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ABSTRACT 

 

Trauma is an essential aspect that must be considered by governing bodies when 

providing and expanding healthcare services across their jurisdiction. This thesis focuses 

on analyzing and forecasting physical trauma sustained from accidents, in environments 

both personal and work related, pertaining to individual injuries and to formulate a 

stochastic programming model that utilizes recorded injuries as demands to place trauma 

centers in the most optimal location. The first part of the thesis is to better understand the 

limitations faced by the existing trauma healthcare infrastructure by forecasting the 

expected number of people requiring the services of trauma facilities for both rural and 

urban locations in Texas. Five types of forecasting methods were analyzed to determine 

the best option to utilize for forecasting for individual data sets. The aim is to identify 

which forecasting model performs the best for given data sets that can be used to forecast 

patient demand for a given location and determine the optimal locations for trauma 

network expansion. 

The second part of the thesis proposes a stochastic programming model that 

considers variable demand in a specific geographical location. Trauma care services are a 

vital part of all healthcare-based network as timely accessibility is important for citizens. 

Trauma care access is even more relevant when unexpected events such as the COVID-

19 pandemic overload the capacity of the hospitals. Research literature has highlighted 

that access to trauma care is not even for all populations, especially when comparing 

rural and urban groups. Historically, the configuration of a trauma system was often not 
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considered as a whole but instead hinged on the designation and verification of individual 

hospitals as trauma care centers. Recognition of the benefits of an inclusive trauma 

system has precipitated a more holistic approach. The optimal geographic configuration 

of trauma care centers is key to maximizing accessibility while promoting the efficient 

use of resources. This thesis reports on the development of a two-stage stochastic 

optimization model for geospatial expansion of a trauma network in the state of Texas. 

The stochastic optimization model recommends the siting of new trauma care centers 

according to the geographic distribution of the injured population. The model has the 

potential to benefit both patients and institutions, by facilitating prompt access and 

promoting the efficient use of resources.  



 

1 

1. INTRODUCTION 

 

1.1. Thesis outline 

Physical trauma can be defined as “a body wound produced by sudden physical 

injury from impact, violence, or accident” [1, 2]. A trauma care center (TCC) is a facility 

which aims to provide medical services and resources to address individuals involved in 

traumatic injuries. The spectrum of sustained injuries can range from households to large 

scale industrial accidents, including but not limited to widespread natural disasters such 

as hurricanes.  

A commonplace of injuries is the result of motor accidents occurring on a regular 

basis. A study by the American College of Surgeons found that an average of 58.56 per 

100,000 population perish due to injuries [3]. Accidents were the 5th leading cause of 

deaths in 2015 accounting for 4.9% deaths with motor vehicles being the primary cause 

[4]. Considering the rise in car owners across the country, the total number of motor 

vehicles registered in 2016 was 268,799,083 as compared to 263,610,219 in 2015 [5]. 

This represents an increase of nearly 5.2 million more vehicles on the road [6]. In 

addition, when considering large-scale calamities such as hurricane Harvey which was 

responsible for at least 70 deaths in Texas, it is essential to strategize the expansion of 

new facilities to accommodate ever increasing population needs.   

This thesis is motivated by real data provided by the Texas Department of State 

Health Services (DSHS). DSHS oversees the network of trauma hospital for the state of 

Texas and collects daily data on the number of trauma injuries per zip code. Texas had 

the biggest increase in population of any state in the country in 2019, according to 
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estimates released on Monday, 30th December 2019, by the U.S. Census Bureau. The data 

show the number of people in the Lone Star State grew by 367,000 from mid-2018 to 

mid-2019, bringing the state's total population to almost 29 million [7] This trend is 

particularly impacting the central Texas regions which reported a 10% increase in 

population since 2010. Having an accurate trauma injury volume prediction will enable 

better planning for future expansion of the trauma network of hospitals in Texas. 

The goal of the forecasting part of the thesis is to analyze data on trauma injuries 

in rural Texas and to build robust forecasting models to predict future service demands 

for different regional locations. The results of this thesis are expected to serve in the 

decision making for future expansion of state trauma networks. The thesis considers the 

following factors for a specified area of rural Texas: number of injuries per time per 

location based on zip codes, environment where the injury occurred, level of the trauma 

facility destination, and the injury severity score. The results will help in identifying 

locations which showcase periodic occurrences and that might not have access to a TCC. 

The results and insights will serve to develop strategies to improve accessibility for 

potential patients in the state.   

The forecasting part of the thesis is organized as follows:  Chapter 2, sub-section 

2.1 provides a summary of the relevant publications for this research and defines the 

contribution of the study described here. The methodology followed in this study and the 

forecasting models are presented in chapter 3 sub-section 3. Chapter 3, sub-section 3.5 

presents a case study.  Chapter 3, sub-section 3.6 deals with the discussion of the results 

for the descriptive analysis and sub-section 3.7 discusses the results for time series 

analysis. The conclusion with a summary and future research areas will be presented and 
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discussed  in Chapter 5. As this concludes the forecasting and analysis portion of the 

thesis, discussions will be undertaken towards formulating an optimization model that 

takes into consideration the demand from individual locations, determine their distances 

from trauma centers and formulate a stochastic programming model to determine the 

optimal locations for facilities in a given geographic region.  

Trauma injuries can lead to the death if proper care is not administered to the 

patient on a timely fashion. Easy access to trauma care centers (TCC) is even more 

important when considering unexpected events such as the COVID-19 pandemic. TCCs 

are uniquely impacted by COVID-19 given the need for rapid invasive interventions in 

severely injured and the growing incidence of community infection [8]. Trauma incidents 

are one of the leading causes for disability, mortality, and morbidity for patients under the 

age of 44 in the U.S. and has an economic burden of $671 billion annually [9]. In 

addition, multiple studies have concluded that access to trauma care centers (TCC) is not 

even for all populations, especially rural and urban groups [10]. Therefore, trauma is a 

serious health problem with high social and economic costs.  

Providing appropriate care to patients suffering trauma injuries requires smooth 

healthcare delivery processes. Soon after a trauma injury occurs, healthcare paramedics 

are dispatched to the scene. The paramedics provide first aid to stabilize the patient and 

then the patient is transported to a TCC. Delays in patient transportation to a trauma 

center can impact the patient’s survival rate. Clinical intervention is expected within an 

hour from the moment of an injury incident as a general rule of thumb [11, 12]. A TCC is 

a hospital that possesses staff, resources, and equipment needed to provide care to 

severely injured patients [13]. In the U.S., TCCs are classified as Level-I to Level-IV [4, 
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14]. Level-I and Level-II TCCs offer the highest level of services to patients with 

traumatic injuries. Level-III and Level-IV are intermediate facilities that help in 

stabilizing the patient. In this study, Level-I and II TCCs are grouped into Level-I and 

Level-III and IV TCCs are grouped and referred to as Level-II. 

The second part of this thesis studies the design and expansion of the state of 

Texas trauma care system. The state of Texas plans to expand the availability of high 

level trauma centers as laid out in the 2019-2020 Texas State Health Plan [11]. The 

initiative identified the limited availability of high-level trauma care with additional 

concerns of superabundance of trauma facilities in densely populated urban areas with the 

focus on Houston-Galveston. The report also recommended a comprehensive study to 

ascertain the true extent of accessible trauma care for the state particularly for rural zones 

that have limited road networks to provide access and services. An important result from 

the report stated that 32.4 percent of Texans live further than 20 miles from a Level-I 

TCC and 12.1 percent live a distance of more than 50 miles. This shows that 

improvements in accessibility are required of the current trauma care system to reach a 

significant portion of the population. In this thesis, a model is developed to guide the 

expansion of the TCCs in Texas based on three years of data. The results are expected to 

help the state of Texas government outline its 2025 expansion plan. Although, the 

numerical results of this study are based on data from Texas, the models developed here 

could be applied to the design of TCCs in other regions. More generally, the results of 

this work could also be applied to a group of optimization problems that aim to find the 

locations of other “fixed servers” (i.e. TCCs) when service needs are constrained by 

certain time threshold. 
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The optimal geographic configuration of TCCs is key to maximizing accessibility 

while promoting the efficient use of resources. The goal of this thesis is to report on the 

development of a two-stage stochastic optimization model for geospatial expansion of a 

trauma network in the state of Texas. The stochastic optimization model recommends the 

siting of new TCCs by level considering the uncertainty in the geographic distribution of 

the injured population. The novel models also consider the uncertainty in demand created 

by the COVID-19 pandemic. Previous efforts to produce data-driven solutions to trauma 

system design have shortcomings, like assuming a deterministic demand and that every 

trauma facility serves all type of injuries, prompting the development of a novel 

approach. The models presented in this thesis prove a systematic approach to trauma 

system design that can help to reassure stakeholders that the best configuration has been 

chosen.  

The stochastic programming chapter of the thesis proceeds as follows. Chapter 2, 

sub- section 2.2 presents a literature review regarding healthcare facility location 

problems to be followed by the description of the similar stochastic programming 

models. Chapter 3, sub-section 3.5 presents the problem description and the parameters 

associated with the former. Chapter 4, sub-section 4.2 describes the stochastic 

programming model and its iterations that are modified. These iterations are used in the 

systems that are tested against the current trauma network to determine their feasibility 

and performance when observing population coverage. Chapter 4, sub-section 4.3 

presents a case study delving further detail for the geographic area under study, the 

designing of experiments to test the feasibility of the current trauma network and 

suggested variants. Chapter 4, sub-section 4.4 contains descriptions of the methods used 
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to test the performance of the current trauma network with proposed networks. Chapter 4, 

sub-section 4.5 contains narrative and illustrative results obtained from testing and with 

comparisons. Chapter 4, sub-section 4.6 provides the conclusions reached for the study 

and sub-section 4.7 provides future research prospects and recommendation. 
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2. LITERATURE REVIEW 

 

The literature review chapter is divided into two sub-sections. Sub-section 2.1 

reviews the literature pertaining to the forecasting and analysis of patient arrival at 

hospital and emergency centers. To determine the location of an optimally placed facility, 

it is imperative to accurately determine, to the best possible degree of accuracy, the trends 

of patient arrival at a given location. Sub-section 2.2 reviews the literature on facility 

allocation programming models that discuss methodologies and approaches to optimally 

place location in a geographic area when considering patient demand. 

 

2.1. Forecasting and time series analysis of patient demand 

This sub-section will focus on reviewing existing literature related to the case of 

forecasting the arrival of patients to a medical facility. Studies need not be tailored for the 

problem under study yet proposing models and ideas which can relate to the current 

research. The unpredictability of patient arrivals lies at the core of managing a care unit 

to the best of its abilities. Carvalho-Silva. et al. [15] presented an assessment of 

forecasting models for the arrival of patients at an emergency department. The study was 

conducted at the Braga Hospital, in Portugal. The authors assessed different forecasting 

models to test their viability. The study chose the Autoregressive Integrated Moving 

Averages (ARIMA) model, and the accuracy of the model was based on the Mean 

Absolute Percentage Error (MAPE) metric. Results favored predictions one week in 

advance with satisfactory performance. Due to the complex nature of predicting human 

flows to a facility, comparisons can be made with environments operating under similar 
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circumstances. 

 Bergs et al. [16] gathered and analyzed data from four Belgian emergency 

departments in a 6-year period to forecasts patient arrivals for one year ahead. The 

authors used the exponential smoothening approach for their study laid out by Hyndman 

et al. [17]. Afilal et al. [18] studied the flow of patient arrival to emergency departments 

to improve resource allocation of resources and personnel. The authors introduced their 

patient classification and proposed a forecasting model to predict daily attendance. The 

model was tested against epidemic data cases and proved to be viable during the 

epidemic periods. Abraham et al. [19] studied the viability of forecasting the arrival of 

patients in emergency wards and determine if patterns can be detected to reduce 

uncertainty regarding admissions and occupancy. The authors concluded that none of 

their applied models produced viable forecasts resulting in unpredictability. W.T Lin et 

al. [20] utilized forecasting models to predict patient movements in hospitals selected at 

random from the state of New York. The authors used Box-Jenkins [21] univariate 

ARIMA and Tiao-Box [22] multivariate ARIMA models to generate forecasts of patient 

movements to make better planning decisions. The authors concluded that trends differ 

by hospitals. They found patterns based on historical data for the same facilities. 

Champion et al.[23] used exponential smoothing models and ARIMA to forecast the 

number of patients arriving at an emergency department in regional Victoria for the time 

between 2000 – 2005. The authors stated that for their study, a simple seasonal model 

proved to be the best exponential smoothing model awhile the optimal ARIMA model 

would be a non-seasonal moving average model, displayed as ARIMA (0,1,1). Their 

results stated that forecasts from the two models were similar. 
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Jones et al. [24] describe a model that forecasts the daily number of occupied beds 

due to emergency admissions in a hospital. The authors identified a relationship between 

the number of beds occupied and two external variables: mean daytime temperature and 

influenza illness rate. Wargon et al. [25] tried to identify determinants of emergency 

departments census to assess the performance of long-term forecasts. The authors noted 

that visits to emergency departments are dependent on factors that are difficult to 

measure. Boyle et al. [26] used regression models to forecast patient admissions. Their 

results stated that the highest accuracy was the result of a linear regression, variating 

monthly, with 11 dummy variables. Jilani et al. [27] developed and tested forecasting 

models in four emergency departments for long- and short-term predictions. They stated 

that patient admissions were not purely random and can be predicted with reasonable 

accuracy. Prediction accuracy would improve as time intervals for forecasting became 

larger. McCarthy et al. [28] analyzed patient arrivals in an emergency department using a 

Poisson regression. They stated that the demand is suited well for a Poisson model with 

few temporal, weather, and diversion predictors.  

Juang et al. [29] studied emergency department visits in Taiwan for the time 

between January 2009 and December 2016. The authors used ARIMA to generate 

forecasts and determine the model validity in forecasting visits. Their results showed that 

ARIMA (0,0,1) was appropriate visits for the years 2016 and 2017. D. R. Holleman et al. 

[30] conducted a study to determine if calendar and weather factors can predict 

unscheduled visits in a large rural veteran population. They found that weekends, public 

holidays, federal government check delivery days, and snowfall reduced unscheduled 

patient arrival volume. It is also decreased when the daily high temperature deviated, 
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towards high and low, from 80 Fahrenheit. Larger patient volume was noted during 

winter months, except for winter. Seematter-Bagnoud et. al [31]  compared different 

methods of forecasting hospital bed needs. The study emphasized on the need for 

adequate planning for the hospital under study for a period of twenty years. Even with the 

usage of different models to forecast the expansion process, there are pros and cons for 

each and must be chosen according to the requirements of the facility. Practical 

considerations must be incorporated, as per the policies of the former, to better fit the 

models.  

Ibrahim et al. [32] present an extensive literature review of forecasting models 

that have been applied to predict the call arrivals at a call center. The authors stated the 

relevance of having accurate forecasting methods ahead of planning for staff allocations. 

The authors also commented on the complexity of the system being modelled and how 

finding accurate forecasting techniques can lead to better operational decisions. Finally, 

the authors recognize that there often exists a gap between academia and industrial 

practice which typically limits the capacity of a company since they are unaware of the 

forecasting techniques that are available to them. Therefore, in this work we wanted to 

examine whether more traditional forecasting methods could provide a better insight to 

DSHS in planning for the future expansion of their TCC network. 

 

2.2. Facility allocation programming models 

In this sub-section, the review of relevant literature on healthcare facility location 

is provided. One of the earliest papers discussing the trauma facility location problem is 

Branas et al. [12]. The authors proposed an optimization model named the Trauma 
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Resource Allocation Model for Ambulances and Hospitals (TRAMAH). The TRAMAH 

model was employed to determine the time it takes for a population group to access a 

trauma center either by ground or aero medical services. Average speeds of 20.1 

miles/hour in urban areas, 47.5 miles/hour in suburban areas, and 56.4 miles/hour were 

considered for drivers. Results also showed that only 69.2% of all residents had access to 

either a Level-I or II trauma center within a travel time of 45 minutes. The model does 

not consider Level-III and Level-IV trauma centers. In addition, the study mentioned 

some limitations such as assuming the problem is deterministic which does not address 

the uncertainty in patient demand for services. 

Jansen et al.[33] proposes an algorithm to improve trauma system configuration 

utilizing existing network and facility locations. The authors used travel times for both 

ground and air-based services to every hospital in Scotland. Multi-objective performance 

measurements were considered to account for conflicting objectives while using 

geospatial methods to map out the existing framework. The authors discussed the benefits 

of using an algorithmic based optimization model in combination with geospatial 

methods to configure strategies for either expansion of existing networks or building a 

new framework. Wang et al. [34] proposed the use of an evolutionary algorithm to 

optimize the problem formulated in Jansen et al. [33]. 

  Brown et al. [35] suggested that unregulated growth of new trauma centers within 

an existing framework could lead to unforeseen consequences and in their paper 

evaluated trauma center accessibility with injury mortality across the United States. The 

authors compiled data from different sources including the Center for Disease Control 

(CDC) relating to injuries, location of trauma centers from the University of 
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Pennsylvania Cartographic Modeling Laboratory Maps, and the American Trauma 

Society Trauma Information Exchange Program. The study evaluated the distribution of 

trauma centers in each state. A Nearest Neighbor ratio (NNR) was devised indicating if 

the trauma system is clustered or dispersed. The authors calculated NNR as the mean 

distance between each center and its nearest neighbor while considering the service 

distributions to be random in each state. The results indicated that the distribution of 

trauma centers correlates with mortality pertaining to injuries. Clustered trauma centers 

were associated with lower fatality rates. Possible reasons for this phenomenon could be 

better access to these centers in large population regions, yet the authors state that further 

research is necessary and mention the benefits of using geospatial mapping to plan for 

new trauma centers. 

Horst et al. [36] proposed an approach to add new trauma centers to an existing 

framework using geospatial mapping. The authors used mapping techniques to layer in 

data from multiple data systems, from the state of Pennsylvania, such as Pennsylvania 

Trauma Outcome Study (PTOS), Pennsylvania Trauma Systems Foundation (PTSF), 

Trauma Mortality Predication Model (TMPM). Road networks were used in calculating 

the travel times in various zip codes. The study identified 38 trauma centers ranging from 

Level-I to IV within the PTSF database. Carr et al. [37] also analyzed existing gaps in the 

Trauma System in the United States using geographic analysis and population estimates. 

The Trauma Information Exchange Program (TIEP) and the American Trauma Society 

(ATS) databases were used to identify the trauma system limitations. Geographic data, 

population demographic data, and access figures (using 60 minutes as travel time 

baseline) were considered. The results showed that 88.3% of the population has access to 
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a higher-level trauma center (i.e. Level-I and II), while 11.7% did not. Carr et al. [37] 

also discusses the relation between access to trauma care and several factors such as 

economic, racial/ethnicity, and transportation. The authors concluded that high income 

population groups that exist within clustered trauma centers have better access to trauma 

care. 

Hashmi et al. [38] studied the relation between access to trauma centers and 

mortality in population groups in the United States. Their results showed that states with 

poor access to trauma centers have higher mortality rates at the before hospital admission 

stage of the process. Although their study did not account for possible scenarios to reduce 

mortality rates before trauma care, the authors propose the development of a 

comprehensive database that can track patient outcomes from injury to post discharge to 

lower mortality outcome statistics. Gomez et al. [39] developed a model to ensure access 

to trauma care in the state of New South Wales, Australia. The study used the 

classification criteria based on the American College of Surgeons, viz Level-I to IV, for 

designating trauma centers. ArcGIS, a geographical information system tool developed 

by ESRI, was utilized to map locations, and analyze transportation networks. Similar to 

most studies performed pertaining to trauma care, rotary wing ambulances were used to 

supplement the travel times between different trauma center designations. The study 

found that, according to the 2016 Australian Census, 86.1% of the population of New 

South Wales lives within 60 minutes to the nearest either Regional Trauma Center or 

Major Trauma Center. The study also concluded that when considering transportation 

using aircrafts and ground-based ambulances, over a 90-minute time, the population able 

to receive trauma care surges to 99.5%. 
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Banerji and Fisher[40] dealt with healthcare facility location in rural India. They 

propose a hierarchical model which consider multiple type of facilities. Garfinkel et al. 

[41] proposed a model to locate emergency services and public facilities along a road 

network. Berghmans et al. [42] dealt with location of healthcare facilities in a new city. 

The authors propose a quantitative based method classifying the functionalities of all 

facilities to be similar rather than hierarchical. Cho [43] proposed a multi-objective 

model seeking the location of medical service centers and the availability of those 

services. The model aimed to provide comprehensive healthcare services to patients in an 

efficient manner pertaining to the quality of the services. The paper defines the measures 

such as consumer welfare, producer welfare, and opportunity to obtain service.  

Consumer and producer welfare are dealt by system efficiency and availability of 

services is measured by the per capita costs such as transportation costs to medical 

facilities which represent system equity. Rahman et al. [44] proposed a quantitative 

healthcare facility location-allocation models for developing nations. The authors 

presented a case study for Guatemala where the p-median method was employed taking 

into consideration population centers and hospital facilities. Mitropoulos et al. [45] 

proposed a bi-objective model to optimize the location of hospitals and health centers in 

Greece. The model aimed to minimize the distance between the patient and hospitals and 

locating adequate facilities to account for multiple population groups and demographics. 

Hosseini and Ameli [46] implemented the p-center method that minimized the maximum 

distance for all users. The authors expressed that their p-median model does not account 

for emergency services which are needed to operate in rural communities.  

