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SEMILINEAR HYPERBOLIC SYSTEMS IN ONE SPACE

DIMENSION WITH STRONGLY SINGULAR INITIAL DATA

KIRSTEN E. TRAVERS

Abstract. In this article interactions of singularities in semilinear hyperbolic
partial differential equations are studied. Consider a simple non-linear system
of three equations in R2 with derivatives of Dirac delta functions as initial data.
As the micro-local linear theory prescribes, the initial singularities propagate
along forward bicharacteristics. However, there are also anomalous singulari-
ties created when these characteristics intersect. Their regularity satisfies the
following “sum law”: the “strength” of the anomalous singularity equals the
sum of the “strengths” of the incoming singularities. Hence the solution to the
system becomes more singular as time progresses.

1. Introduction

This paper is devoted to the study of a typical example of a semilinear hyperbolic
system of partial differential equations:

(∂t + ∂x)u = 0 (1)

(∂t − ∂x)v = 0 (2)

∂tw = uv . (3)

The Cauchy problem has been studied by Rauch and Reed [4], [5] when the initial
data are either classical or have jump discontinuities. It was proven that, as in a
linear systems of partial differential equations, the singularities in the initial data
propagate along characteristics. However, the nonlinearity in (3) causes anomalous
singularities to be created when singular characteristics intersect. This may be
contrasted with a linear system, where the principle of superposition and disjoint
null bicharacteristic strips ensure that no interaction of singularities occurs. Similar
problems were also studied by Rauch and Reed in [3] when the initial data were
distributions, but when the non-linearity was sublinear. Their method was to solve
the problem for approximating smooth initial data, then pass to a limit, obtaining
traveling “delta waves”. A similar problem was addressed by Oberguggenberger
and Wang [2], but where the nonlinearity was again sublinear or bounded.
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In this paper, the initial data will be extended to distributions with support at
finitely many points. The Structure Theorem for Distributions of point support
states that any such distribution may be written as the finite sum of Dirac delta
functions and derivatives thereof. Initial data will be given by:

u(x, 0) =
k∑
i=1

δ(mi)(x− xi) for some mi ∈ N, xi ∈ R (1′)

v(x, 0) =
l∑

j=1

δ(nj)(x− xj) for some nj ∈ N, xj ∈ R (2′)

w(x, 0) =0 , (3′)

where δ(k)(x) is the distribution given by
∫∞
−∞ δ

(k)(x)φ(x) dx = (−1)kφ(k)(0) for all

φ ∈ C∞0 (R).
Then the problem (1),(2),(3) with(1′), (2′) and (3′) is solved in the sense of

distributions. It will be shown that the new “anomalous” singularities that are
created are “stronger” (in a sense to be defined) than the initial singularities. In
other words, the solution gets more and more singular as time progresses. This is
different from previous work (eg. [4]), where the anomalous singularities produced
were weaker.

The motivation for studying this problem is clear. Many physical phenomena are
modeled by non-linear systems of partial differential equations. For example, the
equations governing fluid and gas dynamics and quantum field theory are quasilin-
ear. They develop shocks, and are very difficult to analyze. However, many of the
properties of non-linear equations are also present in semilinear systems, such as
this, where singularities also interact, but shocks do not occur, simplifying the anal-
ysis. It is the hope that analysis of problems such as this will help to understand
more difficult non-linear phenomena. The strongly singular initial data model the
very high peaks or oscillations demonstrated by point charges, dipoles etc.

