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Existence results for singular anisotropic elliptic

boundary-value problems ∗

Eun Heui Kim

Abstract

We establish the existence of a positive solution for anisotropic sin-
gular quasilinear elliptic boundary-value problems. As an example of the
problems studied we have

uauxx + u
buyy + λ(u+ 1)

a+r = 0

with zero Dirichlet boundary condition, on a bounded convex domain in
R
2. Here 0 ≤ b ≤ a, and λ, r are positive constants. When 0 < r < 1
(sublinear case), for each positive λ there exists a positive solution. On
the other hand when r > 1 (superlinear case), there exists a positive
constant λ∗ such that for λ in (0, λ∗) there exists a positive solution, and
for λ∗ < λ there is no positive solution.

1 Introduction

In this paper we study a class of singular anisotropic elliptic problems for which
the singularity occurs at the boundary of the domain. Moreover we consider
a nonlinear source term that has either sublinear or superlinear growth rate
relative to that of the leading elliptic coefficient.
Such problems naturally arise, for example, in the study of transonic flow.

Čanić and Keyfitz [1, 2] showed that the unsteady transonic small disturbance
equation gives rise to a nonlinear problem of Keldysh type which has both
singular and smooth solutions. Their problems came from a conservation law
system in two space variables. At the same time, Choi, Lazer and McKenna
used different techniques to obtain existence results for the anisotropic singular
problem uauxx+u

buyy+p(x, y) = 0 subject to zero Dirichlet boundary condition
in a convex and smooth domain, where a and b are positive constants, see
[5]. Later, Choi and McKenna [6] extended their results to higher dimensional
problems and got some partial results about non-convex domains. Zheng [15]
established existence results for another degenerate quasilinear problem which
came from gas dynamics.
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Motivated by these problems, Choi and the author [3, 4] studied more general
classes of anisotropic quasilinear problems where the source term contains addi-
tional nonlinearities. Although, these problems were not degenerate, it opened
the door for studying singular anisotropic cases.

In this paper, we present existence results for a class of singular quasilinear
anisotropic boundary value problems where the positive source term has either
sublinear or superlinear growth rate. We obtain results qualitatively similar to
those found in [7, 12] for semilinear elliptic equations. To be precise, we consider

∑N
i=1Ai(u)

∂2u
∂x2i
+ λf(x, u) = 0 in Ω , (1)

u
∣∣
∂Ω
= 0 , (2)

where λ is a positive constant.

First we list some assumptions about Ω, the coefficients Ai, and f . Different
theorems will require different combinations of such assumptions.

D. Ω ⊂ RN is a bounded convex domain with smooth boundary ∂Ω of class
C2+γ where 0 < γ < 1.

C. For each 1 ≤ i ≤ N , Ai : [0,∞)→ [0,∞), is C1 and non-decreasing.

C1. There exist constants 0 < ci ≤ di < ∞, and ai ≥ 0 such that citai ≤
Ai(t) ≤ ditai for all t ≥ 0 and i = 1, . . . , N .
Without loss of generality, we let a1 ≡ max1≤i≤N ai > 0.

C2. For all t > 0, (Ai(t)/A1(t))
′ ≤ 0, i = 2, . . . , N .

F. f : Ω×R → R, is C1, and there exists an m > 0 such that for all x ∈ Ω,
f(x, ·) ≥ m > 0.

F1. (Sublinear f) limt→∞ f(x, t)t−(a1+1) = 0 uniformly.

F2. (Superlinear f) limt→∞ f(x, t)t−(a1+1) =∞ uniformly.

We will establish the following theorems.

Theorem 1 (Sublinear Case) Assume D, C, C1, F and F1 hold. Then
for any λ > 0, equations (1) and (2) have at least one positive solution u ∈
C2(Ω) ∩ C(Ω).

Theorem 2 (Superlinear Case) Assume D, C, C1, C2, F and F2 hold.
Then there exists a positive constant λ∗ such that

1. for each λ ∈ (0, λ∗), equations (1) and (2) have at least one positive solu-
tion u in C2(Ω) ∩ C(Ω).

2. for λ > λ∗, no positive solution exists.
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One of the major difficulties of our problem is the loss of uniform ellipticity.
Using recent results about related non-degenerate problems [3], we approximate
this problem with a sequence of non-singular cases.
The main technique used in this paper is the upper-lower solutions method.

