

CONVERSION OF SPARSE MATRIX TO BAND MATRIX USING AN FPGA FOR

HIGH-PERFORMANCE COMPUTING

by

Anjani Chaudhary, M.S.

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment

of the requirements for the degree of

Master of Science

with a Major in Engineering

December 2020

Committee Members:

 Semih Aslan, Chair

 Shuying Sun

 William A Stapleton

COPYRIGHT

by

Anjani Chaudhary

2020

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgement. Use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work, I, Anjani Chaudhary, authorize duplication of this

work, in whole or in part, for educational or scholarly purposes only.

iv

ACKNOWLEDGEMENTS

Throughout my research and report writing process, I am grateful to receive

support and suggestions from the following people. I would like to thank my supervisor

and chair, Dr. Semih Aslan, Associate Professor, Ingram School of Engineering, for his

time, support, encouragement, and patience, without which I would not have made it. My

committee members Dr. Bill Stapleton, Associate Professor, Ingram School of

Engineering, and Dr. Shuying Sun, Associate Professor, Department of Mathematics, for

their essential guidance throughout the research and my graduate advisor, Dr. Vishu

Viswanathan, for providing the opportunity and valuable suggestions which helped me to

come one more step closer to my goal. I would also like to thank Xilinx for their support.

I also would like to thank my family and friends who encouraged and supported

me throughout this journey.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS .. iv

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

LIST OF ABBREVIATIONS ..x

ABSTRACT .. xii

CHAPTER

I. INTRODUCTION ..1

Overview ..1

II. LITERATURE REVIEW ..5

Band Matrix ..5

Application of Band Matrix ...6

Band Matrix Storage ..7

BLAS-General Band Storage Mode ..8

General Band Storage Mode ..9

 Bandwidth Reduction Algorithm ...9

Cuthill Mckee Algorithm ...12

Reverse Cuthill Mckee Algorithm ...12

Gibbs-Poole-Stockmeyer Algorithm ...16

 Graph Theory ..17

 Pseudo-peripheral Node ..18

King’s Algorithm ...21

Gu Feng Algorithm ..21

Modified Minimum Degree/Multiple Minimum Degree24

 Serial Communication ...25

 Field Programmable Gate Array ..25

 Digilent Zedboard ..26

 Functional Description ...27

vi

 III. PROBLEM STATEMENT ...30

 IV. METHODOLOGY ...32

Study Area Description ..32

Expert Suggestion and Discussion ...32

Design and Description of the Proposed System32

Software Architecture ..37

Hardware Architecture ...38

V. TESTING AND ANALYSIS..41

System Block Diagram in Xilinx Vivado IDE ..42

Simulation Result ..43

Power Summary Result..44

Design Summary of Resource Utilization ...45

Design Timing Summary ...47

Latency and Throughput ..49

VI. RESULTS ..52

List of Test Matrices with RCM Algorithm Application...........................52

FPGA and MATLAB Results ..53

VII. CONCLUSION ..58

VIII. FUTURE SCOPE ..59

APPENDIX SECTION ...60

REFERENCES ..80

vii

LIST OF TABLES

Table Page

1. Resources Utilization Design Summary ... 47

2. Latency and Throughput ... 51

3. Input and Output Matrices Details .. 52

4. Comparing FPGA and MATLAB Results .. 53

viii

LIST OF FIGURES

Figure Page

1. Non-zero matrix elements comparison [5] ... 2

2. Band Matrix .. 3

3. Special Band Matrix ... 6

4. 8 x 8 Band Matrix and its Storage .. 8

5. A Bandwidth of 6x6 Matrices ... 10

6. Matrix Before and After Reorder of Nodes [19] .. 11

7. Graph representation of a matrix [19] ... 11

8. Breadth-First Search [22] .. 14

9. Graph Representation and Adjacent Matrix of a Sparse Matrix 15

10. Graph Representation and Adjacent Matrix After RCM Order 15

11. Sparse Matrix Representation of Harwell-Boeing [23] .. 16

12. Band Matrix Representation of Harwell-Boeing [23] .. 16

13. Undirected graph ... 17

14. Directed graph ... 17

15. Undirected Graph to demonstrate Distance, Eccentricity, and Diameter 18

16. Level structure of node X6 .. 20

17. Level structure of node X5 .. 20

18. Level Structure of node X2 ... 21

19. Undirected graph [8] ... 22

ix

20. ZedBoard- FPGA [30] .. 28

21. Zedboard Block Diagram .. 28

22. Zynq Z7020 CLG484 Bank Assignments on ZedBoard... 29

23. Flowchart of Proposed Work .. 33

24. Flowchart of the RCM Algorithm in the System .. 34

25. Matrix and its Graph Representation .. 34

26. Matrix and Graph after the RCM Reorder .. 35

27. Vivado Design Suite High-Level Design Flow .. 36

28. Configuration for JTAG Mode ... 37

29. High-Level Synthesis Design Flow .. 38

Figure 30. Zynq-7000 AP SoC Architecture .. 39

31. Flowchart of Data Transmission ... 41

32. Block Diagram of the System ... 42

33. Input Data Waveform ... 44

34. Output Data Waveform ... 44

35. Power Summary .. 45

36. Resources Utilization Design Summary ... 46

37. Timing Design Summary .. 48

38. Input Waveform .. 49

39. Output Waveform .. 50

40. Bar Graph of Bandwidth for Sparse Matrix and Band Matrix.................................... 57

x

LIST OF ABBREVIATIONS

Abbreviation Description

ACP Accelerator Coherency Port

ADC Analog-to-Digital Converter

BFS Breadth-First Search

CM Cuthill-Mckee Algorithm

DAC Digital-to-Analog Convertor

DMA Direct Memory Access

FIFO First-in/First-out

FPGA Field Programmable Gate Array

HDL Hardware Description Language

HLS High-Level Synthesis

IP Intellectual Property

LUTs Look Up Tables

MMD Modified Minimum Degree

PC Personal Computer

PL Programmable Logic

PS Processing System

RCM Reverse Cuthill-Mckee

SDK Software Development Kit

xi

SoC System on Chip

VHDL Very High-Speed Integrated Circuit Hardware

 Description Language

WHS Worst Hold Slack

WNS Worst Negative Slack

TNS Total Negative Slack

XPS Xilinx Platform Studio

xii

ABSTRACT

Low power and high computation speed with less memory storage are essential

for a real-time scientific computational application. Applications such as image

processing, power system, finite element system, circuit design, data from sensors utilize

a large amount of data. An arithmetic operation on a general matrix can take more time

and require more memory to store the data. Band matrices could be a key component in

many scientific computing applications. A special sparse matrix, i.e., band matrix, has

small bandwidth and minimizes storage, efficiently leading to less computation time.

This paper presents a design and hardware implementation to convert a sparse matrix to a

band matrix for a minimum matrix bandwidth using an existing Reverse Cuthill-Mckee

algorithm (RCM).

The Field Programmable Gate Array (FPGA) hardware design helps to solve

larger data problems in terms of memory storage, speeding up many sparse matrix

operations. Based on the FPGA hardware, the design and implementation, and synthesis

are carried out by keeping in mind the architecture, area, and power requirements. In this

research, the Vivado High-Level Synthesis (HLS) language is used. Intellectual Property

(IP) generated from HLS will be linked to the ZYNQ processor, which can be

implemented in a large system and have flexibility in FPGA based design. For the

verification and reporting of this designed system, MATLAB is used.

1

I. INTRODUCTION

Overview

A matrix is generally stored as a two-dimensional array. It is possible to represent

many systems with less non-zero elements in matrices form. If the non-zero elements are

less than 10% of the matrix's total elements, it is called a sparse matrix. The sparsity of

the matrix is calculated by dividing the total zero elements by a total number of matrix

elements. When the number of zeroes is relatively large, a requirement for more efficient

data structures arises. We are drifting away from serial computing towards parallel

distributed computing over a large variety of architectural designs. The generic

implementation of data structures allows one to reuse the most appealing one, which may

not be the fastest. In a graph algorithm, to obtain information where there is a small

number of nonzero entries but millions of rows and columns, a memory would be wasted

by storing redundant zeros. For a matrix, the amount of memory required to store its

elements in the same format is proportional to matrix size. Because the sparse matrix has

few non-zero elements, memory management can be reduced by storing only non-zero

entries [1]. There is a various application of sparse matrices such as circuit simulation,

power network, structural analysis, signal processing and statistics, computer vision,

tomography, finite-element methods [2][3][4], etc. and a huge amount of data is

generated by these applications [5]. A sparse matrix is useful for computing large scale

matrices. Figure 1 is a graph comparing the non-zero elements of an ordinary matrix and

a sparse matrix.

2

Figure 1. Non-zero matrix elements comparison [5]

The graph shows that the ordinary matrix contains more non-zero elements,

making the matrix operation slow and needs more storage [5]. Sparse matrix computation

can be accelerated by reducing matrix bandwidth [6]. Researchers believed and have

been proved that rearranging sparse matrix vertices could reduce its bandwidth or profile.

Band matrix is a special type of sparse matrix where nonzero elements are aligned to

form a main diagonal and sub diagonal. In a band matrix operation, only diagonal, which

contains non-zero elements, are stored. Because a band matrix has a smaller bandwidth

than a sparse matrix and nonzero elements are clustered to diagonal, it is useful for

scientific computing such as direct methods for solving sparse linear system and for

iterative methods. In this paper, a hardware design is proposed which converts a sparse

matrix to band matrix using the RCM algorithm to reduce the bandwidth of a matrix.

Large data is received from different applications such as image processing,

power system, finite element system, data from sensors and is often sparse and contains

more zero elements. As the matrix dimension increases, it becomes difficult for the

software to compute the data. By reordering sparse matrix elements, a sparse matrix can

3

be converted into a band matrix to reduce its bandwidth. There are few different

algorithms to reduce the bandwidth of a matrix, such as the Cuthill-Mckee (CM), the

Reverse Cuthill-Mckee (RCM)[4], Sloan’s algorithm, and the Gibbs- Poole algorithm [3]

[7][8]. In this research, we used the Reverse Cuthill-Mckee algorithm to rearranges data

of a sparse matrix because it is simple to execute, easy to parallelize relatively, shows a

low computational cost, and proved to be best for the band elimination method[4], [6],

[9], [10].

In this research, FPGA based hardware design is proposed for an RCM algorithm

which will rearrange nonzero elements of sparse matrix diagonally to form a band matrix

with smaller bandwidth or profile. A sparse matrix's bandwidth is the maximum distance

between two elements in any row of a matrix [11]. A banded matrix is a sparse matrix

where the non-zero element is aligned to the diagonal band (main diagonal) and zero or

more diagonals on either side. Only nonzero elements of the diagonal are stored in the

banded representation of the sparse matrix. The band matrix's main concept is to reduce

the sparse matrix's bandwidth so the new matrix will have bandwidth smaller than the

maximum possible bandwidth. Bandwidth is directly proportional to the amount of

memory required to store a matrix, so proper reordering of nodes is essential to reduce

the memory cost [11][4]. An example of a band matrix is shown in Figure 2.

Figure 2. Band Matrix

4

For an nxn matrix, A to be band matrix, all elements outside a diagonally

bordered band having a range (column and row) as “k” and “p” should satisfy the given

condition in Equation 1.

 ai,j = 0 if j<i-p, or j>i+k 1

 Where k and p are upper bandwidth and lower bandwidth, ai,j is matrix elements.

A matrix having k = p = 0 and k = p = 1 is called diagonal and tridiagonal matrix. A

matrix to be band should have a reasonably smaller bandwidth. The bandwidth of a

matrix can be calculated using Equation 2.

 Bandwidth (BW) = k+p+1 2

Matrix with smaller bandwidth helps minimize hardware design, smaller memory

allocation storing only the non-zero elements, and decreasing the overall computational

time. Reducing matrix bandwidth by reordering a sparse matrix can accelerate many

sparse matrix computations[12]. For example, a direct method that allows simple data

structure for solving a linear system is useful in an iterative method as nonzero elements

are grouped close to diagonal enhancing data locality. The non-zero elements number of

a matrix depends on the matrix size and calculated using Equation 3 below[13].

 NNZ = 𝑛 + ∑ 𝑛 − 𝑖𝑘
𝑖=1 + ∑ 𝑛 − 𝑗𝑝

𝑗=1 3

5

II. LITERATURE REVIEW

Many applications generate a huge amount of data. When the number of data

increases, calculation speed often decreases. It has been challenging to keep many

features such as hardware size, memory storage, speed in an acceptable range, yet making

data computation easy. Data generated from a different application are generally sparse.

Sparse indicates data having less non-zero value and more zero values. The sparse matrix

concept is usually used for larger applications as it is easy and reliable to store only non-

zero elements. The sparse matrix comparatively has larger bandwidth, which means large

memory is required for storage. The bandwidth and matrix profile has always been an

area of great concern because of their influence in the finite element method, circuit

design, hypertext layout, chemical kinetics, linear equation solution, etc.[1]. It has been

found that a reduction in bandwidth and profile of a matrix can be reduced memory

storage requirement and processing time of such linear systems. There are many tools

proposed for the hardware design of FPGA. The High-Level Synthesis (HLS) is

considered an easy and simple tool to generate hardware from C/C++ (C to Verilog/

VHDL) [14]. This research uses the Vivado HLS to design a software model of the RCM

algorithm and hardware implementation on FPGA.