First, for simplicity of exposition, the initial data are simplified to having support
at just two points. The key elements of the argument are still present in this case.
Hence, consider:

u(x, 0) =δ(m)(x+ 1) for some m ∈ N (1′)

v(x, 0) =δ(n)(x− 1) for some n ∈ N (2′)

w(x, 0) =0 . (3′)

In Part 2, the first two equations can be solved separately, since they are each
decoupled from the system. By changing coordinates, it is seen that u and v are
solved by translation of the initial distributions in R:

u(x, t) = δ(m)(x+ 1− t) and v(x, t) = δ(n)(x+ t− 1) ,

where the derivative is in the x-direction.
Then in Part 3, the solutions to u and v may be substituted into (3), giving:

∂tw = δ(m)(x+ 1− t) · δ(n)(x− 1 + t) , (3′′)

where all derivatives are in the x-direction. It must be checked that it does indeed
make sense to multiply u and v. This involves conditions on their respective wave
front sets. Once this product well-defined as a distribution in the plane, it will be
rewritten in a form which will make (3′′) simpler to solve. Finally, this p.d.e. is
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solved, giving a sum of a propagating term, with singularity stronger than those in
the initial data, and a localized part.

Theorem 1.1. The solution to the system is given by

u(x, t) =δ(m)(x+ 1− t)

v(x, t) =δ(n)(x− 1 + t)

w(x, t) =
1

2m+n+1
δ(m+n)(x)⊗H(t− 1) + terms with support at (0, 1).

So the supports of the solutions {u, v, w} are as follows:
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Then in part 4, the question of the “strengths” of the singularities of the solution
(u, v, w) is addressed.

Definition 1.2. Let the strength −sT−sT−sT ≤ 0 of the distribution T be defined such
that sT is the least natural number so that T is the sT +2nd distributional derivative
in the x-direction of a function continuous in x.

Theorem 1.3. The strength of u is −m; the strength of v is −n; the strength of
w is −(m+ n).

This generalizes the result in Rauch and Reed’s paper [4] which proved this
formula when the initial data had singularities of at worst jump-discontinuities.
However, notice in this case that the new singularities are stronger than those in
the initial data. This is different from the results in the aforementioned papers,
where the strengths were positive, so the new singularities were weaker than in the
initial data. The threshold case is when initial data are Dirac delta functions (with
strength zero), in which case the solution also has strength zero, and so the solution
at a later time t has the same regularity as the initial data (like the linear case).

Finally, in Part 5, the initial data will be generalized to be sums of many delta
functions again. Using superposition properties of the u and v linear equations, it
will be shown that solutions of the above form may be added to give a solution
to the original more general question. The sum law for the relative strengths of
solutions u, v and w still holds.

Given these results, it is natural to ask whether similar results hold when initial
data comprises of countably many Dirac delta functions. This question is answered
in subsequent work, where the Cauchy data is that of measures of compact support
and, more generally, arbitrary distributions. The same sum law holds.
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2. The u and v functions

This section solves the two decoupled distributional partial differential equations

(∂t + ∂x)u =0 u(x, 0) =δ(m)(x+ 1) for some m ∈ N (1)

(∂t − ∂x)v =0 v(x, 0) =δ(n)(x− 1) for some n ∈ N , (2)

where δ(k)(x) is the distribution given by
∫∞
−∞ δ

(k)(x)φ(x) dx = (−1)kφ(k)(0) for all

φ ∈ C∞0 (R).
In order to solve these equations, some theory is recalled about defining distri-

butions on submanifolds of R2. In particular, we should like to extend the Dirac
delta function and its derivatives to the lines t = x + 1 and t = −x + 1. If our
initial data were functions, then the solutions to (1) and (2) would be given by the
d’Alembertian. Indeed, δ(m)(x− t+ 1) and δ(n)(x+ t− 1) solve (1) and (2) above,
when interpreted in the correct sense.

Definition 2.1. Let K be the distribution in R2 given by∫∫
K(x, t)φ(x, t) dxdt =

∫
φ(0, t) dt, ∀φ ∈ C∞0 (R2) .

This may be informally thought of as the Dirac delta function δ(x), supported along
the t-axis.

Let G be the distribution in R2 given by∫∫
G(x, t)φ(x, t) dxdt =

∫
φ(x, 0) dx, ∀φ ∈ C∞0 (R2).

This may be informally thought of as the Dirac delta function δ(t), supported along
the x-axis.