Syam and Cote [47] studied the problem of improving the efficiency and 
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effectiveness of the Department of Veterans Affairs (VA) in the United States. They 

considered various costs incurred by veterans, including family expenditures, and the 

quality of service provided to veterans. The authors formulated a deterministic 

optimization model to address the problem. Based on their results, a decentralized system 

is recommended. Although, it is shown that a decentralized system is more expensive, it 

offers greater access to population. Kim et al. [48] developed a Lagrange heuristic 

algorithm to solve the healthcare facility location problem. In their work, they divided 

patients into groups based on income statistics. Low income groups were restricted to 

only access public facilities while medium and high-income groups can access public and 

private facilities. The model assumed that no new facilities will be setup; hence utilizing, 

to the maximum extent, the use of the existing framework. Their model accomplished the 

goal of maximizing the number of patients served. 

Finally, on a recent literature review on healthcare facility location problems, 

Ahmadi-Javid et al. [13] discussed papers addressing the location of healthcare trauma 

facilities. Based on the literature review, the authors propose a facility location model for 

trauma facilities that maximizes the weighted combination of primary and backup 

coverage given to demand points. The literature review concludes that only non-dynamic 

models have been utilized to address the problem of deciding how and where to expand a 

trauma network (i.e. geographic configuration of TCCs) and those models do not 

consider uncertainty characteristics. Most papers simply assume deterministic demand 

and that every trauma facility serve certain type of injuries. Finally, current models do not 

consider the impact of unexpected events such as pandemics like COVID-19. 
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3. FORECASTING METHODOLOGY 

 

3.1. Problem background 

A study conducted in September of 2018 showed 280 state designated trauma 

facilities in Texas [49, 50] with four levels of trauma facilities. These range from I to IV 

with Level-I operationally the most comprehensive facility, capable of treating injuries 

across all ranges. Currently in Texas, there are 18 Level-I, 23 Level-II, 54 Level-III, and 

185 Level-IV trauma centers. The sustainability of the Texas rural trauma services has 

been a concern of health professionals, policymakers and citizens for many years [50]. 

Many issues have been documented in the past, but industry leaders and policymakers 

have performed partial assessments with the available data. Therefore, there is a limited 

understanding of the current realities of trauma services in rural Texas. This thesis 

presents the first attempt to identify and quantify areas for the future expansion of trauma 

system in Texas.  

In order to understand the trauma injuries behavior in Texas, this research 

addresses the following major questions:  

1) Does the number of trauma injuries vary over time? 

2) Does the number of trauma injuries change as a function of location?  

3) After analyzing the performance and behavior of injuries data, which forecasting 

model provides the most accurate results to quantify the injuries behavior?  

Five forecasting methods are evaluated. The results are then analyzed as a function of 

forecast accuracy and variability. The details of the approach are discussed in the 

following sub-sections. 
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3.2. Data collection method 

We collaborated with the Texas DSHS to collect statistics pertaining to trauma 

injuries occurring within a specified geographic region. The department provided data for 

a period of three years. The records contain several data arrays, yet the study focuses on 

the data fields which are relevant to the problem at hand. The data fields are listed in 

Table 1, and include the patient Injury Severity Score (ISS), the regional location of the 

trauma injury (i.e. county), the level of TCC providing care to the patient (i.e. Level-I, II, 

III, or IV), environment where the injury took place (i.e. industrial complexes, streets and 

highways, and public buildings), and injury date. This ISS is given by the trauma facility 

based on the patient condition at the time of the arrival. The collected data and some of 

the discussed data fields are used to develop forecasting models to predict future TCC 

service demands at different locations in Texas.  

Table 1. Summary of key fields for trauma accidents 

Field Description Units 

Regional 

Location 

Regional location of the accident 

where trauma injury is reported 

Location is based on zip 

codes 

Trauma center Level of TCC providing care to 

the patient 

The trauma center level 

ranges from I to IV. 

Level-I provides most 

comprehensive care 

Injury Severity 

Score (ISS) 

Index provided by the trauma 

facility based on the patient health 

condition at the time of the 

arrival. 

Score goes from 1 to 75 

on an ascending basis 

Injury environment Environment where the injury 

took place (i.e. industrial 

complexes, streets and highways, 

public buildings, etc.) 

Environment type 

designated by codes 

ranging from 849.0 to 

849.9 

Injury date The date the injury was reported Month, day, year 

TCC service 

demand 

The number of trauma injuries 

reported daily per region. This is 

the variable of interest which will 

be forecasted using the models. 

Number of injuries 

expected per region 
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3.3. Descriptive analysis of trauma injuries 

A descriptive analysis of the injury data is considered as part of the methodology 

to understand the correlation between the variable of interest (i.e. TCC service demand) 

and the rest data fields listed in Table 1. A class information structure is developed to 

perform the descriptive analysis. Based on Table 1 four classes are constructed they are 

listed in Table 2. The classes 𝐶𝐿, 𝐶𝐶 , 𝐶𝑇, and 𝐶𝐼 are formed to present descriptive 

statistics to showcase the trends and patterns of the injuries based on the specific data 

field.  

Table 2. Descriptive analysis class structures for trauma accidents 

Class (𝑪𝒊) Description Class members { 𝒄|𝒄 ∈ 𝑪𝒊} 

𝐶𝐿 Injury regional location (78666, 78640, …) 

𝐶𝐶  Trauma center level (Level-I, Level-II,…) 

𝐶𝑇 Injury type (based on severity 

score) 

(1, 2, 3, 4, 5,…, 75) 

𝐶𝐼 Injuries environment type (Homes, industrial, road, 

public building) 

 

3.4. Predictive analysis of trauma injuries  

As stated earlier, the goal of this thesis is to analyze data on trauma injuries in 

rural Texas and to build robust forecasting models to predict future service demands for 

different regional locations. Different forecasting methods are evaluated to find the best 

fit according to each regional location. These models use information on injuries 

occurring and recorded across the zip codes of study to predict future demand for trauma 

centers. Since accidents and injuries are present across a year, being recorded daily, time 

series analysis and time series plots are used to visualize the data and to study the 

performance of the forecasting methods considered in this study. Table 3 lists the 

parameters which will be used in subsequent forecasting models. Table 4 summarizes the 
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predictive models investigated in this research. 

Table 3. Forecasting models parameters 

 

 

 

Table 4. Forecast models 

Model Forecast equation Parameters 

Moving average �̂�𝑡 = 𝑛−1(∑ 𝑌𝑡−1)𝑛
𝑖=1   

�̂�𝑡 = �̂�𝑡 

𝑛 

EWMA 

(simple exponential 

smoothing) 

�̂�𝑡 = �̂�𝑡−1 + 𝛼(𝑌𝑡−1
 − �̂�𝑡−1)  

�̂�𝑡 = �̂�𝑡 

𝛼 

EWMA-additive 

trend 

(Holt’s method) 

�̂�𝑡 = 𝛼𝑌𝑡 + (1 − 𝛼)(�̂�𝑡−1 + 𝑇𝑡−1)  

𝑇𝑡 = 𝛽(�̂�𝑡 − �̂�𝑡−1) + (1 − 𝛽)𝑇𝑡−1  

�̂�𝑡 = �̂�𝑡+𝑇𝑡 

 

𝛼, 𝛽 

EWMA-additive 

trend and 

seasonality 

(Winter’s method) 

�̂�𝑡 = 𝛼(𝑌𝑡/𝐼𝑡−𝑚)  + (1 − 𝛼)(�̂�𝑡−1 + 𝑇𝑡−1)  

𝑇𝑡 = 𝛽(�̂�𝑡 − �̂�𝑡−1) + (1 − 𝛽)𝑇𝑡−1  

𝐼𝑡 = 𝛾 (
𝑌𝑡

�̂�𝑡
) + (1 − 𝛾)𝐼𝑡−𝑚  

�̂�𝑡(𝜏) = (�̂�𝑡+𝜏𝑇𝑡)𝐼𝑡+𝜏−𝑚 

 

𝛼, 𝛽, 𝛾, 𝑚 

ARIMA  
�̂�𝑡 = 𝑐 + ∑ 𝑎𝑖

𝑝

𝑖=1
𝑌𝑡−𝑖

− ∑ 𝑏𝑖𝜖𝑡−1 + 𝜖𝑡

𝑞

𝑖=1
                   

𝑎, 𝑏, 𝑐 

 

 

 

 

Parameter Description 

�̂�𝑡 

𝑌𝑡 

�̂�𝑡 

𝑇𝑡 

𝐼𝑡 

𝑚 

𝜏 

𝑏 

𝑋𝑛𝑡 

denotes the forecast in time 𝑡 

denotes the observation in time 𝑡 

denotes estimates of the level or systematic component 

denotes estimates of the level or systematic trend 

denotes estimates of the level or systematic seasonality 

denotes the number of periods in the seasonal cycle 

denotes the number of periods in the forecast lead time 

denotes slope or rate of change of 𝑌 given 𝑋𝑛𝑡 

denotes a predictor of 𝑌 
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3.4.1. Moving average and exponential smoothing methods 

Forecasting can be defined as ‘ predicting the future as accurately as possible, 

given all of the information available, including historical data and knowledge of any 

future events that might impact the forecasts’[51]. A common approach is to observe past 

data through a time series. This practice is widely used to predict outcomes based on 

historical trends and data. The first forecasting method to be investigated is the moving 

average approach. Moving average will smooth out the curve of the data based on past 

injuries. The moving average length will be analyzed until finding the best fit for the 

method.  

Exponentially weighted moving average (EWMA) or simple exponential 

smoothing, is the second forecasting method used in this study. Exponential methods of 

smoothing predict a future value based on a weighted sum of past observations. The key 

factor is that the model used a weight which decreases exponentially. Table 4 describes 

the equations and parameters for the exponential smoothing forecasting methods. �̂�𝑡 

models the number of patient injuries at a particular region. The time is denoted by 𝑡. 𝑌𝑡 

denotes the observation of the injury occurrence in a day 𝑡. EWMA methods will 

consider level, trend, and seasonality to get more accurate results. �̂�𝑡 , 𝑇𝑡, and 𝐼𝑡 represent 

level, trend, and seasonality, respectively. Parameter 𝑚 will be used to denote seasonality 

which represents the number of time periods in the cycle. The number of forecast lead 

time periods will be denoted by π. Presence of levels or trends or both will be the 

deciding factor in choosing the appropriate modes [52]. Discernible data, if present, will 

be favored by trend-based methods. This study uses the additive approach, knows as the 

Holt’s method, even though multiple approaches exist such as multiplicative, damped 
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additive, and additive. If trend and seasonality are present, the application of additive 

trend and multiplicative seasonality will be used, referred to as Winter’s method.  

 

3.4.2.  ARIMA method 

The study also investigates the Autoregressive Integrated Moving Average 

(ARIMA) method. ARIMA uses both autoregressive and moving average methods. It is 

appropriate to use ARIMA if the time series data is correlated with prior observations. 

The model can be described as follows: 

• The number of autoregressive terms ‘𝑝’ 

• The number of past forecast errors ‘𝑞’  

• The number of difference terms needed to make a non-stationary time series 

stationary ‘𝑑’ 

Differencing, represented by 𝑑, specifies the number of times the series is 

differenced, to transform a non-stationary series into a stationary one. The model is 

written as ARIMA (𝑝, 𝑑, 𝑞). If the data is stationary to begin with, it can be written as 

(𝑝 ,0, 𝑞). The forecast for patient arrival at time 𝑡, �̂�𝑡, is presented in Equation 1. 

 

�̂�𝑡 = 𝑐 + ∑ 𝑎𝑖

𝑝

𝑖=1
𝑌𝑡−𝑖 − ∑ 𝑏𝑖𝜖𝑡−1 + 𝜖𝑡

𝑞

𝑖=1
                  (1) 

 

In the equation, 𝑎𝑖  and 𝑏𝑖  are the correlation coefficients associated with prior 

observations and random shocks 𝜖𝑡  respectively. Prior to fitting an ARIMA model, the 

modeler must be determined if the data is stationary. This can be confirmed by 

performing the Augmented Dickey-Fuller unit root test. Differencing will be carried out 
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until the data is stationary. ARIMA models will be determined by matching the 

autocorrelation function (ACF) and partial autocorrelation function (PACF) plots. The 

ACF and PACF will be interpreted to determine the autoregressive (𝑝) and moving 

average (𝑞) terms. The validity of the selected model will be determined by certifying 

that the residuals are a series of random errors. If the previous statement is true, there 

should not be any autocorrelations, full or partial, present.  

For every model tested, one period forecasts will be generated. These forecasts 

are represented by 𝑌𝑡+1|𝑡  where 𝑌1…𝑌𝑡 are assumed known. The model that has the 

smallest mean absolute percentage error (MAPE) will be applied to the out of sample 

data to assess its validity for future time series analysis. Equation 2 is used to compute 

the MAPE for one time-period in the future.  

 

𝑀𝐴𝑃𝐸 = 𝑇0
−1 [ ∑ |

�̂�𝑡+1|𝑡 − 𝑌𝑡+1

𝑌𝑡+1

|

𝑇+𝑇0

𝑡=𝑇

] ∗ 100                        (2) 

 

3.5. Case study 

The scope of the study is limited to a specific number of counties in the state of 

Texas. Once the subsequent model is determined to be producing the results expected, the 

scope can be enlarged to the entire state, and perhaps on a national level. Due to patient 

confidentiality reasons, the injury locations for this study were reported using three-digit 

zip codes which represent different counties in the state of Texas. The data sets were 

filtered and analyzed to include these specific counties to determine the trend of trauma 

injuries over a period of three years viz 2014, 2015, and 2016. Figure 1 shows the 
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counties considered in the case study. Table 5 provides greater detail for the counties 

under analysis.  

 

 

Figure 1. Texas state counties considered in current study 

 

Table 5. Zip code associated with the counties considered in current study 

Injury location 

(3-digit zip 

code) Counties 

780 

Atascosa, Bandera, Bexar, Comal, Frio, Kendall, Kerr, Live 

Oak, Medina 

781 

Bee, Bexar, Comal, De Witt, Gonzales, Guadalupe, Karnes, 

Wilson 

782 Bexar, Comal 

783 

Aransas, Bee, Brooks, Duval, Jim Hogg, Jim Wells, Kenedy, 

Kleberg, Live Oak, Nueces, Refugio, San Patricio, Webb 

786 

Bastrop, Blanco, Burnet, Caldwell, Comal, Gillespie, Gonzales, 

Guadalupe, Hays, Llano, Travis, Williamson 

787 Travis, Williamson, Hays 

788 

Bandera, Dimmit, Edwards, Kinney, Maverick, Medina, Real, 

Terrell, Uvalde, Val Verde, Zavala 
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3.6. Descriptive analysis results 

In this sub-section a descriptive analysis of the trauma injury data is performed. 

The goal of the descriptive analysis is to understand the relation between the TCC service 

demand and the following data fields listed in Table 1.  

• Regional location 

• Trauma center 

• Injury Severity Score (ISS) 

• Injury environment 

The following sub-sections will present data plots and insights for each of the data 

fields (i.e. regional location, trauma center, ISS, and injury environment).  

 

3.6.1. Descriptive analysis for injury regional location  

Figure 2 provides a side-by-side comparisons of all injuries in the regions 

considered in this study for years 2014, 2015, and 2016. The results of our initial analysis 

show that locations where the highest number of injuries are registered are, 782, 786, and 

787. Zip code 787 has Travis county with a population of about 1.274 million in 2019. 

Travis county contains the city of Austin which has large number of corporations and 

manufacturing facilities. Zip code 782 includes Bexar county which is home for the city 

of San Antonio. Bexar county has about 2.0 million of residents and also contains many 

corporation and manufacturing facilities. Finally, zip code 786 contains the Austin 

suburbs, a region that has experience an exponential growth in the past ten years[53]. An 

important insight from this graph is the declining trend for the three regions with the 

highest numbers. The rest of the regions show an increase in the number of cases from 
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2014 to 2015 and then a decline from year 2015 to 2016. It is important to consider the 

variable patterns for regions 780, 781, 783, and 788 since these are mostly rural regions. 

Understanding the variability in these regions is important for the future expansion of the 

trauma network in Texas. 

 

 
Figure 2. Number of trauma injuries reported per zip code for years 2014, 2015, and 2016 

 

3.6.2. Descriptive analysis for trauma center level 

TCCs are designated using four different levels, starting from I to IV. Level-I are 

comprehensive facilities, capable of provide the most extensive care to any injured 

patient. Only 6% of TCCs in Texas are designated as Level-I trauma facilities. Level-II 

TCCs are labeled as major facilities and only 8% of TCCs in Texas are designated at this 

level. Level-III TCCs are labeled as advanced trauma facilities and only 20% of TCCs in 

Texas are designated at this level. Finally, Level IV-TCCs are labeled as basic trauma 

facilities and 66% of TCCs in Texas are designated at this level. Therefore, most of the 

TCCs in Texas (86%) are designated as Level-II or Level-IV facilities.   
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Figure 3 depicts the yearly percentage of trauma injuries treated per level of TCC. 

The plot only considers counties and zip codes presented in Table 5. A total of 53 TCCs 

facilities were located in the studied region. Four of those facilities are Level-I TCCs, 

three are Level-II TCCs, and the rest are Level-III and Level-IV. The results show that 

Level-I TCCs treat at least 35% of the trauma injuries per year, treating more trauma 

patients than Level-II, Level-III, and Level-IV TCCs. This is relevant because, as stated 

earlier, only 6% of TCCs in Texas are designated as Level-I trauma facilities. Possible 

explanations for this phenomenon are that Level-I TCCs are mostly located in large 

metropolitan areas with high population densities. Also is interesting to notice that Level-

II trauma facilities, which are major TCCs, treat less patients than Level-III and Level-IV 

TCCs. A possible explanation for this finding is that only one Level-II TCC is located in 

the area under study. The number of trauma patients served per year per trauma level 

does not vary greatly. For instance, the percentage of trauma injuries assisted by Level-I 

TCCs was between 34% and 37% for years 2014, 2015, and 2016. However, it is 

important to notice the significant variability among all trauma levels. For instance, 

Level-II TCCs only serve about 15% of the trauma injuries when compared to about 35% 

for Level-I TCCs, 27% for Level-III TCCs, and 23% for Level-IV TCCs. The variability 

could indicate a need for better protocols at the time of selecting the Trauma hospital to 

transport the injured patients for care. Better trauma hospital selection processes can help 

in avoiding facilities overutilization or underutilization.  
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Figure 3. Percentage of trauma injuries assisted by TCC level per year 

 

3.6.3. Descriptive analysis for injury severity score (ISS) 

In this sub-section we investigate the average and variance of the ISS for patients 

treated at TCCs per level for years 2014, 2015, and 2016. These ISS’s range from 1 to 75 

with the latter being the most extreme case. Since it was observed that some TCCs levels 

are utilized more than others, it is important to determine the range of injuries received at 

these facilities. Since TCC Level-I are comprehensive trauma facilities, they are expected 

to manage mostly severe cases with high ISS. Therefore, the range of the ISS per trauma 

level could be used to determine if each TCC level is serving patients according to the 

level of care they can provide. Overutilizing comprehensive (Level-I) and major (Level-

II) levels TCCs with patient cases that are not severe could compromise the trauma 

network capacity for the state in the event of natural or man-made disasters (i.e. COVID-

19).   

Figure 4 presents a box plot summarizing the range of ISSs recorded by trauma 

level for the year 2014. ISSs for trauma Level-I have a median of 9 and a mean value of 

9.75. ISSs for trauma Level-II have a median of 6 and a mean value of 8.45. ISSs for 
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trauma Level-III have a median of 5 and a mean value of 7.75. ISSs for trauma Level-IV 

have a median of 5 and a mean value of 6.78. Figure 4 shows similar patterns among 

TCC levels for year 2014. Although the variability for trauma Level-I is higher, the plot 

shows that patients with very low ISS were served at Level-I trauma facilities.  

 

 
Figure 4. Injury severity scores per trauma level for 2014 

 

Figure 5 presents a box plot summarizing the range of ISS’s recorded by trauma 

levels for the year 2015. ISS’s for trauma Level-Ⅰ have a median of 5 and a mean value of 

9.19. ISS’s for trauma Level-II have a median of 5 and a mean value of 7.85. ISS’s for 

trauma Level-III have a median of 5 and a mean value of 7.12 and ISSs for trauma Level-

IV have a median of 4 and a mean value of 6.20. Year 2016 shows a similar pattern. 

Figure 6 presents a box plot summarizing the range of ISS’s recorded by trauma levels 

for the year 2016. ISS’s for trauma Level-I have a median of 5 and a mean value of 8.76. 

ISS’s for trauma Level-II have a median of 5 and a mean value of 7.42. ISS’s for trauma 

Level-III have a median of 5 and a mean value of 7.10. ISS’s for trauma Level-IV have a 

median of 4 and a mean value of 6.23. 
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Figure 5. Injury severity scores per trauma level for 2015 

 

 
Figure 6. Injury severity scores per trauma level for 2016 

 

It is important to highlight that there is a decrease in the mean and median values 

for trauma Level-I from year 2014 to years 2015 and 2016. Therefore, the data shows that 

trauma levels are not necessarily taken into consideration when choosing the facility 

providing care to the patient. Those decisions should be based on the type of injury 

sustained by the patient in order to balance the utilization of the trauma network.  
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3.6.4. Descriptive overall analysis demand behavior considering injury environment 

There are ten environment location codes for trauma injuries ranging from 849.0 

to 849.9. The different codes represent the type of facility/environment where the injuries 

occur. The analysis focuses on the four codes that are repeated the most, 849.0 for homes, 

849.3 for industrial facilities, 849.5 for street and highway, and 849.6 for public 

buildings. Figures 7 to 9 contain four boxplots each, one per environment location. 