Band Matrix

In matrix theory, a band matrix is a special type of sparse matrix whose nonzero

elements lie above and below the main diagonal. The number of nonzero elements above

the main diagonal gives upper bandwidth, and nonzero elements below the main diagonal

give lower bandwidth of the matrix. The total bandwidth of a matrix is considered the

sum of upper bandwidth, lower bandwidth, and main diagonal. The last diagonal (above

6

and below the main diagonal) containing non-zero elements determines the upper and

lower bandwidth matrix. Matrix bandwidth plays an important role in memory

requirements in a system. Let for a matrix A of elements Ai,j with upper and lower

bandwidth ‘k’ and ‘p’:

Let for a matrix A of elements Ai,j with upper and lower bandwidth ‘k’ and ‘p’:

• The upper bandwidth ‘k’ is the smallest number where Ai,j = 0 whenever j-i>k

• The lower bandwidth ‘p’ is the smallest number were Ai,j = 0 whenever i-j>p

There are special band matrices: (1) Diagonal matrix and (2) Tridiagonal matrix.

The Diagonal matrix has all values zero except the diagonal elements. In a tridiagonal

matrix, the main diagonal, the first upper diagonal, and the first below diagonal have

nonzero elements, and the rest value is zero. The diagonal matrix has upper and lower

bandwidth zero, and the tridiagonal matrix has upper and lower bandwidth of one. An

example of a diagonal and tridiagonal matrix is shown in Figure 3 below.

(a) Tridiagonal Matrix (b) Diagonal Matrix

Figure 3. Special Band Matrix

Application of Band Matrix

In numerical analysis, for faster and efficient operation, a matrix with a smaller

bandwidth/profile is preferred. Matrix operation becomes difficult and less efficient for

larger matrix. A smaller bandwidth in a matrix is important to minimize the hardware

https://en.wikipedia.org/wiki/Numerical_analysis

7

design and memory store by storing only the non-zero matrix elements and simplifying

complex matrix operations such as LU factorization and QR factorization for a faster and

accurate solution. It can be implemented on a large-scale system in a linear equation.

A banded matrix is a special type of sparse matrix, with non-zero elements

aligned to a diagonal, forming the main diagonal with zero or more diagonals on either

side. A matrix bandwidth has been the topic of research for a long time. The researcher is

interested in finding ways to minimize the bandwidth of a matrix through a sparse matrix

with efficient computation and less memory storage than a dense matrix. Therefore, here

comes a concept of a band matrix with reduced bandwidth. Because a band matrix has

small bandwidth, they are used in many real-life applications such image processing,

linear system, circuit theory, finite element method for approximating solutions of a

partial differential equation, chemical kinetics, numerical geophysics, hypertext layout,

large scale power transmission system, etc. where collected data has many zero elements

[5] [1] [15] [16] [17]. In a complex system such as a finite element system and problems

in a higher dimension, matrices are often banded.

Band Matrix Storage

The real-life application produces a huge amount of data. There is always

demanded to analyze and solve large and complex problems defined by a linear equation

in the form Ax = b. The size of these data is very large, which needs much storage. In a

band matrix, which is a special kind of sparse matrix, non-zero elements are aligned

along the diagonal only (on the main diagonal and to sub diagonals) while all other

elements are zero. The numbers of elements to be stored are only diagonal elements,

therefore, minimizing memory storage. Many storage methods are proposed for storing

8

band matrix. The two commonly used storage techniques for a general band matrix are

described below.

BLAS – General Band Storage Mode: The most popular one is a linear algebra

package (LAPACK), also known as BLAS. This method is suitable for both a square

matrix and a rectangular matrix. In this method, the non-zero elements of matrix A are

stored in a rectangular, (kl+ku+1) by n, matrix Aband, such that the diagonals of A become

rows of Aband while the columns of A remain as columns of Aband. For example, Figure 4

shows that an mxn size matrix A having upper and lower bandwidth of q and p can be

stored in a two-dimensional array as p+q+1 row and n column. For row storage, all row

values are pushed to the left or right to align the column on an anti-diagonal forming a

matrix Aband. For column storage, diagonals of the matrix are stored in a row array, and

columns of a matrix are stored in the array's corresponding column. If p, q < n then, A is

stored in either a (p+q+1)-by-n or a n-by-(p+q+1) matrix Aband with ai,j = aband
i,j-i+p+1

𝐴𝑏𝑎𝑛𝑑 =

[

0 0 0 𝑎11 𝑎12

0 0 𝑎21 𝑎22 𝑎23

0 𝑎31 𝑎32 𝑎33 𝑎34

𝑎41 𝑎42 𝑎43 𝑎44 𝑎45

𝑎52 𝑎53 𝑎54 𝑎55 𝑎56

𝑎63 𝑎64 𝑎65 𝑎66 𝑎67

𝑎74 𝑎75 𝑎76 𝑎77 𝑎78

𝑎85 𝑎86 𝑎87 𝑎88 0]

Figure 4. 8 x 8 Band Matrix and its Storage

Let A is a matrix of size m x n and the number of nonzero nnz. The memory

requirements in bytes are calculated as in Equation 4 [18].

 memory = 8 * nnz + 4 * (nnz + n + 1) 4

 Below are the steps for BLAS general band matrix storage mode.

For an mxn matrix A with upper bandwidth “ml” and lower bandwidth “mu”:

9

Step 1: Select j = 1: n, where n is the size of a matrix

Step 2: k = mu+1-j

Step 3: for i = max(1, j - mu) : min(m, j+ml)

Step 4: When step 3 is true, Anew(k+i, j) = A(i, j), where Anew is storage form with

dimension (ml+mu+1, n)

Step 5: Continue until step 3 condition is true

Step 4: Repeat process until the value of “j” is equal to n

General Band Storage Mode: This method is applied only for a square matrix.

In this process, the band matrix elements are packed to a two-dimensional array column-

wise so that each diagonal of a matrix appeared like a row in the packed array.

For a matrix A of size mxn and bandwidth ml and mu, the process is explained

below. Let Anew be the new storage matrix. Its dimension should be greater than or equal

to (2ml+mu+16,n).

Step 1: md=ml+mu+1

Step 2: Select j = 1: n, where n is the size of a matrix

Step 3: for i = max(j – mu, 1) : min(j + ml, n)

Step 4: When step 3 is true, Anew (i - j + md, j) = A(i, j), where Anew is storage form

Step 5: Continue until step 3 condition is true

Step 6: Repeat process until the value of “j” is equal to n

Bandwidth Reduction Algorithm

It is considered that the smaller the bandwidth of a matrix, the lesser is the

computer storage requirement and lesser solution time. Therefore, for a larger data

producing application, the matrix's profile and bandwidth play an important role. For a

10

given matrix A, its bandwidth is given by Equation 5.

 A(i, j) = 0 for |i - j| > K 5

Where K is a non-negative integer

For example, the bandwidth of the given matrices in Figure 5(a), (b), and (c) are

3, 5, and 1, respectively.

(a) (b) (c)

Figure 5. A Bandwidth of 6x6 Matrices

 Rows and columns reorder of a sparse matrix plays an important role in achieving

certain properties that better perform the system performance. Among different

properties, bandwidth is one of them [11]. There is a different algorithm proposed to

reduce the bandwidth of a matrix by reordering its nodes. Figure 6 shows a matrix Ka

before reordering and Kb matrix after rearranging its rows and columns. Figure 6 is a

graph representation of both matrices

11

(a) (b)

Figure 6. Matrix Before and After Reorder of Nodes [19]

Figure 7. Graph representation of a matrix [19]

The upper and lower bandwidth of Ka is five each, and the lower and upper

bandwidth of Kb is three each. Figure 7 is a graphical representation of the matrix and

how the reordering of their nodes helps reduce the matrix's profile.

Different theories for reordering a sparse matrix have been proposed. Some of them are

mentioned below.

I. Cuthill-Mckee Algorithm

II. Reverse Cuthill-Mckee Algorithm

III. Gibbs-Poole-Stockmeyer Algorithm

IV. Gu Feng Algorithm

V. King’s Algorithm

VI. Modified Minimum Degree

12

Above mentioned algorithms represent a sparse matrix as a graph. A graph is a

model made up of vertex or nodes to represent pairwise relationships between objects.

Graphs are connected by edges. A graph can be directed or undirected. A sparse matrix is

generally represented as an undirected graph by connecting each row and columns of the

matrix. Further detail for the RCM algorithm is described below.

Cuthill-Mckee Algorithm: This algorithm is named after Elizabeth Cuthill and

James Mckee [4], [20]. The purpose of this method is to permute a symmetric sparse

matrix to a band matrix with smaller bandwidth. CM uses the concept of Breadth-First

Search with a start peripheral node until all nodes are visited. The algorithm’s

pseudocode is given below.

Step 1: Choose vertex with the lowest degree (x) and assigned to R. R<-{x}and let Q is an

empty queue.

Then following steps is done till |R|<n for i=1,2,3…, n

Step 2: Add adjacent nodes of element ‘x’ (which are not in R) to Q {} in increasing order

of their degree. Check if that number is in ‘R’ or not? If not, add it to ‘R.’

Step 3: Repeat this process till Q {} is empty, and all nodes have been explored (i.e., the

size of R should be equal to the number of nodes).

Step 4: Rearrange nodes according to the new index in array R.

Reverse Cuthill-Mckee Algorithm: The origin of the RCM algorithm is from

Cuthill-Mckee (CM) algorithm named after Elizabeth Cuthill and James McKee. This is

also an algorithm to permute a symmetric sparse matrix to a band matrix with small

bandwidth. The Reverse Cuthill-Mckee (RCM) algorithm is given by Alan George and is

commonly used for bandwidth reduction [21] [12]. It is the same algorithm as RC, but

13

after getting results, the index number is reversed at the end. When Gaussian elimination

is applied, practically, the RCM is considered superior to the CM as it reduces fill-in [11]

when Gaussian elimination is applied. Fill-in process in a matrix are entries that change

non-zero from initial zero during algorithm execution. To reduce arithmetic operation and

memory storage for a algorithm, it is necessary to reduce fill-in by changing rows and

columns of a matrix. The RCM algorithm is used in this design to reorder nonzero

elements of a sparse matrix to diagonal. This algorithm works on an unlabeled graph of a

matrix.

Smaller bandwidth can be achieved by converting a sparse matrix into a band

matrix by rearranging elements of the sparse matrix. Among several heuristics for profile

and bandwidth reduction, the RCM algorithm method is considered the most promising

technique for profile reductions [10]. By an appropriate renumbering of the nodes, it is

often possible to produce a matrix with much smaller bandwidth. The RCM algorithm’s

goal is to reduce the bandwidth of a symmetric sparse matrix, which is used in linear

solvers. An important decision in the RCM is choosing a start node. Various concepts are

proposed to find a start node in the RCM, such as peripheral node, pseudo-peripheral

node, small degree node. Furthermore, the RCM is generally used for matrices having a

higher diameter [12].

In the RCM algorithm, the node with the smallest degree in the matrix (graph) is

chosen and applies Breadth-First Search (BFS) algorithm on the graph, ordering the

nodes in ascending order according to their degree in each level. If any nodes are not

covered in the first BFS, the same process is done again, taking the uncovered smallest

degree node as the starting point. After all the nodes are covered, the result array of the

14

list is reversed, and the matrix is reordered according to the list to get a new band matrix.

BFS is a fundamental search algorithm to explore the nodes and edges of a graph. The

BFS algorithm is generally useful in finding the shortest path on an unweighted graph.

The BFS starts with some arbitrary node at first and explores its neighbor before moving

to the next level neighbor. In the BFS algorithm, the order in which nodes are explored is

shown below in Figure 8.

Figure 8. Breadth-First Search [22]

 The algorithm for Reverse Cuthill Mckee for an mxn matrix is given below.

Step 1: At first, the vertex with the lowest degree is chosen (x) and is assigned to R. R<-

{x}and let Q is an empty queue.

Then following steps is done till |R|<n for i=1,2,3…, n

Step 2: Add adjacent nodes of element ‘x’ (which are not in R) to Q {} in increasing

order of their degree. Check if that number is in ‘R’ or not? If not, add it to ‘R.’

Step 3: Repeat this process till Q {} is empty, and all nodes have been explored (i.e., the

size of R should be equal to the number of nodes).

15

Step 4: Reverse elements order of R, i.e., new nodes arrangement will be R[n+1-i]

The below examples show how reordering rows and columns of a matrix bring nonzero

elements closer to the diagonal. A sparse matrix graph and its adjacency matrix are

shown below in Figure 9.

Figure 9. Graph Representation and Adjacent Matrix of a Sparse Matrix

Non-zero elements are not exactly close to the diagonal, and the bandwidth of the

matrix is 17 (upper and lower eight each and one for diagonal). The RCM algorithm, a

rearranged graph, and its adjacency matrix are shown below in Figure 10.

Figure 10. Graph Representation and Adjacent Matrix After RCM Order

After using the RCM algorithm, the new matrix's bandwidth is 5 (upper and lower

2 and 1 for diagonal), much lesser than the original matrix. The RCM re-arrange the node

connectivity and minimizes fill-in, therefore, reducing bandwidth.

Figure 11 and Figure 12 are more examples to show the importance of reordering the

nodes of a matrix in reducing matrix bandwidth.

16

Figure 11. Sparse Matrix Representation of Harwell-Boeing [23]

Figure 12. Band Matrix Representation of Harwell-Boeing [23]

We can see, after applying the RCM algorithm, bandwidth has decreased almost

by double reducing memory storage, small hardware design, and less computation time.

Gibbs-Poole-Stockmeyer Algorithm: This is an important algorithm proposed

by Gibbs-Poole-Stockmeyer [3] in reducing the bandwidth of a symmetric sparse matrix.

This algorithm works with the concept of pseudo-peripheral node [3], [7], [8] to reduce

both bandwidth and profile of a matrix. A matrix can be represented by a graph using

graph theory. The basic concept of graph theory, peripheral node, and pseudo-peripheral

17

are explained below.

