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ALEKSANDROV-TYPE ESTIMATES FOR A PARABOLIC
MONGE-AMPERE EQUATION

DAVID HARTENSTINE

ABSTRACT. A classical result of Aleksandrov allows us to estimate the size of a
convex function u at a point z in a bounded domain € in terms of the distance
from z to the boundary of Q if fQ det D?udx < oco. This estimate plays a
prominent role in the existence and regularity theory of the Monge-Ampére
equation. Jerison proved an extension of Aleksandrov’s result that provides
a similar estimate, in some cases for which this integral is infinite. Gutiérrez
and Huang proved a variant of the Aleksandrov estimate, relevant to solutions
of a parabolic Monge-Ampére equation. In this paper, we prove Jerison-like
extensions to this parabolic estimate.

1. INTRODUCTION

In studying the regularity and existence of weak solutions (in the sense of Alek-
sandrov) to the Dirichlet problem for the Monge-Ampere equation:

det D*u =y in Q,

(1.1)
ulaﬂ =g,

where p is a Borel measure on the convex domain  and g € C(99), the following
estimate of Aleksandrov plays a critical role. For its applications to this problem,
see, for example, [12], [3], and [6]. A variant of this estimate appears in [2].

Theorem 1.1 (Aleksandrov’s estimate). Let Q be a bounded convex domain in R”",
and let uw € C(Q) be convex, with u =0 on Q. Then for all x € €,

lu(z)|™ < Oy (diam Q)" dist(z, 02) Mu (L), (1.2)

where Cy, is a dimensional constant and Mu is the Monge-Ampére measure asso-
ciated to u.

This estimate allows one to estimate the size of w at a point x in terms of the
distance from z to the boundary of the domain. However, if u is such that Mu(2) =
oo (which can occur if [Du| — oo at 9Q), does not give any information about
the size of u(x). Jerison, in [I0], extended this inequality, using an affine-invariant
normalized distance to the boundary, to an estimate (Theorem that is useful
even if Mu(§2) = oo, provided Mu does not blow up too quickly at the boundary.
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This result allows for a Caffarelli-style regularity theory for such problems, provided
Mu satisfies a technical requirement, weaker than the doubling condition, on the
cross-sections of u; see [10] and [7].

The parabolic Monge-Ampere operator u; det D2u was introduced in [I1]. Tt is
related to the problem of deformation of surfaces by Gauss curvature (see [13]).
This operator is also considered in the following works: [16], [8, 5], 4}, 14}, @] [15].

When studying entire solutions of the parabolic Monge-Ampere equation
—uy det D2u = 1, Gutiérrez and Huang ([8]) extended the Aleksandrov estimate
(Theorem to parabolically convex functions on bounded bowl-shaped domains.
This estimate again degenerates when the parabolic Monge-Ampeére measure asso-
ciated to u of the entire domain is infinite. The purpose of this note is to extend
the estimates of Jerison to the parabolic setting. These estimates are given below
in Lemma [3.1f and Theorem Because Jerison’s estimates allow for a regularity
theory for problem when p(2) = oo, it is our hope that the estimates pre-
sented here will allow one to deduce regularity properties of parabolically convex
solutions of the Dirichlet problem:

—u; det D*u=f inFE
u|a,,E =9

where f > 0 may fail to be in L'(E), E C R""! is bowl-shaped, and 9,F is
the parabolic boundary of E. This would extend the regularity theory found in
[5l [ 141 [15], all of which assume that f is bounded.

2. PRELIMINARIES

We begin this section by reviewing the basic theory of weak or generalized solu-
tions, in the Aleksandrov sense, to the (elliptic) Monge-Ampere equation. Proofs
of these results and historical notes indicating their original sources can be found
in the books [I] and [6].

Given u : @ — R we recall that the normal mapping (or subgradient) of w is
defined by

Ou(zo) ={p € R" 1 u(z) > u(zo) +p- (x — x0), V2 € Q};

and if £ C €, then we set Ou(E) = |J,cp Ou(z). Note that the normal map of u at
a point g is the set of points p which are normal vectors for supporting hyperplanes
to the graph of u at xg.

If Q is open and u € C(2) then the family of sets

S ={FE C Q:0u(F) is Lebesgue measurable}

is a Borel o—algebra. The map Mu : S — R defined by Mu(E) = |0u(E)| (where
|S] indicates the Lebesgue measure of the set S) is a measure, finite on compact
subsets, called the Monge-Ampeére measure associated with the function u. The
convex function u is a weak (Aleksandrov) solution of det D?u = v if the Monge—
Ampere measure Mu associated with u equals the Borel measure v.

We use the notation B,.(y) for the open Euclidean ball of radius r with center y.
The dimension of B, (y) should be clear from context.