Since the diffusion coefficients are solution-dependent and are anisotropic, we
cannot employ the usual techniques for isotropic problems, and need to construct
appropriate comparison principles for sublinear and superlinear cases differently.
In the sublinear case, we modify the comparison lemma from [5] for our nonlinear
case. For the superlinear case, we employ the monotone iteration lemma in [3]
together with the modified comparison lemma. Our comparison theorems allow
us to control the sequence of approximate solutions allowing us to extract a
solution via a compactness argument.
This paper consists of five sections. We state the modified comparison lemma

in section 2. We establish Theorem 1 in section 3, and Theorem 2 in section
4. In the fifth section we present numerical results for some remaining open
questions.

2 A Comparison Lemma

In this section, we state the comparison lemma, another version of Lemma 1
in [5]. This allows us to obtain a nontrivial lower bound and an upper barrier
function for this class of equations. Since the proof is similar to that of Lemma
1 in [5], it will be skipped.
Consider the following problem for a nonlinear operator F

F(u) ≡
∑N
i=1fi(x, u)

∂2u
∂x2i
= −g(x, u) (3)

u
∣∣
∂Ω
= u0 ,

where each fi ∈ C(Ω × [0,∞)) is a positive and non-decreasing function of
u ∈ [0,∞) for 1 ≤ i ≤ N , and g ∈ C(Ω× [0,∞)) is positive.
Let u ∈ C2(Ω) ∩ C(Ω) be a positive solution of (3) with

supu ≤ t1 (4)

for some constant t1 > 0. For notational convenience, we write
M ≡ supt∈[0,t1] g(·, t) and m ≡ inft∈[0,t1] g(·, t) > 0.

An upper solution of (3) is a function ψ ∈ C2(Ω)∩C(Ω) satisfying F(ψ) ≤
−(M + 1) with ψxixi ≤ 0 for all 1 ≤ i ≤ N , and ψ

∣∣
∂Ω
≥ u0.

A lower solution is a function ϕ ∈ C2(Ω) ∩C(Ω) satisfying F(ϕ) ≥ −m2
with ϕxixi ≤ 0 for all 1 ≤ i ≤ N , and ϕ

∣∣
∂Ω
≤ u0.

Then the comparison lemma is as follows.

Lemma 1 Let Ω be as in Theorem 1, and let u be a positive solution of (3)
with (4). If ϕ is a non-negative lower solution and ψ is an upper solution with
ϕ ≤ ψ, then ϕ ≤ u ≤ ψ on Ω.
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Remark: Note that the inequality u ≤ ψ holds if we assume only the existence
of an upper solution. And similarly, u ≥ ϕ holds if we assume only a lower
solution.

3 Sublinear Case.

We establish Theorem 1 in this section. As discussed before, we lose uniform
ellipticity because of the singularity of the problem. To overcome this difficulty,
we approximate our equations by a sequence of non-singular problems. In sec-
tion 3.1, we construct positive solutions to this sequence of equations. In section
3.2, because of the existence of a uniform bound obtained by the appropriate
comparison lemma, we can show that the corresponding sequences of solutions
have a limit, which will solve equations (1) and (2).
We fix λ and write f(x, u) ≡ λf(x, u) in section 3.1 and 3.2.

3.1 An Approximation

Rewrite equation (1) and define G as follows:

G(u) ≡ ux1x1 +
∑N
i=2

Ai(u)
A1(u)

uxixi +
f(x,u)
A1(u)

= 0 , (5)

u
∣∣
∂Ω
= 0 .

Let 0 < ε < 1. We approximate problem (5) by the nonsingular problem

Gε(u) ≡ ux1x1 +
∑N

i=2
Ai(u+ε)
A1(u+ε)

uxixi +
f(x,u)
A1(u+ε)

= 0 , (6)

u
∣∣
∂Ω
= 0 .

Since Ω is bounded, without loss of generality, it can be translated so that it
lies in the interior of the strip [0, L]×RN−1 for some L > 0.
By Theorem 2 in [11], we know that there exists a unique positive solution

ψ ∈ C2(0, L) ∩ C[0, L] of the problem

ψx1x1 +
M
ψa1
= 0 , (7)

ψ(0) = ψ(L) = 0 , (8)

where M > 0.
Let η1 be the first eigenfunction of the problem

η1x1x1 + β1η1 = 0 (9)

with corresponding first eigenvalue β1 > 0, in the extended domain [−1, L+ 1],
with zero boundary condition. We define

δ ≡ min
x∈[0,L]

η1(x) > 0. (10)

Then the following lemma holds.
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Lemma 2 Assume the same condition as in Theorem 1 and let ψ be the func-
tion in (7). There exists a K1 ≥ 1 such that Ψ ≡ K1η1+ψ is an upper solution
of (5).