Graph Theory: The study of a graph is called Graph theory, a mathematical

structure which also shows a relation between objects. Directed and undirected graphs are

two types of graphs. A graph has nodes/points and is connected by edges. A directed and

undirected graph example is shown in Figure 13 and Figure 14.

Figure 13. Undirected graph

Figure 14. Directed graph

A graph has different properties, namely: distance, eccentricity, and diameter of

the graph.

Distance d(x,y): it is the length of the shortest path between two nodes, x and y.

Eccentricity l(x): maximum distance from a specific node to reach all other nodes.

Diameter ∂ (G): maximum eccentricity of a graph.

18

Figure 15. Undirected Graph to demonstrate Distance, Eccentricity, and Diameter

A given graph in Figure 15, diameter, eccentricity, and distance is calculated, as

shown below.

d(X6,X3) = 2, smallest possible distance between X6 and X3

l(X6) = 3, at maximum three distance, every node can be reached from node X6

∂ (G) = 5, since X2, X5, and X7 have maximum eccentricity.

Pseudo-peripheral Node: Gibbs-Poole-Stockmeyer came with a new concept of

finding a start node which generally has high eccentricity called a pseudo-peripheral

node. Their eccentricity can be as closer as the diameter of a graph. This pseudo-

peripheral node is considered a good start point for applying the RCM algorithm.

Gibbs-Poole-Stockmeyer algorithm in finding pseudo-peripheral node has mainly

three steps. They are [3], [8].

Step 1: Finding two pseudo-peripheral nodes of a graph

Step 2: Minimizing level width

Step 3: Renumbering nodes level by level

The pseudocode of an algorithm given by Gibbs-Poole-Stockmeyer to find a

pseudo-peripheral node of a graph is explained below[3].

Step 1: Choose a random node of minimal degree, say v.

19

Step 2: Construct a level structure L(v) of the given graph with “v” as a start root.

Step 3: Note the eccentricity of “v,” l(v), which is also equal to the number of levels.

Step 4: Let M be a new set of last level nodes.

Step 5: Arrange last level nodes in an increasing degree order and select a node, let “w”

from M with a minimum degree.

Step 6: Find the eccentricity of the selected node.

Step 7: If L(w) > L (v), new start node will be “w”

Step 8: Repeat step (ii) till the new node's depth or level is greater than the selected one.

Step 9: If for all w € M, the level of L(w) is not greater than L(v), v will be a pseudo-

peripheral node.

This idea given by Gibbs-Poole-Stockmeyer for bandwidth reduction highly

depends on a selection of the start node. Finding a pseudo-peripheral node is further

explained by the below example. Figure 16 as a reference image, the below steps are

carried out to determine the pseudo-peripheral node.

Step 1: Choose random node (let v = X6).

Step 2: Construct a level structure of a given graph, taking X6 as a start node, as shown in

Figure 16.

20

Figure 16. Level structure of node X6

From the figure, eccentricity l(X6) = 3, which is also considered the number of

levels. In level 3, the degree of X5 is 1(number of connections), and the degree of X7 is

two.

Step 3: Choosing the next node with a minimum degree from the last level, let u = X5.

Step 4: Construct level structure for the node u.

Figure 17. Level structure of node X5

21

Eccentricity l(X5) = 5, Since l(X5) > l(X6), v = X5.

Step 5: Since X2 is on the last level, let u = X2.

Step 6: Construct level structure for the node u.

Figure 18. Level Structure of node X2

Step 7: Eccentricity l(X2) = 5, Since l(X5) is not greater than l(X2), v = X2 .

Step 8: X2 and X5 are two pseudo-peripheral nodes.

King’s Algorithm: King’s algorithm is a modification of the RCM algorithm

where nodes/vertices are ordered based on the number of edges they must already visit

vertices. The concept of this algorithm is that “if a vertex has many edges that connect it

to vertices that have already been visited (ordered), then it may be a part of a local cluster

and should be ordered closer to the other nodes in its cluster”[11].

Gu Feng Algorithm: This is an improvement of the Gibbs-Poole-Stockmeyer

algorithm [3] given by Gu Feng to find a peripheral node [8]. A graph can have many

pseudo-peripheral nodes whose eccentricity may be close enough to the graph's diameter

∂ (G), and it may not be a peripheral node. If the eccentricity of a node is equal to the

22

diameter of a graph, then it is called a peripheral node [8]. In figure 10, there are three

possible peripheral nodes, X2, X5, and X7. Since selecting a start node is crucial in

reducing matrix bandwidth, according to Gu Feng, a peripheral node is considered a good

starting node for the RCM algorithm because its eccentricity is equal to the diameter of a

graph. However, since it is very expensive to compute a peripheral node, it is not used

often. Here is an example in Figure 19 to show that a pseudo-peripheral node may not be

a peripheral node, and its eccentric distance could be less than a graph diameter [8].

Figure 19. Undirected graph [8]

According to the Gibbs-Poole-Stockmeyer pseudo-peripheral algorithm, in Figure

19, if r is chosen as a minimum degree node as a start node, its eccentric distance will be

l(r)= 6. Constructing level structure at node ‘r,’ ‘t’ would be the last level node.

Generating level structure at ‘t’, l(t)= 6, and ‘r’ is the last level node. Since l(r) = l(t) = 6,

therefore, we can say r and t are two pseudo-peripheral nodes of the graph. However,

their eccentric distance is not equal to the diameter of a graph, which is ∂ (G) = 8. From

above figure, from definition of peripheral node, node x and y could be possible

peripheral nodes as l(x) = l(y) = ∂ (G) = 8. Thus, Gu Feng suggested that a pseudo-

23

peripheral node is not effective in considering it as a start node.

Gu Feng algorithm pseudocode for finding peripheral node is given below:

Step 1: Choose an r ∈ A, the closer to the center of symmetry (or pseudo center of

symmetry), and with the largest possible degree, as the initial node.

Step 2: Generate G’s level structure rooted at r: Let i = l(r); Let el(r)+1 = 0.

Step 3: Ordering nodes in Li (r) decreasingly following their degrees. Calculating nodes’

eccentric distance one by one. If ∃x ∈ Li(r) that e(x) = 2i then x is a peripheral node,

procedure stops; else go to Step 4.

Step 4: Seeking If ei ≥ 2(i − 1), then the node whose eccentric distance is ei is a peripheral

node, the procedure stops else i − 1 → i and go to Step 3.

For Figure 19, the peripheral node can be determined in the following ways,

O, S, U, V, and W are five nodes with the highest degree, i.e., 4.

Step 1: If O is a start point, two nodes, x, and y will be at the last level with an eccentric

distance of O as l4(0). The degree of x and y is 1. Eccentric distance of x and y , e(x) =

e(y) = 2i = 2*4 = 8. x and y could be a peripheral node.

Step 2: Taking start node at S, t will be in the last level with eccentricity e(t) = 6 ≠ 2*6=

12. e(t) = 6 < 2*(6-1) = 8. Now will check l5(S), x,y,w is at the last level. e(x)=e(y)=8,

e(w) = 5. The result will be the same if taking ‘W’ as a start node. x and y could be a

peripheral node.

Step 3: If U is a start node, y is only in the last level L6(U). e(y) = 8 < 2*(6-1) = 10.

Checking x in L5(U), e(x) = 8 = 2*(5-1) = 8. x is a peripheral node.

The above example shows that a peripheral node is a pseudo-peripheral node, but

the reverse is not always true. Though the peripheral node algorithm is considered a good

24

start point to apply the Reverse Cuthill Mckee Algorithm (RCM), it is expensive to

compute. Therefore, this algorithm is not used often.

Modified Minimum Degree/ Multiple Minimum Degree: This original

algorithm is proposed by Harry Max Markowitz [24] in 1957 for a non-symmetric linear

system. Tinney and Walker [25] proposed a symmetric version of Markowitz to solve

large sparse systems in analyzing a power system. A theoretical graph model of Tinney

and Walker’s method was developed by Ross [26] and was named the Minimum Degree

Algorithm. This algorithm is used to permute rows and columns of a symmetric sparse

matrix before applying Cholesky Decomposition to reduce the non-zero number in the

Cholesky factor [11]. The algorithm reduces nonzero elements of a sparse matrix by

ordering the edges based on their degree. For a linear system of an algebraic equation, Ax

= b, where A is a symmetric sparse square of order nxn, matrix A usually suffers some

fill-in [27], i.e., it will have more non-zero than the upper triangular when factorized by

the Cholesky factor L. Therefore, a permutation matrix “P” is used so that the matrix

(PTAP) is also symmetric and has less possible fill-in. A new reorder equation (PTAP)

(PTx) = PT b is solved instead.

 For a given undirected graph G = (V, E), where V =vertices and E is an edge of a

graph, the pseudocode for Modified Minimum Degree (MMD) is as follows:

Step 1: For i =1 to V

Step 2: Choose: the vertex v in graph G that has a minimum degree

Step 3: Remove vertex v from G

25

Serial Communication

In serial communication, data is sent between a PC and an external device one bit

at a time. There are two types of serial communication, such as synchronous and

asynchronous serial communication. For synchronous serial communication, a transmitter

and a receiver are synchronized by a clock signal and running at the same rate so that the

receiver and transmitter can sample data at the same time interval. On the other hand,

asynchronous serial communication is a process where a transmitter and receiver are

continuously synchronized by a common clock signal.

Because asynchronous serial communication has the advantage of long-distance

communication and high reliability, it is generally used in data exchange between

computers and peripherals [28]. A Universal Asynchronous Receiver- Transmitter

(UART) is generally used for asynchronous serial communication. UART is an integrated

circuit hardware device for serial communication used in computer or peripheral serial

port. It mostly includes a clock generator, input, and output shift registers, read/write

logic control, transmit/receive control, system data bus buffer, first-in/first-out (FIFO)

buffer memory. Commonly, serial communication uses 8 data bits, no parity, and a one-

stop bit. The speed/time of data transmission in a system is represented by the baud rate.

A higher baud rate indicates that higher bits are transferred per second. The standard

baud rate in bits per second used in serial communication are: 110, 300, 600, 1200, 2400,

4800, 9600, 14400, 19200, 38400, 57600, 115200, 128000 and 256000 [29].

Field Programmable Gate Array

To perform a complex task, there are many hardware architectures. Field

Programmable Gate Array (FPGA) is one of them. It is an integrated circuit that can be

26

designed and programmed by the user as needed. FPGA is considered to deliver high

performance, maintaining high flexibility. FPGA has a lot of simple and complex

components. It contains an array of programmable logic blocks that can be configured to

perform simple to complex combinational functions. FPGA includes simple components

such as four-input LUTs (Look Up Tables) to implement logic functions like AND,

NAND, NOT, or any user-defined function, memory elements like simple flip-flops or

complex memory block. Usually, FPGA comes with software that is provided by the

vendor to design and program it. Two hardware description languages (HDL) languages,

such as Verilog and VHDL (Very High-Speed Integrated Circuit Hardware Description

Language), are used to program FPGA.

Some FPGA has digital as well as analog features. Commonly available analog

features are slew rate, quartz crystal oscillator, on-chip resistance-capacitance oscillator,

phase-locked loop with embedded voltage control oscillator, etc. Mixed-signal FPGA

generally has integrated peripherals such as analog-digital converter (ADC), digital to

analog converter (DAC), an analog signal conditioning block helping them to behave as a

system on chip (SoC). Because an FPGA is significantly faster for some applications, it

can be used to solve any computable problem. Alongside using FPGA as a hardware

accelerator, it can also be used to implement soft microprocessors such as Xilinx

MicroBlaze or Altera Nios.

Digilent Zedboard: The proposed algorithm for the sparse matrix to band matrix

conversion is implemented in the Xilinx Zynq series board, i.e., ZedBoard. It is a low-

cost development board of Zynq-7000 All Programmable SoC XC7Z020-CLG484-1 (AP

SoC) consisting of two ARM Cortex A9 cores and Xilinx programmable logic in a single

27

device. The features of this board are mentioned below. An image for Zedboard FPGA is

shown in Figure 20.

Functional Description: A combination of a dual Corex-A9 with a speed of 667

MHz Processing System (PS) with 85,000 Series-7 Programmable Logic (PL) cells,

therefore, makes it a powerful device for many applications. ZedBoard Zynq -7000

consists of a memory interface unit that includes a dynamic memory controller and static

memory module. The ZedBoard has two Micron DDR3, 128 Megabit, each with 16

memory components creating a 32- bit interface with a total 512 MB of memory. This

board consists of a 4-bit SPI (quad-SPI) serial NOR flash. The Multi-I/O SPI Flash

memory helps to provide non-volatile code and data storage. It is also used to initialize

the PS subsystem as well as configure the PL subsystem (bitstream). The XC7Z020 SoC

contains Atrix-7 PL, which has 85k logic cells, 53200 LUT, 106400 flip-flops, 560 kB of

BRAM organized to 140 units, each consisting of 2048 by 18-bit storage, and 220 DSP

slices with two 12 V on-chip analog-to-digital converter (XADC). This board is

compatible with Xilinx’s high-performance Vivado Design Suite as well as the ISE

Toolkit. ZedBoard offers more capacity, more resources, and higher performance than

earlier designs.