Definition 2.2. Let X1,X2 ⊂ R2 be open sets, u ∈ D′(X2), and let f : X1 → X2

be a smooth invertible map such that its derivative is surjective. Then the pullback
of u by f, f∗u, is the unique continuous linear map: D′(X2)→ D′(X1) such that

(f∗u)(φ) = u(|J(f−1)|(φ ◦ f−1)) ,

where J(f−1) is the Jacobian matrix of f−1.

Remark 1. It is an extension of the map f∗u = u ◦ f when u ∈ C0(R2). When u
is continuous, this means that f∗(u) = u ◦ f , and the usual calculus for change of
variables is used:∫∫

(f∗u)(x, t)φ(x, t) dxdt :=

∫∫
u(y, z)φ(f−1(y, z))|detJ−1| dy dz

where J is the Jacobian (change of basis) matrix taking (x, t)→ (y, z).

Example 2.3. Using the definition of G and K in 2.1, new distributions in the
plane δ(x− t+ 1) and δ(x− 1 + t) may be defined as follows: Let f : R2 ↪→ R2 be
the transformation in the plane such that f−1 maps the x-axis to the line t = x+ 1
and the t-axis to t = −x+ 1. i.e.

f : (x, t)→ (x+ t− 1, x− t+ 1); f−1 : (x, t)→ (
x+ t

2
,
x− t

2
+ 1) .

So f ′ may be written as the matrix

[
1 1
1 −1

]
, and f has Jacobian

∣∣∣∣1 1
1 −1

∣∣∣∣ = 2.

Then define δ(x− t+ 1) := f∗G, and δ(x+ t− 1) := f∗K.
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Evaluating the distribution δ(x− t+ 1) on a test function,

〈δ(x− t+ 1), φ(x, t)〉 := 〈f∗G,φ〉 =
1

2
〈G,φ ◦ f−1〉 :=

1

2

∫
(φ ◦ f−1)(α, 0) dα

by definition of G. But f−1(α, 0) = (α2 ,
α
2 + 1)), so

〈δ(x− t+ 1), φ〉 =
1

2

∫
φ(
α

2
,
α

2
+ 1) dα =

∫
φ(λ, λ+ 1) dλ.

Similarly, δ(x+ t− 1) acts as follows:

〈δ(x+ t− 1), φ(x, t)〉 =

∫
φ(λ,−λ+ 1) dλ.

To restrict a distribution to the initial line {t = 0}, the following definitions and
theorem are needed.

Definition 2.4. A distribution T ∈ D′(R2) is microlocally smooth at (x, t, ξ, η)
((ξ, η) 6= 0) if when T is localized about (x, t) by φ ∈ C∞0 (R2) with φ(x, t) ≡ 1, the
Fourier Transform of φT is rapidly decreasing in an open cone about (ξ, η). The
wave front set of T, WF (T ), is the complement in R4 of the set of microlocally
smooth points.

Example 2.5. To evaluate WF (K), first notice that K is certainly microlocally
smooth in all directions at (x0, t0) for x0 6= 0, since K ≡ 0 in all sufficiently small
neighbourhoods there. Let φ ∈ C∞0 (R2) be such that φ(0, t0) ≡ 1. Then

φ̂K(ξ, η) = (φK)(e−ixξ−itη) = K(φe−ixξ−itη) =

∫
φ(0, t)e−itη dt

If η 6= 0, integration by parts gives:

ηN
∫
φ(0, t)e−itη dt = (i)N

∫
(∂Nt )φ(0, t)e−itη <∞

So in any direction with a non-zero η-component the integral is rapidly decreasing.
However, if η = 0, then the integral cannot be rapidly decreasing, since

ξN
∫
φ(0, t)e−itη dt→∞, as ξ →∞.