Proof: Since condition F1 holds, there exists a large positive constant to such
that

f(x, t)

ta1+1
≤
β1c1

2
(11)

for all t ≥ to and all x ∈ Ω where c1 is the positive constant in condition C1.
With

Mo ≡ sup
t∈[0,to]

f(t),

we get
f(x, t)

ta1
≤
β1

2
t+

Mo

ta1
(12)

for all t > 0 and all x ∈ Ω.
Let M ≡Mo/c1, and let ψ be the positive solution of (7) with this constant

M . Let K1 ≥ 1, and define
Ψ ≡ K1η1 + ψ.

Let µ ≡ β1/2. Then we have

Ψx1x1 +
f(x,Ψ)

A1(Ψ)
≤ Ψx1x1 +

f(x,Ψ)

c1Ψa1

≤ Ψx1x1 + µΨ+
M

Ψa1

= {K1η1 + ψ}x1x1 + µ{K1η1 + ψ}+
M

{K1η1 + ψ}a1

= K1η1x1x1 + µK1η1 + µψ +

[
M

{K1η1 + ψ}a1
−

M

ψa1

]
.

Since [ M
{K1η1+ψ}a1

− M
ψa1
] < 0, by choosingK1 sufficiently large in the line above,

Ψx1x1 +
f(x,Ψ)

A1(Ψ)
≤ −β1K1η1 + µK1η1 + µψ

≤ −(β1/2)K1δ + µ‖ψ‖L∞ (13)

< 0 .

Therefore, Ψ is an upper solution for (5). ♦

By a similar calculation, it is easy to check that Ψ satisfies Gε(Ψ) ≤ 0 for
each ε ∈ (0, 1). With this Ψ, define the set

S ≡ {u ∈ C(Ω)| 0 ≤ u ≤ Ψ on Ω, u
∣∣
∂Ω
= 0},

which is closed, bounded and convex. Using the Schauder fixed point theorem,
we establish the existence of positive solution to equation (6) in the following
lemma. The proof is similar to that of Theorem 1 in [3].
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Lemma 3 Let the assumptions of in Theorem 1 hold. Then for each 0 < ε < 1,
equation (6) has a positive solution u ≤ Ψ with u ∈ C2,α(Ω) for some 0 < α < 1.

Proof: Fix ε. Define a map T for each u ∈ S, by Tu = w, where w satisfies

wx1x1 +
∑N

i=2
Ai(u+ε)
A1(u+ε)

wxixi +
f(x,u)
A1(w+ε)

= 0 , (14)

w
∣∣
∂Ω
= 0 .

This equation is uniformly elliptic by condition C1 since a1 ≥ ai for i =
2, . . . , N . By condition F1, we get

f(·, t) ≤
β1

2
ta1+1 +Mo, (15)

with the same positive eigenvalue β1 from equation (9) and the positive constant
Mo as in equation (12). Using the bound (15), condition C1, u ∈ S, and
inequality (13) in Lemma 1, we know that

Ψx1x1 +
f(x, u)

A1(Ψ + ε)
≤ Ψx1x1 +

β1
2 u

a1+1 +Mo

c1Ψa1

≤ Ψx1x1 +
β1
2 Ψ

a1+1 +Mo

c1Ψa1

= Ψx1x1 + µΨ+
M

Ψa1
≤ 0.

Hence, with Ψ an upper solution and zero a lower solution, the existence of
the solution w ∈ W 2,q(Ω) ∩ C(Ω) for any q > N is obtained using Lemma 1 of
[6]. Moreover, w ∈ S by construction. The uniqueness of the solution to (6) is
a consequence of the maximum principle. Thus T is well defined and T maps S
into S.
Applying a calculation similar to Theorem 1 in [3], we prove that T is com-

pact and continuous as well.
Therefore, by applying the Schauder fixed point theorem, we obtain u as a

fixed point of T in the set S. Since u ∈ W 2,q(Ω) for any q > N , then u is in
C1,α(Ω) for α = 1 −N/q. A bootstrap argument using Schauder estimates [8],
we have u ∈ C2,α(Ω). This completes the proof of this lemma. ♦

Therefore, for each ε ∈ (0, 1), we know that (6) has a corresponding positive
solution uε.

