊂ D. In particular, (T̃−1)tPu(Dt0) = Pv(T̃ (Dt0)). This implies
that

|det T̃−1| |Pu(Dt0)| = |Pv(T̃ (Dt0))|,
but det T̃−1 = detT−1, showing (3.2). Then using equation (3.2), Lemma 2.4,
inequality (3.1), and the fact that |det T−1| ≤ C(n)|D(t0)|n, we prove the claimed
estimate:

|u(x0, t0)|n+1 ≤ Cnδ(Tx0, T (D(t0)))|Pv(T̃ (Dt0))|

= Cnδ(x0, D(t0))|Pv(T̃ (Dt0))|
= Cnδ(x0, D(t0))|det T−1||Pu(Dt0)|
≤ Cnδ(x0, D(t0))|D(t0)||Pu(Dt0)|.

�

The next result extends Theorem 2.6 to the parabolic setting.
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Theorem 3.2. Let 0 < ε ≤ 1. Let E be a bounded open bowl-shaped domain in
Rn+1, such that E ⊂ B1(0)× (−∞,∞). Suppose u ∈ C(Ē) is parabolically convex
and zero on ∂pE. Let Mp be the parabolic Monge-Ampère measure associated to u.
Then there exists C = C(ε, n) such that

|u(x0, t0)|n+1 ≤ Cδ(x0, E(t0))ε

∫
Et0

δ(x,E(t0))1−ε dMp(x, t).

for all (x0, t0) ∈ E.

Proof. Without loss of generality, we may assume that u(x0, t0) = −1 (if this is not
the case, multiply u by a suitably chosen positive constant). Let sk = s2−kβ where
s and β are positive and chosen to satisfy β(n + 1) ≤ ε and

∑∞
k=1 sk ≤ 1/2.

A := δ(x0, E(t0))ε

∫
Et0

δ(x, E(t0))1−ε dMp(x, t).

It suffices to show that A ≥ C(s), a constant depending on s and ε.
For k = 1, 2, . . . , let Ek = {(x, t) ∈ E : u(x, t) ≤ λk = −1+s1 + · · ·+sk}. Define

E0 = {(x, t) ∈ E : u(x, t) ≤ −1}. Note that Ek ⊂ Ek+1 for k = 1, 2, . . . , and that
E0 6= ∅. Each of the sets Ek is bowl-shaped and u|∂pEk

= λk (taking λ0 = −1).
Fix t and let δk(t) = dist(∂Ek(t), ∂E(t)).

Since δk(t) 6→ 0 as k → ∞ (if δk(t) → 0, then u would be smaller than − 1
2

somewhere on ∂pE), we may choose k to be the smallest nonnegative integer for
which δk+1(t) > 1

2δk(t).
Let xk ∈ ∂Ek(t) be a point closest to ∂E(t). Then we have that

dist(xk, ∂Ek+1(t)) <
1
2
δk(t) < δk+1(t). (3.3)

The second of these inequalities holds because of the choice of k. The first inequality
requires the following geometric argument. Let L be a line segment of length δk

from xk to ∂E(t). The segment L meets ∂Ek+1(t) at a point, xk+1. Let ` represent
the length of the part of L that connects ∂Ek+1(t) to ∂E(t). Then

δk = |xk − xk+1|+ `

≥ |xk − xk+1|+ dist(∂Ek+1(t), ∂E(t))

= |xk − xk+1|+ δk+1

> |xk − xk+1|+
1
2
δk.

Therefore, 1
2δk > |xk − xk+1| ≥ dist(xk, ∂Ek+1(t)). Now we apply Lemma 3.1 to

the function u(x, t)− λk+1 on the set Ek+1 to get

|u(xk, t)− λk+1|n+1 ≤ Cnδ(xk, Ek+1(t))|Ek+1(t)|Mp((Ek+1)t).

The point xk ∈ ∂Ek(t), so u(xk, t) = λk and |u(xk, t)−λk+1| = |λk−λk+1| = sk+1.
Thus,

sn+1
k+1 ≤ Cnδ(xk, Ek+1(t))|Ek+1(t)|Mp((Ek+1)t). (3.4)

Let Lt be a shortest segment from xk to ∂Ek+1(t) and let z ∈ ∂Ek+1(t) be the
other endpoint of Lt. Let ρ denote

ρ = |Lt| = |xk − z| = dist(xk, ∂Ek+1(t)). (3.5)

Since the set Ek+1(t) is convex, the hyperplane Π (of dimension n − 1) normal to
Lt through z is a support plane for Ek+1(t). Let Π′ be the support plane parallel
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to Π on the opposite side of Ek+1(t), so that Ek+1(t) is contained between the two
planes, and let r = dist(Π,Π′). Then since Ek+1(t) ⊂ B1(0), there exists a constant
C = C(n) such that

|Ek+1(t)| ≤ Cr. (3.6)
We remark that the C in (3.6) can be chosen to be the volume of the unit ball in
Rn−1.