Hence WF (K) = {(0, t, ξ, 0) : ξ 6= 0}.
Analogously, WF (G) = {(x, 0, 0, η) : η 6= 0}

Theorem 2.6. [1, 8.2.7] Let X be a manifold and Y a submanifold with normal
bundle denoted by N(Y ). For every distribution u in X with WF (u) disjoint from
N(Y ), the restriction u|Y to Y is a well-defined distribution on Y , the pullback by
the inclusion Y ↪→ X.

Lemma 2.7. u(x, t) = δ(m)(x + 1 − t) is the unique weak solution to (1), and
v(x, t) = δ(n)(x+ t− 1) is the unique weak solution to (2).

Proof. Consider the first statement. It must be shown that

〈(∂t + ∂x)δ
(m)
x (x− t+ 1), φ〉 = 0,∀φ ∈ C∞0 (R2)

Well, the left hand side of the above is equal to

−〈δ(m)
x f∗G,φt + φx〉 = (−1)m+1〈f∗G, (∂x)

m∂tφ〉+ (−1)m+1〈(∂x)
m+1f∗G,φ〉.
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Now let ψ = ∂mx φ. Then ψ is also in C∞0 . So the left hand side becomes

(−1)m+1〈f∗G,ψt + ψx〉 = 0 ,

as required, since δ(x + 1− t) is a distribution in (x − t), and is therefore a weak
solution to (∂t + ∂x)z = 0.
δ(m)(x − t + 1) may be restricted to the submanifold t = 0, because if u ∈ D′

and P is a partial differential operator, then WF (Pu) ⊆WF (u). So

WF ((f∗G)(m)) ⊆WF (f∗G) ⊆ {(λ, λ+ 1, ξ,−ξ) : ξ 6= 0},

which does not intersect the normal bundle of {t = 0}. (For details, see [1, 8.2.4].)
When t = 0, u(x, t) = δ(m)(x + 1), satisfying the initial condition (1′). . To show
uniqueness, suppose we have two such solutions u1 and u2. Then let z = u1 − u2.
Then z satisfies

(∂t + ∂x)z = 0, z(x, 0) = 0.

So z = 0 by [1, 3.1.4]. Hence the solution u to (1) and (1′) is unique. This completes
the proof. Similarly, δ(n)(x+ t− 1) satisfies (2) and (2′).

3. The w function:

This section solves the third distributional partial differential equation

∂tw = uv (3)

w(x, 0) = 0 (3′)

By Part 2, u(x, t) = δ(m)(x+ 1− t) and v(x, t) = δ(n)(x − 1 + t), so this problem
turns into:

i∂tw = δ(m)(x+ 1− t) · δ(n)(x− 1 + t) . (3′′)

This part consists of four sections. First, it must be checked that u and v may be
multiplied. Then understanding how δ(m)(x + 1 − t) · δ(n)(x − 1 + t) acts on test
functions as a distribution in the plane defines this product. To simplify calculations
with δ(m)(x+ 1− t) · δ(n)(x− 1 + t), it is rewritten as a sum of tensor products of
distributions of one variable. This then enables (3′′) to be solved. It will be shown
that the solution is a distribution in the plane, that it is unique, and satisfies the
initial condition (3′).

Theorem 3.1. [1, 5.1.1] If w1 ∈ D′(X1) and w2 ∈ D′(X2) then there is a unique
distribution w ∈ D′(X1 ×X2) such that

w(φ1 ⊗ φ2) = w1(φ1)w2(φ2)

for φi ∈ C∞0 (Xi). Then

w(φ) = w1[w2(φ(x1, x2))] = w2[w1(φ(x1, x2))]

for φ ∈ C∞0 (X1 ×X2), where wi acts on the following function of xi only. Then w
is called the tensor product, w = w1 ⊗ w2.

Definition 3.2. Let WF(u)⊕ WF(v) be defined to be

{(x, t, ξ1 + ξ2, η1 + η2) such that (x, t, ξ1, η1) ∈WF(u); (x, t, ξ2, η2) ∈WF(v)}

Theorem 3.3. [1, 8.2.10] If u, v ∈ D′(X) then the product uv can be defined as
the pullback of the tensor product u⊗ v by the diagonal map δ : X → X ×X unless
there exists an element (x, t, 0, 0) ∈WF (u)⊕WF (v).
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Corollary 3.4. δ(m)(x+ 1− t) · δ(n)(x+ t− 1) exists.