3.2 Proof of Theorem 1 (Sublinear Case).

We first construct a nonzero lower solution so that in each compact subset in
Ω, we have a uniform ellipticity condition which is independent of ε. Rewrite
(6) as follows: ∑N

i=1Ai(u + ε)
∂2u
∂x2i
+ f(x, u) = 0 , (16)

u
∣∣
∂Ω
= 0 .
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For any ε ∈ (0, 1), by Lemma 3, a solution uε ∈ C2,α(Ω), and satisfies 0 ≤ uε ≤
Ψ on Ω.
We now construct a uniform positive lower bound for uε in any compact

subset of Ω. We use a similar idea to [5, 6].
For any x0 ∈ Ω, we can take an open ball centered at x0, which lies inside

Ω. Without loss of generality, we can consider x0 as the origin and let the ball
be BR where radius R ≤ 1. With δ > 0, we define

ϕ ≡ δ(R2 − |x|2)

where |x| =
√∑N

i=1 x
2
i . Then using condition C and F, we get

N∑
i=1

Ai(ϕ + ε)
∂2ϕ

∂x2i
+ f(x, ϕ) ≥ −2δ

N∑
i=1

di(δ + 1)
ai +

m

2

≥ 0 ,

by choosing a sufficiently small δ ≡ δ(m, ai, di). Applying the comparison lemma
in section 2 in BR,

0 < ϕ ≤ uε inside of BR, (17)

and we know that uε ≤ Ψ. By condition F, there exist positive constants m
and M such that for t ∈ [0, ‖Ψ‖∞],

m ≤ f(·, t) ≤M.

With ϕ serving as a lower bound for uε and the above L
∞ bound of f(·, uε(·)),

using an argument similar to Theorem 1 in [6], we can extract a positive u
from sequence {uε} on every compact subset of Ω. To be precise, we first apply
the Hölder estimates in [8] and find that ‖uε‖Cα(BR/2) ≤ C, where α ∈ (0, 1)
and C are independent of ε. With this estimate of the coefficients of (16),
using condition C and the boundedness of uε, we apply the standard interior
Schauder estimates [8] and get ‖uε‖C2,α(BR/4) ≤ C1. By the standard compact-

ness argument (Arzela-Ascoli theorem), there exists a C2,α
′
(BR/4)-convergent

subsequence for any α′ < α. Now for any compact subset Ω′ of Ω, a covering
argument immediately gives a C2,α

′
(Ω′)-convergent subsequence. With a diago-

nalization argument if necessary, we obtain a subsequence of uε which converges
in C2loc(Ω) to a limit u ∈ C

2(Ω) and u satisfies (1) in Ω. Moreover, 0 < u ≤ Ψ
in Ω.
To complete the proof, we need to prove that u satisfies the zero Dirichlet

boundary condition and is continuous up to boundary. We use an argument
similar to Theorem 1 in [6]. Since Ω is convex, for any x ∈ ∂Ω, there is a
tangent line Tx passing through x with Ω lying on one side of Tx. We can also
find T ′x parallel to Tx such that Ω is contained in the semi-infinite strip enclosed
by Tx and T

′
x. Without loss of generality, we let x be the origin. Take orthogonal

coordinate axes y1, . . . , yN−1 and y so that the y-axis is perpendicular to Tx.
Let βi be the angle that the y-axis makes with the xi-axis for i = 1, . . . , N − 1,
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and β be the angle that the y-axis makes with the the xN -axis. So, we can write
y =

∑N−1
i=1 xi cosβi + xN cosβ.

We consider two cases.
Case1: Suppose β 6= π/2, β 6= 3π/2. Let ψ = ψ(y) be a positive solution of

ψyy +
M + 1
cNψ

aN = 0 , (18)

ψ
∣∣
Tx
= ψ

∣∣
T ′x
= 0 ,

where cN is the positive constant from condition C1 and M is an upper bound
of f . We know that ψ exists, ψ ∈ C2(Ω) ∩ C(Ω), ψ > 0, and ψyy ≤ 0 (see
equation (7)). Then define ψ(x) ≡ ψ(y(x))/ cos2 β. It is easy to check that for

i = 1, . . . , N − 1, ψxixi = ψyy
cos2 βi
cos2 β ≤ 0, and ψxNxN = ψyy ≤ 0. By conditions

C and C1, we get

N−1∑
i=1

Ai(ψ + ε)ψxixi +AN (ψ + ε)ψxNxN + (M + 1)

≤ AN (ψ + ε)

(
ψyy +

M + 1

cN (ψ + ε)aN

)

≤ AN (ψ + ε)

(
ψyy +

M + 1

cNψaN

)
≤ 0.