Figures 7, 8, and 9 represent the data for years, 2014, 2015, and 2016, respectively. Each 

boxplot presents the number of injuries per regional location according to the 

environment location considered.   

 Figure 7a compares the number of injuries recorded at homes across all zip codes 

in 2014. Zip code 782 accounts for the highest number of recorded injuries with a median 

of 1,009 followed by zip codes 786 and 787. Zip code 782 includes Bexar county which 

is home for the city of San Antonio. Bexar county has about 2.0 million of residents with 

more than 632,000 households. Similarly, zip codes 787 and 786 includes parts of Travis 

county, home of the city of Austin, with a population of about 1.274 million in 2019 and 

more than 550,000 households.  

The number of injuries for industrial zones is small when compared to the injuries 

in the home environment as observed in Figure 7b [54]. For industrial zones, zip codes 

782 and 781 account for the highest number of recorded injuries with a median of 9 and 8 

injuries, respectively. Zip code 781 includes Bexar county which is home of multiple 

industrial and manufacturing companies including vehicles and HVAC and refrigeration 

equipment. Zip code 787 in on third place with 7 injuries. Zip code 787 includes parts of 

Travis county, home of the city of Austin, which is home of multiple companies 
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dedicated to the manufacturing of computer and peripherals and also to the 

manufacturing of semiconductors and electronic components.  

Figure 7c compares the number of injuries recorded on streets and highways. The 

top three zip codes with the highest volume of injuries were zip code 787 with a median 

value of 432, zip code 786 with a median value of 314.5, and zip code 782 with a median 

value of 268. These three zip codes cover the I-35 corridor that connects San Antonio 

with Austin. Almost 40 percent of Texans and over 40 percent of Texas jobs were located 

in the 21 counties along I-35. The population in the counties along the I-35 corridor is 

expected to increase from 9.7 million in 2010 to 17.7 million by 2040, an increase of 

approximately 82 percent. The number of crashes in the I-35 corridor is approximately 

8.4 percent higher than the statewide urban crash rate for interstate facilities [55] Figure 

7d displays the injuries occurring in public buildings across all zip codes. Zip code 787 

accounted for the highest number of injuries recorded with a median value of 136 

followed by zip code 782 with a median value of 67.5. The rest of the regions showed 

significantly lower rates. Zip code 787 contains the city of Austin which is home for 

multiple state government buildings and zip code 782 houses the city of San Antonio 

which also contains a large number of public buildings.   
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Figure 7. Injuries recorded by injury environment per regional location in 2014 

 

 
Figure 8. Injuries recorded by injury environment per regional location in 2015 
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Figure 9. Injuries recorded by injury environment per regional location in 2016 

 

Figure 8 and Figure 9 present the results for years 2015 and 2016, respectively. 

The trends observed for years 2015 and 2016 were similar to those observed in year 

2014. In summary, it is observed that the industrial facilities environment (i.e. code 

849.3) accounts for the least number of injuries for any given year. The homes 

environment (i.e. code 849.0) accounts for the highest number of injuries for any given 

year with zip code 782 presenting the regional location with the highest number of 

injuries. Finally, zip code 787 presents the highest number of injuries occurring in the 

street and highway environment (i.e. code 849.5), and for public buildings environment 

(i.e. code 849.6).  

 

3.7. Predictive analysis results 

In this sub-section different forecasting methods are evaluated to find the best 

models for predicting the expected number of injuries per regional location. Injuries are 

considered on a daily base. Time series analysis and time series plots are used to visualize 
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the data and to study the performance of the forecasting models. 

 

3.7.1. Time series analysis per year  

Figure 10 presents time-series for the total number of trauma injuries per year for 

years 2014, 2015, and 2016. The time-series plot is consistent with the results presented 

in Figure 2 where years 2014 and 2015 present a higher total number of injuries per year 

when compared to year 2016. Year 2015 shows more variability in the number of injuries 

reported per day when compared to year 2014. The maximum and minimum number of 

trauma injuries reported per day in 2015 were 361 and 237, respectively. For 2014 the 

maximum and minimum number of trauma injuries reported per day were 333 and 245, 

respectively. Finally, in 2016, the maximum and minimum number of trauma injuries 

reported per day were 255 and 153, respectively. Year 2016 shows a drop of about 100 

trauma injuries reported per day when compared to years 2014 and 2015.   

 

 
Figure 10. Time series plot for injuries for years 2014, 2015, and 2016 
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3.7.2. Time series analysis considering zip codes per year  

Figures 11, 12, and 13 present the time series for all regional locations (i.e. zip 

codes) for years 2014, 2015, and 2016, respectively. These time-series plots are 

consistent with the results presented in Figure 2 where zip codes 787 and 782 presented a 

higher total number of injuries per year. Year 2016 show a decrease in the number of 

injuries recorded as compared to the previous years but do present similar patterns with 

respect to the zip codes. 

 
Figure 11. Time series plot for injuries for all zip codes in 2014 

 

 
Figure 12. Time series plot for injuries for all zip codes for 2015 
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Figure 13. Time series plot for injuries for all zip codes in 2016 

 

As mentioned earlier, zip code 782 contains Bexar county which includes the city 

of San Antonio, one of the largest cities in Texas, whereas zip code 787 is for Travis 

County which includes the city of Austin, a major urban location. As these cities are 

highly populated areas located in the I-35 highway corridor, it is logical to attribute the 

relation between the number of injuries recorded and location. Zip code 783 accounts for 

the third highest recording of injuries across all years. Zip code includes Travis, 

Williamson, and Hays counties. These regions are quite populated since they contain the 

Austin suburbs, an area that has experience an exponential growth in the past ten years 

[53].  

 

3.7.3. Forecast model results 

Forecasting models, as presented in Table 4, were implemented for the trauma 

injury data per year. The choice of model will depend on the lowest MAPE. As per the 

class structure stated prior, 𝐶𝐿 denotes the injury location. The five forecasting methods 

listed in Table 4 were evaluated for each zip code to determine which would result in the 
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lowest MAPE value for each zip code. Table 6 presents the results for the year 2014. The 

highlighted cells show the lowest MAPE value corresponding to the forecasting model. 

For the year 2014, it is observed that for most regional locations, ARIMA provides the 

best performance to use for forecasting. The exception being that for ‘Injuries/Day’, 

which includes the data for all zip codes, and ‘Zip Code 782’. For those two cases 

EWMA-additive trend and EWMA provided the best performance, respectively. 

Table 6. MAPE results for 2014 

Injury 

location 

Moving 

average 

EWMA 

(simple 

exponential 

smoothing) 

EWMA-

additive trend 

(Holt’s 

method) 

EWMA-

additive trend 

and seasonality 

(Winter’s 

method) 

ARIMA 

Injuries/Day 4.82 4.46 4.45 4.57 4.46 

ZIP Code 780 17.88 16.40 16.39 16.65 16.32 

ZIP Code 781 20.75 19.18 18.94 19.18 18.91 

ZIP Code 782 9.53 8.85 8.89 9.10 8.88 

ZIP Code 783 37.82 34.74 34.76 35.97 34.64 

ZIP Code 786 12.63 11.28 11.30 11.93 11.26 

ZIP Code 787 10.84 9.88 9.77 10.46 9.76 

ZIP Code 788 32.15 30.66 30.57 31.45 30.55 

  

 Table 7 presents the results for the year 2015. The model selection for this year 

changed for several regional locations when compared against 2014. For zip codes 780, 

783, and 786, the simple exponential smoothing method provided a better performance 

instead of ARIMA. In addition, the best performer for the aggregated data (i.e. 

‘Injuries/Day’) is now moving average instead of EWMA-additive trend.  

Table 7. MAPE results for 2015 

Injury 

location 

Moving 

average 

EWMA 

(simple 

exponential 

smoothing) 

EWMA-

additive 

trend 

(Holt’s 

method) 

EWMA-

additive trend 

and seasonality 

(Winter’s 

method) 

ARIMA 

Injuries/Day 6.00 6.02 6.61 6.01 6.02 

Zip Code 780 17.95 16.28 17.25 17.81 16.71 
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Zip Code 781 22.15 21.63 21.57 21.94 21.32 

Zip Code 782 11.23 10.51 11.21 10.71 10.73 

Zip Code 783 29.24 27.83 28.75 29.76 28.40 

Zip Code 786 16.71 16.06 16.88 17.24 16.12 

Zip Code 787 10.90 10.37 10.83 11.24 10.31 

Zip Code 788 30.76 29.71 30.96 31.54 29.47 

 

Table 8 presents the results for year 2016. There are multiple regional locations 

for which the forecasting model selection remained consistent for every year 2014, 2015, 

and 2016. For instance, ARIMA was the model selected for zip codes 781 and 788 for all 

years. Also, EWMA was the model selected for zip code 782 every year. EWMA and 

ARIMA were provided the best performance for zip codes 780, 786, and 787 in different 

years.  The forecasting model selection for zip codes 783 was different every year and 

included ARIMA, EWMA, and EWMA-additive trend. Based on the previous results, it 

can be concluded that EWMA and ARIMA forecasting methods provides the best 

performance for forecasting trauma injuries in the studied region in Texas. Out of the 24 

evaluated time series, EWMA provided the best performance for 9 and ARIMA provided 

the best performance for 12. The parameters for the ARIMA models are listed in the 

Appendix.  

Table 8. MAPE results for 2016 

Injury 

Location 

Moving 

average 

EWMA 

(simple 

exponential 

smoothing) 

EWMA-

additive 

trend 

(Holt’s 

method) 

EWMA-

additive trend 

and seasonality 

(Winter’s 

method) 

ARIMA 

Injuries/Day 7.37 7.30 7.50 7.65 7.34 

Zip Code 780 20.82 20.09 20.61 20.91 20.09 

Zip Code 781 26.32 25.44 25.31 26.27 25.11 

Zip Code 782 12.90 12.35 12.41 13.02 12.37 

Zip Code 783 36.82 36.73 36.21 37.38 36.22 

Zip Code 786 15.58 14.53 15.17 15.83 15.14 

Zip Code 787 13.84 13.68 13.73 14.61 13.71 

Zip Code 788 36.81 37.46 35.40 38.07 35.34 
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Table 9 presents descriptive statistics of all data sets for the years 2014, 2015, and 

2016. The MAPE values in Table 9 represent the value for the best performing 

forecasting model. The class designation in Table 9 is explained as follows. Classes 

I2014, I2015, I2016, denote the total injuries occurring in the years 2014, 2015, and 

2016, respectively. A three-digit zip code followed by the year designation contain the 

descriptive statistics in addition to the MAPE for the best performing forecasting model. 

780/2014 row will comprise statistics for all injuries occurring in zip code 780 for the 

year 2014. This nomenclature is shared by all zip codes in Table 9 for all years.  

Table 9. Forecasting models results 

Class CV MAPE Minimum Maximum Mean St.Dev. 

I2014 5.50 4.45 245 333 290.68 15.97 

I2015 7.37 6.00 237 361 297.10 21.90 

I2016 9.12 7.30 153 255 202.83 18.50 

780/2014 19.27 16.32 12 46 25.795 4.97 

781/2014 21.90 18.91 8 29 17.984 3.94 

782/2014 10.85 8.85 42 92 72.447 7.86 

783/2014 35.05 34.64 2 21 8.342 2.92 

786/2014 14.15 11.26 31 69 47.121 6.67 

787/2014 11.90 9.76 43 91 67.956 8.09 

788/2014 29.54 30.55 1 19 10.578 3.12 

780/2015 19.51 16.28 11 40 26.558 5.18 

781/2015 21.18 21.32 9 36 20.236 4.89 

782/2015 12.97 10.51 43 94 67.082 8.70 

783/2015 30.01 27.83 3 26 12.451 3.74 

786/2015 18.74 16.06 16 59 37.140 6.96 

787/2015 12.47 10.31 47 97 71.712 8.94 

788/2015 30.58 29.47 4 20 10.890 3.33 

780/2016 22.61 20.09 11 42 23.788 5.38 

781/2016 26.79 25.11 3 27 14.984 0.21 

782/2016 14.84 12.35 27 67 46.544 6.91 

783/2016 35.86 36.21 2 19 8.121 2.91 

786/2016 18.65 14.53 17 52 30.574 5.70 

787/2016 16.12 13.68 28 62 42.239 6.81 

788/2016 35.62 35.34 1 24 7.904 2.82 
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Figure 14 showcases the relationship between the coefficient of variation (CV) 

and the MAPE for all zip codes across 2014, 2015, and 2016. It also includes the 

comparison for the aggregated total of trauma injuries occurring across the same time 

span. Figure 14 shows that the increase in variability (i.e. CV) results in increase in 

forecast error. Zip codes 783 and 788 report the largest values for the CV and the MAPE. 

Those regional locations observed less numbers of trauma injuries, when compared to the 

rest, for all years considered in this study as observed in Figures 11 to 13. The limited 

number of observations could be the reason for the observed higher values for CV and 

MAPE. Better results were obtained for those regional locations with higher number of 

injuries reported (i.e. 782 and 787). The same analysis applies to the results observed in 

Figure 14d. A smaller amount of trauma injuries were observed in year 2016, as 

compared to years 2014 and 2015 as observed in Figure 10.  Therefore, the MAPE 

reported in year 2016 is higher than the values reported for years 2014 and 2015.  

 

3.8. Decision making using experimental results 

In this sub-section, an algorithm is proposed to make decisions using the results 

and insights from chapter 3, sub-sections 3.6 and 3.7. The descriptive analysis of the data 

showed that location environments such as homes and proximity to highways are linked 

to a higher volume of injuries.  
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The proposed algorithm is used to identify regional locations with an expected 

increase of population and located close to highways that have limited access to TCCs. 

The following notation is used in the algorithm. Let 𝑡 ∈ 𝑇 define the set of TCCs in the 

current network the former of which is located within the region under study. The 

algorithm can be scaled from point sources to a general area, but the ideal setup would be 

to choose a point of study and expand outwards. This can be done by choosing distance 

radii from the point of origin and encompass the trauma centers that are located with the 

distance set by the programmer. Let ℓ ∈ 𝐿 be the set of regional locations considered in 

the study and 𝑝ℓ the percentage increase in the last 10 years for regional location ℓ. The 

way to set a defining parameter for population would be to determine eligibility by 

analyzing the total population of a location to determine a feasible minimum cut off 

point. It would be preferable to handle it by a case to case basis to obtain better results 

and even to use growth rate percentage as a performance measure. Another method 

would be to use a range of percentages to allow more flexibility when ascertaining which 

Figure 14. Algorithm 
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locations would be eligible to place a trauma center near them. Let set 𝑅 be a subset of 𝐿 

which defines the regional locations with a population increase ≥ 𝜔, where 𝜔 is defined 

by the decision maker. In addition, let 𝑑ℓ denote the travel time from regional location ℓ 

to the closest major interstate or highway. The travel time must be calculated from a 

centroid that represents the population of the region. Also, let set 𝐻 be a subset of 𝑅 that 

contains the regional locations ℓ with a travel time ≤ 𝛽 from a major highway, where 𝛽 

is defined by the decision maker and let set 𝐼 be a subset of 𝐻 that contains the regional 

locations ℓ with a travel time ≤ 𝛿 from a TCC, where 𝛿 is defined by the decision maker. 

Set 𝐼 will contain the regional locations that must be tracked for future expansion of the 

TCC network. Figure 14 list the steps of the algorithm.  

Applying the proposed algorithm to the data studied in this thesis, the regional 

location with zip code 786 was identified as having multiple counties with limited access 

to TCC. Therefore, those counties should be considered for future expansion of the 

trauma network. Also, the results from the forecasting analysis can be used for capacity 

analysis. For example, EWMA and ARIMA models can be used to estimate the expected 

number of injuries for regional location 780. Those results can be used to make a capacity 

analysis for the TCCs located close the regional location. 

An example can be constructed using real time data. Taking zip code 78006, for 

Boerne, Texas, has had a population growth of 71% since 2010, as per the census report 

available for 2019 estimates [56]. If the criteria for cut off is set at 50% by the 

programmer, then it qualifies for the next stage of the process. As the population is 

considered as a centroid, the distance to the nearest highway or interstate, when using a 

straight line comes out to be 2.63 miles. If this is less than the limits defined by the 
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programmer then the next phase of the algorithm can be undertaken. Trauma centers 

within the region of study must be identified and categorized according to their distances 

from the locations. Table 10 below shows the actual time taken to trauma centers, their 

names converted to generalized codes to protect identities and is used for presentation 

purposes only. 

Table 10. Time taken to reach trauma centers 

Location Trauma Center Time in Minutes 

78006 TC1 47 

78006 TC2 46 

78006 TC3 47 

78006 TC4 55 

78006 TC5 49 

78006 TC6 48 

78006 TC7 51 

78006 TC8 52 

78006 TC9 59 

78006 TC10 59 

78006 TC11 60 

78006 TC12 64 

78006 TC13 68 

78006 TC14 69 

78006 TC15 74 

78006 TC16 49 

78006 TC17 75 

78006 TC18 108 

78006 TC19 100 

78006 TC20 131 

78006 TC21 153 

78006 TC22 169 

78006 TC23 249 

78006 TC24 333 

78006 TC25 288 

 

If a time limit of 60 minutes is set by the programmer to reach a trauma center, as 

per the Table 10 above we can see that TC12 and onwards will be rejected due to the 

constraint provided by the algorithm. There are 11 trauma centers that can serve 78006 
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within the set time. There are several factors that determine the feasibility of the trauma 

centers such as capacity, that determines whether they are equipped to handle the 

demand, services offered, and personnel available but these are out of scope for the 

current study. If a region has few centers within a certain driving time, then those would 

be the focus for expansion of the trauma network in that region. As cities and urban 

population groups expand, there will arise a need for additional trauma centers that can 

cope up with the rise in demand hence the importance of determining the rise of regional 

population and the subsequent expansion of ancillary systems such as road networks, 

industrial and manufacturing hubs, public buildings that are frequented by the population.  

 
Figure 15. Scatterplot of CV versus MAPE 
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4. STOCASTIC PROGRAMMING 

 

4.1. Problem description 

The problem of maximizing access to TCCs for a population group must 

consider the location of the population group itself and the location of TCCs that aim to 

provide services to the concerned group. For the purposes of this study, population 

groups are identified in terms of their zip code locations for a given geographical region. 

As is known, the population for any given location, in this case a zip code, is spread 

across internal communities and zones. Due to this factor, attributing population for the 

model can be challenging especially when determining which locations can be covered 

by services. A workaround is to use a population centroid which is the geographical 

coordinate that represents the entire population of said location. This study utilizes 

population centroids for zip codes that are subsequently used to determine the distances 

from zip codes to trauma centers. Let set 𝑖 ∈ 𝐼 represent the set of all zip codes located 

in the region of study, representing the trauma services demand nodes. These zip codes 

are located within a service region defined by the state of Texas, known as a Trauma 

Service Area (TSA). The TSA under study will also have a set of designated TCCs. 

These are classified as such by the Texas state Department of State Health Services 

(DSHS) and have a trauma level assigned to them represented by set ℓ ∈ 𝐿. Every zip 

code in set 𝐼 has a demand that is the daily demand by TSA level 𝐿 associated to it 

represented by 𝑎𝑖ℓ.  

The set of TCCs are represented by set 𝑗 ∈ 𝐽. Some of the TCCs have helipads as 

part of their infrastructure and are termed as aeromedical depots. These aeromedical 
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depots are represented by set 𝑘 ∈ 𝐾. Clinical intervention is expected within a time 𝑆 

from the moment of an injury incident. Demand region 𝑖 is geographically covered by an 

ambulance if there exists a TCC 𝑗 with 𝑡𝑖𝑗
𝐺 ≤ 𝑆, where 𝑡𝑖𝑗

𝐺  is the driving time from node 𝑖 

to node 𝑗. Demand region 𝑖 is geographically covered by an helicopter if there exists a 

TCC 𝑗 with 𝑡𝑘𝑖
𝐴 + 𝑡𝑖𝑗

𝐴 ≤ 𝑆, where 𝑡𝑘𝑖
𝐴  denotes time taken to reach the demand node from 

the aeromedical depot 𝑘 and 𝑡𝑖𝑗
𝐴  denotes the time taken to return to TCC 𝑗 from the 

demand node 𝑖. As a general rule of thumb, 𝑆 is defined as 60 minutes. Due to this 

varying demand nature, we modeled the problem as stochastic which consider the 

uncertainty in the demand for trauma services per regional location. The objective is to 

find the locations of additional TCCs 𝑗 and heliports 𝑘 that will maximize the expected 

coverage demand within a time a time standard 𝑆 considering the randomness in the 

demand. 

 

4.2. Two-stage stochastic programming models 

In this sub-section, a two-stage stochastic programming model, named the 

Stochastic Trauma System Configuration Problem (STSCP), is used to model is 

presented to model and solve the problem as described in chapter 4 sub-section 4.1. We 

also present multiple modifications of the STSCP to address different scenarios for the 

problem. Table 11 below lists the sets, decision variables, and parameters of the 

proposed optimization model.  