Proof. WF (u)⊕WF (v) = {(0, 1, ξ1 + ξ2,−ξ1 + ξ2) : ξ1, ξ2 6= 0}. Hence there is no
element in WF (u)⊕WF (v) of the form (x, t, 0, 0).

Lemma 3.5.

δ(m)(x+ 1− t)δ(n)(x− 1 + t) =
1

2m+n+1

m+n∑
i=0

ci δ
(i)(x) ⊗ δ(m+n−i)(t− 1)

where ci are constants with cm+n = 1.

Proof. Using the definitions 2.1 and 2.3, consider δ(m)(x + 1− t) · δ(n)(x+ t− 1).
Denote this by L. Then

L = ∂(m)
x (f∗G) · ∂(n)

x (f∗K).

Let f−1(x, t) = (α, β). So by the Chain Rule for Distributions [1, 6.1.2],

(∂x)
m(f∗G) =

1

2m
f∗(∂mβ G), (∂x)

n(f∗K) =
(−1)n

2n
f∗(∂nαK).

However, (f∗A)(f∗B) = f∗(AB), so

L =
(−1)n

2m+n
f∗(∂mα G)(∂nβK).

But ∂βK = 0 and ∂αG = 0. Therefore,

〈L, φ〉 =
(−1)n

2m+n
〈f∗(∂mα ∂

n
βGK), φ〉

=
(−1)n

2m+n+1
〈∂mα ∂

n
βGK,φ ◦ f

−1〉

=
(−1)m

2m+n+1
〈GK, ∂mα ∂

n
β (φ ◦ f−1)〉

=
(−1)m

2m+n+1
(∂mα ∂

n
β )φ ◦ f−1(0, 0)

=
(−1)m

2m+n+1
(∂x + ∂t)

m(∂t − ∂x)
nφ(0, 1)

Hence by expanding the binomial terms,

〈L, φ〉 =
(−1)m+n

2m+n+1

(
m∑
k=0

(
m

k

)
∂kx∂

m−k
t

)
·

(
n∑
l=0

(−1)n−l
(
n

l

)
∂lx∂

n−l
t

)
φ(0, 1).

Therefore,

L =
1

2m+n+1

(
m∑
k=0

(
m

k

)
∂kx∂

m−k
t

)
·

(
n∑
l=0

(−1)n−l
(
n

l

)
∂lx∂

n−l
t

)
δ(x)⊗ δ(t− 1)

=
1

2m+n+1

m+n∑
i=0

ci(∂
i
x∂

m+n−i
t )δ(x)δ(t − 1)

=
1

2m+n+1

m+n∑
i=0

ciδ
i(x)⊗ δm+n−i(t− 1) ,

where ci are constants obtained from the multinomial expansion of the summations
above, with cm+n = 1, as required.
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So now (3) becomes

∂tw =
1

2m+n+1

m+n∑
i=0

ci δ
(i)(x) ⊗ δ(m+n−i)(t− 1)

Theorem 3.6. [1, 8.2.9] For distributions S and T ,

WF (S⊗T ) ⊆ (WF (S)×WF (T ))∪((supp(S)×{0})×WF (T ))∪(WF (S)×(supp(T )×{0})).

Theorem 3.7.

w(x, t) =
1

2m+n+1
(δ(m+n)(x)⊗H(t− 1) +

m+n−1∑
i=0

ciδ
i(x)⊗ δm+n−i−1(t− 1)

uniquely satisfies (3) and (3′), where ci are as in 3.5.

Proof. w given above must be checked to satisfy the differential equation and initial
condition, and be unique.