Definition 2.1. A convex domain 2 C R™ with center of mass at the origin is said
to be normalized if B, (0) C Q C B;(0), where a,, = n~3/2.
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The following lemma allows us to carry out our analysis in a normalized setting.
It is a consequence of a result of John on ellipsoids of minimum volume. See Section
1.8 of [6] and its references for more detail.

Lemma 2.2. IfQ) is a bounded convex domain, there exists an affine transformation
T such that T(Q) is normalized.

We now introduce the normalized distance to the boundary used by Jerison in
[10].

Definition 2.3. Let @ C R™ be bounded, open and convex. The normalized
distance from z € Q to the boundary of 2 is

(2, Q) = min { = —331I

| 1 x1, o € 00 and x, x1, 2o are collinear}.
Xr — X9

The most important properties of this distance for our purposes are summarized
in the following lemma.

Lemma 2.4. Let Q be a bounded convexr domain.
(a) If T is an invertible affine transformation on R™, then
6(x,Q) =6(Tx, T()).

(b) If Q is normalized, 6(x,Q) is equivalent to dist(x,0), i.e. there exist
constants Cy and Co (depending only on the dimension) such that
C16(x, Q) < dist(z,00Q) < Cyd(x,Q)

for all x € Q, where dist is the Fuclidean distance.
(c) For all x € , dist(x, Q) < diam(Q)d(z, ).

We now state Jerison’s estimates. The first (Lemma is [I0, Lemma 7.2].
Estimate is similar to Aleksandrov’s estimate , with the normalized notion
of distance replacing the standard one, and the Lebesgue measure of €2 replacing
the diameter term.

Lemma 2.5. Let Q be an open convex set and suppose u € C(Q) is convexr and
zero on 0S). Then, for all x € Q,

lu(@)[" < Cé(x, Q)[QMu(S2) (2.1)
where C' is a constant depending only on the dimension.

Note that the estimate (2.1)) gives no information when Mu(2) = co. If this is
the case, M u must blow up near 92, but this is precisely where 6(+,?) is small. As a
consequence, the estimate in the next result ([I0, Lemma 7.3]) may be meaningful.

Theorem 2.6. Let ) be bounded, open, convex and normalized, and suppose u €

C(Q) is convex and zero on 0N). For each € € (0,1], there exists a constant C(n,€)
such that

(o)™ < C(n, €)8(z0, Q)¢ /Q 5z, Q)1 dMu(z) (2.2)
for all zg € Q.

We now introduce some terminology and notation for the parabolic problem.
Let D C R**! and let t € R. Then define

D(t) ={xz € R": (z,t) € D}.
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Definition 2.7. The domain D is said to be bowl-shaped if D(t) is convex for every
t and D(t1) C D(t2) whenever ¢; < to. If D is bounded, let tg = inf{¢ : D(¢) # 0}.
Then the parabolic boundary of D is defined to be

3,D = (D(to) x {ta) U (J(@D®) x {t}))-
teR
For a bowl-shaped domain D we define the set Dy, to be Dy, = DN {(z,t) : ¢t <
to}-

Definition 2.8. A function v : R®™ x R — R, u = u(x,t), is called parabolically
convex (or convex-monotone) if it is continuous, convex in x and non-increasing in
t.

We now define the parabolic normal map and parabolic Monge-Ampere measure.
As in the elliptic case, this will lead to the notion of weak solution for this operator.
Let D C R™*! be an open, bounded bowl-shaped domain, and u be a continuous
real-valued function on D. The parabolic normal mapping of u at a point (xg, to)
is the set-valued function P, (zo,to) given by

{(p,h) :u(z,t) > u(zo, to) + p- (x — o) for all t <ty and z € D(t),
h=p-xg—u(xo,to)}

As before, the parabolic normal mapping of a set & C D is defined to be the union of
the parabolic normal maps of each point in the set. The family of subsets E of D for
which P, (F) is Lebesgue measurable is a Borel o-algebra and the map M,(E) =
|P,(E)| is a measure, called the parabolic Monge-Ampeére measure associated to
the function u. These results are proved in [I6]. We remark that, because of
the translation invariance of the Lebesgue measure, the parabolic Monge-Ampere
measure of a function w is identical to the parabolic Monge-Ampere measure of
u — A for any constant A.

We conclude this section with a parabolic analog of Aleksandrov’s estimate (The-
orem due to Gutiérrez and Huang ([8]).

Theorem 2.9. Let D C R™*! be an open bounded bowl-shaped domain, and let
u € C(D) be a parabolically convex function with u =0 on 8,D. If (zo,t0) € D,
then

|u(sc0, t0)|n+1 <C, diSt(l‘Q, 8D(t0)) diam(D(to))”flMp(Dto)
where Cy, is a dimensional constant, and M, is the parabolic Monge-Ampére mea-
sure associated to u.