 

Table 11. Decision variables and parameters for proposed optimization model 

Sets 

𝐼 Set of injury demand nodes where 𝑖 ∈ 𝐼 (patients in a geographical zone) 

𝐽 Set of eligible trauma care center (TCC) locations where 𝑗 ∈ 𝐽 
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𝐿 Set of trauma center levels ℓ ∈ 𝐿 

𝐾 Set of eligible aeromedical depots (AD) locations where 𝑘 ∈ 𝐾 

𝑁𝑖 {𝑗|𝑡𝑖𝑗
𝐺 ≤ 𝑆} = TCC sites within the time standard, 𝑆, of node 𝑖 by ground 

𝑀𝑖 {(𝑗, 𝑘)|𝑡𝑘𝑖
𝐴 + 𝑡𝑖𝑗

𝐴 ≤ 𝑆} = (AD, TCC) pairs within the time standard, 𝑆, of node 

𝑖 by air 

First Stage Decision Variables 

𝑥𝑗ℓ
𝑇𝐶  =1 if a trauma care center (TCC) level ℓ is sited at node 𝑗, 0 otherwise 

𝑥𝑘ℓ
𝐴𝐷 =1 if a heliport (AD) is sited at node 𝑘 with a level ℓ trauma facility, 0 

otherwise 

𝑧𝑘𝑗ℓ =1 if an AD is sited at node 𝑘 and a TCC level ℓ is sited at node 𝑗 , 0 otherwise 

Second Stage Decision Variables 

𝑦𝑖ℓ
𝜔 =1 if demand for level ℓ facility at node 𝑖 under scenario 𝜔 is covered, 0 

otherwise 

𝑣𝑖ℓ
𝜔 =1 if demand for level ℓ facility at node 𝑖 under scenario 𝜔 is covered by 

ground, 0 otherwise 

𝑢𝑖ℓ
𝜔 =1 if demand for level ℓ facility at node 𝑖 under scenario 𝜔 is covered by air, 

0 otherwise 

Parameters 

𝑆 Time standard 

𝑝 
𝑇𝐶  The number of TCCs to be sited 

𝑝 
𝐴𝐷  The number of ADs to be sited 

𝑡𝑖𝑗
𝐺  The driving time from node 𝑖 to node 𝑗 

𝑡𝑖𝑗
𝐴  The flying time from node 𝑖 to node 𝑗 

𝑡𝑘𝑖
𝐴  The flying time from node 𝑘 to node 𝑖 

𝑐𝑗ℓ
𝑇𝐶  Cost of opening a trauma center (TC) level ℓ is sited at node 𝑗 

𝑐𝑘ℓ
𝐴𝐷  Cost of open an aeromedical depot (AD) is sited at node 𝑘 with a level ℓ 

trauma facility 

𝑟ℓ Number of trauma centers that can be placed per level 𝑙 
Stochastic Parameters 

𝑎𝑖ℓ
𝜔 Population demand for a trauma center level ℓ at node 𝑖 under scenario 𝜔 

 

The STSCP assumes that a TSA is known. In addition, the candidate sites for 

locating new TCCs are known and finite. In this work TCC candidates are assumed to be 

existing hospitals in the TSA that are not classified as TCCs. The availability of ground 

ambulance for the transportation of patients from location 𝑖 to a TCC 𝑗 is assumed to be 

unlimited. Finally, TCC coverage is defined as all zip-codes 𝑖 within 𝑆 as explained in  

chapter 4, sub-section 4.1. The travel times were computed using ArcGIS Pro [57] 
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which has a road network database, and the values are a result of calculations based on 

real time speed limits. The distances from zip codes 𝑖 ∈ 𝐼 to TCC candidate locations 𝑗 ∈

𝐽 were computed using geocoded centroids that represent the population for the zip code. 

The STSCP model is defined by equations (1𝑎) to (1𝑗). 

min ∑ ∑ 𝑐𝑗ℓ 𝑥𝑗ℓ
𝑇𝐶

ℓ∈𝐿 + ∑ ∑ 𝑐𝑘ℓ 𝑥𝑘ℓ
𝐴𝐷

ℓ∈𝐿 − ∑ 𝑝𝜔 ∗𝜔∈Ω {∑ ∑ 𝑎𝑖ℓ
𝜔𝑦𝑖ℓ

𝜔
ℓ∈𝐿𝑖∈𝐼 }𝑘∈𝐽𝑗∈𝐽    (1𝑎)          

                                                                                                                                       

Subject to: 

 

∑ ∑ 𝑥𝑗ℓ
𝑇𝐶

ℓ∈𝐿𝑗∈𝐽 ≤  𝑝 
𝑇𝐶                                                                                                                          (1𝑏) 

 

∑ 𝑥𝑗ℓ
𝑇𝐶

ℓ∈𝐿 ≤  1,   ∀𝑗 ∈ 𝐽                                                                                                                        (1𝑐) 

 

∑ ∑ 𝑥𝑘ℓ
𝐴𝐷 ≤ 𝑝 

𝐴𝐷               ℓ∈𝐿𝑘∈𝐾                                                                                                            (1𝑑) 

 

∑ 𝑥𝑘ℓ
𝐴𝐷

ℓ∈𝐿 ≤  1,   ∀𝑘 ∈ 𝐾                                                                                                                      (1𝑒) 

 

𝑧𝑘𝑗𝑙 − 𝑥𝑗ℓ
𝑇𝐶 ≤ 0,    ∀ 𝑗 ∈ 𝐽,   ∀𝑘 ∈ 𝐾, ∀ℓ ∈ 𝐿                                                                                       (1𝑓) 

 

𝑧𝑘𝑗𝑙 − 𝑥𝑘ℓ
𝐴𝐷 ≤ 0,    ∀ 𝑗 ∈ 𝐽,   ∀𝑘 ∈ 𝐾, ∀ℓ ∈ 𝐿                                                                                      (1𝑔) 

  

𝑦𝑖ℓ
𝜔 − 𝑣𝑖ℓ

𝜔 − 𝑢𝑖ℓ
𝜔 ≤ 0,   ∀𝑖 ∈ 𝐼, ∀ℓ ∈ 𝐿, ∀𝜔 ∈ Ω                                                               (1ℎ) 

  

𝑣𝑖ℓ
𝜔 − ∑ 𝑥𝑗ℓ

𝑇𝐶
𝑗∈𝑁𝑖

≤ 0,   ∀𝑖 ∈ 𝐼, ∀ℓ ∈ 𝐿, ∀𝜔 ∈ Ω                                                                               (1𝑖) 

 

𝑢𝑖ℓ
𝜔 − ∑ 𝑧𝑘𝑗(𝑗,𝑘)∈𝑀𝑖

≤ 0,   ∀𝑖 ∈ 𝐼, ∀ℓ ∈ 𝐿,   ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, ∀𝜔 ∈ Ω                               (1𝑗) 

 

∑ 𝑥𝑗ℓ
𝑇𝐶

𝑗 𝜖 𝐽  ≤  𝑟ℓ,   ∀ℓ ∈ 𝐿                                                                                                                  (1𝑘) 

 

𝑥𝑗ℓ
𝑇𝐶 , 𝑥𝑘ℓ

𝐴𝐷, 𝑧𝑘𝑗ℓ, 𝑦𝑖ℓ
𝜔, 𝑣𝑖ℓ

𝜔 , 𝑢𝑖ℓ
𝜔 = {0,1} 

 

The objective function comprises two sections that determine the placement of 

trauma centers in a geographic area. As stated in previous sub-section 4.2, a cost 

coefficient is associated with the placement of a trauma center (𝑥𝑗ℓ
𝑇𝐶) at node 𝑗 for Level-

I and placement of a heliport (𝑥𝑘ℓ
𝐴𝐷) at node 𝑘 for Level-I. Their respective cost 

coefficients are represented by 𝑐𝑗ℓ and 𝑐𝑘ℓ for trauma centers and heliports. The concept 
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behind the function is to balance the cost of opening a facility when covering the 

maximum demand nodes, represented by zip codes. Greater the coverage will result in a 

lower objective function value and vice versa. Scenarios (𝑝𝜔) have their unique demand 

values (𝑎𝑖ℓ
𝜔) and the summation of these scenarios, according to Table 11, will comprise 

of all demand nodes covered across all scenarios.   

Phase 1 – Facility placement decisions: This stage of the model limits the 

placement of TCCs and heliports per node per level. Constraint (1𝑏) limits the total 

number of trauma centers placed according the value (𝑝 
𝑇𝐶) imposed by the decision 

maker. No more than one TCC can be placed in a node in set 𝐽 and this is limited by 

constraint (1𝑐). The same limitations apply for placing a heliport, as the total number of 

heliports placed cannot exceed the value (𝑝 
𝐴𝐷) placed by the decision maker. 

Constraints (1𝑒) and (1𝑓) check if a trauma facility or a heliport are located to each 

other or vice versa.   

Phase 2 – Node coverage decisions: This stage of the model determines the 

coverage of facilities with respect to each of the nodes viz 𝐼 (demand), 𝐽 (trauma 

centers), and 𝐾 (heliports). Constraint (1ℎ) determines if a demand node 𝑖 is covered by 

air or ground for scenario 𝜔 ∈ Ω. Constraint (1𝑖) checks if there is a TCC that can cover 

demand at node 𝑖 by ground under scenario 𝜔 ∈ Ω, as constraint (1𝑗) checks if there is a 

heliport that can cover demand at node 𝑖 by air under scenario 𝜔 ∈ Ω. The final 

constraint (1𝑘) places a limit as to the number of trauma centers that can be placed at a 

trauma level.  
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4.2.1. Model variants 

In the following sub-sections different variants of the STSCP model are 

presented to address different situations associated with the optimal geographic 

configuration of TCCs. Five different variants of the STSCP model are considered in 

this study. Sub-section 4.2.1.1 discusses the Benchmark System (BS) model, which goal 

is to assess the performance of an existing trauma network. Sub-section 4.2.1.2 describes 

the Free System (FS) model which considers an empty system where none of the TCCs 

are fixed to a location. This version of the model allows the user to decide the location 

of all the TCCs that will be part of the trauma network. The FS model imposes no 

limitations in terms of the number of TCC Level-I or Level-II that can be placed in the 

trauma network. Sub-section 4.2.1.3 describes the Semi-Constrained (SC) model which 

is similar to the FS model with one exception. The SC model limits the number of 

Level-I TCCs that can be placed in the trauma network. Sub-section 4.2.1.4 discusses 

the Constrained System (CS) model which is similar to the BS in the sense that it only 

considers the TCCs in the existing trauma network. However, the goal of this model is 

to assess the reassignment of the levels (i.e. Level-I and Level-II) for the TCCs in the 

existing trauma network. Finally, sub-section 4.2.1.5 describes the Improvement System 

(IS) model which is similar to the BS model because the TCCs in the existing trauma 

network are considered to be fixed. However, this model considers the expansion of the 

trauma network by deciding where to locate an additional TCC Level-I and an additional 

TCC Level-II.  
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4.2.1.1. Benchmark system (BS) model  

The goal of the BS model is to assess the performance of an existing trauma 

network. The idea is to set up a benchmark performance by which we can compare the 

following model variants. The BS model is defined by equations (2𝑎) to (2𝑗). 

min ∑ ∑ 𝑐𝑗ℓ 𝑥𝑗ℓ
𝑇𝐶

ℓ∈𝐿 + ∑ ∑ 𝑐𝑘ℓ 𝑥𝑘ℓ
𝐴𝐷

ℓ∈𝐿 − ∑ 𝑝𝜔 ∗𝜔∈Ω {∑ ∑ 𝑎𝑖ℓ
𝜔𝑦𝑖ℓ

𝜔
ℓ∈𝐿𝑖∈𝐼 }𝑘∈𝐽𝑗∈𝐽

    (2𝑎) 

  

Subject to: 

 

 ∑ ∑ 𝑥𝑗ℓ
𝑇𝐶

ℓ∈𝐿𝑗∈𝐽 = 𝑝 
𝑇𝐶                                                                                                                         (2𝑏) 

 

∑ 𝑥𝑗ℓ
𝑇𝐶

ℓ∈𝐿 =  1,   ∀𝑗 ∈ 𝐽                                                                                                                       (2𝑐) 

 

∑ ∑ 𝑥𝑘ℓ
𝐴𝐷 = 𝑝 

𝐴𝐷               ℓ∈𝐿𝑘∈𝐾                                                                                                           (2𝑑) 

 

∑ 𝑥𝑘ℓ
𝐴𝐷

ℓ∈𝐿 =  1,   ∀𝑘 ∈ �̂�                                                                                                                     (2𝑒) 

 

𝑧𝑘𝑗𝑙 − 𝑥𝑗ℓ
𝑇𝐶 ≤ 0,   ∀ 𝑗 ∈ 𝐽, ∀𝑘 ∈ �̂�, ∀ℓ ∈ 𝐿                                                                                        (2𝑓) 

 

𝑧𝑘𝑗𝑙 − 𝑥𝑘ℓ
𝐴𝐷 ≤ 0,   ∀ 𝑗 ∈ 𝐽, ∀𝑘 ∈ �̂�, ∀ℓ ∈ 𝐿                                                                                       (2𝑔) 

 

𝑦𝑖ℓ
𝜔 − 𝑣𝑖ℓ

𝜔 − 𝑢𝑖ℓ
𝜔 ≤ 0,   ∀𝑖 ∈ 𝐼, ∀ℓ ∈ 𝐿, ∀ 𝜔 ∈ Ω                                                                                 (2ℎ) 

  

𝑣𝑖ℓ
𝜔 − ∑ 𝑥𝑗ℓ

𝑇𝐶
𝑗∈𝑁𝑖

≤ 0,   ∀𝑖 ∈ 𝐼, ∀ℓ ∈ 𝐿, ∀𝜔 ∈ Ω                                                                               (2𝑖) 

 

𝑢𝑖ℓ
𝜔 − ∑ 𝑧𝑘𝑗(𝑗,𝑘)∈𝑀𝑖

≤ 0,   ∀𝑖 ∈ 𝐼, ∀ℓ ∈ 𝐿,   ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, ∀𝜔 ∈ Ω                               (2𝑗)                     

                                                                                                                                       

𝑥𝑗ℓ
𝑇𝐶 , 𝑥𝑘ℓ

𝐴𝐷, 𝑧𝑘𝑗ℓ, 𝑦𝑖ℓ
𝜔, 𝑣𝑖ℓ

𝜔 , 𝑢𝑖ℓ
𝜔 = {0,1} 

 

In this model, set 𝐽 represents the TCCs that are currently located in the trauma 

network, 𝐽 ⊂ 𝐽. Also, a set �̂� represents the heliports that are currently located in the 

trauma network, �̂� ⊂ 𝐾. The other significant difference between the BS model and the 

original STSCP model is the elimination of constraint (1𝑘) since the trauma levels are 

fixed for each TCC in this model. Finally, the equality sign in constraints (2𝑏) to (2𝑑) 
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forces the model to place all trauma centers and heliports to match the number of 

existing facilities which will be defined in sets 𝐽 and �̂�.  

 

4.2.1.2. Free system (FS) model 

The FS model considers an empty system where none of the TCCs are fixed to a 

location. This version of the model allows the user to decide the location of all the TCCs 

that will be part of the trauma network. When compared to the STSCP, the FS model 

removes constraint (1𝑘) which limits the number of trauma centers that can be placed at 

a specific level viz Level-I and Level-II, respectively and retains the relation for the 

maximum facilities that can be placed. The removal of constraint (1𝑘) allows greater 

flexibility in the model to determine the best possible facility for a given node 𝑗 that 

intends to cover a demand node 𝑖 when considering the distance between nodes. The 

model is only allowed to place the number of trauma centers for Level-I and Level-II in 

accordance with the constraints and must comply with the maximum number of either 

facilities that can be placed as stated by constraints (3b) and (3e). The FS model is 

defined by equations (3𝑎) to (3j). 

 

min ∑ ∑ 𝑐𝑗ℓ 𝑥𝑗ℓ
𝑇𝐶

ℓ∈𝐿 + ∑ ∑ 𝑐𝑘ℓ 𝑥𝑘ℓ
𝐴𝐷

ℓ∈𝐿 − ∑ 𝑝𝜔 ∗𝜔∈Ω {∑ ∑ 𝑎𝑖ℓ
𝜔𝑦𝑖ℓ

𝜔
ℓ∈𝐿𝑖∈𝐼 }𝑘∈𝐽𝑗∈𝐽               (3𝑎) 

                                                                                                                                       

   

Subject to: 

 

∑ ∑ 𝑥𝑗ℓ
𝑇𝐶

ℓ∈𝐿𝑗∈𝐽 ≤  𝑝 
𝑇𝐶                                                                                                                          (3𝑏) 

 

∑ 𝑥𝑗ℓ
𝑇𝐶

ℓ∈𝐿 ≤  1,   ∀𝑗 ∈ 𝐽                                                                                                                        (3𝑐) 

 

∑ ∑ 𝑥𝑘ℓ
𝐴𝐷 ≤ 𝑝 

𝐴𝐷               ℓ∈𝐿𝑘∈𝐾                                                                                                             (3𝑑) 
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∑ 𝑥𝑘ℓ
𝐴𝐷

ℓ∈𝐿 ≤  1,   ∀𝑘 ∈ 𝐾                                                                                                                      (3𝑒) 

 

𝑧𝑘𝑗𝑙 − 𝑥𝑗ℓ
𝑇𝐶 ≤ 0,   ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, ∀ℓ ∈ 𝐿                                                                                           (3𝑓) 

 

𝑧𝑘𝑗𝑙 − 𝑥𝑘ℓ
𝐴𝐷 ≤ 0,   ∀ 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, ∀ℓ ∈ 𝐿                                                                                           (3𝑔) 

  

𝑦𝑖ℓ
𝜔 − 𝑣𝑖ℓ

𝜔 − 𝑢𝑖ℓ
𝜔 ≤ 0,   ∀𝑖 ∈ 𝐼, ∀ℓ ∈ 𝐿, 𝜔 ∈ Ω                                                                                     (3ℎ) 

  

𝑣𝑖ℓ
𝜔 − ∑ 𝑥𝑗ℓ

𝑇𝐶
𝑗∈𝑁𝑖

≤ 0,   ∀𝑖 ∈ 𝐼, ∀ℓ ∈ 𝐿, ∀𝜔 ∈ Ω                                                                      (3𝑖) 

 

𝑢𝑖ℓ
𝜔 − ∑ 𝑧𝑘𝑗(𝑗,𝑘)∈𝑀𝑖

≤ 0,   ∀𝑖 ∈ 𝐼, ∀ℓ ∈ 𝐿,   ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, ∀𝜔 ∈ Ω                                      (3𝑗)                      

                                                                                                                                         

𝑥𝑗ℓ
𝑇𝐶 , 𝑥𝑘ℓ

𝐴𝐷, 𝑧𝑘𝑗ℓ, 𝑦𝑖ℓ
𝜔, 𝑣𝑖ℓ

𝜔 , 𝑢𝑖ℓ
𝜔 = {0,1} 

 

4.2.1.3. Semi-constrained (SC) model  

The SC model is similar to the FS model with one exception. The SC model 

limits the number of Level-I TCCs that can be placed in the trauma network. The SC 

model has an additional constraint when compared to the FS model. The SC model 

includes constraint (1𝑘) from the original STSCP model and considers all the available 

hospitals in the TSA as possible locations for TCCs. Constraint  (4𝑘) imposes a limit for 

the number of trauma centers that can be placed per trauma level. The SC model is 

defined by equations (4𝑎) to (4𝑘). 

 

min ∑ ∑ 𝑐𝑗ℓ 𝑥𝑗ℓ
𝑇𝐶

ℓ∈𝐿 + ∑ ∑ 𝑐𝑘ℓ 𝑥𝑘ℓ
𝐴𝐷

ℓ∈𝐿 − ∑ 𝑝𝜔 ∗𝜔∈Ω {∑ ∑ 𝑎𝑖ℓ
𝜔𝑦𝑖ℓ

𝜔
ℓ∈𝐿𝑖∈𝐼 }𝑘∈𝐽𝑗∈𝐽                (4𝑎)                         

                                                                                                                                         

Subject to: 

 

∑ ∑ 𝑥𝑗ℓ
𝑇𝐶

ℓ∈𝐿𝑗∈𝐽 ≤  𝑝 
𝑇𝐶                                                                                                                          (4𝑏) 

 

∑ 𝑥𝑗ℓ
𝑇𝐶

ℓ∈𝐿 ≤  1,   ∀𝑗 ∈ 𝐽                                                                                                                        (4𝑐) 

 

∑ ∑ 𝑥𝑘ℓ
𝐴𝐷 ≤ 𝑝 

𝐴𝐷               ℓ∈𝐿𝑘∈𝐾                                                                                                             (4𝑑) 

 

∑ 𝑥𝑘ℓ
𝐴𝐷

ℓ∈𝐿 ≤  1,   ∀𝑘 ∈ 𝐾                                                                                                                       (4𝑒) 
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𝑧𝑘𝑗𝑙 − 𝑥𝑗ℓ
𝑇𝐶 ≤ 0,    ∀ 𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀ℓ ∈ 𝐿                                                                                        (4𝑓) 

 

𝑧𝑘𝑗𝑙 − 𝑥𝑘ℓ
𝐴𝐷 ≤ 0,   ∀ 𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀ℓ ∈ 𝐿                                                                                        (4𝑔) 

  

𝑦𝑖ℓ
𝜔 − 𝑣𝑖ℓ

𝜔 − 𝑢𝑖ℓ
𝜔 ≤ 0,   ∀𝑖 ∈ 𝐼, ∀ℓ ∈ 𝐿, ∀𝜔 ∈ Ω                                                                 (4ℎ)                         

                                                                                                                                       

𝑣𝑖ℓ
𝜔 − ∑ 𝑥𝑗ℓ

𝑇𝐶
𝑗∈𝑁𝑖

≤ 0,   ∀𝑖 ∈ 𝐼, ∀ℓ ∈ 𝐿, ∀𝜔 ∈ Ω                                                                               (4𝑖) 

 

𝑢𝑖ℓ
𝜔 − ∑ 𝑧𝑘𝑗(𝑗,𝑘)∈𝑀𝑖

≤ 0,   ∀𝑖 ∈ 𝐼, ∀ℓ ∈ 𝐿,   ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, ∀𝜔 ∈ Ω                                 (4𝑗)                       

                                                                                                                                         

∑ 𝑥𝑗ℓ
𝑇𝐶

𝑗 𝜖 𝐽  ≤  𝑟ℓ,   ∀ℓ ∈ 𝐿                                                                                                                    (4𝑘) 

 

𝑥𝑗ℓ
𝑇𝐶 , 𝑥𝑘ℓ

𝐴𝐷, 𝑧𝑘𝑗ℓ, 𝑦𝑖ℓ
𝜔, 𝑣𝑖ℓ

𝜔 , 𝑢𝑖ℓ
𝜔 = {0,1} 

 

4.2.1.4. Constrained system (CS) model 

This CS model is formulated to examine an existing trauma network in terms of 

their trauma level assignments. The idea of this model is to allow the reassignment of 

trauma levels designations (i.e. Level-I reassigned to Level-II and vice versa) to an 

existing trauma network. The CS model does not allocate new TCCs. The model only 

checks if any TCC level designation reassignment provides better service in terms of 

coverage to the service region. The CS model is defined by equations (5𝑎) to (5𝑘). 