〈wt, φ〉 =− 〈w, φt〉

=−
1

2m+n+1
〈(δ(m+n)(x) ⊗H(t− 1) +

m+n−1∑
i=0

ciδ
i(x)⊗ δm+n−i−1(t− 1), φt〉

=−
1

2m+n+1
〈δ(m+n)(x), (

∫ ∞
1

φt(x, t) dt)〉

+
1

2m+n+1

m+n∑
i=0

ci〈δ
i(x)⊗ δm+n−i−1(t− 1), φt〉

=−
1

2m+n+1
〈δ(m+n)(x), (φ(x,∞) − φ(x, 1))〉

+
1

2m+n+1

m+n∑
i=0

ci〈δ
i(x)⊗ δm+n−i(t− 1), φ〉

=
1

2m+n+1
〈δ(m+n)(x), φ(x, 1)〉 +

1

2m+n+1

m+n∑
i=0

ci〈δ
i(x)⊗ δm+n−i(t− 1), φ〉

=
1

2m+n+1
〈δ(m+n)(x)⊗ δ(t− 1), φ(x, t)〉

+
1

2m+n+1

m+n∑
i=0

ci〈δ
i(x)⊗ δm+n−i(t− 1), φ〉

=
1

2m+n+1
〈
m+n∑
i=0

ci〈δ
i(x)⊗ δm+n−i(t− 1), φ〉

To check the initial condition (3′) on w, the distribution needs to be restricted to
the submanifold t = 0. It must be checked that this can be done, using theorems
2.6 and 3.6.

Let R = δ(i)(x), S = δk(t− 1) and T = H(t− 1).
If u is a distribution and P is a partial differential operator, then

WF (Pu) ⊂WF (u).
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So WF (R) ⊆ WF (δ(x)) = {(0, λ) : λ 6= 0}, WF (S) ⊆ {(1, µ) : µ 6= 0} and
WF (T ) = {(t, µ) : t ≥ 1;µ 6= 0}. So by 3.6,

WF (R ⊗ S) ⊆ {(0, 1, λ, µ)} ∪ {(0, 1, 0, µ)} ∪ {(0, 1, λ, 0)}

WF (R⊗ T ) ⊆ {(0, t, λ, µ)} ∪ {(0, t, 0, µ)} ∪ {(0, t, λ, 0)} ,

where t ≥ 1, λ 6= 0, µ 6= 0. i.e. WF (R ⊗ S) and WF (R ⊗ T ) are supported on
{(0, t) : t ≥ 1}, not intersecting the normal bundle to {t = 0}. So by 2.6, w may
be restricted to this submanifold, where it is the distribution δ(m+n)(x)H(−1) ≡ 0,
satisfying (3′).

All that remains is to prove uniqueness of the solution. Suppose that there are
two solutions w1 and w2. Then let z = w1−w2. Then z satisfies: zt = 0, z(x, 0) = 0.
So z ≡ 0, again by [1, 3.1.4]. Hence, w1 = w2, and the solution to (3) and (3′) is
unique.

However, all but one of the terms in the solution w(x, t) in 3.7 have support at
(0, 1), and hence do not propagate as time evolves. 1

2m+n+1 δ
(m+n)(x)⊗H(t− 1) is

the only propagating term in the solution to (3). Hence, from now on, the solution
to (3) and (3′) will be taken to be

w(x, t) =
1

2m+n+1
δ(m+n)(x)⊗H(t− 1), with (x, t) 6= (0, 1) .

4. Strengths:

This section considers the strengths of the solutions (u, v, w). Let strength be
defined as in 1.2. For example, δ(x) has strength zero, being the second distribu-
tional derivative of (0 ∨ |x|).

Lemma 4.1. The strength of u is −m; the strength of v is −n.

Proof. Recall that u = δ(m)(x+1−t), where derivatives are taken in the x-direction.
It is sufficient to prove that u is the (m+2)nd distributional derivative of a function
in the plane continuous in x. In order to do this, it must be checked that u can be
restricted to any line parallel to the x-axis. This can be done, using 2.6.