3. PARABOLIC ESTIMATES

In this section, we prove parabolic versions of Jerison’s estimates. We adapt the
arguments given in [TI0] to our situation. The first is the analog of Lemma

Lemma 3.1. Let D be a bounded, open bowl-shaped domain in R™*1. Suppose
u € C(D) is parabolically conver and ulg,p = 0. Then there exists a dimensional
constant C,, such that

[u(zo,t0)[" ™ < Cnd(o, D(to))| D(to)||Pu(Ds, )|
for all (xo,to) € D, where §(xo, D(tg)) is the normalized distance from xo to the

boundary of the n-dimensional convezr set D(ty), and |Py(Dy,)| = M,(Dy,) is the
Lebesgue measure of the set P,(Dy,) C R**1.
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Proof. D(to) is a bounded convex subset of R”. By Lemma we may choose
an affine transformation 7' of R” that normalizes D(ty). Define T : R*t1 — R7+!
by T(x,t) = (Tx,t). Then T(Dy,) C Bi(0) x (—o0,tg]. Let v(z) = u(T~'z) for
z € T(D). Then T(D) is a bowl-shaped domain, v is continuous on the closure of
T(D), is parabolically convex, and is zero on 9,7 (D).

Now apply the parabolic Aleksandrov estimate (Theorem to v in T(D) to
obtain

[u(wo, to)["** = [o(T (20, to))|"**

| i o i (3.1)
< C,, dist(Txo, T (D(to)))[diam(T (D (o))" | P, (T(Dy,))|.
Next, we establish the change-of-variable formula
|Po(T(Dyy))| = [det T~ | Py(Dyy)- (3.2)

For simplicity, we make the following abuse of notation: when we write v or v as
functions of x only, we mean the restrictions of u and v to D(tg). Let p € Qu(xg).
Then

u(x,tg) > u(zo, to) +p- (z — xo)

for all € D(tp). Since u is non-increasing in ¢,
u(z,t) > ulx, tg) > u(xo,to) +p- (x — x0)

for all t < tp and x € D(t), so (p,h) € Py(xo,to) where h = p - xg — u(xo,tg). If
p & Ou(xg), then (p,h) &€ P,(zo,t0); therefore, p € du(xg) if and only if (p,h) €
P,.(xg,t0). It is not hard to see that p € du(zo) if and only if (T~1)!p € dv(Txy).
Then as above, for t <ty and y € T(D)(t),

v(y,t) > v(y,to) + (T~ )'p- (y — To).

Hence, (T~')'p € dv(Txo) if and only if (T~1)'p,h) € P,(Txo,to), where h =
(T~ YHYp - Txg — v(Two,t) = p- x0 — u(z0) = h. In other words, (p,h) € Py(o,to)
if and only if ((T~1)'p, h) € P,(Tx0,tp). We also have ((T~1)ip, h) = (T~ (p, h)
which implies that
(I Pu(E) = Py(T(E))

for any Borel set E C D. In particular, (T—1)!P,(Dy,) = P,(T(Dy,)). This implies
that

| det 77| [ Pu(Dyy)| = |Po(T(Dy, )
but detT—! = det T2, showing {i Then using equation 1) Lemma
inequality (3.1), and the fact that | det T~!| < C(n)|D(to)|n, we prove the claimed
estimate:

[u(o, to)|"*! < Cod(Tao, T(D(t0))|Po(T(Dyy))|
= Cnd(x0, D(to))|Po(T(Dy,))|
= Cud(wo, D(to))| det T~ | Py (D, )|
< Cnd(wo, D(t0))|D(to)| | Pu(Dio) |-

The next result extends Theorem to the parabolic setting.
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Theorem 3.2. Let 0 < € < 1. Let E be a bounded open bowl-shaped domain in
R such that E C B1(0) x (—00, ). Suppose u € C(E) is parabolically convex
and zero on OpE. Let M, be the parabolic Monge-Ampére measure associated to u.
Then there exists C = C(e,n) such that

lu(zo, t0)|" 1 < Cé(a:o,E(to))E/E §(x, B(to))' ¢ dM,(z,1).

for all (zo,t0) € E.

Proof. Without loss of generality, we may assume that u(zg, o) = —1 (if this is not
the case, multiply v by a suitably chosen positive constant). Let s; = s27% where
s and 3 are positive and chosen to satisfy S(n+ 1) < eand ), s, < 1/2.

A :=6(xo, E(to))¢ §(z, E(tg))' ¢ dM,(z,t).
Ex,

It suffices to show that A > C(s), a constant depending on s and e.

Fork=1,2,...,let B, = {(z,t) € E: u(x,t) < Ay = —1+s1+---+sx}. Define
Eo = {(z,t) € E : u(z,t) < —1}. Note that Ey C Ej4q for k =1,2,..., and that
Eo # 0. Each of the sets Ej, is bowl-shaped and uls, g, = A (taking Ao = —1).
Fix t and let dx(t) = dist(0E(t), 0E(t)).