Let T : Rn → Rn be an affine transformation normalizing Ek+1(t). Then
dist(T (Π), T (Π′)) is bounded between two dimensional constants C1 and C2, with
C1 < C2, and C1

ρ
r ≤ dist(Txk, T (Π)) ≤ C2

ρ
r . By Lemma 2.4, we have

δ(xk, Ek+1(t)) = δ(Txk, T (Ek+1(t)))

≤ C dist(Txk, ∂T (Ek+1(t)))

≤ C dist(Txk, T (Π))

≤ C
ρ

r
.

Inserting this inequality into (3.4) and using (3.6), we get

sn+1
k+1 ≤ C

ρ

r
|Ek+1(t)|Mp((Ek+1)t) ≤ Cρ Mp((Ek+1)t) < Cδk+1(t)Mp((Ek+1)t),

where the last inequality holds since ρ < δk+1(t) (see (3.3) and (3.5)). Therefore,

sn+1
k+1 < Cδk+1(t) Mp((Ek+1)t). (3.7)

Since u is non-increasing in t and E0(t0) 6= ∅, δ0(t) is defined for any t ≥ t0. On
the other hand, for some values of t, δ0(t) might not be defined; for instance, this
is the case when u > −1 on E(t). Then for any t ≥ t0, by the choice of k, we have
δk+1(t) < δk(t) ≤ 2−kδ0(t).

Since δ0(t0) ≤ dist(x0, ∂E(t0)) and diam(E(t0)) ≤ 2, we may conclude by
Lemma 2.4(c) that 2−kδ0(t0) ≤ C2−kδ(x0, E(t0)) for a dimensional constant C.
Therefore,

δk+1(t0) Mp((Ek+1)t0) = δk+1(t0)ε

∫
(Ek+1)t0

δk+1(t0)1−ε dMp(y, s)

≤ C2−kεδ(x0, E(t0))ε

∫
(Ek+1)t0

δk+1(t0)1−ε dMp(y, s)

≤ C2−kεδ(x0, E(t0))ε

∫
(Ek+1)t0

δ(y, E(t0))1−εdMp(y, s).

(3.8)
The last inequality holds since

δk+1(t0) = dist(∂Ek+1(t0), ∂E(t0)) ≤ dist(y, ∂E(t0)) ≤ Cδ(y, E(t0))

for all y ∈ Ek+1(t0). Then from (3.7) and (3.8) we obtain that

sn+1
k+1 ≤ C2−kεδ(x0, E(t0))ε

∫
(Ek+1)t0

δ(y, E(t0))1−ε dMp(y, s) ≤ C2−kεA.

Recall that
sn+1

k+1 = sn+12−(n+1)(k+1)β ≥ sn+12−ε(k+1)

since β(n + 1) ≤ ε. Hence

sn+12−ε(k+1) ≤ C2−kεA ⇒ sn+1 ≤ CA,
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where C depends on ε, so A ≥ C(s) as desired. �
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[12] J. Rauch and B. A. Taylor; The Dirichlet problem for the multidimensional Monge-Ampère

equation, Rocky Mountain J. Math., 7 (1977), pp. 345–364.
[13] K. Tso; Deforming a hypersurface by its Gauss-Kronecker curvature, Comm. Pure Appl.

Math., 38 (1985), pp. 867–882.

[14] G. L. Wang; The first boundary value problem for parabolic Monge-Ampère equation, North-
east. Math. J., 3 (1987), pp. 463–478.

[15] R. H. Wang and G. L. Wang; On existence, uniqueness and regularity of viscosity solutions

for the first initial-boundary value problems to parabolic Monge-Ampère equation, Northeast.
Math. J., 8 (1992), pp. 417–446.

[16] R. H. Wang and G. L. Wang; The geometric measure theoretical characterization of vis-

cosity solutions to parabolic Monge-Ampère type equation, J. Partial Differential Equations,
6 (1993), pp. 237–254.

Department of Mathematics, Western Washington University, 516 High Street, Bond

Hall 202, Bellingham, WA 98225-9063, USA
E-mail address: david.hartenstine@wwu.edu