28

Figure 20. ZedBoard- FPGA [30]

Figure 21. Zedboard Block Diagram

29

Figure 22. Zynq Z7020 CLG484 Bank Assignments on ZedBoard

30

III. PROBLEM STATEMENT

In the past years, multicore systems play an important role in high-performance

computing. However, due to shortage of optimization techniques, some linear system is

not able to utilize it in full. Lower power and high computation speed with less memory

storage have always been essential criteria for a real-time scientific computational

application. Data from the different applications are sparse and are generally larger in

number. A sparse matrix has lesser non-zero elements, which is helpful for fast

computation. Band matrix, on the other hand, is a special sparse matrix with reasonably

small upper and lower bandwidth making them suitable for simpler algorithms than a

sparse matrix. The difference in storage techniques of both matrices makes a band matrix

preferable over a sparse matrix. Moreover, a banded matrix is compressed, which saves

memory usage [31]. It is considered to have a great advantage for very large matrices.

The software has certain advantages. However, some work process is dependent

on memory, CPU, and storage allocation. It might slow down if when an application does

not get enough memory or available allocated space is used. Hardware has different

modules designed to do dedicated tasks increasing the efficiency and overall performance

of the system. Software for the Reverse Cuthill Mckee algorithm (RCM) is available in

MATLAB. However, there is a limitation of matrix size in MATLAB, which is defined

by the amount of available RAM in a system. Nowadays, various application fields such

as image processing, telecommunication, signal processing, circuit analysis, etc. consider

FPGA technology demanding and advantageous considering the fine degree of

customization available which is used to direct and orchestrate data movement on and

off-chip resulting in a good performance and for high data throughput[32]. There is

31

always a challenge to develop fine-tuned FPGA implementation, which could take

months to develop to incorporate all the state of art techniques to exceed its performance.

The solid step for improving the performance no longer involves proposing new

expensive optimization but applying the optimizations whenever they are useful. To

avoid the extra computation and storage imposed by the large majority of zero elements

in a band matrix, it is standard to store only the nonzero elements in memory. Since the

hardware does not need to change for varying matrices, the time required for initialization

can be minimized by which the system integration is simplified. Not much work is done

related to the RCM algorithm at the hardware level. This research presents an idea of the

implementation of the RCM algorithm for sparse to band matrix conversion using Field

Programmable Gate Array (FPGA).

32

IV. METHODOLOGY

Study Area Description

The design and the methodology for this research are discussed in this section.

Vivado HLS takes an input matrix, synthesis, and creates RTL. Packaged IP from HLS is

used in Vivado IDE for the hardware implementation. A Zynq software project is created

in Xilinx SDK (software development kit). The extracted hardware design and bitstream

from Vivado IDE are implemented in Xilinx Zynq – 7000 FPGA using SDK (Software

Development Ksit). Random square sparse matrices are used as input data. Most of the

input data are undirected symmetric matrices. In this research number of different sparse

matrices were tested. Each matrix was of varying density and size. To test the system's

accuracy, the same input data were given to MATLAB, and the result was compared.

Details about the experimental work and results have been discussed in the next section

given below.

Expert Suggestion and Discussion

 Guidelines and suggestions from the thesis advisor and mentor, Dr. Semih Aslan,

and committee members Dr. William A Stapleton and Dr. Shuying Sun, helped carry out

this research. Related research articles from the literature review were a great source to

start the work.

Design and Description of the Proposed System

The overall procedure for this research is shown in the flowchart in Figure 23.

The flowchart of the system design for the RCM algorithm is shown in Figure 24. This

research contains two parts: software design and hardware implementation. For the

software design, Xilinx Vivado High-Level Synthesis (HLS) 2016.4 software is used.

33

C++ programming language is used to write the main program and testbench. A sparse

matrix is input data in HLS. After successful synthesis and implementation, the output

from Vivado HLS can be used as an IP block for an IP catalog in either Vivado Design

Suite, System Generator for DSP (Vivado, and ISE versions), or in Xilinx Platform

Studio (XPS). For this research, we are using the Vivado Design Suite. A variety of

design source, including (1) RTL design, (2) IP based design, and (3) Netlist designs, can

be implemented in the Xilinx Vivado Design Suite, which is suitable for ultra-Scale

FPGA and Xilinx 7 series FPGA design.

Figure 23. Flowchart of Proposed Work

34

Figure 24. Flowchart of the RCM Algorithm in the System

The operation of the flowchart shown in Figure 24 is discussed in Figure 25 for an

8x8 matrix.

(a) 8x8 input matrix (b) Graph representation

Figure 25. Matrix and its Graph Representation

Calculate the degree of connection for each node.

1,4,7 has small degree node

Step 1: r and q array empty array (let)

Step 2: r = {1}, q = {5}

Step 3: r = {1,5}, q = {3}

35

Step 4: r = {1,5,3}, q = {2}

Step 5: r = {1,5,3,2}, q = {6,8}

Step 6: r = {1,5,3,2,6}, q = {8}

Step 7: r = {1,5,3,2,6,8}, q = {4}

Step 8: r = {1,5,3,2,6,8,4}, q = {7}

Step 9: r = {1,5,3,2,6,8,4,7}, q = {}

Reverse r ={7,4,8,6,2,3,5,1}

After reordering nodes, the below result is achieved.

(a) 8x8 output matrix after reorder of nodes (b) Graph representation

Figure 26. Matrix and Graph after the RCM Reorder

After implementing the RCM algorithm, Figure 25 will be reordered as Figure 26

(a) and Figure 26 (b).

 The general design flow for a High-level Vivado Design Suite is shown in Figure

27. A block diagram is designed in Vivado Design Suite with custom IP packaged from

Vivado HLS, including the Zynq processor and other necessary IPs. After successful

synthesis and implementation of the block diagram, a bitstream is generated for FPGA.

This bitstream is used to program FPGA using a Xilinx software development kit (SDK).

36

SDK is used to design a software version that works with hardware designs created with

Vivado Design Suite. SDK is eclipse based on an open-source standard. The result from

FPGA is compared with MATLAB for error analysis.

Figure 27. Vivado Design Suite High-Level Design Flow

There are three different ways to program Zedboard, i.e., JTAG, Quad SPI Flash,

and SD Card. We have used a JTAG method to program the FPGA board. JTAG is

generally used as programming, debugging port, and communicates through the “PROG”

micro USB port. Before connecting FPGA to PC via micro USB cord, the pin

configuration for JTAG mode must be done, as shown in Figure 28 below.

37

Figure 28. Configuration for JTAG Mode

Software Architecture

 Software architecture is designed in Vivado HLS. High-Level Synthesis (HLS),

also known as C synthesis, is a behavioral description of hardware that interprets an

algorithm description of the desired behavior and creates digital hardware supporting

complete bit-accurate validation of the C model. A framework for C-based IP

(Intellectual Property) design is a highly preferred approach in electronic design

automation for designing digital circuits. HLS is considered an easy and quick hardware

programming language as one does not need to have RTL or Verilog/VHDL knowledge

because HLS provides RTL IP co-simulation and implementation verification from the C

level for hardware implementation. It helps to implement design based on user-defined

directives or default property. High-level synthesis schedules and allocates the operations

in the behavior as well as maps those operations into component libraries for hardware

design. Scheduling and Binding are important properties of HLS. Scheduling helps to

determine the clock cycle to perform a specific operation, and binding determines which

directive/hardware unit to use for the operation. HLS supports languages such as C, C++,

38

and SystemC, which brings design flexibility. All programs in HLS are made up of

functions to represent a design hierarchy with only one function as Top-level to

determine hardware RTL interface port[33]. In Vivado HLS, there is two-step

verification: (1) C Validation and (2) RTL Validation. C Validation helps to check if the

algorithm is correct before synthesis. Furthermore, RTL validation is a post-synthesis

process where RTL is generated from the C based program and is verified. Vivado HLS

flow is shown in Figure 29.

Figure 29. High-Level Synthesis Design Flow

Hardware Architecture

For hardware design, we are using an ARM CPU and coprocessor designed in

Vivado HLS and are implemented in the Zynq processor. Zynq has two sections, i.e., 1)

PL(Programmable Logic) and PS (Processing System). The PL is connected to an

accelerator coherency port (ACP) port via a direct memory access controller (DMA)

39

controller. An overview of the system to be implemented on Zynq-7000 is described

below in Figure 30. Figure 30 shows a streaming data transfer between a processor and

FPGA.

Figure 30. Zynq-7000 AP SoC Architecture

 An IP integrator is used to connect the hardware accelerator to an AXI DMA

peripheral in the AP SoC PL and to the ACP in the AP SoC PS. The matrix conversion

core “RCM” designed in Vivado HLS is connected to the DMA controller via an AXI4-

Stream interface. An AXI4-Stream interface is a communication standard for high-speed

data transmission between the processor and FPGA on Zynq hardware. Generally, an

AXI4-Stream is used with a DMA to transfer data. DMA is a FIFO based method of

transferring a large amount of data between a source (PC) and FPGA. There is no

engagement of the host processor in DMA; therefore, the data transfer is fast and with

minimal interruption from the processor. Data is read by the DMA controller from

memory and streams to FPGA via AXI4 Stream with one data element per sample. The

FPGA can also have an AXI4-Lite interface for control signals, and they can be

connected with other IPs having an AXI4-Lite interface helping them transfer data inside

the FPGA.

40

 In the designed architecture, AXI DMA is connected to the L2-cache of the ARM

processor through ACP (Accelerated coherency port) port. An ACP port is a 64-bit slave

interface that helps with the cache coherency issue by providing direct access to the

Cortex-A9 CPU subsystem from Zynq-7000 AP SoC PL.

41

V. TESTING AND ANALYSIS

The idea of the whole research is to develop a hardware design that can reduce the

bandwidth of a sparse matrix as smaller as possible. Different researchers proposed

different theories for bandwidth reduction. As the literature review suggest RCM

(Reverse Cuthill Algorithm) algorithm one of the best methods, different researchers

have proposed their theory with a modified version of the RCM (Reverse Cuthill

Algorithm) algorithm. In this work, the original RCM (Reverse Cuthill Algorithm)

algorithm is used. The detailed process and testing, and analysis of data done in this

research are discussed in other sections given below. Figure 31 is a flowchart for data

transmission.

Figure 31. Flowchart of Data Transmission

A hardcoded input is given to the software model, which is in Vivado HLS. After

RTL generation and custom IP, it is implemented in Vivado IDE. A bitstream is

42

generated and implemented into the Diligent Zedboard FPGA device. Data is sent from

PC to FPGA using a USB UART serial communication. Tera term and Xilinx SDK

terminals are used to display the output.

System Block Diagram in Xilinx Vivado IDE

A Zynq project is designed in Xilinx Vivado Design Suite. Figure 32. is the block

diagram of the designed system.

Figure 32. Block Diagram of the System

The main elements in the design have a Zynq system, custom IP generated from

Vivado HLS, DMA (Direct Memory Access). After successful implementation and

synthesis, an HDL wrapper of the block diagram is created, and a bitstream is generated.

The generated bitstream and hardware are exported for SDK (Software Development

Kit). A Zynq software is designed in SDK. Finally, FPGA is connected to the PC, and the

program is loaded into it. SDK terminal is used to view the output. To verify the

hardware generated output, the same input is given to MATLAB, and results are

compared. The testing results of the experiments are shown in table 1 below.

43

Simulation Result

The function simulation of input from PC and the output from FPGA is displayed

on ModelSim and Vivado Simulator. Both tools are used to monitor the waveform of

simulated hardware description languages such as VHDL, Verilog, SystemC. The baud

rate of 115200 bps is used in the simulation. The waveform for an 8x8 input matrix is

shown below.

 8x8 Input Matrix =

An input waveform for an 8x8 matrix is shown in Figure 33 below. One cock

cycle is used to send one element of a matrix. The waveform shows all continuous zeros

as one zero value. However, it can be distinguished from the clock signal. Example

100010 matrix data is shown as 1010 in the waveform. We see the clock cycle, in

between two 1’s three clock cycles are representing three zeros. Figure 34 displays the

output simulation. For the output waveform, three clock signals are used to display one

matrix element and continuous zeros as one zero value.

44

Figure 33. Input Data Waveform

Figure 34. Output Data Waveform

Power Summary Result

In Figure 35, power analysis from the implemented netlist is shown. It can be

observed that the total on-chip power is 1.751W, the junction temperature is 45.2 oC, the

thermal margin is 38.8 oC, and the power supply to an off-chip device is 0 W.

45

Figure 35. Power Summary

Design Summary of Resource Utilization

 7x7 matrix 8x8 Matrix

The synthesized design resources utilization summary for 7x7 and 8x8 matrix is

shown in Figure 36 (a) and (b) below. We can see that the number of LUT is 11.12%, the

number of slice flip flops is 6.23%, the BRAM is 7.14%. From the result, we can say the

design requires fewer resources and is implementable. The design summary results for

all input matrices are shown in Table 1 below.

46

 (a) Matrix 8x8

(a) Matrix 7x7

Figure 36. Resources Utilization Design Summary

47

Table 1. Resources Utilization Design Summary

SN
Matrix

Size

Matrix

Bandwidth

LUT

Utilization

%

LUT

RAM

%

FF

Utilization

%

BRAM

Utilization %

1 7x7 9 9.3 1.59 5.98 7.14

2 8x8 15 9.3 1.59 5.99 7.14

3 9x9 17 9.3 1.59 6.01 7.14

4 10x10 13 9.31 1.59 6.02 7.14

5 14x14 23 9.32 1.59 6.02 7.14

6 20x20 38 9.40 1.62 6.06 7.14

7 30x30 53 9.46 1.62 6.07 7.86

8 50x50 87 9.48 1.67 6.15 12.14

9 100x100 189 9.7 1.68 6.2 29.29

Design Timing Summary

 The timing summary report is generated automatically after the synthesis and

implementation run. Timing summary gives information about a summary of the timing

for a design. This summary includes three sections:

1. Setup Area (maximum delay analysis)

2. Hold Area (minimum delay analysis)

3. Pulse Width Area

Explanation of the above timing analysis is explained further below.