Clearly, u is the mth derivative of δ(x+ 1− t). It is sufficient to prove that this
distribution has strength zero in the x-direction, i.e. that it is the second derivative
of a function in the plane continuous (but not differentiable) in x.

Now ∂xH(x+ 1− t) = δ(x− 1 + t) and ∂x(0∨ |x+ 1− t|) = H(x− 1 + t), in the
sense of distributions, where (0∨ |x+ 1− t|) is continuous but non-differentiable in
x. Similarly, it is easily seen that v has strength −n.

Lemma 4.2. w has strength −(m+ n) in the x-direction.

Proof. Recall that w = δ(m+n)(x) ⊗H(t − 1). Hence, w ≡ 0 when t ≤ 1. w is the
(m + n)th derivative of δ(x) ⊗H(t − 1). Again, by 2.6, this may be restricted to
any horizontal line {t = constant}, where it is a distribution of point support in
R, δ(x). By elementary distribution theory, this is the second derivative of 0 ∨ |x|,
which is a continuous (but non-differentiable) function in x, as required.

Corollary 4.3. The strength of w is the sum of the strengths of u and v.

Note that w is more singular than u or v, since its strength is smaller.
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5. Generalisation of initial data:

The problem will now be generalised to the following:

(∂t + ∂x)u = 0 (4)

(∂t − ∂x)v = 0 (5)

∂tw = uv (6)

with initial conditions

u(x, 0) =
k∑
i=1

δ(mi)(x− xi) for some m, k,mi ∈ N (4′)

v(x, 0) =
l∑

j=1

δ(nj)(x− xj) for some n, l, nj ∈ N (5′)

w(x, 0) =0 . (6′)

In the same way as in Part 2, the first two equations may be solved using tech-
niques of linear partial differential equations, giving solutions:

u(x, t) =
k∑
i=1

δ(mi)(x− xi − t), v(x, t) =
l∑

j=1

δ(nj)(x− xj + t) .

Then to solve (6), an analogous technique to Part 3 is used to rewrite u · v,∑
i

∑
j

δ(mi)(x− xi − t) · δ
(nj)(x− xj + t)

=
∑
i

∑
j

cij
1

2mi+nj+1
δ(mi+nj)(x) ⊗ δ(t− 1)

+ terms of the form clδ
l(x)⊗ δmi+nj−l(t− 1)

where 0 < l ≤ mi + nj .
Then the property of superposition of linear waves is used to consider each of

these terms separately in solving (6). Part 3 can be used to solve each individual
term indexed by the pair (i, j), then summing these solutions gives the solution to
(6) above.

Hence, analogously to Part 3, (6) has solution:

w(x, t) =
∑∑ 1

2mi+nj+1
δ(mi+nj)(x)⊗H(t− 1) ∀(x, t) 6= 0.

Now that the system is solved, the question of strengths remains.

Lemma 5.1. If f has strength a and g has strength b then f + g has strength
min{a, b}.

Proof. The strength is defined to be 2 plus the minimum number of derivatives
that need to be taken in the x-direction in order for the resulting function to be
continuous. The sum of two continuous functions is continuous.

Corollary 5.2. The strength of w is the sum of the strengths of u and v.
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Proof. The strength of u(x, t) =
∑k
i=1 δ

(mi)(x− xi − t) is mini(mi), where
mi = strength (δmi(x− xi − t)).

The strength of v(x, t) =
∑l
j=1 δ

(nj)(x− xj + t) is minj(mj), where

mj = strength (δ(nj)(x− xj + t)).
Since

w(x, t) =
∑
i

∑
j

1

2mi+nj+1
δ(mi+nj)(x)⊗H(t− 1),

the strength of w equals

min
i,j

(strength(δ(mi+nj)(x) ⊗H(t− 1)) = min
i,j

(mi + nj))

= min
i

(mi) + min
j

(nj)

=strength(u) + strength(v)

as required.

Thus, the results of Part 4 still hold after generalizing the initial data to sums
of delta functions.
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