 

min ∑ ∑ 𝑐𝑗ℓ 𝑥𝑗ℓ
𝑇𝐶

ℓ∈𝐿 + ∑ ∑ 𝑐𝑘ℓ 𝑥𝑘ℓ
𝐴𝐷

ℓ∈𝐿 − ∑ 𝑝𝜔 ∗𝜔∈Ω {∑ ∑ 𝑎𝑖ℓ
𝜔𝑦𝑖ℓ

𝜔
ℓ∈𝐿𝑖∈𝐼 }𝑘∈𝐽𝑗∈𝐽    (5𝑎)                        

                                                                                                                                

Subject to: 

 

 ∑ ∑ 𝑥𝑗ℓ
𝑇𝐶

ℓ∈𝐿𝑗∈𝐽 =  𝑝 
𝑇𝐶                                                                                                                    (5𝑏) 

 

 ∑ 𝑥𝑗ℓ
𝑇𝐶

ℓ∈𝐿 =  1,   ∀𝑗 ∈ 𝐽                                                                                                                   (5𝑐) 

 

 ∑ ∑ 𝑥𝑘ℓ
𝐴𝐷 = 𝑝 

𝐴𝐷               ℓ∈𝐿𝑘∈𝐾                                                                                                                  (5𝑑) 

 

 ∑ 𝑥𝑘ℓ
𝐴𝐷

ℓ∈𝐿 =  1,   ∀𝑘 ∈ �̂�                                                                                                                (5𝑒) 

 

𝑧𝑘𝑗𝑙 − 𝑥𝑗ℓ
𝑇𝐶 ≤ 0,   ∀𝑗 ∈ 𝐽 , ∀𝑘 ∈ �̂�, ∀ℓ ∈ 𝐿                                                                                    (5𝑓) 
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𝑧𝑘𝑗𝑙 − 𝑥𝑘ℓ
𝐴𝐷 ≤ 0,   ∀ 𝑗 ∈ 𝐽 , ∀𝑘 ∈ �̂�, ∀ℓ ∈ 𝐿                                                                                   (5𝑔) 

 

𝑦𝑖ℓ
𝜔 − 𝑣𝑖ℓ

𝜔 − 𝑢𝑖ℓ
𝜔 ≤ 0,   ∀𝑖 ∈ 𝐼, ∀ℓ ∈ 𝐿, ∀𝜔 ∈ Ω                                                                               (5ℎ) 

  

𝑣𝑖ℓ
𝜔 − ∑ 𝑥𝑗ℓ

𝑇𝐶
𝑗∈𝑁𝑖

≤ 0,   ∀𝑖 ∈ 𝐼, ∀ℓ ∈ 𝐿, ∀𝜔 ∈ Ω                                                                              (5𝑖) 

 

𝑢𝑖ℓ
𝜔 − ∑ 𝑧𝑘𝑗(𝑗,𝑘)∈𝑀𝑖

≤ 0,   ∀𝑖 ∈ 𝐼, ∀ℓ ∈ 𝐿,   ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, ∀𝜔 ∈ Ω                                     (5𝑗)                                                                                                                                                     

 

∑ 𝑥𝑗ℓ
𝑇𝐶

𝑗 𝜖 𝐽  =  𝑟ℓ,   ∀ℓ ∈ 𝐿                                                                                                               (5𝑘) 

 

𝑥𝑗ℓ
𝑇𝐶 , 𝑥𝑘ℓ

𝐴𝐷, 𝑧𝑘𝑗ℓ, 𝑦𝑖ℓ
𝜔, 𝑣𝑖ℓ

𝜔 , 𝑢𝑖ℓ
𝜔 = {0,1} 

 

 In this model, set 𝐽 represents the TCCs that are currently located in the trauma 

network, 𝐽 ⊂ 𝐽. Also, a set �̂� represents the heliports that are currently located in the 

trauma network, �̂� ⊂ 𝐾. 

 

4.2.1.5. Improvement system (IS) model  

The IS model is similar to the BS model because the TCCs in the existing trauma 

network are considered to be fixed. However, this model considers the expansion of the 

trauma network by deciding where to locate an additional TCC Level-I and/or an 

additional TCC Level-II. The Improvement System (IS) model is configured as such to 

determine the improvements in coverage, if any, in the current trauma network by 

incrementally increasing the number of trauma facilities per trauma level. This model 

provides a more practical approach to the problem. When compared to the STSCP 

model, the (IS) model involves the usage of constraints (6ℓ) and (6𝑚) that fix the 

location of existing official trauma centers. As these trauma centers will be fixed, the 

model will have to choose additional TCCs from set 𝐽 to be added into the trauma 

network. In this model, set 𝐽1 represents the TCCs level 1 that are currently located in 
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the trauma network, 𝐽1 ⊂ 𝐽. Also, set 𝐽2 represents the TCCs level 2 that are currently 

located in the trauma network, 𝐽2 ⊂ 𝐽. Finally, a set �̂� represents the heliports that are 

currently located in the trauma network, �̂� ⊂ 𝐾. The IS model is defined by equations 

(6𝑎) to (6𝑙). 

 

min ∑ ∑ 𝑐𝑗ℓ 𝑥𝑗ℓ
𝑇𝐶

ℓ∈𝐿 + ∑ ∑ 𝑐𝑘ℓ 𝑥𝑘ℓ
𝐴𝐷

ℓ∈𝐿 − ∑ 𝑝𝜔 ∗𝜔∈Ω {∑ ∑ 𝑎𝑖ℓ
𝜔𝑦𝑖ℓ

𝜔
ℓ∈𝐿𝑖∈𝐼 }𝑘∈𝐽𝑗∈𝐽              (6𝑎)                      

 

Subject to: 

 

∑ ∑ 𝑥𝑗ℓ
𝑇𝐶

ℓ∈𝐿𝑗∈𝐽 ≤  𝑝 
𝑇𝐶                                                                                                                     (6𝑏) 

 

∑ 𝑥𝑗ℓ
𝑇𝐶

ℓ∈𝐿 ≤  1,   ∀𝑗 ∈ 𝐽                                                                                                                   (6𝑐) 

 

∑ ∑ 𝑥𝑘ℓ
𝐴𝐷 ≤ 𝑝 

𝐴𝐷               ℓ∈𝐿𝑘∈𝐾                                                                                                       (6𝑑) 

 

∑ 𝑥𝑘ℓ
𝐴𝐷

ℓ∈𝐿 ≤  1,   ∀𝑘 ∈ 𝐾                                                                                                                (6𝑒) 

 

𝑧𝑘𝑗𝑙 − 𝑥𝑗ℓ
𝑇𝐶 ≤ 0,   ∀ 𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀ℓ ∈ 𝐿                                                                                   (6𝑓) 

 

𝑧𝑘𝑗𝑙 − 𝑥𝑘ℓ
𝐴𝐷 ≤ 0,   ∀ 𝑗 ∈ 𝐽, ∀𝑘 ∈ 𝐾, ∀ℓ ∈ 𝐿                                                                                  (6𝑔) 

  

𝑦𝑖ℓ
𝜔 − 𝑣𝑖ℓ

𝜔 − 𝑢𝑖ℓ
𝜔 ≤ 0,   ∀𝑖 ∈ 𝐼, ∀ℓ ∈ 𝐿, ∀𝜔 ∈ Ω                                                                              (6ℎ) 

  

𝑣𝑖ℓ
𝜔 − ∑ 𝑥𝑗ℓ

𝑇𝐶
𝑗∈𝑁𝑖

≤ 0,   ∀𝑖 ∈ 𝐼, ∀ℓ ∈ 𝐿, ∀𝜔 ∈ Ω                                                                            (6𝑖) 

 

𝑢𝑖ℓ
𝜔 − ∑ 𝑧𝑘𝑗(𝑗,𝑘)∈𝑀𝑖

≤ 0,   ∀𝑖 ∈ 𝐼, ∀ℓ ∈ 𝐿,   ∀𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾, ∀𝜔 ∈ Ω                                      (6𝑗) 

 

∑ 𝑥𝑗ℓ
𝑇𝐶

𝑗 𝜖 𝐽  ≤  𝑟ℓ,   ∀ℓ ∈ 𝐿                                                                                                             (6𝑘) 

 

𝑥𝑗1
𝑇𝐶 =  1,   ∀𝑗 ∈ 𝐽1                                                                                                                      (6𝑙)  

 

𝑥𝑗2
𝑇𝐶 =  1,   ∀𝑗 ∈ 𝐽2                                                                                                                         (6𝑚)  

 

𝑥𝑗ℓ
𝑇𝐶 , 𝑥𝑘ℓ

𝐴𝐷, 𝑧𝑘𝑗ℓ, 𝑦𝑖ℓ
𝜔, 𝑣𝑖ℓ

𝜔 , 𝑢𝑖ℓ
𝜔 = {0,1} 
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4.3. Case study 

The trauma network in TX serves over 28 million citizens. The Texas 

Department of State Health Services (DSHS) had divided the state into 22 trauma 

service areas (TSA) [58]. We chose TSA 𝑃 as it encompasses a mix of densely 

populated urban areas such as Austin and San Antonio in addition to rural areas with 

lower population densities. This will provide a test base for the models to determine 

trauma coverage under varied service demands. Figure 16 below shows the counties 

within TSA 𝑃. 

 

 
Figure 16. Counties in TSA 𝑃 

  

Figure 17 shows the locations of the designated trauma level facilities in place as 

laid out by the DSHS. The red dots depict Level-I facilities and blue for Level-II. 

Further experimentations will be compared against this benchmark network to showcase 

the various possibilities of locations that can impact trauma service coverage. The area 

under study includes 176 unique zip codes and 25 designated TCCs.  
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Figure 17. Trauma Network Locations [red-trauma level I, blue-trauma level II] 

 

The current trauma network comprising 25 officially designated TCCs is the 

Benchmark System (BS). This will be the trauma network to test all recommended 

networks against in terms of their individual population coverages. We obtained 

deidentified records of 288,369 trauma incidences for years 2014 to 2016 from DSHS. 

Table 12 below shows the demand values considered in this case study to develop the 

demand scenarios for the optimization models. As stated previously, the proposed 

stochastic models consider the uncertainty in the demand. The case study considers six 

different scenarios that model the demand variability for region P. These scenarios are 

the daily average case(s) recorded in each zip code. The first three scenarios are self-

descriptive, as they comprise the records for individual years. Scenario 4 is the average 

of daily average cases for all three years combined. As stated earlier, we also included 

the COVID-19 surge in demand as part of the scenarios for the stochastic programming 

models. All COVID-19 cases recorded during the period of study were divided into two 

sets. These were cases recorded before the reopening order issued on 06/01/2020 and 

post the same date. Scenario 5 comprises the daily average COVID-19 cases registered 
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between 4/8/2020 to 5/31/2020, termed as pre-opening phase. Scenario 6 considers the 

COVID-19 cases registered between 6/1/2020 to 7/05/2020, post-opening phase.  

Table 12. Scenarios with demand values 

Zip 

Code 

DAC-

2014 

DAC-

2015 

DAC-

2016 

DAC- 

ALL 

Pre-Opening 

DAC 

Post-Opening 

DAC 

78001 1 1 1 3 4 4 

78002 1 1 1 3 4 5 

78003 1 1 1 3 4 5 

78004 1 1 1 3 4 4 

78005 1 1 1 3 4 4 

78006 2 2 2 6 7 12 

78008 1 1 1 3 4 4 

78009 1 1 1 3 4 5 

78010 1 1 1 3 4 4 

78011 1 1 1 3 4 4 

78012 1 1 1 3 4 4 

78013 1 1 1 3 4 5 

78014 1 1 1 3 4 4 

78015 1 1 1 3 4 5 

78016 1 1 1 3 4 5 

78017 1 1 1 3 4 4 

78019 1 1 1 3 4 4 

78021 1 1 1 3 4 4 

78023 2 2 2 6 7 11 

78024 1 1 1 3 4 4 

78025 1 1 1 3 4 4 

78026 1 1 1 3 4 5 

78027 1 1 1 3 4 4 

78028 2 2 2 6 8 13 

78039 1 1 1 3 4 4 

78050 1 1 1 3 4 4 

78052 1 1 1 3 4 5 

78055 1 1 1 3 4 4 

78056 1 1 1 3 4 4 

78057 1 1 1 3 4 4 

78058 1 1 1 3 4 4 

78059 1 1 1 3 4 4 

78061 1 1 1 3 4 6 

78063 1 1 1 3 4 5 

78064 1 1 1 3 4 6 
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78065 1 1 1 3 4 5 

78066 1 1 1 3 4 4 

78069 1 1 1 3 4 4 

78070 1 1 1 3 4 6 

78073 1 1 1 3 4 5 

78101 1 1 1 3 4 5 

78108 2 2 4 8 9 14 

78109 2 2 5 9 10 16 

78112 1 1 1 3 4 5 

78113 1 1 1 3 4 4 

78114 1 2 3 6 7 10 

78116 1 1 1 3 4 4 

78117 1 1 1 3 4 4 

78118 1 1 1 3 4 4 

78119 1 1 1 3 4 5 

78121 1 1 2 4 5 7 

78122 1 1 1 3 4 4 

78123 1 1 1 3 4 4 

78124 1 1 1 3 4 5 

78130 3 4 8 15 17 26 

78132 1 2 3 6 7 10 

78133 1 1 2 4 5 7 

78140 1 1 1 3 4 4 

78143 1 1 1 3 4 4 

78144 1 1 1 3 4 4 

78147 1 1 1 3 4 4 

78148 1 2 3 6 7 10 

78150 0 0 0 0 1 1 

78151 1 1 1 3 4 4 

78152 1 1 1 3 4 4 

78154 2 2 4 8 9 14 

78155 3 3 6 12 14 21 

78159 1 1 1 3 4 4 

78160 1 1 1 3 4 4 

78161 1 1 1 3 4 4 

78163 1 1 1 3 4 5 

78201 3 2 5 10 12 19 

78202 1 1 2 4 5 7 

78203 1 1 1 3 4 5 

78204 1 1 2 4 5 7 

78205 1 1 1 3 4 4 
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78207 3 3 6 12 14 23 

78208 1 1 1 3 4 4 

78209 2 2 4 8 10 16 

78210 2 2 4 8 10 15 

78211 2 2 3 7 8 13 

78212 2 2 3 7 8 13 

78213 2 2 4 8 10 16 

78214 2 1 3 6 7 11 

78215 1 1 1 3 4 4 

78216 2 2 4 8 10 16 

78217 2 2 3 7 8 13 

78218 2 2 3 7 8 13 

78219 1 1 2 4 5 7 

78220 1 1 2 4 5 7 

78221 2 2 4 8 10 15 

78222 1 1 2 4 5 8 

78223 3 3 5 11 13 21 

78224 1 1 2 4 5 8 

78225 1 1 2 4 5 7 

78226 1 1 1 3 4 5 

78227 3 2 5 10 12 19 

78228 3 3 6 12 14 23 

78229 2 2 3 7 8 13 

78230 2 2 4 8 10 16 

78231 1 1 1 3 4 5 

78232 2 2 4 8 10 15 

78233 2 2 5 9 11 18 

78234 1 1 1 3 4 5 

78235 1 1 1 3 4 4 

78236 1 1 1 3 4 5 

78237 2 2 4 8 10 15 

78238 2 1 3 6 7 11 

78239 2 2 3 7 8 13 

78240 3 3 5 11 13 21 

78242 2 2 3 7 8 13 

78243 1 1 1 3 4 4 

78244 2 2 3 7 8 13 

78245 3 3 6 12 14 23 

78247 3 3 5 11 13 21 

78248 1 1 2 4 5 7 

78249 3 3 5 11 13 21 
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78250 3 3 6 12 14 23 

78251 3 3 5 11 13 21 

78252 1 1 1 3 4 5 

78253 2 2 3 7 8 13 

78254 3 2 5 10 12 19 

78255 1 1 1 3 4 5 

78256 1 1 1 3 4 5 

78257 1 1 1 3 4 4 

78258 2 2 4 8 10 16 

78259 2 1 3 6 7 11 

78260 2 2 3 7 8 12 

78261 1 1 2 4 5 7 

78263 1 1 1 3 4 4 

78264 1 1 2 4 5 7 

78266 1 1 1 3 4 5 

78614 1 1 1 3 4 4 

78618 1 1 1 3 4 4 

78623 1 1 1 3 4 4 

78624 2 1 1 4 5 8 

78629 1 1 1 3 4 6 

78631 1 1 1 3 4 4 

78632 1 1 1 3 4 4 

78638 1 1 1 3 4 4 

78670 1 1 1 3 4 4 

78671 1 1 1 3 4 4 

78675 1 1 1 3 4 4 

78677 1 1 1 3 4 4 

78801 4 2 1 7 8 11 

78802 1 1 1 3 4 4 

78827 1 1 1 3 4 4 

78828 1 1 1 3 4 4 

78829 1 1 1 3 4 4 

78830 1 1 1 3 4 4 

78832 1 1 1 3 4 4 

78833 1 1 1 3 4 4 

78834 2 1 1 4 5 6 

78836 1 1 1 3 4 4 

78837 1 1 1 3 4 4 

78838 1 1 1 3 4 4 

78839 2 1 1 4 5 6 

78840 9 3 3 15 17 24 
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78843 1 1 1 3 4 4 

78850 1 1 1 3 4 4 

78852 9 4 3 16 18 26 

78860 1 1 1 3 4 4 

78861 3 1 1 5 6 8 

78870 1 1 1 3 4 4 

78871 1 1 1 3 4 4 

78872 1 1 1 3 4 4 

78873 1 1 1 3 4 4 

78877 1 1 1 3 4 4 

78879 1 1 1 3 4 4 

78880 1 1 1 3 4 4 

78881 1 1 1 3 4 4 

78883 1 1 1 3 4 4 

78884 1 1 1 3 4 4 

78885 1 1 1 3 4 4 

78886 1 1 1 3 4 4 

78959 1 1 1 3 4 4 

Average 

Demand 

Value 

1 1.341 1.88 4.68 6 8 

 

 Scenarios 1 to 4 can be termed as ‘nominal operating conditions’ and scenarios 5 

and 6 as pandemic conditions. A key factor that will provide insight into the results is to 

observe the relationship between demand probabilities, patient coverage, and TCCs 

placement. Specifically, we were interested in studying the impact of the COVID-19 

pandemic in the future expansion of the trauma network. As shown in Table 13, there 

are five instances for the demand probabilities per scenario termed as D1, D2, D3, D4, 

and D5. In D1, the demand for pandemic conditions is 50% and for non-pandemic is 

50% as well. This decreases for the former to 10% in D5 and the latter makes up 90% of 

the total demand weight.  
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Table 13. Scenario probabilities 

Scenario 

Demand Probabilities Instances 

D1 D2 D3 D4 D5 

1 0.125 0.15 0.175 0.2 0.225 

2 0.125 0.15 0.175 0.2 0.225 

3 0.125 0.15 0.175 0.2 0.225 

4 0.125 0.15 0.175 0.2 0.225 

5 0.25 0.2 0.15 0.1 0.05 

6 0.25 0.2 0.15 0.1 0.05 

 

We also determined the location of the 25 designated TCCs in TSA P and the 

remaining 62 non-TCCs. Table 14 lists the TCCs and non-TCCs considered in this 

study. Every facility has a code assigned to it that is used during programming and later 

visualized through maps to show the position of said facilities. Codes are used instead of 

the actual facility name to protect identities and allow for easier visualization when 

results are to be shown through maps. ArcGIS Pro was used to derive actual ground 

times from each incidence location to all hospital sites. A total of 177 zip codes are 

considered in this study. The resulting time matrices, one each for ground and air (177  

62 cells each), served as a look up table for later use in the estimation of times. Table 15 

shows an example of the distance matrix for a single hospital. Table 15 shows the 

distances between a hospital and all zip codes with the total distance and time taken 

between them. Usage of ‘0’ and ‘1’ denotes if the zip code is within driving time of 45, 

60, and 75 minutes respectively with ‘1’ denoting as covered. The same methodology is 

undertaken for all hospitals with distances plotted for all zip codes.  