1. Setup Area (maximum delay analysis)

• Worst Negative Slack (WNS): It is the worst positive slack for the

maximum delay. If WNS is positive, meaning the path passes within

the designed timing constraint, which is 10ns for our design system.

• Total Negative Slack (TNS): This is the sum of the total negative slack

violation. It should be ‘0’ to meet the design timing for max delay

analysis.

48

• Total endpoints: This is the total number of endpoints analyzed.

2. Hold Area (minimum delay analysis)

• Worst Hold Slack (WHS): This is the worst slack of timing for a

minimum delay in a design. A positive value means path success, a

negative meaning path failure.

• Total Hold Slack: This is the sum of total negative slack violations. It

should be ‘0’ to meet the design timing for max delay analysis.

• Total endpoints: This is the total number of endpoints analyzed.

For an 8x8 input matrix, a design timing summary is shown in Figure 37 below.

8x8 Input Matrix =

Figure 37. Timing Design Summary

Worst negative slack, i.e., the maximum delay of the system for an 8x8 input matrix

is 1.259ns and, the minimum delay of the system for the input is 0.013 ns.

49

Latency and Throughput

Latency is the total time taken to transfer data through a system or a network. It is

the time taken to perform some action. Latency can be measured by a one-way time taken

to reach the destination or for a full cycle. It is measured in a unit of time like second,

minute, hours, nanoseconds, or clock periods.

Throughput gives information about how much data is transferred and received for

unit time.

Figure 38 and Figure 39 are input and output waveforms for the data. For the 8x8

input matrix above, the calculation for latency and throughput is shown below.

Figure 38. Input Waveform

For a given input, the time taken to transfer the first data is 135.200 ns.

50

Figure 39. Output Waveform

 The total Time taken to generate the final output by the system is 29125ns.

Time constraints for the design are 10 ns (constant in the system).

Therefore latency (of the system) = (last output time – first input time)* timing

constraints = (29125 – 135.200)* 10ns = 289898 ns = 0.29 milisecond

Throughput of the system = 1sec/ latency

Therefore, throughput = 1000/0.29 = 3.44Kb/sec

This is the latency and throughput of my design.

Latency and throughput for an 8x8 matrix, 20x20 matrix, and 50x50 matrix with two use

cases of constant density-variable bandwidth and constant bandwidth-variable density are

shown in Table 2 below.

51

Table 2. Latency and Throughput

Matrix Density (%) Bandwidth Latency Throughput

8x8

10 12 0.36 ms 2777.7/sec

10 9 0.28 ms 3571.4/sec

20 13 0.23ms 4347.8/sec

34 13 0.29 ms 3448.3/sec

20x20

10 27 0.89ms 1123.5/sec

10 32 1.04 ms 961 /sec

20 37 2.09 ms 478.47 /sec

30 37 3.8 ms 263.16/sec

50x50

10 87 93.92 ms 10.65/sec

10 76 88.87 ms 11.25/sec

15 84 30.46 32.83/sec

5 84 22.42 44.60/sec

52

VI. RESULTS

List of Test Matrices with RCM Algorithm Application

Table 3. Input and Output Matrices Details

Table 3. contains information for all the input matrices. Random test square

sparse matrices are generated through the web. All matrix has a different density,

different element location, or are of different sizes. Total elements are the size of a

matrix; the density of a matrix is normally calculated by dividing the total numbers of

SN Matrix Size Total 1’s Total 0’s Density
Original

Bandwidth

Bandwidth

after RCM

1 7x7 21 28 42.9 9 7

2 7x7 21 28 42.9 9 5

3 8x8 32 32 50.0 15 5

4 8x8 22 42 34.4 13 5

5 9x9 33 48 40.7 17 7

6 10x10 28 72 28.0 13 5

7 10x10 20 80 20.0 15 3

8 10x10 32 68 32.0 17 5

9 10x10 32 68 32.0 16 15

10 14x14 52 144 26.5 23 19

11 14x14 61 135 31.51 23 19

12 14x14 47 149 24.0 25 14

13 15x15 61 164 27.1 29 9

14 20x20 165 235 41.3 38 29

15 20x20 118 282 29.5 37 30

16 20x20 79 321 19.8 37 21

17 24x24 160 416 27.7 43 15

18 25x25 104 521 16.6 46 28

19 25x25 154 471 24.6 46 31

20 30x30 93 807 10.3 53 37

21 30x30 269 631 29.9 57 48

22 30x30 193 707 21.4 55 45

23 50x50 150 2350 6.0 87 17

24 60x60 249 3351 6.9 113 53

25 60x60 366 3234 10.2 111 61

26 100x100 750 9250 7.5 189 121

27 100x100 550 9450 5.5 193 87

28 150x150 938 21562 4.2 285 147

53

non-zero values in a matrix by the total elements of a matrix. Total 1’s is the total non-

zero element, and a total of 0’s is the total number of zeros in a matrix. Matrix bandwidth

is a sum of upper bandwidth + lower bandwidth+1. For our research, all matrices used are

square matrix and non-directional. We can see from the table the difference between the

original bandwidth and the new bandwidth calculated.

FPGA and MATLAB Results

Table 4. Comparing FPGA and MATLAB Results

Size Input Matrix FPGA Output Image
MATLAB Output

Image

49

49

64

54

64

81

100

100

100

55

196

225

576

56

360

0

 Table 4. shows the input test matrices profile and profile of an output matrix

generated in FPGA and MATLAB for different sizes of matrices. In the FPGA output

column, for convenient view, all non-zero elements are displayed as “asterisk” (*) and

zero elements as “dash” (-). Bandwidth calculation for a different size matrix is done in

both hardware and software. MATLAB has an inbuilt function “symrcm” for the Reverse

Cuthill-Mckee algorithm. MATLAB is used to verify the accuracy of hardware. We can

see from the above table that the bandwidth generated by the hardware is like the output

of MATLAB.

57

Figure 40. Bar Graph of Bandwidth for Sparse Matrix and Band Matrix

Figure 40 is a bar diagram comparing the initial bandwidth of a sparse matrix and

the final bandwidth of a band matrix after using the RCM algorithm. Twenty- three

matrices of different size and density are used to test the system. In Figure 40, the blue

color represents a sparse matrix, the red color represents for band matrix, and the small

dots represent the density of each matrix. From Figure 40, we can see there is a decrease

in the bandwidth after the reordering of nodes of a matrix. From the above Figure 40, we

can conclude the effectiveness and importance of the RCM algorithm is for bandwidth

reduction.

58

VII. CONCLUSION

A real-time scientific computational application such as Image processing, power

system, finite element system, circuit design, etc., utilize a large amount of data, and

therefore less memory storage is preferred [1], [3]–[6], [12]. Band matrix with a

comparatively small bandwidth and minimized storage are the key component in many

scientific computing applications efficiently, leading to less computation time. In this

research, FPGA-based hardware implementation for a sparse matrix to a band matrix

conversion with a minimum matrix bandwidth using an existing algorithm Reverse

Cuthill Mckee algorithm (RCM) is discussed. Furthermore, the hardware implementation

is carried out with the knowledge of the hardware architecture.

From this research, the following conclusion can be drawn.

1. There are many areas where a sparse matrix is used.

2. A sparse matrix has fewer nonzero elements randomly scattered.

3. Nonzero elements of a matrix play a vital role in designing a less memory storage

system and for faster computation.

4. A band matrix with smaller bandwidth could be a possible solution for memory

storage reduction.

5. Matrix size could be an issue in MATLAB due to the finite number of memory it has.

6. FPGA hardware design could be a solution for the size restriction, low latency

hardware optimization, and to accelerate operations such as LU, QR optimization.

7. Bandwidth reduction is important for a system such as quantum chemistry, hypertext

media, image processing, circuit design, etc.

8. Applications that use sparse matrix data can use the resultant band matrix.

59

VIII. FUTURE SCOPE

This research is mainly focused on designing a hardware system for the Reverse

Cuthill Mckee (RCM) algorithm. The method of finding the first node is like the breadth-

first search technique. In this research, while choosing a start node for the RCM

algorithm, only a node degree has been considered as it is defined for a sparse matrix

reorder. No other heuristic is used or compared to deliver the effectiveness of other

algorithms. Different other node finding algorithms are there and can be tested further

and compared to see which one gives lesser matrix bandwidth. Gibbs-Poole-Stockmeyer

algorithm claim that it is superior to the Reverse Cuthill-Mckee algorithm[3]. On the

other hand, different heuristic had been proposed as a modification of existing algorithms

mentioning they are better node order algorithm to reduce bandwidth. Therefore, further

work can be done on a band matrix using these two algorithms and applying different

node finding techniques. Researchers have also suggested that a combination of RCM

with other new approaches could give reasonable output. This design could be

implemented on large matrices, and complex mathematical operations such as QR and

LU factorization can be implemented for a fast and accurate solution. In this research,

latency and throughput are calculated for given test matrix values of different sizes,

densities, and bandwidth. Various parallelism methods could be used to optimized the

design for high throughput and low latency. The resultant output, which is a band matrix,

can be used in other algorithms and other hardware for high performance.

60

APPENDIX SECTION

Program file (Codes):

Main File (.cpp file)
// *******************Sparse to Band Matrix Conversion *************** //

#include "rcm.h"

#include <iostream>

#include <vector>

#include <fstream>

using namespace hls;

using namespace std;

bool contain(int checkArray[256], int checkElement, int

checkElement_size) {

 bool flag = false;

 check: for (int i = 0; i < checkElement_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (checkArray[i] == checkElement) {

 flag = true;

 }

 }

 return flag;

}

int getPval(in initial_matrix[matrix_size][matrix_size], int

small_nodes[256], int degree[256], int small_nodes_size, int

start_node_value, int p[256], int p_size) {

 int q[256];

 int q_size = 0;

 int reverse_p[256];

 int reverse_p_size = 0;

 int bandwidth[256];

 int bandwidth_size = 0;

 int sort_array[256];

 int sort_array_size = 0;

 q[q_size] = (small_nodes[start_node_value]);

 q_size += 1;

 int ctr = 0;

 //while loop 6

 while (p_size != matrix_size && ctr <= small_nodes_size - 1) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (contain(p, q[0], p_size) == false) {

 p[p_size] = (q[0]);

 p_size += 1;

 }

 loop6_1: for (int i = 0; i < matrix_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (initial_matrix[q[0] - 1][i] != 0) {

 if (contain(p, i + 1, p_size) == false) {

 sort_array[sort_array_size] = (i + 1);

 sort_array_size += 1;

 }

 }

 }

 if (sort_array_size > 1) {

 int min_index;

61

 loop6_2_row: for (int i = 0; i < sort_array_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 min_index = i;

 loop6_2_col: for (int j = i + 1; j < sort_array_size; j++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (degree[sort_array[j] - 1] < degree[sort_array[min_index]

- 1]) {

 min_index = j;

 }

 }

 swap(sort_array[min_index], sort_array[i]);

 }

 }

 loop6_3: for (int i = 0; i < q_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 swap(q[i], q[i + 1]);

 }

 q_size -= 1;

 loop6_4: for (int i = 0; i < sort_array_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 q[q_size] = (sort_array[i]);

 q_size += 1;

 }

 sort_array_size = 0;

 if (q_size == 0 && p_size != matrix_size) {

 int array_to_select_all_nodes[matrix_size];

 int array_to_select_all_nodes_size = 0;

 loop6_5: for (int i = 0; i < small_nodes_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (small_nodes[i] != small_nodes[start_node_value]) {

 array_to_select_all_nodes[array_to_select_all_nodes_size] =

(small_nodes[i]);

 array_to_select_all_nodes_size += 1;

 }

 }

 q[q_size] = (array_to_select_all_nodes[ctr]);

 q_size += 1;

 ctr += 1;

 }

 }

 return p_size;

}

void sparse_to_band(in a[matrix_size][matrix_size], out

res[matrix_size][matrix_size]) {

 int degree[256];

 int index = 0;

 int degree_count = 0;

 bool flag = false;

 loop1_row: for (int i = 0; i < matrix_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 loop1_col: for (int j = 0; j < matrix_size; j++) {

 #pragma HLS loop_tripcount min = 1 max = 500

62

 if (a[i][j] != 0) {

 degree_count += 1;

 }

 }

 degree[i] = (degree_count);

 degree_count = 0;

 cout << endl;

 }

 int smallest = degree[0];

 loop2: for (int i = 1; i < matrix_size; i++) {

 if (degree[i] < smallest)

 smallest = degree[i];

 }

 int small_nodes[256];

 int small_nodes_size = 0;

 loop3: for (int i = 0; i < matrix_size; i++) {

 if (degree[i] == smallest) {

 small_nodes[small_nodes_size] = i + 1;

 small_nodes_size += 1;

 }

 }

 int p[256], q[256], reverse_p[256], bandwidth[256], sort_array[256];

 int p_size = 0, q_size = 0, reverse_p_size = 0, bandwidth_size = 0,

sort_array_size = 0;

 int ctr = 0;

 int start_node_value = 0;

 int array_to_select_all_nodes[256];

 int array_to_select_all_nodes_size = 0;

 LOOP5_1: while (start_node_value < small_nodes_size) {

 #pragma HLS loop_tripcount min = 1 max = 500

 q_size = 0;

 p_size = 0;

 reverse_p_size = 0;

 p_size = getPval(a, small_nodes, degree, small_nodes_size,

start_node_value, p, p_size);

 if (p_size != matrix_size) {

 int adtnl_array[256];

 int adtnl_array_size = 0;

 int temp = 0;