Hence by the comparison lemma in section 2, this ψ is an upper solution of uε
on Ω, and ψ ≥ uε. We can take the limit as ε→ 0 to obtain 0 < u ≤ ψ on Ω.
Case2: Suppose β = π/2 or 3π/2. Then define ψ = ψ(x) to be a positive
solution of

ψx1x1 +
M+1
c1ψa1

= 0 , (19)

ψ
∣∣
Tx
= ψ

∣∣
T ′x
= 0 ,

where M is the same constant as above, and c1 and a1 are from condition C1.
Then an argument similar to Case1 implies

A1(ψ + ε)ψx1x1 +

N∑
i=2

Ai(ψ + ε)ψxixi + (M + 1) ≤ 0.

Therefore, the inequality u ≤ ψ holds.

Now in both cases, we define u
∣∣
∂Ω
= 0. Take any y ∈ Ω. Since

|u(y)− u(x)| = u(y) ≤ ψ(y)→ 0

as y → x, u is continuous at x ∈ ∂Ω. Since x can be chosen as an arbitrary
point on ∂Ω, u is in C2(Ω) ∩ C(Ω), and u satisfies equations (1) and (2). This
completes the proof. ♦
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4 Superlinear Case.

We establish Theorem 2 in this section. In addition to a singularity in Theorem
1, we also have superlinear growth for the source term. Hence, obtaining a
uniform bound is more difficult in this case. Before we discuss the main proof,
in section 4.1, we describe a construction in [3]. This method will allow us
to approximate equations (1) and (2) by a sequence of nonsingular problems.
Moreover, the solutions to these nonsingular problems will have a monotonicity
property so that their limit will satisfy equations (1) and (2). In section 4.2,
we prove existence results for small λ and show the second part of Theorem 2.
Finally, in section 4.3, we complete the proof of Theorem 2.

4.1 Monotone Iteration Lemma

We state the monotone iteration lemma for quasilinear problems. The proof of
this result can be found in Lemma 4 and Theorem 2 in [3].

Consider the boundary value problem

Q(u) ≡
∑N

i=1Ai(u)
∂2u
∂x2i
+ f(x, u) = 0 , (20)

u
∣∣
∂Ω
= u0 > 0 ,

where u0 is a constant.

An upper solution to this problem is a function ψ ∈ C2(Ω) ∩C(Ω) satis-
fying Q(ψ) ≤ 0 and ψ

∣∣
∂Ω
≥ u0.

A lower solution is a function φ ∈ C2(Ω) ∩ C(Ω) satisfying Q(φ) ≥ 0,
and φ

∣∣
∂Ω
= u0.

Then the monotone iteration lemma is as follows.

Lemma 4 Let the conditions in Theorem 2 hold, let φ be a non-negative lower
solution and ψ be an upper solution, with φ ≤ ψ on Ω. Assume both are in
C2(Ω). Then there exists a solution u ∈ C2(Ω) to the boundary value problem
(20) with φ ≤ u ≤ ψ.

Proof: Write v ≡ u− u0 so that (20) becomes Q(u) = Q(v+ u0) =
∑
Ai(v+

u0)vxixi + f(x, v + u0) = 0 and v
∣∣
∂Ω
= 0. Thus by u0 > 0 and assumption C,

we obtain strict ellipticity of Q. Therefore, we apply the same proof as in [3] to
establish the lemma. ♦

Remark: In [3], we established this lemma by using an auxiliary parabolic
problem with a lower solution as an initial condition. It was required to have
a compatibility of zero order, that is, u0 = φ on ∂Ω, to obtain the result. This
accounts for the equality sign in the boundary condition in the definition of
lower solutions.
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Define L ≡ {λ ∈ [0,∞) : (1) and (2) have a positive solution in C2(Ω) ∩
C(Ω)}, and define Q to be the operator:

Q(u, λ) ≡
N∑
i=1

Ai(u)
∂2u

∂x2i
+ λf(x, u). (21)

We will show that L is bounded in the following section.

4.2 Boundedness of L

Lemma 5 Assume the same hypothesis as in Theorem 2. Then L is non-empty.