Since 6x(t) /4 0 as k — oo (if 6x(t) — 0, then u would be smaller than —2

2
somewhere on J,F), we may choose k to be the smallest nonnegative integer for

which 0g41(t) > %5k‘(t).
Let z), € OF)(t) be a point closest to OE(t). Then we have that

dist(xk,aEkH(t)) < %5k(t) < (5k+1(t). (33)

The second of these inequalities holds because of the choice of k. The first inequality
requires the following geometric argument. Let L be a line segment of length dg
from xj to OE(t). The segment L meets OFy11(t) at a point, xxy1. Let £ represent
the length of the part of L that connects OEy11(t) to OE(t). Then
O = |l‘]~c _l‘k-&-l‘ + 4
> |xg — xpr1] + dist(0Ek41(t), OE(t))

= |zK — Tpr1| + Oy
1
> |z — Tpr1| + §5k-

Therefore, %5/@ > |z — xp41| > dist(zg, 0Ek4+1(t)). Now we apply Lemma to
the function u(x,t) — Ag11 on the set Exiq to get

@y, t) = Apa " < Cod(@r, Bigr (6)) |1 ()] Mp((Eg1)s)-
The point xj € IE)(t), so u(xg,t) = A and |u(zk, t) — Apt1] = [ Ak — Akt1] = Skt1-
Thus,
i1 < Cud(k, Bia ()| B ()] My((Bita)e)- (3.4)
Let L; be a shortest segment from xzj to OEk4+1(t) and let z € OFk1(t) be the
other endpoint of L;. Let p denote
p = |Li| = |z — 2| = dist(x, OFEk41(1)). (3.5)

Since the set Ej11(t) is convex, the hyperplane II (of dimension n — 1) normal to
L; through z is a support plane for Ej1(t). Let II' be the support plane parallel
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to IT on the opposite side of Ej11(t), so that Fxyq(t) is contained between the two
planes, and let r = dist(II, II"). Then since Ej+1(t) C B1(0), there exists a constant
C = C(n) such that

|Er1(t)| < Cr. (3.6)
We remark that the C in (3.6)) can be chosen to be the volume of the unit ball in
R™1L.

Let T : R® — R™ be an affine transformation normalizing Fyy1(t). Then
dist(7'(II), T(II")) is bounded between two dimensional constants C7 and Ca, with
C1 < Cg, and Cy 2 < dist(Twy, T(II)) < C3 2. By Lemma we have

6(zp, Ept1(t) = 6(Top, T(Er+1(t)))
< Cdist(Tzy, 0T (Ey41(1)))
< Cdist(Txy, T(I))

<cl.
T
Inserting this inequality into (3.4]) and using (3.6]), we get
sty < O§|Ek+1(t)| Mp((Ex41)t) < Cp Mp((Egt1)t) < Cop1(t) Mp((Ek41)1),
where the last inequality holds since p < dx4+1(t) (see (3.3) and (3.5)). Therefore,
S < OB () My((Brsn)r): (3.7)

Since u is non-increasing in ¢ and Eo(to) # 0, dp(¢) is defined for any ¢ > ¢y. On
the other hand, for some values of ¢, dp(¢) might not be defined; for instance, this
is the case when u > —1 on E(t). Then for any ¢t > tg, by the choice of k, we have
S (t) < 0p(t) < 27%50(t).

Since dp(to) < dist(zg,dE(tg)) and diam(E(tg)) < 2, we may conclude by
Lemma (c) that 27%80(tg) < C27%6(xo, E(to)) for a dimensional constant C.
Therefore,

Ok+1(to) Mp((Ers1)t,) = 5k+1(t0)6/ Sky1(to)' ¢ dMy(y, s)
(Br+1)to

< C27%6(x0, E(to))" / S (t0) = dM,(y, 5)

(Brt+1)to
S CQ_ke(s(xo,E(t(]))e/ 6(y,E(t0))1_6de(y,S).

(Br+1)tg
(3.8)
The last inequality holds since

Or+1(to) = dist(0Ek+1(to), 0E(to)) < dist(y, 0E(to)) < Co(y, E(to))
for all y € Fiy1(to). Then from (3.7)) and (3.8]) we obtain that

52111 < C27%5(xg, E(to))" /(E : 5(y, E(to))' ¢ dM,,(y,s) < C27"A.
k+1)tg

Recall that

szi% _ sn+12—(n+1)(k+1)ﬁ Z Sn+12—5(k+1)

since B(n + 1) < e. Hence
gnlomelbtl) < 0o7ke g = snHl < A4,
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where C' depends on ¢, so A > C(s) as desired. O
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