 LOOP5_2: for (int i = 1; i <= matrix_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (contain(p, i, p_size) == false) {

 adtnl_array[adtnl_array_size] = i;

 adtnl_array_size += 1;

 }

 }

 LOOP5_3_row: for (int i = 0; i < adtnl_array_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 LOOP5_3_col: for (int j = i + 1; j < adtnl_array_size; j++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (degree[adtnl_array[i] - 1] > degree[adtnl_array[j] - 1])

{

 temp = adtnl_array[i];

 adtnl_array[i] = adtnl_array[j];

 adtnl_array[j] = temp;

63

 }

 if (degree[adtnl_array[i] - 1] == degree[adtnl_array[j] - 1])

{

 if (adtnl_array[i] > adtnl_array[j]) {

 temp = adtnl_array[i];

 adtnl_array[i] = adtnl_array[j];

 adtnl_array[j] = temp;

 }

 }

 }

 }

 p_size = getPval(a, adtnl_array, degree, adtnl_array_size, 0, p,

p_size);

 }

 cout << "**" << endl;

 cout << "----------- HW Result----------" << endl;

 cout << endl << "Final matrix and details for node: " <<

small_nodes[start_node_value] << endl;

 cout << "values in p: ";

 LOOP5_6: for (int i = 0; i < p_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 cout << p[i] << ", ";

 }

 cout << endl;

 LOOP5_7: for (int i = p_size - 1; i >= 0; i--) {

 #pragma HLS loop_tripcount min = 1 max = 500

 reverse_p[reverse_p_size] = p[i];

 reverse_p_size += 1;

 }

 cout << "values in reverse p: ";

 LOOP5_8: for (int i = 0; i < reverse_p_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 cout << reverse_p[i] << ", ";

 }

 cout << endl;

 LOOP5_9_ROW: for (int i = 0; i < reverse_p_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 LOOP5_9_COL: for (int j = 0; j < matrix_size; j++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 res[i][j] = a[reverse_p[i] - 1][reverse_p[j] - 1];

 }

 }

 FINAL_MATRIX_ROW: for (int i = 0; i < matrix_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 FINAL_MATRIX_COL: for (int j = 0; j < matrix_size; j++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 cout << res[i][j] << "\t";

 }

 cout << endl;

 }

 int max_k1_val = 0;

 int k_val = 0, j_val = 0;

 BANDWIDTH_K1_ROW: for (int i = 0; i < matrix_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 k_val = 0;

 j_val = 0;

64

 BANDWIDTH_k1_COL: for (int j = i + 1; j < matrix_size; j++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (res[i][j] != 0) {

 j_val = j;

 k_val = j - i;

 }

 }

 if (k_val > max_k1_val) {

 max_k1_val = k_val;

 }

 }

 cout << "K1 value: " << max_k1_val << endl;

 int max_k2_val = 0;

 BANDWIDTH_K2_ROW: for (int j = 0; j < matrix_size; j++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 int k_val = 0, i_val = 0;

 BANDWIDTH_K2_COL: for (int i = j + 1; i < matrix_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (res[i][j] != 0) {

 i_val = i;

 k_val = i - j;

 }

 }

 if (k_val > max_k2_val) {

 max_k2_val = k_val;

 }

 }

 cout << "K2 value: " << max_k2_val << endl;

 cout << "Final bandwidth: " << (max_k1_val + max_k2_val + 1) <<

endl;

 bandwidth[bandwidth_size] = ((max_k1_val + max_k2_val + 1));

 bandwidth_size += 1;

 start_node_value += 1;

 }

 int low_bandwidth = 0;

 LOW_BANDWIDTH: for (int i = 1; i < bandwidth_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (bandwidth[i] < bandwidth[low_bandwidth])

 low_bandwidth = i;

 }

 cout << endl << "Lowest bandwidth: " << bandwidth[low_bandwidth] <<

endl;

 cout << "Node with lowest bandwidth: " << small_nodes[low_bandwidth]

<< endl;

}

void rcm(stream < AXI_VALUE > & in_stream, stream < AXI_VALUE > &

out_stream) {

 #pragma HLS RESOURCE variable = in_stream core = AXIS metadata = "-

bus_bundle INPUT_STREAM"

 #pragma HLS RESOURCE variable = out_stream core = AXIS metadata = "-

bus_bundle OUTPUT_STREAM"

 #pragma HLS RESOURCE variable =

 return core = AXI4LiteS metadata = "-bus_bundle CONTROL_BUS" in

sparse[matrix_size][matrix_size];

 out band[matrix_size][matrix_size];

 AXI_VALUE aValue;

 int i, j;

65

 read_a1: for (i = 0; i < matrix_size; i++) {

 read_a2: for (j = 0; j < matrix_size; j++) {

 #pragma HLS PIPELINE

 in_stream.read(aValue);

 union {

 unsigned int ival; in oval;

 }

 converter;

 converter.ival = aValue.data;

 sparse[i][j] = converter.oval;

 }

 }

 // conversion from sparse to band matrix

 sparse_to_band(sparse, band);

 write_res1: for (i = 0; i < matrix_size; i++) {

 write_res2: for (j = 0; j < matrix_size; j++) {

 #pragma HLS PIPELINE

 union {

 unsigned int oval;

 out ival;

 }

 converter;

 converter.ival = band[i][j];

 aValue.data = converter.oval;

 aValue.last = ((i == matrix_size - 1) && (j == matrix_size - 1))

? 1 : 0;

 aValue.strb = -1;

 aValue.keep = 15; //e.strb;

 aValue.user = 0;

 aValue.id = 0;

 aValue.dest = 0;

 out_stream.write(aValue);

 }

 }

}

Test Bench File: RCM_tb.cpp
// Sparse to Band Matrix Conversion testbench//.

#include <iostream>

#include <fstream>

#include <string>

#include <stdio.h>

#include "rcm.h"

using namespace std;

int getP(in initial_matrix[matrix_size][matrix_size], int

small_nodes[256], int degree[256], int small_nodes_size, int

start_node_value, int p[256], int p_size);

void gen_sw_mat(in initial_matrix[matrix_size][matrix_size], out

sw_final_matrix[matrix_size][matrix_size]);

void check_mat_result(out hw_res[matrix_size][matrix_size], out

sw_res[matrix_size][matrix_size], int & err_cnt);

66

bool contains(int checkArray[256], int checkElement, int

checkElement_size);

bool contains(int checkArray[256], int checkElement, int

checkElement_size) {

 bool flag = false;

 check: for (int i = 0; i < checkElement_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (checkArray[i] == checkElement) {

 flag = true;

 }

 }

 return flag;

}

int getP(in initial_matrix[matrix_size][matrix_size], int

small_nodes[256], int degree[256], int small_nodes_size, int

start_node_value, int p[256], int p_size) {

 int q[256];

 int q_size = 0;

 int reverse_p[256];

 int reverse_p_size = 0;

 int bandwidth[256];

 int bandwidth_size = 0;

 int sort_array[256];

 int sort_array_size = 0;

 q[q_size] = (small_nodes[start_node_value]);

 q_size += 1;

 int ctr = 0;

 while (p_size != matrix_size && ctr <= small_nodes_size - 1) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (contains(p, q[0], p_size) == false) {

 p[p_size] = (q[0]);

 p_size += 1;

 }

 loop6_1: for (int i = 0; i < matrix_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (initial_matrix[q[0] - 1][i] != 0) {

 if (contains(p, i + 1, p_size) == false) {

 sort_array[sort_array_size] = (i + 1);

 sort_array_size += 1;

 }

 }

 }

 if (sort_array_size > 1) {

 int min_index;

 loop6_2_row: for (int i = 0; i < sort_array_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 min_index = i;

 loop6_2_col: for (int j = i + 1; j < sort_array_size; j++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (degree[sort_array[j] - 1] < degree[sort_array[min_index]

- 1]) {

 min_index = j;

 }

 }

 swap(sort_array[min_index], sort_array[i]);

 }

 }

67

 loop6_3: for (int i = 0; i < q_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 swap(q[i], q[i + 1]);

 }

 q_size -= 1;

 loop6_4: for (int i = 0; i < sort_array_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 q[q_size] = (sort_array[i]);

 q_size += 1;

 }

 sort_array_size = 0;

 if (q_size == 0 && p_size != matrix_size) {

 int array_to_select_all_nodes[matrix_size];

 int array_to_select_all_nodes_size = 0;

 loop6_5: for (int i = 0; i < small_nodes_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (small_nodes[i] != small_nodes[start_node_value]) {

 array_to_select_all_nodes[array_to_select_all_nodes_size] =

(small_nodes[i]);

 array_to_select_all_nodes_size += 1;

 }

 }

 q[q_size] = (array_to_select_all_nodes[ctr]);

 q_size += 1;

 ctr += 1;

 }

 }

 return p_size;

}

void gen_sw_mat(in initial_matrix[matrix_size][matrix_size], out

sw_final_matrix[matrix_size][matrix_size])

{

 int degree[256];

 int index = 0;

 int degree_count = 0;

 bool flag = false;

 cout <<

"**";

 cout << endl;

 cout << "Input Sparse Matrix" << endl;

 cout << endl;

 loop1_row: for (int i = 0; i < matrix_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 loop1_col: for (int j = 0; j < matrix_size; j++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (initial_matrix[i][j] != 0) {

 degree_count += 1;

 }

 cout << initial_matrix[i][j] << " ";

 }

 degree[i] = (degree_count);

 degree_count = 0;

 cout << endl;

 }

 int smallest = degree[0];

 loop2: for (int i = 1; i < matrix_size; i++) {

68

 if (degree[i] < smallest)

 smallest = degree[i];

 cout << "smallest node value/degree is " << smallest << endl;

 int small_nodes[256];

 int small_nodes_size = 0;

 loop3: for (int i = 0; i < matrix_size; i++) {

 if (degree[i] == smallest) {

 small_nodes[small_nodes_size] = i + 1;

 small_nodes_size += 1;

 }

 }

 cout << "Nodes with smallest degree are: ";

 loop4: for (int i = 0; i < small_nodes_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 cout << small_nodes[i] << ", ";

 }

 cout << endl;

 int p[256];

 int p_size = 0;

 int q[256];

 int q_size = 0;

 int reverse_p[256];

 int reverse_p_size = 0;

 int bandwidth[256];

 int bandwidth_size = 0;

 int sort_array[256];

 int sort_array_size = 0;

 int ctr = 0;

 int start_node_value = 0;

 int array_to_select_all_nodes[256];

 int array_to_select_all_nodes_size = 0;

 LOOP5_1: while (start_node_value < small_nodes_size) {

 #pragma HLS loop_tripcount min = 1 max = 500

 q_size = 0;

 p_size = 0;

 reverse_p_size = 0;

 p_size = getP(initial_matrix, small_nodes, degree,

small_nodes_size, start_node_value, p, p_size);

 if (p_size != matrix_size) {

 int adtnl_array[256];

 int adtnl_array_size = 0;

 int temp = 0;

 LOOP5_2: for (int i = 1; i <= matrix_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (contains(p, i, p_size) == false) {

 adtnl_array[adtnl_array_size] = i;

 adtnl_array_size += 1;

 }

 }

 LOOP5_3_row: for (int i = 0; i < adtnl_array_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 LOOP5_3_col: for (int j = i + 1; j < adtnl_array_size; j++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (degree[adtnl_array[i] - 1] > degree[adtnl_array[j] -

1]) {

 temp = adtnl_array[i];

 adtnl_array[i] = adtnl_array[j];

69

 adtnl_array[j] = temp;

 }

 if (degree[adtnl_array[i] - 1] == degree[adtnl_array[j] -

1]) {

 if (adtnl_array[i] > adtnl_array[j]) {

 temp = adtnl_array[i];

 adtnl_array[i] = adtnl_array[j];

 adtnl_array[j] = temp;

 }

 }

 }

 }

 cout << endl;

 cout << "sorted additional nodes:";

 LOOP5_4: for (int i = 0; i < adtnl_array_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 cout << adtnl_array[i] << " ";

 }

 cout << endl;

 p_size = getP(initial_matrix, adtnl_array, degree,

adtnl_array_size, 0, p, p_size);

 }

 cout <<

"**" << endl;

 cout << endl << "Final matrix and details for node: " <<

small_nodes[start_node_value] << endl;

 cout << "values in p: ";

 LOOP5_6: for (int i = 0; i < p_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 cout << p[i] << ", ";

 }

 cout << endl;

 // printing final matrix

 LOOP5_7: for (int i = p_size - 1; i >= 0; i--) {

 #pragma HLS loop_tripcount min = 1 max = 500

 reverse_p[reverse_p_size] = p[i];

 reverse_p_size += 1;

 }

 cout << "values in reverse p: ";

 LOOP5_8: for (int i = 0; i < reverse_p_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 cout << reverse_p[i] << ", ";

 }

 cout << endl;

 cout << endl;

 LOOP5_9_ROW: for (int i = 0; i < reverse_p_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 LOOP5_9_COL: for (int j = 0; j < matrix_size; j++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 sw_final_matrix[i][j] = initial_matrix[reverse_p[i] -

1][reverse_p[j] - 1];

 }

 }

 cout << "-----------SW result----------" << endl;

 cout << endl;

 FINAL_MATRIX_ROW: for (int i = 0; i < matrix_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

70

 FINAL_MATRIX_COL: for (int j = 0; j < matrix_size; j++) {

 RCM_tb.cpp

 #pragma HLS loop_tripcount min = 1 max = 500

 cout << sw_final_matrix[i][j] << "\t";

 cout << " ";

 }

 cout << endl;

 }

 int max_k1_val = 0;

 int k_val = 0, j_val = 0;

 BANDWIDTH_K1_ROW: for (int i = 0; i < matrix_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 k_val = 0;

 j_val = 0;