Proof: Let ε1 ≡ 1. By Theorem 2 in [3], we know that there exists a Λ such
that for each 0 ≤ λ < Λ, there exists a positive solution u ∈ C2(Ω) of

Q(u, λ) = 0, and u
∣∣
∂Ω
= ε1 > 0. (22)

We can see this by denoting w ≡ u − ε1. Then equation (22) becomes Q(w +
ε1, λ) = 0 with the boundary condition w

∣∣
∂Ω
= 0 so that a positive solution w

exists for λ < Λ. Hence u > ε1.

Let 0 < λ1 < Λ and u1 be the corresponding minimal solution associated
with the construction. Let 0 < ε2 < ε1. Then it is easy to check that u1 satisfies
Q(u1, λ1) = 0, and u1

∣∣
∂Ω
≥ ε2, which is an upper solution, and φ ≡ ε2 satisfies

Q(φ, λ1) ≥ 0, φ
∣∣
∂Ω
= ε2, which is a lower solution. Clearly, u1 > ε2. Hence, we

can apply lemma 4, the monotone iteration lemma, to obtain a solution u2 of
Q(u2, λ1) = 0 and u2

∣∣
∂Ω
= ε2, satisfying

u1(x) ≥ u2(x) ≥ ε2 > 0.

For any decreasing sequence {εn}, a repetition of the argument yields to a
sequence of functions un which satisfy Q(un, λ1) = 0, and un

∣∣
∂Ω
= εn, and

u1 ≥ u2 ≥ . . . ≥ un ≥ εn > 0 in Ω. The usual regularity argument ensures that
un ∈ C2+α(Ω).
Since f(·, un(·)) has a uniform L∞ bound, then by virtue of the non-trivial

lower solution ϕ = δ(R2−|x|2) as in Theorem 1 and Lemma 1, we can apply the
same compactness argument to extract a limit u from a subsequence of {un}.
Moreover u > 0 on every compact subset of Ω, and Q(u, λ1) = 0 in Ω. Define u
to be zero on the boundary of Ω.
We now need to prove that u is continuous up to the boundary. Using an

argument similar to Theorem 1, we construct an upper barrier function. Let
y =

∑N−1
i=1 xi cosβi + xN cosβ, and consider two cases as in Theorem 1.

The first case is when β 6= π/2, β 6= 3π/2. Fix β and define M ≡
supt∈[0,‖u1‖∞] f(·, t) to be a uniform upper bound. We let ψ1 = ψ1(y) be a
positive solution of equation (18) with the constant of the source term chosen
to be λ1M + 1. Define ψ(x) ≡ ψ1(y)/ cos2 β. Define wn ≡ un − εn. Then wn is
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a positive solution of

N−1∑
i=1

Ai(wn + εn)wnxixi +AN (wn + εn)wnxNxN + λ1f(x, wn + εn) = 0 (23)

wn
∣∣
∂Ω
= 0 .

In (23), applying the comparison lemma to ψ andwn, we get ψ ≥ wn = un−εn >
0 for each n. Hence take the limit as εn → 0 to obtain 0 < u ≤ ψ on Ω.
In the second case, when β = π/2 or 3π/2, we also define ψ = ψ(x) to be

a positive solution of equation (19) with the constant λ1M + 1 for the source
term. Then by the same calculation, 0 < u ≤ ψ on Ω.
In both cases, ψ is an upper barrier function for u. Therefore u ∈ C(Ω).

Hence we have established a positive solution u ∈ C2(Ω) ∩ C(Ω) of equations
(1) and (2) for λ = λ1. ♦

This lemma implies that for each λ ≤ λ1, λ ∈ L. Hence, we get (0, λ1] ⊂ L.

Lemma 6 Assume the hypothesis of Theorem 2 hold. Then L is bounded.