Table 14. Hospitals and medical centers in TSA P 

Hospital Name City 
Code 

Traum

a Level 

CHRISTUS Santa Rosa Hospital New Braunfels CA II 

Baptist Emergency Hospital – Hausman San Antonio C1  

Baptist Emergency Hospital - Kelly San Antonio C2  
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Baptist Emergency Hospital – Overlook San Antonio C3  

Baptist Emergency Hospital - Schertz Schertz C4  

Baptist Emergency Hospital - Thousand Oaks San Antonio C5  

Baptist Emergency Hospital - Westover Hills San Antonio C6 II 

Baptist Emergency Hospital – Zarzamora San Antonio C7  

Baptist Medical Center San Antonio C8  

CHRISTUS Santa Rosa Hospital - Alamo 

Heights San Antonio 
C9 

 

CHRISTUS Santa Rosa Hospital - Medical 

Center San Antonio 
C10 

II 

CHRISTUS Santa Rosa Hospital - Westover 

Hills San Antonio 
C11 

II 

Connally Memorial Medical Center Floresville C12  

Dimmit Regional Hospital (FKA Dimmit 

County Memorial Hospital) Carrizo Springs 
C13 

II 

Encompass Health Rehabilitation Hospital of 

San Antonio (FKA HealthSouth 

Rehabilitation Institute of San Antonio) San Antonio 

C14 

 

Fort Duncan Regional Medical Center Eagle Pass C15 II 

Foundation Surgical Hospital of San Antonio San Antonio C16  

Frio Regional Hospital Pearsall C17  

Gonzales Memorial Hospital Gonzales C18 II 

Guadalupe Regional Medical Center Seguin C19 II 

Hill Country Memorial Hospital Fredericksburg C20 II 

Kerrville State Hospital Kerrville C21  

Kindred Hospital - San Antonio San Antonio C22  

Kindred Hospital - San Antonio Central 

(FKA Select Specialty Hospital - San 

Antonio) San Antonio 

C23 

 

Legent Orthopedic and Spine (FKA 

Cumberland Surgical Hospital) San Antonio 
C24 

 

Medina Regional Hospital Hondo C25 II 

Methodist Children’s Hospital San Antonio C26  

Methodist Heart Hospital San Antonio C27  

Methodist Hospital San Antonio C28  

Methodist Hospital - Metropolitan San Antonio C29 II 

Methodist Hospital - Northeast San Antonio C30 II 

Methodist Hospital - South (FKA South 

Texas Regional Medical Center) Jourdanton 
C31 

 

Methodist Hospital - Specialty and 

Transplant San Antonio 
C32 

II 

Methodist Hospital - Stone Oak San Antonio C33  

Methodist Hospital - Texsan San Antonio C34 II 
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Methodist Hospital Ambulatory Surgery San Antonio C35  

Mission Trail Baptist Hospital San Antonio C36 II 

New Braunfels Regional Rehabilitation 

Hospital New Braunfels 
C37 

 

North Central Baptist Hospital San Antonio C38 II 

Northeast Baptist Hospital San Antonio C39 II 

Otto Kaiser Memorial Hospital Kenedy C40 II 

PAM Specialty Hospital of New Braunfels New Braunfels C41  

PAM Specialty Hospital of San Antonio 

(FKA Promise Specialty Hospital - San 

Antonio) San Antonio 

C42 

 

PAM Specialty Hospital of San Antonio 

Medical Center (FKA Lifecare Hospitals of 

San Antonio) San Antonio 

C43 

 

Peterson Regional Medical Center Kerrville C44  

Resolute Health Hospital New Braunfels C45  

San Antonio Behavioral Healthcare Hospital San Antonio C46  

San Antonio Military Medical Center (FKA 

Brooke Army Medical Center) 

Fort Sam 

Houston 
C47 

I 

San Antonio State Hospital San Antonio C48  

Select Rehabilitation Hospital of San Antonio 

(FKA Global rehab - San Antonio) San Antonio 
C49 

 

South Texas Spine & Surgical Hospital San Antonio C50  

South Texas Veterans Health Care System - 

Audie L Murphy VA Hospital San Antonio 
C51 

 

South Texas Veterans Health Care System - 

Kerrville VA Hospital Kerrville 
C52 

 

Southwest General Hospital San Antonio C53 II 

St Luke’s Baptist Hospital San Antonio C54 II 

Texas Center for Infectious Disease (FKA 

San Antonio State Chest Hospital) San Antonio 
C55 

 

The Children’s Hospital of San Antonio San Antonio C56 II 

University Hospital (AKA University Health 

System) San Antonio 
C57 

I 

Uvalde Memorial Hospital Uvalde C58 II 

Val Verde Regional Medical Center Del Rio C59 II 

Warm Springs Rehabilitation Hospital of San 

Antonio San Antonio 
C60 

 

Warm Springs Rehabilitation Hospital of 

Thousand Oaks San Antonio 
C61 

 

Warm Springs Rehabilitation Hospital of 

Westover Hills San Antonio 
C62 
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Table 15. Zip code distance matrix for a single hospital 

Zip 

Code Hospital 

Distance 

(Miles) 

Time 

Mins. 

45 

Mins. 

60 

Mins. 

75 

Mins. 

78001  Baptist Medical Center 105.7 161.5 0 0 0 

78002  Baptist Medical Center 20.4 38.7 1 1 1 

78003  Baptist Medical Center 45.5 79.4 0 0 0 

78004  Baptist Medical Center 35.3 62.5 0 0 1 

78005  Baptist Medical Center 42.2 57.1 0 1 1 

78006  Baptist Medical Center 30.3 59.3 0 1 1 

78008  Baptist Medical Center 54.7 70.1 0 0 1 

78009  Baptist Medical Center 25.8 37.6 1 1 1 

78010  Baptist Medical Center 55.0 92.2 0 0 0 

78011  Baptist Medical Center 46.0 82.8 0 0 0 

78012  Baptist Medical Center 46.2 78.7 0 0 0 

78013  Baptist Medical Center 45.9 75.3 0 0 0 

78014  Baptist Medical Center 88.6 150.6 0 0 0 

78015  Baptist Medical Center 25.0 46.2 0 1 1 

78016  Baptist Medical Center 33.7 50.0 0 1 1 

78017  Baptist Medical Center 70.9 99.8 0 0 0 

78019  Baptist Medical Center 115.8 161.2 0 0 0 

78021  Baptist Medical Center 75.1 134.0 0 0 0 

78023  Baptist Medical Center 16.9 29.3 1 1 1 

78024  Baptist Medical Center 81.3 125.6 0 0 0 

78025  Baptist Medical Center 71.6 107.3 0 0 0 

78026  Baptist Medical Center 39.1 66.0 0 0 1 

78027  Baptist Medical Center 43.9 77.8 0 0 0 

78028  Baptist Medical Center 64.3 94.3 0 0 0 

78039  Baptist Medical Center 24.3 39.8 1 1 1 

78050  Baptist Medical Center 25.3 37.8 1 1 1 

78052  Baptist Medical Center 26.8 42.6 1 1 1 

78055  Baptist Medical Center 62.1 107.8 0 0 0 

78056  Baptist Medical Center 28.0 49.9 0 1 1 

78057  Baptist Medical Center 41.9 56.8 0 1 1 

78058  Baptist Medical Center 87.2 121.6 0 0 0 

78059  Baptist Medical Center 29.0 37.4 1 1 1 

78061  Baptist Medical Center 54.8 79.3 0 0 0 

78063  Baptist Medical Center 39.3 74.5 0 0 1 

78064  Baptist Medical Center 31.9 45.5 0 1 1 

78065  Baptist Medical Center 26.9 44.8 1 1 1 

78066  Baptist Medical Center 28.4 54.1 0 1 1 

78069  Baptist Medical Center 20.9 39.8 1 1 1 

78070  Baptist Medical Center 32.2 47.1 0 1 1 
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78073  Baptist Medical Center 18.2 33.7 1 1 1 

78101  Baptist Medical Center 19.4 36.3 1 1 1 

78108  Baptist Medical Center 21.0 43.1 1 1 1 

78109  Baptist Medical Center 12.9 25.8 1 1 1 

78112  Baptist Medical Center 19.6 43.2 1 1 1 

78113  Baptist Medical Center 45.2 71.1 0 0 1 

78114  Baptist Medical Center 26.8 44.2 1 1 1 

78116  Baptist Medical Center 53.9 91.3 0 0 0 

78117  Baptist Medical Center 48.7 74.5 0 0 1 

78118  Baptist Medical Center 54.1 81.3 0 0 0 

78119  Baptist Medical Center 61.7 91.2 0 0 0 

78121  Baptist Medical Center 27.1 43.8 1 1 1 

78122  Baptist Medical Center 55.6 94.2 0 0 0 

78123  Baptist Medical Center 31.9 61.6 0 0 1 

78124  Baptist Medical Center 24.0 46.6 0 1 1 

78130  Baptist Medical Center 31.6 45.9 0 1 1 

78132  Baptist Medical Center 33.0 65.8 0 0 1 

78133  Baptist Medical Center 40.3 74.1 0 0 1 

78140  Baptist Medical Center 51.8 84.0 0 0 0 

78143  Baptist Medical Center 46.0 75.6 0 0 0 

78144  Baptist Medical Center 53.2 96.5 0 0 0 

78147  Baptist Medical Center 37.1 57.9 0 1 1 

78148  Baptist Medical Center 15.6 28.7 1 1 1 

78150  Baptist Medical Center 16.6 33.4 1 1 1 

78151  Baptist Medical Center 67.2 120.2 0 0 0 

78152  Baptist Medical Center 18.6 33.5 1 1 1 

78154  Baptist Medical Center 18.8 37.8 1 1 1 

78155  Baptist Medical Center 34.5 40.3 1 1 1 

78159  Baptist Medical Center 59.7 94.7 0 0 0 

78160  Baptist Medical Center 39.1 69.9 0 0 1 

78161  Baptist Medical Center 30.6 54.3 0 1 1 

78163  Baptist Medical Center 23.8 36.3 1 1 1 

78201  Baptist Medical Center 3.6 6.7 1 1 1 

78202  Baptist Medical Center 2.3 5.4 1 1 1 

78203  Baptist Medical Center 2.7 5.9 1 1 1 

78204  Baptist Medical Center 2.6 4.9 1 1 1 

78205  Baptist Medical Center 0.6 1.0 1 1 1 

78207  Baptist Medical Center 2.8 6.2 1 1 1 

78208  Baptist Medical Center 2.2 5.3 1 1 1 

78209  Baptist Medical Center 4.9 9.3 1 1 1 

78210  Baptist Medical Center 3.7 20.3 1 1 1 
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78211  Baptist Medical Center 6.6 12.7 1 1 1 

78212  Baptist Medical Center 2.3 4.9 1 1 1 

78213  Baptist Medical Center 6.6 11.6 1 1 1 

78214  Baptist Medical Center 5.3 9.5 1 1 1 

78215  Baptist Medical Center 1.0 2.4 1 1 1 

78216  Baptist Medical Center 7.7 14.2 1 1 1 

78217  Baptist Medical Center 9.5 17.2 1 1 1 

78218  Baptist Medical Center 9.7 18.0 1 1 1 

78219  Baptist Medical Center 7.0 15.4 1 1 1 

78220  Baptist Medical Center 5.8 12.1 1 1 1 

78221  Baptist Medical Center 7.2 13.0 1 1 1 

78222  Baptist Medical Center 8.2 17.0 1 1 1 

78223  Baptist Medical Center 7.3 22.9 1 1 1 

78224  Baptist Medical Center 8.3 14.9 1 1 1 

78225  Baptist Medical Center 4.2 7.6 1 1 1 

78226  Baptist Medical Center 5.7 13.5 1 1 1 

78227  Baptist Medical Center 10.0 19.0 1 1 1 

78228  Baptist Medical Center 5.5 10.5 1 1 1 

78229  Baptist Medical Center 7.5 13.5 1 1 1 

78230  Baptist Medical Center 9.4 16.5 1 1 1 

78231  Baptist Medical Center 10.7 18.9 1 1 1 

78232  Baptist Medical Center 11.6 18.9 1 1 1 

78233  Baptist Medical Center 12.4 22.4 1 1 1 

78234  Baptist Medical Center 4.3 10.1 1 1 1 

78235  Baptist Medical Center 7.4 14.0 1 1 1 

78236  Baptist Medical Center 11.0 24.3 1 1 1 

78237  Baptist Medical Center 5.7 13.1 1 1 1 

78238  Baptist Medical Center 9.0 15.9 1 1 1 

78239  Baptist Medical Center 11.3 20.4 1 1 1 

78240  Baptist Medical Center 9.6 17.5 1 1 1 

78242  Baptist Medical Center 11.4 20.1 1 1 1 

78243  Baptist Medical Center 9.7 17.1 1 1 1 

78244  Baptist Medical Center 9.9 21.1 1 1 1 

78245  Baptist Medical Center 13.4 24.9 1 1 1 

78247  Baptist Medical Center 12.7 23.5 1 1 1 

78248  Baptist Medical Center 12.1 22.0 1 1 1 

78249  Baptist Medical Center 12.4 21.5 1 1 1 

78250  Baptist Medical Center 13.5 26.3 1 1 1 

78251  Baptist Medical Center 12.1 22.4 1 1 1 

78252  Baptist Medical Center 15.8 26.6 1 1 1 

78253  Baptist Medical Center 18.3 35.1 1 1 1 
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78254  Baptist Medical Center 16.4 29.2 1 1 1 

78255  Baptist Medical Center 19.7 36.0 1 1 1 

78256  Baptist Medical Center 16.7 28.4 1 1 1 

78257  Baptist Medical Center 24.7 51.3 0 1 1 

78258  Baptist Medical Center 15.6 26.7 1 1 1 

78259  Baptist Medical Center 16.2 24.8 1 1 1 

78260  Baptist Medical Center 20.0 37.3 1 1 1 

78261  Baptist Medical Center 18.6 28.8 1 1 1 

78263  Baptist Medical Center 13.4 24.8 1 1 1 

78264  Baptist Medical Center 18.4 30.1 1 1 1 

78266  Baptist Medical Center 19.9 37.2 1 1 1 

78614  Baptist Medical Center 64.6 108.8 0 0 0 

78618  Baptist Medical Center 92.2 165.7 0 0 0 

78623  Baptist Medical Center 51.1 82.5 0 0 0 

78624  Baptist Medical Center 67.9 104.2 0 0 0 

78629  Baptist Medical Center 66.7 84.3 0 0 0 

78631  Baptist Medical Center 85.8 129.9 0 0 0 

78632  Baptist Medical Center 66.9 77.6 0 0 0 

78638  Baptist Medical Center 45.9 60.0 0 1 1 

78670  Baptist Medical Center 50.5 86.3 0 0 0 

78671  Baptist Medical Center 66.7 105.6 0 0 0 

78675  Baptist Medical Center 80.3 158.2 0 0 0 

78677  Baptist Medical Center 67.3 115.7 0 0 0 

78801  Baptist Medical Center 83.1 114.4 0 0 0 

78802  Baptist Medical Center 87.1 127.7 0 0 0 

78827  Baptist Medical Center 113.8 183.8 0 0 0 

78828  Baptist Medical Center 122.3 219.7 0 0 0 

78829  Baptist Medical Center 81.3 109.5 0 0 0 

78830  Baptist Medical Center 96.4 146.9 0 0 0 

78832  Baptist Medical Center 122.5 173.0 0 0 0 

78833  Baptist Medical Center 116.6 201.4 0 0 0 

78834  Baptist Medical Center 114.5 176.2 0 0 0 

78836  Baptist Medical Center 117.0 195.1 0 0 0 

78837  Baptist Medical Center 189.2 280.8 0 0 0 

78838  Baptist Medical Center 86.0 123.6 0 0 0 

78839  Baptist Medical Center 107.7 199.5 0 0 0 

78840  Baptist Medical Center 152.7 215.1 0 0 0 

78843  Baptist Medical Center 147.8 207.7 0 0 0 

78850  Baptist Medical Center 51.6 70.1 0 0 1 

78852  Baptist Medical Center 139.7 217.1 0 0 0 

78860  Baptist Medical Center 143.2 225.1 0 0 0 
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78861  Baptist Medical Center 41.5 56.0 0 1 1 

78870  Baptist Medical Center 73.1 99.5 0 0 0 

78871  Baptist Medical Center 225.3 334.0 0 0 0 

78872  Baptist Medical Center 97.0 127.0 0 0 0 

78873  Baptist Medical Center 96.7 167.7 0 0 0 

78877  Baptist Medical Center 145.7 863.3 0 0 0 

78879  Baptist Medical Center 94.0 141.4 0 0 0 

78880  Baptist Medical Center 136.9 201.6 0 0 0 

78881  Baptist Medical Center 63.3 85.7 0 0 0 

78883  Baptist Medical Center 63.5 112.3 0 0 0 

78884  Baptist Medical Center 78.2 135.2 0 0 0 

78885  Baptist Medical Center 82.8 144.3 0 0 0 

78886  Baptist Medical Center 49.9 76.3 0 0 0 

78959  Baptist Medical Center 76.5 89.5 0 0 0 

 

To model coverage of a TCCs to its nearby population, distances between the 

candidate and existing TCCs sites and 177 zip-codes in TX were calculated using a road 

network database in ArcGIS Pro. The coverage matrix (𝑁𝑖and 𝑀𝑖) were prepared a priori 

based on zip-code information. Population information was obtained from the United 

States Census Bureau [56] Table 16 shows all the zip codes that are located within the 

area under study. 

Table 16 Demand zip codes in TSA P 

Zip Code City County Population Count 

78001 Artesia Wells La Salle County 33 

78002 Atascosa Bexar County 8255 

78003 Bandera Bandera County 8689 

78004 Bergheim Kendall County 1183 

78005 Bigfoot Frio County 817 

78006 Boerne Kendall County 27558 

78008 Campbellton Atascosa County 345 

78009 Castroville Medina County 7255 

78010 Center Point Kerr County 3386 

78011 Charlotte Atascosa County 2082 

78012 Christine Atascosa County 436 

78013 Comfort Kendall County 5930 

78014 Cotulla La Salle County 4987 
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78015 Boerne Bexar County 9602 

78016 Devine Medina County 9630 

78017 Dilley Frio County 4787 

78019 Encinal La Salle County 1855 

78021 Fowlerton La Salle County 126 

78023 Helotes Bexar County 24334 

78024 Hunt Kerr County 1436 

78025 Ingram Kerr County 4956 

78026 Jourdanton Atascosa County 5861 

78027 Kendalia Kendall County 459 

78028 Kerrville Kerr County 37620 

78039 La Coste Medina County 1657 

78050 Leming Atascosa County 767 

78052 Lytle Atascosa County 6388 

78055 Medina Bandera County 1774 

78056 Mico Medina County 1917 

78057 Moore Frio County 871 

78058 Mountain Home Kerr County 1256 

78059 Natalia Medina County 5387 

78061 Pearsall Frio County 11031 

78063 Pipe Creek Bandera County 9227 

78064 Pleasanton Atascosa County 14102 

78065 Poteet Atascosa County 10831 

78066 Rio Medina Medina County 591 

78069 Somerset Atascosa County 5137 

78070 Spring Branch Comal County 14618 

78073 Von Ormy Bexar County 8171 

78101 Adkins Bexar County 7898 

78108 Cibolo Guadalupe County 27770 

78109 Converse Bexar County 34603 

78112 Elmendorf Bexar County 7941 

78113 Falls City Karnes County 2435 

78114 Floresville Wilson County 20103 

78116 Gillett Karnes County 390 

78117 Hobson Karnes County 545 

78118 Karnes City Karnes County 3976 

78119 Kenedy Karnes County 7680 

78121 La Vernia Wilson County 11381 

78122 Leesville Gonzales County 418 

78123 Mc Queeney Guadalupe County 2397 

78124 Marion Guadalupe County 5609 
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78130 New Braunfels Comal County 59546 

78132 New Braunfels Comal County 19139 

78133 Canyon Lake Comal County 16269 

78140 Nixon Gonzales County 3380 

78143 Pandora Wilson County 85 

78144 Panna Maria Karnes County 45 

78147 Poth Wilson County 1919 

78148 Universal City Bexar County 20139 

78150 Randolph A F B Bexar County 11 

78151 Runge Karnes County 1347 

78152 Saint Hedwig Bexar County 2294 

78154 Schertz Guadalupe County 30347 

78155 Seguin Guadalupe County 45341 

78159 Smiley Gonzales County 1023 

78160 Stockdale Wilson County 4273 

78161 Sutherland Springs Wilson County 864 

78163 Bulverde Comal County 9838 

78201 San Antonio Bexar County 45307 

78202 San Antonio Bexar County 11691 

78203 San Antonio Bexar County 6099 

78204 San Antonio Bexar County 11125 

78205 San Antonio Bexar County 1453 

78207 San Antonio Bexar County 55514 

78208 San Antonio Bexar County 3736 

78209 San Antonio Bexar County 39197 

78210 San Antonio Bexar County 36865 

78211 San Antonio Bexar County 31944 

78212 San Antonio Bexar County 28415 

78213 San Antonio Bexar County 40396 

78214 San Antonio Bexar County 23341 

78215 San Antonio Bexar County 1150 

78216 San Antonio Bexar County 40267 

78217 San Antonio Bexar County 32165 

78218 San Antonio Bexar County 31917 

78219 San Antonio Bexar County 15225 

78220 San Antonio Bexar County 15965 

78221 San Antonio Bexar County 35990 

78222 San Antonio Bexar County 19408 

78223 San Antonio Bexar County 50637 

78224 San Antonio Bexar County 17601 

78225 San Antonio Bexar County 13025 



 