 BANDWIDTH_k1_COL: for (int j = i + 1; j < matrix_size; j++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (sw_final_matrix[i][j] != 0) {

 j_val = j;

 k_val = j - i;

 }

 }

 if (k_val > max_k1_val) {

 max_k1_val = k_val;

 }

 }

 cout << "K1 value: " << max_k1_val << endl;

 int max_k2_val = 0;

 BANDWIDTH_K2_ROW: for (int j = 0; j < matrix_size; j++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 int k_val = 0, i_val = 0;

 BANDWIDTH_K2_COL: for (int i = j + 1; i < matrix_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (sw_final_matrix[i][j] != 0) {

 i_val = i;

 k_val = i - j;

 }

 }

 if (k_val > max_k2_val) {

 max_k2_val = k_val;

 }

 }

 cout << "K2 value: " << max_k2_val << endl;

 cout << "Final bandwidth: " << (max_k1_val + max_k2_val + 1) <<

endl;

 bandwidth[bandwidth_size] = ((max_k1_val + max_k2_val + 1));

 bandwidth_size += 1;

 start_node_value += 1;

 }

 int low_bandwidth = 0;

 LOW_BANDWIDTH: for (int i = 1; i < bandwidth_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 if (bandwidth[i] < bandwidth[low_bandwidth])

 low_bandwidth = i;

 }

 cout << endl << "Lowest bandwidth: " << bandwidth[low_bandwidth] <<

endl;

71

 cout << "Node with lowest bandwidth: " <<

small_nodes[low_bandwidth] << endl;

 }

 Void check_mat_result(out hw_res[matrix_size][matrix_size], out

sw_res[matrix_size][matrix_size], int & err_cnt) {

 int i, j;

 FINAL_MATRIX_ROW: for (i = 0; i < matrix_size; i++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 FINAL_MATRIX_COL: for (j = 0; j < matrix_size; j++) {

 #pragma HLS loop_tripcount min = 1 max = 500

 cout << hw_res[i][j];

 cout << " ";

 if (hw_res[i][j] != sw_res[i][j]) {

 err_cnt++;

 cout << "*";

 }

 }

 cout << endl;

 }

 }

 // Test the streaming interface.

 int test_matrix_core() {

 in A[matrix_size][matrix_size] = {

 {1, 0, 0, 0, 2, 0, 0, 0 },{0,3, 4, 0, 0, 5, 0,

6},{0,4,7,0,8,0,0,0},{0,0,0,9,0,0,2,0},{2,0,8,0,7,0,0,0},{0,5,0,0,0,8,

0,9},{0,0,0,2,0,0,6,0},{0,6,0,0,0,9,0,1}

 };

 out sw_result[matrix_size][matrix_size],

hw_result[matrix_size][matrix_size];

 int i, j, err_cnt = 0;

 hls::stream < AXI_VALUE > in_stream;

 hls::stream < AXI_VALUE > out_stream;

 AXI_VALUE aValue;

 gen_sw_mat(A, sw_result);

 for (i = 0; i < matrix_size; i++) {

 for (j = 0; j < matrix_size; j++) {

 union {

 unsigned int oval; in ival;

 }

 converter;

 converter.ival = A[i][j];

 aValue.data = converter.oval;

 in_stream.write(aValue);

 }

 }

 rcm(in_stream, out_stream);

 for (i = 0; i < matrix_size; i++) {

 for (j = 0; j < matrix_size; j++) {

 out_stream.read(aValue);

 union {

 unsigned int ival;

 out oval;

 }

 converter;

 converter.ival = aValue.data;

72

 hw_result[i][j] = converter.oval;

 }

 }

 check_mat_result(hw_result, sw_result, err_cnt);

 if (err_cnt)

 cout << "ERROR: " << err_cnt << " mismatches detected!" << endl;

 else

 cout << "Test passed. No errors" << endl;

 return err_cnt;

 }

 //--

 int main(int argc, char ** argv) {

 int err_cnt;

 err_cnt = test_matrix_core();

 return err_cnt;

 }

Header File:

RCM.h
#ifndef __RCM_H_

#define __RCM_H_#include <iostream>

#include <cmath>

#include <stdio.h>

#include <ap_axi_sdata.h>

#include <hls_stream.h>

#define matrix_size 8

typedef int in ;

typedef int out;

typedef ap_axiu < 32, 2, 1, 1 > AXI_VALUE;

Void sparse_to_band(in a[matrix_size][matrix_size], out

res[matrix_size][matrix_size]);

Void rcm(hls::stream < AXI_VALUE > & in_stream, hls::stream < AXI_VALUE

> & out_stream);

#endif

ARM C CODE (SDK Code):

Main C CODE:
// **************Sparse Matrix to Band Matrix conversion***********//

#include <stdio.h>

#include <stdlib.h>

#include "platform.h"

#include "xil_io.h"

#include "platform.h"

#include "xparameters.h"

#include "xaxidma.h"

#include "xtmrctr.h"

#include "stdbool.h"

#include "sparse_to_band.h"

#include "xil_printf.h"

XAxiDma AxiDma;

XTmrCtr timer_dev;

XRcm XMatcon_dev;

73

XRcm_Config XMatcon_config = {

 0,

 XPAR_RCM_0_S_AXI_CONTROL_BUS_BASEADDR

};

int init_dma() {

 XAxiDma_Config * cPitr;

 int status;

 CfgPitr = XAxiDma_LookupConfig(XPAR_AXI_DMA_0_DEVICE_ID);

 if (!CfgPitr) {

 print("AXI DMA config error\n\r");

 return XST_FAILURE;

 }

 status = XAxiDma_CfgInitialize(& AxiDma, CfgPitr);

 if (status != XST_SUCCESS) {

 print("DMA initializing error \n\r");

 return XST_FAILURE;

 }

}

//---

bool contain(int checkArray[256], int checkElement, int

checkElement_size) {

 bool flag = false;

 for (int i = 0; i < checkElement_size; i++) {

 if (checkArray[i] == checkElement) {

 flag = true;

 }

 }

 return flag;

}

int getPval(int initial_matrix[DIM][DIM], int small_nodes[256], int

degree[256], int small_nodes_size, int start_node_value, int p[256],

int p_size) {

 int q[256];

 int q_size = 0;

 int reverse_p[256];

 int reverse_p_size = 0;

 int bandwidth[256];

 int bandwidth_size = 0;

 int sort_array[256];

 int sort_array_size = 0;

 q[q_size] = (small_nodes[start_node_value]);

 q_size += 1;

 int ctr = 0;

 while (p_size != DIM && ctr <= small_nodes_size - 1) {

 if (contain(p, q[0], p_size) == false) {

 p[p_size] = (q[0]);

 p_size += 1;

 }

 for (int i = 0; i < DIM; i++) {

 if (initial_matrix[q[0] - 1][i] != 0) {

 if (contain(p, i + 1, p_size) == false) {

 sort_array[sort_array_size] = (i + 1);

 sort_array_size += 1;

 }

 }

 }

 if (sort_array_size > 1) {

74

 int min_index;

 for (int i = 0; i < sort_array_size; i++) {

 min_index = i;

 for (int j = i + 1; j < sort_array_size; j++) {

 if (degree[sort_array[j] - 1] < degree[sort_array[min_index]

- 1]) {

 min_index = j;

 }

 }

 int temp = sort_array[min_index];

 sort_array[min_index] = sort_array[i];

 sort_array[i] = temp;

 }

 }

 int i;

 for (i = 0; i < q_size; i++) {

 int temp1 = q[i];

 q[i] = q[i + 1];

 q[i + 1] = temp1;

 }

 q_size -= 1;

 for (int i = 0; i < sort_array_size; i++) {

 q[q_size] = (sort_array[i]);

 q_size += 1;

 }

 sort_array_size = 0;

 if (q_size == 0 && p_size != DIM) {

 int array_to_select_all_nodes[DIM];

 int array_to_select_all_nodes_size = 0;

 for (int i = 0; i < small_nodes_size; i++) {

 if (small_nodes[i] != small_nodes[start_node_value]) {

 array_to_select_all_nodes[array_to_select_all_nodes_size] =

(small_nodes[i]);

 array_to_select_all_nodes_size += 1;

 }

 }

 q[q_size] = (array_to_select_all_nodes[ctr]);

 q_size += 1;

 ctr += 1;

 }

 }

 return p_size;

}

void sparse_to_band(int a[DIM][DIM], int res[DIM][DIM]) {

 int degree[256];

 int index = 0;

 int degree_count = 0;

 bool flag = false;

 for (int i = 0; i < DIM; i++) {

 for (int j = 0; j < DIM; j++) {

 if (a[i][j] != 0) {

 degree_count += 1;

 }

 }

 degree[i] = (degree_count);

 degree_count = 0;

 }

75

 int smallest = degree[0];

 for (int i = 1; i < DIM; i++) {

 if (degree[i] < smallest)

 smallest = degree[i];

 }

 int small_nodes[256];

 int small_nodes_size = 0;

 for (int i = 0; i < DIM; i++) {

 if (degree[i] == smallest) {

 small_nodes[small_nodes_size] = i + 1;

 small_nodes_size += 1;

 }

 }

 int p[256], q[256], reverse_p[256], bandwidth[256], sort_array[256];

 int p_size = 0, q_size = 0, reverse_p_size = 0, bandwidth_size = 0,

sort_array_size = 0;

 int ctr = 0;

 int start_node_value = 0;

 int array_to_select_all_nodes[256];

 int array_to_select_all_nodes_size = 0;

 while (start_node_value < small_nodes_size) {

 q_size = 0;

 p_size = 0;

 reverse_p_size = 0;

 p_size = getPval(a, small_nodes, degree, small_nodes_size,

start_node_value, p, p_size);

 if (p_size != DIM) {

 int adtnl_array[256];

 int adtnl_array_size = 0;

 int temp = 0;

 for (int i = 1; i <= DIM; i++) {

 if (contain(p, i, p_size) == false) {

 adtnl_array[adtnl_array_size] = i;

 adtnl_array_size += 1;

 }

 }

 for (int i = 0; i < adtnl_array_size; i++) {

 for (int j = i + 1; j < adtnl_array_size; j++) {

 if (degree[adtnl_array[i] - 1] > degree[adtnl_array[j] - 1])

{

 temp = adtnl_array[i];

 adtnl_array[i] = adtnl_array[j];

 adtnl_array[j] = temp;

 }

 if (degree[adtnl_array[i] - 1] == degree[adtnl_array[j] - 1])

{

 if (adtnl_array[i] > adtnl_array[j]) {

 temp = adtnl_array[i];

 adtnl_array[i] = adtnl_array[j];

 adtnl_array[j] = temp;

 }

 }

 }

 }

 p_size = getPval(a, adtnl_array, degree, adtnl_array_size, 0, p,

p_size);

 }

76

 for (int i = p_size - 1; i >= 0; i--) {

 reverse_p[reverse_p_size] = p[i];

 reverse_p_size += 1;

 }

 for (int i = 0; i < reverse_p_size; i++) {

 for (int j = 0; j < DIM; j++) {

 res[i][j] = a[reverse_p[i] - 1][reverse_p[j] - 1];

 }

 }

 xil_printf("-----------SW Result-----------:\n");

 for (int i = 0; i < DIM; i++) {

 for (int j = 0; j < DIM; j++) {

 //if(res[i][j]!=0)

 xil_printf("%d", res[i][j]);

 xil_printf("\t");

 }

 xil_printf("\n");

 }

 int max_k1_val = 0;

 int k_val = 0, j_val = 0;

 for (int i = 0; i < DIM; i++) {

 k_val = 0;

 j_val = 0;

 for (int j = i + 1; j < DIM; j++) {

 if (res[i][j] != 0) {

 j_val = j;

 k_val = j - i;

 }

 }

 if (k_val > max_k1_val) {

 max_k1_val = k_val;

 }

 }

 xil_printf("K1 value:\t%d", max_k1_val);

 xil_printf("\n");

 int max_k2_val = 0;

 for (int j = 0; j < DIM; j++) {

 int k_val = 0, i_val = 0;

 for (int i = j + 1; i < DIM; i++) {

 if (res[i][j] != 0) {

 i_val = i;

 k_val = i - j;

 }

 }

 if (k_val > max_k2_val) {

 max_k2_val = k_val;

 }

 }

 xil_printf("K2 value:\t%d", max_k2_val);

 xil_printf("\n");

 xil_printf("Final bandwidth:\t%d", max_k1_val + max_k2_val + 1);

 xil_printf("\n");

 bandwidth[bandwidth_size] = ((max_k1_val + max_k2_val + 1));

 bandwidth_size += 1;

 start_node_value += 1;

 }

 int low_bandwidth = 0;

77

 for (int i = 1; i < bandwidth_size; i++) {

 if (bandwidth[i] < bandwidth[low_bandwidth])

 low_bandwidth = i;

 }

 xil_printf("Lowest bandwidth:\t%d", bandwidth[low_bandwidth]);

 xil_printf("\n");

 xil_printf("Node with lowest bandwidth:\t%d",

small_nodes[low_bandwidth]);

 xil_printf("\n");

}

void check_conversion_result(int HW_result[DIM][DIM], int

res[DIM][DIM], int * err_cnt {

 xil_printf("\n")

 for (int i = 0; i < DIM; i++) {

 for (int j = 0; j < DIM; j++) {

 if (HW_result[i][j] != 0)

 xil_printf("%d", HW_result[i][j]);

 else

 xil_printf("*");

 if (HW_result[i][j] != res[i][j]) {

 err_cnt++;

 }

 if (j == DIM - 1)

 xil_printf("\n");

 else

 xil_printf(" ");