Proof: Let u be a positive solution in C2(Ω) ∩ C(Ω) of

ux1x1 +
∑N

i=2
Ai(u)
A1(u)

∂2u
∂x2i
+ λf(x,u)

A1(u)
= 0 , (24)

u
∣∣
∂Ω
= 0 ,

where λ ≥ λ1/2. We note that for each compact subset B ⊂⊂ Ω, for given
0 < R < 1, there exist a finite open covering BR(xi) and a δ > 0 such that (17)
holds. Hence for given B ⊂⊂ Ω, we can choose a δ > 0 small such that u ≥ δ
on ∂B. Note that δ is independent of u. Moreover, u ≥ δ in B. Now fix B and
δ.
Let φ ∈ C2(B), positive, and φ = 0 on ∂B. Multiplying equation (24) by φ,

and applying integration by parts on B, we have

0 =

∫
B

φ

{
ux1x1 +

N∑
i=2

Ai(u)

A1(u)
uxixi + λ

f(x, u)

A1(u)

}

=

∫
∂B

φux1 · n1 +

∫
∂B

N∑
i=2

φ
Ai(u)

A1(u)
uxi · ni −

∫
B

φx1ux1

−

∫
B

N∑
i=2

φxi
Ai(u)

A1(u)
uxi −

∫
B

N∑
i=2

φ

(
Ai(u)

A1(u)

)′
u2xi +

∫
B

λφ
f(x, u)

A1(u)

where n is the unit outward normal to ∂B. Since (Ai(u)/A1(u))
′ ≤ 0 by con-

dition C2, φ = 0 on ∂B, and by applying integration by parts once more, we
get

0 ≥ −

∫
B

φx1ux1 −

∫
B

N∑
i=2

φxi
Ai(u)

A1(u)
uxi +

∫
B

λφ
f(x, u)

A1(u)
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= −

∫
∂B

φx1u · n1 −

∫
∂B

N∑
i=2

φxi
Ai(u)

A1(u)
u · ni

+

∫
B

(
φx1x1 +

N∑
i=2

{
φxi

Ai(u)

A1(u)

}
xi

)
u+

∫
B

λφ
f(x, u)

A1(u)
. (25)

By condition C1, for every t ≥ δ, we get

Ai(t)

A1(t)
≤

di

c1ta1−ai
≤

di

c1δa1
≡M <∞,

for all 2 ≤ i ≤ N . We now choose φ > 0 such that it is the first eigenfunction
satisfying

φx1x1 +
∑N

i=2

(
Ai(u)φxi
A1(u)

)
xi

+ βφ = 0 , (26)

φ
∣∣
∂B
= 0 ,

with eigenvalue β > 0. Thus

β ≡ min
φ∈H10 (B)

∫
B
φ2x1 +

∫
B

∑N
i=2

Ai(u)
A1(u)

φ2xi∫
B
φ2

≤ min
φ∈H10 (B)

∫
B
φ2x1 +M

∑N
i=2

∫
B
φ2xi∫

B
φ2

≡ βM <∞

where βM is independent of u.
By conditions C1, F and F2, we can find a small k > 0 such that

f(x, t)

A1(t)
≥ kt

for all t > 0 and for all x ∈ Ω.
Since φ > 0 on B, zero on the boundary, and φxi · ni ≤ 0, u > 0 and

Ai(u)/A1(u) > 0 on the boundary of B for each i, we get∫
∂B

φx1u · n1 ≤ 0,

and ∫
∂B

φxi
Ai(u)

A1(u)
u · ni ≤ 0,

for each i = 2, . . . , N . Hence inequality (25) becomes

0 ≥ −β

∫
B

φu+ λk

∫
B

φu.

Thus we get λ ≤ β/k ≤ βM/k which completes the present proof. ♦
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Define λ∗ ≡ supλ L. Then by this lemma, we know that such λ
∗ exists and

no solution exists for λ > λ∗.
Now, we establish the existence result for each λ < λ∗. We have established

existence for λ ∈ (0, λ1] in Lemma 5, and by the definition of λ∗, λ1 ≤ λ∗. In
the following section, we prove the existence result for λ < λ∗.

4.3 Completion of the Proof of Theorem 2 (Superlinear
Case).

We first assume that for a given λ̂ > 0, equations (1) and (2) have a positive

solution û, that is, λ̂ ∈ L. We claim that for each λ < λ̂, equations (1) and (2)
have a positive solution.
Consider λ < λ̂. Given ε > 0, define Ωε ≡ {x ∈ Ω|dist(x, ∂Ω) ≥ ε}. From

inequality (17) (by taking R = ε), we know that for any 0 < ε0 ≤ 1 there exists
a δ > 0 such that for all 0 < ε ≤ ε0, û ≥ δε > 0 on ∂Ωε. We now consider

Q(u, λ) = 0 in Ωε with u
∣∣
∂Ωε
= δε . (27)

Since û satisfies Q(û, λ) ≤ 0 and û
∣∣
∂Ωε
≥ δε, it is an upper solution of (27)

in Ωε. It is easy to check that δε is a lower solution of (27) in Ωε. Moreover,
û ≥ δε. Thus, applying the monotone iteration lemma, we get a solution uε
which solves (27) and satisfies

δε ≤ uε ≤ û .