74 

78226 San Antonio Bexar County 6648 

78227 San Antonio Bexar County 46077 

78228 San Antonio Bexar County 58811 

78229 San Antonio Bexar County 28804 

78230 San Antonio Bexar County 39089 

78231 San Antonio Bexar County 7906 

78232 San Antonio Bexar County 35120 

78233 San Antonio Bexar County 43710 

78234 San Antonio Bexar County 7126 

78235 San Antonio Bexar County 357 

78236 Lackland A F B Bexar County 10392 

78237 San Antonio Bexar County 36929 

78238 San Antonio Bexar County 23514 

78239 San Antonio Bexar County 28736 

78240 San Antonio Bexar County 51111 

78242 San Antonio Bexar County 31395 

78243 San Antonio Bexar County 235 

78244 San Antonio Bexar County 30757 

78245 San Antonio Bexar County 56511 

78247 San Antonio Bexar County 49176 

78248 San Antonio Bexar County 13638 

78249 San Antonio Bexar County 49951 

78250 San Antonio Bexar County 54903 

78251 San Antonio Bexar County 49435 

78252 San Antonio Bexar County 7372 

78253 San Antonio Bexar County 29007 

78254 San Antonio Bexar County 44817 

78255 San Antonio Bexar County 10826 

78256 San Antonio Bexar County 6855 

78257 San Antonio Bexar County 3950 

78258 San Antonio Bexar County 40586 

78259 San Antonio Bexar County 22660 

78260 San Antonio Bexar County 24844 

78261 San Antonio Bexar County 13513 

78263 San Antonio Bexar County 4673 

78264 San Antonio Bexar County 12339 

78266 San Antonio Comal County 5591 

78614 Cost Gonzales County 456 

78618 Doss Gillespie County 324 

78623 Fischer Comal County 813 

78624 Fredericksburg Gillespie County 21513 
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78629 Gonzales Gonzales County 11887 

78631 Harper Gillespie County 2395 

78632 Harwood Gonzales County 910 

78638 Kingsbury Guadalupe County 2005 

78670 Staples Guadalupe County 168 

78671 Stonewall Gillespie County 654 

78675 Willow City Gillespie County 188 

78677 Wrightsboro Gonzales County 92 

78801 Uvalde Uvalde County 21780 

78802 Uvalde Uvalde County 242 

78827 Asherton Dimmit County 1219 

78828 Barksdale Edwards County 258 

78829 Batesville Zavala County 1207 

78830 Big Wells Dimmit County 786 

78832 Brackettville Kinney County 3598 

78833 Camp Wood Real County 1299 

78834 Carrizo Springs Dimmit County 7829 

78836 Catarina Dimmit County 128 

78837 Comstock Val Verde County 281 

78838 Concan Uvalde County 275 

78839 Crystal City Zavala County 8578 

78840 Del Rio Val Verde County 48149 

78843 Laughlin A F B Val Verde County 336 

78850 D Hanis Medina County 1145 

78852 Eagle Pass Maverick County 53040 

78860 El Indio Maverick County 229 

78861 Hondo Medina County 13701 

78870 Knippa Uvalde County 984 

78871 Langtry Val Verde County 45 

78872 La Pryor Zavala County 1905 

78873 Leakey Real County 1788 

78877 Quemado Maverick County 989 

78879 Rio Frio Real County 264 

78880 Rocksprings Edwards County 1682 

78881 Sabinal Uvalde County 2335 

78883 Tarpley Bandera County 353 

78884 Utopia Uvalde County 1158 

78885 Vanderpool Bandera County 120 

78886 Yancey Medina County 647 

78959 Waelder Gonzales County 1837 
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A total of 75 problem instances were tested and analyzed (5 models x 5 demand 

instances x 3 different times allowed to reach TCC); each instance having 6 scenarios, 

was tested against each time limit, with access threshold as 45, 60 and 75 minutes. Table 

17 below summarizes the design of experiments for the case study. As stated in chapter 

1 sub-section 1.1 , in this study Level-I will include current and fixed hospitals and 

trauma care facilities that are classified as Level-I and Level-II while Level-II will 

include the facilities that are classified as Level-III and Level-IV.  

Table 17. Summary for Design of Experiments 

Experiment Demand Instance 
Time in 

Minutes 

Total 

Trauma 

Center 

Limit 

Level-I 

Trauma 

Center 

Limit 

Level-II 

Trauma 

Center 

Limit  
Benchmark System D1, D2, D3, D4, D5 45, 60, 75 25 Yes Yes  

Free System D1, D2, D3, D4, D5 45, 60, 75 62 N/A N/A  

Semi-Constrained 

System D1, D2, D3, D4, D5 45, 60, 75 62 Yes N/A 
 

Constrained System D1, D2, D3, D4, D5 45, 60, 75 62 Yes Yes  

Improvement 

System D1, D2, D3, D4, D5 45, 60, 75 62 Yes Yes 
 

 

 

4.4. Experimentation 

This research will address access to trauma centers across a designated trauma 

service area, Area P, shown in Figure 18 as laid out by the Texas Department of State 

Health Services [58]. The “2019-2020 Update to The Texas State Health Plan” 

publication lists 280 State designated Trauma centers across Texas [11]. Despite strong 

attention to facilitate adequate services, Texas residents continue to face inadequacies in 

access and transportation to such centers.  
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Figure 18. Regional Advisory Council, TSA 𝑃 and counties 

   

It is essential to determine the reach of the current trauma network with respect 

to the population covered for each time viz 60, 45, and 75 minutes, respectively. The 

standard time to reach a trauma facility is 60 minutes. There are five designs that were 

considered by us with the last being the comprehensive system for maximum coverage.  

• Experiment 1 – Benchmark System (BS): The first step in determining the 

extent of coverage of the current trauma network. This involves the 25 facilities 

in TSA P of which three are Level-I and the remainder as classed as Level-II 

according to their official designations. The network is tested for time taken to 

reach at trauma facility within 60, 45 and 75 minutes respectively and the 

population covered is calculated in percentages for each level. This method 

utilizes the iteration of the model as stated previously in chapter 4, sub-section 

4.2.1.1 The results obtained will provide the performance parameters for the 

Benchmark System (B.S). 
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• Experiment 2 - Free System (FS): The second experiment involves creating a 

new and empty system that is not already classed as Level-I or Level-II. This 

includes a network of 62 hospitals and medical centers: pre-designated trauma 

facilities and generic hospitals and medical centers. The demand points remain 

the same including the parameters for time taken. This comprises the Free 

System (FS) as discussed in chapter 4, sub-section 4.2.1.2 

• Experiment 3 – Semi-Constrained (SC): The third experiment places limits on 

the trauma centers that can be placed for each trauma Level-I, as described in 

chapter 4, sub-section 4.2.1.3. There being two Level-I trauma centers in the 

current network with an additional added resulting in three, this involves placing 

the limit as described in constraint (4𝑘) resulting in only three that can be placed 

out of the total 62 that are available to the model, albeit the remainder of Level-II 

trauma center can be placed freely without any limitations. This configuration is 

essentially the Semi-Constrained System.  

• Experiment 4 - Constrained System (CS): The penultimate experiment 

involves placing the exact number of trauma centers that are in the current 

network (i.e. the model must place 25 trauma facilities but not according to their 

official designations). The model is free to choose the trauma level designations 

from the data provided and this allows a different perspective into the 

performance of the current network when the facility designation can be rotated. 

This network is named as the Constrained System as discussed in chapter 4, sub-

section 4.2.1.4.  

• Experiment 5 - Improvement System (IS): The final performance measure will 
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involve the Improvement System, the iteration shown in chapter 4 sub-section 

4.2.1.5. With there being only two Level-I trauma centers in the current network, 

the model is allowed to place an additional facility for Level-I and two additional 

facilities for Level-II. The idea behind this experiment is to evaluate the 

performance of a network when facilities are added in a singular fashion which is 

a more practical perspective.  

 

4.5. Computational results 

 

4.5.1. Narrative results 

This sub-section will showcase the results generated for all systems tested and 

their performance measures. The parameter that will determine the same is taken as the 

Average Population Coverage (APC) for both trauma Levels-I and II. It is calculated for 

every zip code that is covered by the TCC for Level-I and II respectively hence, the 

percentage value will be unique for that trauma level. Zip codes covered in both trauma 

levels have their populations extracted and a percentage is derived by from the data 

range. As an example, if 5 out of 10 zip codes are covered by TCC’s for Level-I then the 

percentage of population covered is the performance parameters for the trauma level. 

The average of percentages for all demand probability instances, as described in Table 

13, is the average population coverage for the specific trauma level. Results for the 

average percentage coverage are presented in Table 18 below. Table 19 below presents 

the trauma centers that are placed for both trauma levels, including both individual total 

centers sited across the area of study.  
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Table 18. Computational results for coverage and cost 

 

 

Table 19. Trauma centers placed by trauma levels 

 

Figure 19 showcase the results presented in Table 18 by comparing the average 

percentage coverage for each network system as described in chapter 4, sub-section 4.2, 

comparing the results per time taken to reach viz 45, 60 and 75 minutes.  
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19a) Average Population Coverage for D1 

at 45 minutes 

 

 

19b) Average Population Coverage for D3 

at 45 minutes 

 

 

19c) Average Population Coverage for D2 

at 45 minutes 

 

 

19d) Average Population Coverage for D4 

at 45 minutes 

 

 

 

19e) Average Population Coverage for D5 at 45 minutes 

Figure 19. Average Population Coverage for 45 minutes 
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Charts are segregated according to the demand probability instances described in 

Table 13. Figure 19 displays the performance of the networks compared against each 

other for all demand probability instances when the expected clinical intervention from 

the moment of an injury incident is fixed to 45 minutes. For demand D1, the Semi-

Constrained system has the highest population coverage at 98.63% for Level-II and the 

Free-System has the highest coverage at 87% for Level-I. This is attributed to the fact 

that the Free-System has a higher number of Level-I facilities placed than the rest of the 

systems due to the absence of bounds within the system itself. This causes fewer Level-

II facilities to be placed as the model will seek a balance for the former placed for both 

trauma levels. As the Semi-Constrained system can place a limited number of Level-I 

facilities, thus Level-II facilities will have to be increased to maximize coverage. The 

Semi-Constrained system also has the highest coverage for D2, D3; 98.63% and D4 at 

97.59%. respectively. Excluding D5 which is tied with the Semi-Constrained system at 

87.84%, the Free-System has the highest performance at 89.01% across D2, D3, and D4 

respectively for Level-I. As is seen through D1 to D5 when considering the best 

performing two systems for their respective trauma levels viz, Free-System and Semi-

Constrained System, where D1 represents highest pandemic demand i.e. COVID-19 

cases, coverage for the Free-System decreases from 90.87% (D1) to 87.84%(D5) for 

Level-I coverage. Semi-Constrained System coverage for Level-II decreases from 

98.63%(D1) to 97.59%(D5) indicating that higher demand for a trauma level such as D1 

will affect the overall decision to place facilities. Figure 20 shows the performance of all 

network systems when the expected clinical intervention from the moment of an injury 

incident is fixed to 60-minutes. 
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20a) Average Population Coverage for 

D1 at 60 minutes 

 

20b) Average Population Coverage for 

D3 at 60 minutes 

 
20c) Average Population Coverage for 

D2 at 60 minutes 

 
20d) Average Population Coverage for 

D4 at 60 minutes 

 

 
20d) Average Population Coverage for D5 at 60 minutes 

 

 

 

Figure 20. Average Population Coverage for 60 minutes 

 

Across all demand probability instances, D1 to D5, the Improvement-System has 

the highest coverage at 99.58% for Level-II. This can be attributed to the fact that since 
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the Improvement-System is essentially an improved Benchmark-System the latter of 

which already shows significant coverage values for Level-II, the addition of more 

facilities that can be placed within the network will boost coverage in addition to a 

relaxed time constraint. With the exception of coverage at D5 at 94.27%, the Free-

System has the highest coverage across all demand probability instances at 95.71% for 

Level-I. This provides us the insight that the addition of a handful of facilities into the 

network when the time taken to reach facilities is at a standard 60 minutes, the coverage 

improves by almost 4%. The Free-System performs consistently better than all networks 

across all demand probability instances at a 95.71 % coverage in D1 to D4 and at 

94.27% coverage in D5. As is shown through D1 to D5 when considering the best 

performing system for its respective trauma level viz, Free-System, where D1 represents 

highest pandemic demand i.e. COVID-19 cases, coverage for the Free-System decreases 

from 95.71% (D1) to 94.27%(D5) for Level-I coverage thus showcasing that higher 

demand for a trauma level such as D1 will affect the decision to place the required 

facilities. It is interesting to note that coverage for the best performing system for Level-

II, the Improvement-System, shows consistent coverage at 99.58% for all demands. It 

can be reasoned that this occurs due to the majority of trauma centers being fixed in their 

respective locations and the addition of additional trauma centers will improve overall 

coverage across all demand instances. 

Figure 21 shows the results when evaluating the expected clinical intervention 

from the moment of an injury incident is fixed to 75 minutes. The Improvement-System 

has the highest coverage across all demand probability instances at Level-II at 99.86% 

coverage for D1 to D4 and 99.73% coverage for D5. This can be attributed as per 
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discussions for 60 minutes that due to the fact that the Improvement-System is designed 

to be an improvement over the Benchmark-System, addition of Level-II facilities will 

improve the respective trauma level demand. For Level-I and its demand probability 

instances, the Free-System has the highest coverage at 96.47% for D1 and D2, 96.54% 

coverage for D3, D4, and D5, respectively. We see higher coverage for the Free-System 

due to its flexibility in placing Level-I facilities. As the trend shows in previous time 

limits, coverage for Level-I decreases from D1 to D5, but in this case we see consistent 

coverages which can be attributed to the fact that time limit has been relaxed to 75 

minutes. This change will allow the model to cover a wider area with reduced facilities 

hence covering all demand instances.  

 

 

21a) Average Population Coverage for D1 

at 75 minutes 

 

21b) Average Population Coverage for D3 

at 75 minutes 
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21c) Average Population Coverage for D2 

at 75 minutes 

 

21d) Average Population Coverage for 

D4 at 75 minutes 

 

 

 
21e) Average Population Coverage for D5 at 75 minutes 

 

Figure 21. Average Population Coverage for 75 minutes 

 

Figure 22 shows the placement of trauma centers for a travelling time of 45 

minutes. Trauma centers are fixed for the Benchmark-System, as stated previously, and 

the comparison of trauma centers across all demand probability instances provides as 

insight with respect to the facilities that can be placed without sacrificing coverage. 

Establishing a connection with the data presented in Figure 19 the Semi-Constrained 

system had the highest coverage for Level-II and here we can see that fewer Level-II 

facilities are needed to improve coverage for the same level. This can be explained by 

reasoning that although the number of Level-I facilities are limited in number, the model 
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is allowed to place Level-II facilities based on demand and the distances thus resulting 

in a more efficient network with fewer facilities. The Free-System had the highest 

coverage for Level-I, as shown in Figure 19, and seen above, requires considerably 

fewer Level-I facilities as compared to the Benchmark-System due to the model being 

bound only by the maximum number of facilities that it can place. This allows it to place 

a higher number of Level-I trauma centers as compared to the Benchmark-System. 

 
22a) TCC sited for D1 within 45 

minutes 

 
22b) TCC sited for D3 within 45 

minutes 

 
22c) TCC sited for D2 within 45 

minutes 

 
22d) TCC sited for D4 within 45 

minutes 

 

 

 
22e) TCC sited for D5 within 45 minutes 

 
 

 

Figure 22. Trauma centers placed within 45 minutes 
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Figure 23 shows the trauma centers placed for trauma levels for a travelling time 

of 60 minutes.  As shown previously in Figure 20, the Improvement-System has the 

highest coverage for Level-II trauma. This correlation between coverage and trauma 

facility placement can be seen in Figure 23 as the same network has the highest number 

of Level-II trauma centers places across all demand probability instances. It being an 

improvement over the Benchmark-System is allowed to include additional Level-II 

facilities. The Free-System recorded highest coverage for Level-I and the same 

correlation can be visualized above as the system places the most Level-I facilities 

across all demand probability instances. This strengthens the proposition that more 

facilities do not equate to greater coverage and importance must be given to a more 

strategic layout. 

 

23a) TCC sited for D1 within 60 minutes 

 

23b) TCC sited for D3 within 60 minutes 
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23c) TCC sited for D2 within 60 minutes 

 

23d) TCC sited for D4 within 60 minutes 

 

23e) TCC sited for D5 within 60 minutes 

Figure 23. Trauma centers placed within 60 minutes 

 

Figure 24 shows the trauma centers placed by trauma levels within a travelling 

time of 75 minutes. As shown in  Figure 21, the Improvement-System has the highest 

coverage for Level-II and this is represented in Figure 24 where it can be seen that the 

former has the highest number of Level-II trauma centers placed, but matches with the 

facilities placed in the Benchmark-System. The Free-System is performing consistently 

with the highest coverage for Level-I , but due to the relaxed time limit, there are fewer 

Level-I facilities but still ranks as the highest placed among all systems, across all 

demand probability instances. This can be attributed for two reasons. The first is due to 
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the time limit being 75 minutes and second because of the absence of constraints that do 

not limit the number of Level-I facilities that can be placed. Due to the combination of 

these two factors, the locations of the facilities are such that they cover a wider area with 

the travel time being higher hence requiring fewer facilities in general. In conclusion to 

this sub-section showcasing the results for the performance of all systems tested, it is 

clear that outlined locations and strategy can lead to better coverage with fewer facilities 

that are placed.  

 

 

24a) TCC sited for D1 within 75 minutes 

 

24b) TCC sited for D3 within 75 minutes 

 

24c) TCC sited for D2 within 75 minutes 

 

24d) TCC sited for D4 within 75 minutes 
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24e) TCC sited for D5 within 75 minutes 

 

Figure 24. Trauma centers placed within 75 minutes 

 

 

The objective function of the programming model incorporates a cost coefficient 

which works in tandem with the demand coverage. In the thesis, it was stated 

previously, that due to the increased demand during pandemic conditions, which result 

in greater average daily cases, this will result in a lower cost compared to scenarios 

which have a lower daily demand. The results in Table 18 when transcribed to a visual 

perspective, show the desired trend expected from the model decision making. Figure 25 

shows the cost versus demand probability instance for systems, excluding the 

benchmark system for a travelling time of 45 minutes. As stated previously, D1 

comprises 50% of the demand from pandemic condition which results to a higher overall 

demand. Cost values are used as placeholders to represent a numeric association and not 

the actual value itself. The aim is to confirm the trend and not the resultant value itself as 

such an initial cost coefficient will vary according to the model programming. The chart 

shows that higher the demand, D1, has a lower cost and this increase as the demand 

probability instance decreases to D5. A reminder that demand D5, incorporates just 10% 

of the pandemic condition values resulting in a lower overall demand. These trends 
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affirm with the objective function that greater the coverage, lesser the resultant cost.  

Figures 26 and 27 below showcase the trends for 60- and 75-minutes travelling time, 

respectively. 

 

 
Figure 25. Cost vs Demand Probability instance for 45 minutes 

 

 

 
Figure 26. Cost vs Demand Probability instance for 60 minutes 

 

D1 D2 D3 D4 D5

F.S -1220 -1087.5 -955.7 -824.3 -694.05

S.C -1231 -1099.8 -969.15 -839.1 -709.75

C.S -1146 -1019.6 -893.2 -766.8 -640.4

I.S -1124.5 -999.2 -873.9 -748.6 -623.3
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Figure 27. Cost vs Demand Probability instance for 75 minutes 

 

Figures 26 and 27 coincide with the results and insights under Figure 25. It is a clear 

trend among tested systems, for all demand probability instances, and across all 

travelling times that the placement of facilities by considering higher demand will result 

in a lower end cost association.  

 

4.5.2. Illustrative results 

 

4.5.2.1. Benchmark system 

The Benchmark-System comprises the officially designated trauma facilities in 

TSA 𝑃. Figure 28 below is a map of the trauma centers in the network along with their 

level designations. Red dots present Level-I trauma centers and blue dots represent 

Level-II trauma centers. The representation shows that the majority of facilities are 

clustered within the city of San Antonio. The remainder of the facilities in the network, 
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when considering TSA 𝑃, are spread far between, clearly reinforcing the notion that 

coverage can be improved. Table 20 presents the codes for the trauma centers placed for 

the Benchmark-System.  

 

 
Figure 28. Trauma centers placed for Benchmark-System 

 

Table 20. Trauma Centers placed for Benchmark-System 

D1/D2/D3 

D4/D5 

Level I C47, C57 

Level 

II 

C56, C20, C25, C18, C32, C34, C29, C36, C39, C30, 

C40, C38, C53, C54, C8, CA, C11, C10, C13, C15, C19 

 

As shown in Table 18, the Benchmark System has its coverage by Level-I 

trauma centers to 84% when considering the standard travel time of 60 minutes. This 

improves to 87% when relaxing the time limit to 75 minutes, which is not a very 

significant increase. The coverages for Level-II trauma centers at 60 minutes is at 98% 

which requires Level-II trauma centers to be placed at locations closer to rural areas. 

Coverage improves to 99% when the time limit is relaxed to 75 minutes. For 45 minutes 

the coverage for Level-I reduces to 81%. These coverages show that there is room for 
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improvement for Level-I.   