 }

 }

 xil_printf("\n");

 }

 //---

 void print_mat_conversion_status(void) {

 int isDone, isIdle, isReady;

 isDone = XRcm_IsDone(& XMatcon_dev);

 isIdle = XRcm_IsIdle(& XMatcon_dev);

 isReady = XRcm_IsReady(& XMatcon_dev);

 xil_printf("Matconversion Status: is Done\t%d,\tis Idle\t%d,\tis

Ready%d\t\n", isDone, isIdle, isReady);

 }

 //---

 int main() {

 int i, j;

 char c;

 int status, err = 0;

 int A[DIM][DIM] = {

{1,0,0,0,0,0,0,0},{0,3,4,0,0,5,0,6},{0,4,7,0,8,0,0,0},{0,0,0,9,0,0,2,0}

,{2,0,8,0,7,0,0,0},{0,5,0,0,0,8,0,9},{0,0,0,2,0,0,6,0},

 {0,6,0,0, 0,9,0,1}

 };

 int res_hw[DIM][DIM];

 int res_sw[DIM][DIM];

 int dma_size = SIZE * sizeof(int);

 int run_time_sw,

78

 int run_time_hw = 0;

 init_platform();

xil_printf("***

\n");

 xil_printf("----------------SPARSE MATRIX TO BAND MATRIX---------

-------\n");

 status = init_dma();

 if (status != XST_SUCCESS) {

 print("\rDMA initialization error\n");

 return XST_FAILURE;

 }

 status = XTmrCtr_Initialize(& timer_dev,

XPAR_AXI_TIMER_0_DEVICE_ID);

 if (status != XST_SUCCESS) {

 sparse_to_band(A, res_sw);

 Xil_DCacheFlushRange((unsigned int) A, dma_size);

 Xil_DCacheFlushRange((unsigned int) res_hw, dma_size);

 status = XRcm_CfgInitialize(& XMatcon_dev, & XMatcon_config);

 }

 if (status != XST_SUCCESS) {

 xil_printf("Error\r\n");

 return XST_FAILURE;

 }

 XRcm_Start(& XMatcon_dev);

 print_mat_conversion_status();

 Xil_DCacheFlushRange((int) A, dma_size);

 Xil_DCacheFlushRange((int) res_hw, dma_size);

 XTmrCtr_Reset(& timer_dev, XPAR_AXI_TIMER_0_DEVICE_ID);

 status = XAxiDma_SimpleTransfer(& AxiDma, (int) A, dma_size,

XAXIDMA_DMA_TO_DEVICE);

 if (status != XST_SUCCESS) {

 xil_printf("Transfer from DMA to Vivado HLS error\n");

 return XST_FAILURE;

 }

 status = XAxiDma_SimpleTransfer(& AxiDma, (int) res_hw,

dma_size, XAXIDMA_DEVICE_TO_DMA);

 if (status != XST_SUCCESS) {

 xil_printf("Transfer from Vivado HLS to DMA error \n");

 return XST_FAILURE;

 }

 while (XAxiDma_Busy(& AxiDma, XAXIDMA_DEVICE_TO_DMA));

 print_mat_conversion_status();

 Xil_DCacheFlushRange((unsigned int) res_hw, dma_size);

 xil_printf("\r-------------Result by HW-------------\r\n");

 check_conversion_result(res_hw, res_sw, & err);

 if (err == 0)

 xil_printf("\r SW and HW results same\n\r");

 else

 xil_printf("\r%d results different\n\r", err);

 cleanup_platform();

 return err;

 }

Header File:
//**************Matrix Conversion header file************************//

79

 #ifndef SPARSE_TO_BAND_H

 #define SPARSE_TO_BAND_H

 #include "xrcm.h"

 #define DIM 8

 #define SIZE((DIM)*(DIM))

 void print_accel_status(void);

 void sparse_to_band(int A[DIM][DIM], int res[DIM][DIM]);

 #endif

80

REFERENCES

[1] L. O. Mafteiu-Scai, “The Bandwidths of a Matrix. A Survey of Algorithms,” Ann.

West Univ. Timisoara - Math., vol. 52, no. 2, pp. 183–223, 2015, doi:

10.2478/awutm-2014-0019.

[2] A. Fujii, R. Suda, and A. Nishida, “Parallel matrix distribution library for sparse

matrix solvers,” in Eighth International Conference on High-Performance

Computing Asia-Pacific Region (HPCASIA’05), Jul. 2005, p. 7 pp. – 219, doi:

10.1109/HPCASIA.2005.68.

[3] N. E. Gibbs, W. G. Poole, and P. K. Stockmeyer, “An Algorithm for Reducing the

Bandwidth and Profile of a Sparse Matrix,” SIAM J. Numer. Anal., vol. 13, no. 2,

pp. 236–250, 1976.

[4] E. Cuthill and J. McKee, “Reducing the Bandwidth of Sparse Symmetric Matrices,”

in Proceedings of the 1969 24th National Conference, New York, NY, USA, 1969,

pp. 157–172, doi: 10.1145/800195.805928.

[5] S. Aslan, E. Oruklu, and J. Saniie, “Architectural design tool for low area band

matrix LU factorization,” in 2011 IEEE International Conference on

Electro/Information Technology, May 2011, pp. 1–6, doi:

10.1109/EIT.2011.5978620.

[6] I. S. Duff, J. K. Reid, and J. A. Scott, “The use of profile reduction algorithms with

a frontal code,” Int. J. Numer. Methods Eng., vol. 28, no. 11, pp. 2555–2568, Nov.

1989, doi: 10.1002/nme.1620281106.

[7] J. G. Lewis, “Implementation of the Gibbs-Poole-Stockmeyer and Gibbs-King

Algorithms,” ACM Trans Math Softw, vol. 8, no. 2, pp. 180–189, Jun. 1982, doi:

10.1145/355993.355998.

[8] G. Feng, “An Improvement of the Gibbs-Poole-Stockmeyer Algorithm,” J.

Algorithms Comput. Technol., vol. 4, no. 3, pp. 325–333, Sep. 2010, doi:

10.1260/1748-3018.4.3.325.

[9] W. Liu and A. Sherman, “Comparative Analysis of the Cuthill–McKee and the

Reverse Cuthill–McKee Ordering Algorithms for Sparse Matrices,” SIAM J.

Numer. Anal., vol. 13, no. 2, pp. 198–213, Apr. 1976, doi: 10.1137/0713020.

[10] S. Gonzaga de Oliveira and A. Abreu, “The use of the reverse Cuthill-McKee

method with an alternative pseudo-peripheral vertice finder for profile

optimization,” Feb. 2018, doi: 10.5540/03.2018.006.01.0441.

81

[11] “Sparse Matrix Reordering Algorithms for Cluster Identification.”

https://www.researchgate.net/publication/240736442_Sparse_Matrix_Reordering_A

lgorithms_for_Cluster_Identification (accessed Sep. 18, 2019).

[12] A. Azad, M. Jacquelin, A. Buluç, and E. G. Ng, “The Reverse Cuthill-McKee

Algorithm in Distributed-Memory,” in 2017 IEEE International Parallel and

Distributed Processing Symposium (IPDPS), May 2017, pp. 22–31, doi:

10.1109/IPDPS.2017.85.

[13] V. Mani, B. Dattaguru, N. Balakrishnan, and T. S. Ramamurthy, “Parallel Gaussian

elimination for a banded matrix-a computational model,” in 1990 IEEE Region 10

Conference on Computer and Communication Systems, 1990. IEEE TENCON’90,

Sep. 1990, pp. 170–174 vol.1, doi: 10.1109/TENCON.1990.152591.

[14] M. P. Véstias, R. P. Duarte, and H. C. Neto, “Designing Hardware/Software

Systems for Embedded High-Performance Computing,” ArXiv150806832 Cs, Aug.

2015, Accessed: Mar. 18, 2019. [Online]. Available:

http://arxiv.org/abs/1508.06832.

[15] M. Garland, “Sparse matrix computations on manycore GPU #x2019;s,” in 2008

45th ACM/IEEE Design Automation Conference, Jun. 2008, pp. 2–6.

[16] D. DuBois, A. DuBois, C. Connor, and S. Poole, “Sparse Matrix-Vector

Multiplication on a Reconfigurable Supercomputer,” in 2008 16th International

Symposium on Field-Programmable Custom Computing Machines, Apr. 2008, pp.

239–247, doi: 10.1109/FCCM.2008.53.

[17] P. Stathis, D. Cheresiz, S. Vassiliadis, and B. Juurlink, “Sparse matrix transpose

unit,” in 18th International Parallel and Distributed Processing Symposium, 2004.

Proceedings., Apr. 2004, pp. 90-, doi: 10.1109/IPDPS.2004.1303033.

[18] “Banded matrices.”

http://www.math.chalmers.se/Math/Grundutb/CTH/tma881/0708/Assignments/MA

TLAB/banded.html (accessed Mar. 04, 2018).

[19] “Bandwidth.”

http://mae.uta.edu/~lawrence/me5310/course_materials/me5310_notes/4_Computati

onal_Aspects/4-3_Matrix_Bandwidth/4-3_Matrix_Bandwidth.html.

[20] “Cuthill–McKee algorithm - en.LinkFang.org.”

https://en.linkfang.org/wiki/Cuthill%E2%80%93McKee_algorithm.

[21] A. George and J. W. Liu, Computer Solution of Large Sparse Positive Definite.

Prentice-Hall Professional Technical Reference, 1981.

82

[22] “Uninformed Search Algorithms - Javatpoint,” www.javatpoint.com.

https://www.javatpoint.com/ai-uninformed-search-algorithms.

[23] “Sparse Matrices.”

http://bioinformatics.intec.ugent.be/MotifSuite/INCLUSive_for_users/CPU_64/Mat

lab_Compiler_Runtime/v79/toolbox/matlab/demos/html/sparsity.html.

[24] “8.3 Pivoting To Preserve Sparsity.”

https://vismor.com/documents/network_analysis/matrix_algorithms/S8.SS3.php.

[25] W. F. Tinney and J. W. Walker, “Direct solutions of sparse network equations by

optimally ordered triangular factorization,” Proc. IEEE, vol. 55, no. 11, pp. 1801–

1809, Nov. 1967, doi: 10.1109/PROC.1967.6011.

[26] D. J. Rose, “Symmetric elimination on sparse positive definite systems and the

potential flow network problem.,” 1970.

[27] A. George and J. W. H. Liu, “The Evolution of the Minimum Degree Ordering

Algorithm,” SIAM Rev., vol. 31, no. 1, pp. 1–19, Mar. 1989, doi: 10.1137/1031001.

[28] S. Irfansyah, “Design And Implementation of UART With FIFO Buffer Using

VHDL On FPGA,” ICTACT J. Microelectron., vol. 05, no. 01, p. 7, 2019.

[29] “BaudRate (External Interfaces/API).” http://www.ece.northwestern.edu/local-

apps/matlabhelp/techdoc/matlab_external/baudrate.html.

[30] “ZedBoard [Digilent Documentation].”

https://reference.digilentinc.com/reference/programmable-logic/zedboard/start

[31] “Optimization of Triangular and Banded Matrix Operations Using 2d-Packed

Layouts | ACM Transactions on Architecture and Code Optimization.”

https://dl.acm.org/doi/10.1145/3162016.

[32] “(PDF) Comparision of The FPGA Based Implementation And

MATLAB/SIMULINK Simulation Torque Controller of A PMSM Machine Drive,”

ResearchGate. https://www.researchgate.net/publication/272796134

[33] “VivadoHLS_Overview.pdf.”Available:

http://users.ece.utexas.edu/~gerstl/ee382v_f14/soc/vivado_hls/VivadoHLS_Overvie

w.pdf.

[34] T. Nechma and M. Zwolinski, “Parallel Sparse Matrix Solution for Circuit

Simulation on FPGAs,” IEEE Trans. Comput., vol. 64, no. 4, pp. 1090–1103, Apr.

2015, doi: 10.1109/TC.2014.2308202.

83

[35] C. Wang, J. Liu, W. Min, and A. Qu, “A Novel Sparse Penalty for Singular Value

Decomposition,” Chin. J. Electron., vol. 26, no. 2, pp. 306–312, 2017, doi:

10.1049/cje.2017.01.025.

[36] K. Vasudevan, P. S. Rao, and K. S. Rao, “Simulation of power electronic circuits

using sparse matrix techniques,” IEEE Trans. Ind. Electron., vol. 42, no. 4, pp. 409–

413, Aug. 1995, doi: 10.1109/41.402481.

[37] Y. Han and Y. Igarashi, “Efficient Parallel Shortest Path Algorithms for Banded

Matrices,” in International Conference on Parallel Processing, 1993. ICPP 1993,

Aug. 1993, vol. 3, pp. 223–226, doi: 10.1109/ICPP.1993.73.

[38] A. D. Yaghjian, “Banded-matrix preconditioning for electric-field integral

equations,” in IEEE Antennas and Propagation Society International Symposium

1997. Digest, Jul. 1997, vol. 3, pp. 1806–1809 vol.3, doi:

10.1109/APS.1997.631610.

[39] A. Azad, M. Jacquelin, A. Buluç, and E. G. Ng, “The Reverse Cuthill-McKee

Algorithm in Distributed-Memory,” in 2017 IEEE International Parallel and

Distributed Processing Symposium (IPDPS), May 2017, pp. 22–31, doi:

10.1109/IPDPS.2017.85.

[40] J.-C. Luo, “Algorithms for reducing the bandwidth and profile of a sparse matrix,”

Comput. Struct., vol. 44, no. 3, pp. 535–548, Jul. 1992, doi: 10.1016/0045-

7949(92)90386-E.