Using the same argument as in Theorem 1, we extract a solution u from a
subsequence of {uε}, which is bounded away from zero in any compact subset
of Ω. Moreover, Q(u, λ) = 0 in Ω, and u ≤ û.
Define u = 0 on the boundary of Ω. We now want to show that u ∈ C(Ω).

Using an argument similar to Theorem 1, we consider the following upper barrier
function.
Let y =

∑N−1
i=1 xi cosβi+xN cosβ, and consider two cases as before. For the

first case β 6= π/2, β 6= 3π/2, define M ≡ supt∈[0,‖û‖∞] f(·, t) to be a uniform
upper bound, and ψ = ψ(y) to be a positive solution of equation (18) with the

constant of the source term M1 ≡ λM . Define ψ̂ ≡ kψ(y)/ cos2 β where k ≥ 1.
Then by repeating as calculation similar to Theorem 1 on Ωε, we get

N−1∑
i=1

Ai(ψ̂)ψ̂xixi +AN (ψ̂)ψ̂xNxN + (M1 + 1) ≤ AN (ψ̂)

(
kψyy +

M1 + 1

cN (kψ)aN

)
≤ 0 .

Owing to the growth rate of ψ, as given by [11], by taking k large if necessary,

we can always ensure that ψ̂
∣∣
∂Ωε
≥ δε. Note that k does not depend on ε. Hence

by the comparison lemma, we obtain the inequality uε ≤ ψ̂ on Ωε. Taking the
limit as ε → 0, we obtain u ≤ ψ̂ on Ωε. Since Ωε is arbitrarily close to Ω , it
follows that 0 < u ≤ ψ̂ on Ω.



14 singular anisotropic elliptic boundary-value problems EJDE–2000/17

For the second case β = π/2 or 3π/2, the tangent plane is orthogonal. Define

ψ̂ = ψ(x) to be a positive solution of equation (19) with the same constant M1
in the source term. Then again with the same calculation, we get ψ̂ ≥ uε for
each ε on Ωε.
In both cases, ψ̂ is an upper barrier function for u. Applying an argument

similar to Theorem 1, we get u ∈ C(Ω). Therefore, u ∈ C2(Ω) ∩ C(Ω) and
satisfies equations (1) and (2). This completes the proof of Theorem 2. ♦
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Figure 1: uuxx + uyy + λ(u + 1)
1.5 = 0

5 Open Problems

We conclude our paper by presenting some numerical results and discussing open
questions. Typical examples of sublinear and superlinear anisotropic problems
are tested, see Figures 1 and 2. In Figure 3, we compare three bifurcation
diagrams, where ε takes the values ε = 1, ε = 0.5 and ε = 0 respectively. This
figure well illustrates that λ1 ≈ 1.2 is smaller than λ∗ ≈ 2.4, where λ1 and λ∗

are the bifurcation points when ε = 1 and ε = 0, respectively. Details of the
numerical method can be found in [3, 9].
We now pose some open theoretical questions. One would like to study the

uniqueness of the solution of the sublinear case. In Figure 1, it appears that a
unique solution exists for each λ > 0.
Further investigation of the superlinear case is required. Figure 2 shows that

there exists λ∗ > 0 such that for 0 < λ < λ∗, multiple solutions appear, and
for λ > λ∗, no solution exists. It is an open question to prove the existence of
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Figure 2: uuxx + uyy + λ(u + 1)
3 = 0

multiple solutions for 0 < λ < λ∗.

The next natural question is, how we can extend to more general classes of
quasilinear degenerate problems, such as

∑N
i,j=1Ai,j(x,5u, u)

∂2u
∂xi∂xj

+
∑N

i=1Bi(x,5u, u)
∂u
∂xi
+ f(x, u) = 0 (28)

u
∣∣
∂Ω
= 0 .

Beyond extensions of the class of anisotropic elliptic problems as in [3], the
approach in this paper might be useful in studying other types of degenerate el-
liptic problems. Our interest focused on the singular anisotropic elliptic problem
where the singularity occurs at the boundary of the region, and the nonlinear
source term has either sublinear or superlinear growth rate relative to the elliptic
coefficients.
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