 

4.5.2.2. Free system 

Figure 29 shows the first visual representation of the facility placement decision 

for the Free-System. Four panels represent the facilities placed according to the demand 

probability instances within a travel time of 45 minutes. Moving clockwise from the top 

left, the first panel shows the facilities placed for demand D1. There are a significant 

number of Level-I (red dots) facilities placed, as compared to the benchmark system, 

with a wider spread of Level-II (blue dots) facilities. The second panel, for demand D2, 

shows a reduced number of Level-I facilities, yet the spread of Level-II facilities 

remains consistent with the previous panel. The third panel, for demand D3 and D4 as 

the placement is the same for both probability instances, shows the facilities for both 

trauma levels with a consistent spread. The last panel, for demand D5, shows the least 

number of Level-I facilities placed with Level-II having a consistent spread. Table 21 

below shows the codes for trauma centers placed, in correlation with Figure 29, for 

individual demands for both trauma levels.  
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29a) TCC placed in demand D1 within 45 

minutes 

 

29b) TCC placed in demand D2 within 

45 minutes 

 

 

29d) TCC placed in demand D5 within 45 

minutes 

 

29c) TCC placed in demand D3 and D4 

within 45 minutes 

 

Figure 29. Trauma centers placed for Free-System within 45 minutes 

 

Table 21. Trauma Centers placed for Free-System in 45 minutes 

D1 Level I C19, C21, C25, C37, C40, C56 

Level II C12, C13, C15, C17, C18, C20, C31, C41, C52, C53, C57, 

C58, C59 

D2 Level I C19, C21, C25, C56 

Level II C10, C12, C13, C15, C17, C18, C20, C31, C40, C41, C52, 

C53, C58, C59 

D3/D4 Level I C19, C21, C25, C56 

Level II C12, C13, C15, C18, C20, C31, C40, C41, C52, C53, C57, 

C58, C59 

D5 Level I C19, C21, C56 

Level II C12, C12, C15, C18, C20, C25, C31, C40, C41, C44, C58, 

C59 
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When considering the driving time of 45 minutes, the Free-System improves 

Level-I coverage to an average of 89.15% which is a significant increase from the 

previous Benchmark system value of 81%. Coverage for Level-II is at an average value 

of 97.57% which is lower than the Benchmark-System, but the facilities are not 

clustered within San Antonio. 

Figure 30 below shows the trauma centers placed within 60 minutes of travelling 

time. Red dots represent Level-I trauma centers and blue dots represent Level-II trauma 

centers. Moving clockwise from the top eft panel, the first indicator is the increased 

number of Level-I centers in comparison to the 45-minute time limit. Certain facilities 

that were designated as Level-II for 45 minutes, are now placed as Level-I, such as C15, 

C58, which are designated as Level-I across all demand probability instances. The third 

panel combines D3 and D4, for the centers placed are the same. We can see that the 

spread of centers throughout the area remains consistent. Table 22 below shows the 

codes for trauma centers placed, in correlation with Figure 30, for individual demands 

for both trauma levels. 

 

 

30a) TCC placed in demand D1 within 60 

minutes 

 

30b) TCC placed in demand D2 within 60 

minutes 
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30d) TCC placed in demand D5 within 60 

minutes 

 

30c) TCC placed in demand D3 and D4 

within 60 minutes 

 

Figure 30. Trauma centers placed for Free-System within 60 minutes 

 

 

Table 22. Trauma Centers placed for Free-System in 60 minutes 

D1 Level I C12, C15, C18, C38, C52, C55, C58 

Level II C13, C17, C19, C20, C21, C25, C31, C3, C40, 

C59 

D2 Level I C12, C15, C18, C38, C48, C52, C58 

Level II C13, C17, C19, C20, C21, C25, C31, C3, C40, 

C59 

D3/D4 Level I C12, C15, C18, C38, C48, C52, C58 

Level II C13, C17, C19, C20, C25, C31, C3, C40, C44, 

C59 

D5 Level I C15, C19, C44, C55, C58 

Level II C12, C13, C17, C18, C20, C25, C31, C38, C52, 

C59 

 

 

For 60 minutes Level-I coverage increases to an average value of  95.42% which 

is a significant increase over the Benchmark-System (84% for Level-I) and Level-II 

coverage has an average value of  98.27% which is consistent with the latter yet the 

facilities aren’t clustered around San Antonio. Its limitations are primarily based on the 

cost association of opening facilities and the quantity that can be placed. Modification of 

these parameters can improve coverage for both trauma levels.  
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Figure 31 below shows the trauma centers placed within a travelling time of 75 

minutes. Due to the relaxed limit of time required to reach a trauma center, there are 

fewer facilities places as compared to previous time limits of 45 and 60 minutes 

respectively, yet the spread of facilities inside the area of study remains consistent and 

not clustered in any specific region. Moving clockwise from the top left panel, the first 

panel shows the centers placed for demand D1 and subsequently D2. The third panel 

shows the centers for demand D3, D4 and D5 are presented in the same panel as the 

facilities placed are the same. A pattern can be immediately visualized as all demands 

have the same facilities, both in name and number, placed. An interesting perspective as 

high-level centers are essentially the same, suggesting that merely changing the location 

of Level-II facilities can be considered to improve coverage. Table 23 below shows the 

codes for trauma centers placed, in correlation with Figure 31, for individual demands 

for both trauma levels. 

 

 

31a) TCC placed in demand D1 within 75 

minutes 

 

31b) TCC placed in demand D2 

within 75 minutes 
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31d) TCC placed in demand D4 and D5 within 

75 minutes 

 

31c) TCC placed in demand D3 within 

75 minutes 

 

Figure 31. Trauma centers placed for Free-System within 75 minutes 

 

Table 23. Trauma Centers placed for Free-System in 75 minutes 

D1 Level I C15, C19, C44, C55, C58 

Level II C13, C17, C18, C21, C25, C31, C3, C40, 

C59 

D2 Level I C15, C19, C44, C58, C7 

Level II C13, C17, C18, C21, C25, C3, C40, C59 

D3 Level I C15, C19, C21, C58, C7 

Level II C13, C17, C18, C25, C3, C40, C44, C59 

D4/D5 Level I C15, C19, C21, C58, C7 

Level II C9, C13, C17, C18, C25, C40, C44, C59 

 

 

The average coverage values for Level-I and Level-II are 96.53% and 99.69% 

which can be attributed to the relaxed time limit in place. These are improvements over 

average coverage values of 87% and 99% for Level-I and Level-II for the Benchmark-

System. If the focus of the study is geared towards coverage when considering 75 

minutes as the time limit then the system will perform better than its predecessors, viz 

45 and 60 minutes respectively, with facilities being spread over a larger area rather than 

being clustered. 
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4.5.2.3. Semi-constrained system 

Figure 32 below comprises two panels that display the trauma centers placed for 

the Constrained-System within a travel time of 45 minutes. Moving from the left, the 

first panel combine centers placed in demand D1 and D1 since the facilities placed are 

the same in each demand. The second panel combines the same for demands D3, D4, 

and D5. As this system will place three Level-I trauma centers regardless of demand or 

time, the resultant network will involve rotating Level-II facilities to respond to demand 

probability instances. Table 24 below shows the codes for trauma centers placed, in 

correlation with Figure 32, for individual demands for both trauma levels. 

 

 

32a) TCC placed in demand D1and D2 

within 45 minutes 

 

32b) TCC placed in demand D3, D4, and 

D5 within 45 minutes 

 

Figure 32. Trauma centers for Semi-Constrained System within 45 minutes 
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Table 24. Trauma Centers placed for Semi-Constrained System in 45 minutes 

D1/D2 Level I C19, C21, C56 

Level II C12, C13, C15, C17, C18, C20, C25, C31, C40, 

C41, C52, C53, C57, C53, C57, C58, C59 

D3/D4/D5 Level I C19, C21, C56 

Level II C12, C13, C15, C18, C20, C25, C31, C40, C41, 

C44, C58, C59, C8 

 

The average coverage values for Level-I and Level-II are 87.84% and 98.01% 

which is an improvement for Level-I and similar to Level-II when compared against the 

Benchmark-System which has average coverage values of 81% and 97% for Level-I and 

Level-II respectively. Even with the reduced time limit, there is no clustering to an 

extent seen in the Benchmark-System and coverage is determined by time taken and 

number of facilities that can be placed.  

Figure 33 below shows the trauma centers placed for the Constrained-System 

within a travel time of 60 minutes. Moving clockwise from top left, the first panel shows 

the trauma centers placed for demand D1, D2, D4, and D3 combined with D5 for both 

have the same trauma centers placed between them. There are three Level-I facilities 

placed with the rotation being prioritized for Level-II centers. The placement of trauma 

centers is slightly skewed towards the east coast. Table 25 below the codes for trauma 

centers placed, in correlation with Figure 33, for individual demands for both trauma 

levels. 
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33a) TCC placed in demand D1 within 60 

minutes 

 

33b) TCC placed in demand D2 within 60 

minutes 

  

 
33d) TCC placed in demand D4 within 60 

minutes 

 
33c) TCC placed in demand D3 and D5 

within 60 minutes 

 

Figure 33. Trauma centers placed for Semi-Constrained System within 60 minutes 

 

Table 25. Trauma Centers placed for Semi-Constrained System in 60 minutes 

D1 Level I C19, C52, C55 

Level II C12, C13, C17, C18, C20, C25, C31, C33, C44, C58, 

C59 

D2 Level I C19, C21, C55 

Level II C12, C13, C17, C18, C20, C25, C31, C3, C52, C58, 

C59 

D3/D5 Level I C19, C44, C55 

Level II C12, C13, C17, C18, C20, C38, C48, C52, C58, C59 

D4 Level I C19, C52, C55 

Level II C12, C13, C17, C18, C20, C3, C44, C48, C58, C59 
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For the standard driving time of 60 minutes, Level-I and Level-II coverage 

increase with an average value of 90.30% and 99.11%, respectively, which are 

significant improvements over the Benchmark-System: 84% for Level-I and 98% for 

Level-II. This suggests that although Level-II facility coverage is adequate and will 

require very fine tuning to improve its coverage, the network needs more Level-I 

facilities to cover more ground. The limit enforced is three Level-I facilities, but 

incremental additions will likely improve the coverage to a greater extent or 

redesignating pre-existing Level-II facilities to Level-I will also affect coverage.  

Figure 34 below shows the placement of trauma centers within a travel time of 

75 minutes. All demand probability instances have their respective panels. An 

immediate indication pertaining to the difference between 75 minute and the remainder 

is the relocation of Level-I facilities and the absence of the skewed nature of location as 

compared to Figure 33. Table 26 below the codes for trauma centers placed, in 

correlation with Figure 34, for individual demands for both trauma levels. 

 

 

34a) TCC placed in demand D1 within 75 

minutes 

 

34b) TCC placed in demand D2 within 75 

minutes 
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34d) TCC placed in demand D4 within 75 

minutes 

 

34c) TCC placed in demand D3 within 75 

minutes 

 
34e) TCC placed in demand D5 within 75 minutes 

 

Figure 34. Trauma centers placed for Semi-Constrained System within 75 minutes 

 

Table 26. Trauma Centers placed for Semi-Constrained System in 75 minutes 

D1 Level I C48, C52, C58 

Level II C13, C17, C19, C21, C25, C36, C40, C59 

D2 Level I C48, C52, C58 

Level II C13, C17, C19, C25, C40, C44, C55, C59 

D3 Level I C21, C48, C58 

Level II C13, C17, C19, C25, C36, C40, C44, C59 

D4 Level I C44, C48, C58 

Level II C13, C17, C19, C21, C25, C40, C55, C59 

D5 Level I C44, C48, C58 

Level II C13, C17, C19, C21, C25, C36, C40, C59 

 

With a limit of 75 minutes, we can see coverage for Level-I and Level-II 

improve to an average value of 92.38% and 99.70% showcasing significant increases 

compared to the Benchmark-System; 87% for Level-I and 99% for Level-II. Level-II 
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coverage needs tuning at an incremental level to cover the entire population under study, 

but Level-I coverage will require more facilities to improve its population coverage. 

This can be seen in terms of injuries that are not critical in nature and do not require 

immediate attention can benefit from this system as coverage is almost at a 100%.  

 

4.5.2.4. Constrained system 

Figure 35 below comprises the trauma centers placed for the Constrained-System 

within a travel time of 45 minutes. As the locations of centers placed are the same across 

all demand probability instances, there is only a need for a singular panel. To avoid 

cluttering, a second panel to the right was added which enlarges the area of San Antonio 

where a significant number of trauma centers are placed to allow for clarity. This is 

repeated for Figure 36 as well. Table 27 below shows the codes for trauma centers 

placed, in correlation with Figure 35, for individual demands for both trauma levels. 

 

35a) TCC placed for all demands, D1 to 

D5, within 45 minutes 

 

35b) Enlarged area of San Antonio with 

TCC placed 

 

Figure 35. Trauma centers placed for Constrained System within 45 minutes 
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Table 27. Trauma Centers placed for Constrained System in 45 minutes 

D1/D2/D3/D4/D5 Level I C38, C53, C19 

Level II C47, C57, C56, C20, C25, C18, C32, C34, 

C29, C36, C39, C30, C40, C54, C58, C59, 

C8, CA, C11, C10, C13, C15 

 

For 45 minutes as the time limit, average coverage values for Level-I and Level-

II are 85.56% and 96.69% which is an improvement over the Benchmark-System; 84% 

for Level-I, but remains almost the same for Level-II i.e. 97%. This shows us that the 

current trauma network coverage can be improved by re-designating existing facilities of 

their trauma levels. Figure 36 shows the trauma centers placed within a travel time of 60 

minutes. As can be noted, the location varies from the previous figure for a Level-I 

trauma center is placed down south near Eagle Pass (i.e. C15). Table 28 below the codes 

for trauma centers placed, in correlation with Figure 36 for all demands for both trauma 

levels. 

 

36a) TCC placed for all demands, D1 to 

D5, within 60 minutes 

 
 

36b) Enlarged area of San Antonio with 

TCC placed 

 

Figure 36. Trauma centers placed for Constrained System within 60 minutes 
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Table 28. Trauma Centers placed for Constrained System in 60 minutes 

D1/D2/D3/D4/D5 Level I C8, C13, C19 

Level 

II 

C47, C57, C56, C20, C25, C18, C32, C34, 

C29, C36, C39, C30, C40, C38, C53, C54, 

C58, C59, CA, C11, C10, C15 

 

When considering 60 minutes as the standard driving time, average coverage 

values for Level-I and Level-II are 89.46% and 98.23% which showcase improvements 

for the former yet similar to the latter when compared against the Benchmark-System; 

84% for Level-I and 98% for Level-II. This reinforces the statement made for 45 

minutes driving time that redesignating existing Level-I facilities will improve 

coverages. A factor that must be considered is that clustering of facilities can be seen in 

San Antonio hence requiring additional hospitals and medical centers to be considered 

as trauma centers to ensure adequate spread in land area. Figure 37 below shows the 

trauma centers placed for demands D1, D3, and D5 in the left panel, D2 and D4 in the 

right panel. A significant number of trauma centers are clustered in San Antonio. Table 

29 below the codes for trauma centers placed, in correlation with Figure 37, for 

individual demands for both trauma levels. 
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37a) TCC placed for demands D1, D3, 

and D5, within 75 minutes 

 
37b) TCC placed for demands D2 and D4 

within 75 minutes 

 

Figure 37. Trauma centers placed for Constrained System within 75 minutes 

 

For 75 minutes, average coverage values for Level-I and Level-II are 90.18% 

and 99.76% which are improvements when compared against the Benchmark-System; 

87% for Level-I and 99% for Level-II. These improvements assert the fact that re-

designation for trauma levels of existing facilities and adding more hospitals to the 

network will improve coverage.  

 

 

Table 29. Trauma Centers placed for Constrained System in 75 minutes 

D1/D3/D5 Level I C29, C58, C19 

Level II C47, C57, C56, C20, C25, C18, C32, C34, C36, C39, C30, 

C40, C38, C53, C54, C59, C8, CA, C11, C10, C13, C15  

D2/D4 Level I C56, C13, C19 

Level II C47, C57, C20, C25, C18, C32, C34, C29, C36, C39, C30, 

C40, C38, C53, C54, C58, C59, C8, CA, C11, C10, C15 
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4.5.2.5. Improvement system 

Figure 38 shows the trauma centers placed in the Improvement System for a 

travel time within 45 minutes. For all demand cases, clustering of facilities can be seen 

in San Antonio with a spread similar to what the Benchmark System shows. Table 30 

below the codes for trauma centers placed, in correlation with Figure 38 for all demands 

for both trauma levels. Clustering can be observed in San Antonio with average 

coverage values for Level-I and Level-II being 83.28% and 97.86% respectively, which 

especially is an improvement; considering Level-I, when compared against the 

Benchmark-System, which has an average coverage of 81% and 97.57% for Level-I and 

Level-II respectively. For Level-I, facility C21 has been placed to cater to the required 

trauma demand for the driving time. For Level-II, facility C30, C31, C52, and C59 were 

added to facilitate demand within the driving time. It is clear that coverage for Level-II 

does not change, rather shows a very slight decrease mainly due to the time limit of 45 

minutes which does restrict coverage.   
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Figure 38. Trauma centers placed for Improvement System within 45 minutes 

 

Table 30. Trauma Centers placed for Improvement System in 45 minutes 

D1/D2/D3/D4/D5 Level I C21, C47, C57 

Level II C10, C11, C13, C15, C18, C19, C20, C25, C29, 

C30, C31, C32, C34, C36, C38, C39, C40, C52, 

C53, C54, C56, C58, C59, C8 

 

Figure 39 below shows the trauma centers placed within a travel time of 60 

minutes. The clustering effect seen previously is present, similar to centers within 45 

minutes. Table 31 below the codes for trauma centers placed, in correlation with Figure 

39, for individual demands for both trauma levels. For the standard driving time of 60 

minutes, average coverage values for Level-I and Level-II are 87.67% and 99.58% 

respectively, which are improvements over the Benchmark-System which has average 

coverage values of 84% and 98% for Level-I and Level-II respectively. For Level-I, 

facility C21 is placed in addition to the existing centers and for Level-II C52(D1) and 

C44(D2 to D5) to cater demand outside of highly populated areas. Clustering can be 
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seen in and around San Antonio suggesting additional Level-I facilities must be placed 

outside urban areas to improve coverage for rural areas and other towns/cities. When 

considering the placement of trauma facilities due to the pandemic demand, initial 

analysis of cases showed increase in the number of cases recorded during the pre-

opening phase and post-opening phase around the area of Kerrville and Fredericksburg 

in addition to San Antonio, which is expected due it being a major city. As is such the 

demand instance D1 incorporates greater demand for COVID-19, the placement of a 

Level-I trauma center, C21, in the location of Kerrville and Fredericksburg affirms the 

decision of the model to provide service to the demand location. Even when considering 

the lowest demand instance for COVID-19 i.e. D5, the model still places a Level-I 

facility and places center C44 instead of C52 which can be reasoned  that the model 

would consider the distances between trauma centers and demand nodes to better 

facilitate the demand. It would seem that the model still considers the large cases 

recorded in an area to be given priority over others, with changing demand instances, to 

evaluate the demand over all instances and place the trauma centers accordingly. If 

demand in the area discussed would be lower than shown, the model would not have 

deemed fit to place a high-level trauma center.  
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39a) TCC placed for demand D1 within 60 

minutes 

 

39b) TCC placed for demands D2, D3, 

D4, and D5 within 60 minutes 

 

Figure 39. Trauma centers placed for Improvement-System within 60 minutes 

 

Table 31. Trauma Centers placed for Improvement System in 60 minutes 

D1 Level I C21, C47, C57 

Level II C10, C11, C13, C15, C17, C18, C19, C20, C25, C29, 

C30, C32, C34, C36, C38, C39, C40, C52, C53, C54, 

C56, C58, C59, C8 

D2/D3/D4/D5 Level I C21, C47, C57 

Level II C10, C11, C13, C15, C17, C18, C19, C20, C25, C29, 

C30, C32, C34, C36, C38, C39, C40, C44, C53, C54, 

C56, C58, C59, C8 

 

Figure 40 below shows the trauma centers placed within a travel time of 75 

minutes. Clustering can be seen clearly, similar to centers within 45 and 60 minutes. 

Table 32 below the codes for trauma centers placed, in correlation with Figure 40, for 

individual demands for both trauma levels. When considering a driving time of 75 

minutes, average coverage values for Level-I and Level-II are 90.18% and 99.76 % 
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respectively when compared to the Benchmark-System which has average coverage 

values of 87% and 99% respectively. For Level-I, facility C21(D1) and C44(D2 to D5) 

is placed in addition to the existing centers and for Level-II it is interesting to point out 

that C44 which was a Level-II facility in D1 is placed as a Level-I for D2 to D5 with a 

reasoning that due to the lower demand from D2 and onwards, it would be better utilized 

as a higher level center, thus removing the need to find a replacement facility for the 

same demand instance. This refers to improvements when compared against the 

Benchmark-System asserting the statement that additional Level-I facilities are needed 

outside San Antonio to avoid clustering and improve coverage. Improving Level-II 

coverage is already significant, hence minute improvements will require closer scrutiny 

over incremental additions to the trauma network.  

 
40a) TCC placed for demand D1 within 75 

minutes 

 
40b) TCC placed for demands D2, D3, 

D4, and D5 within 75 minutes 

 

Figure 40. Trauma centers placed for Improvement-System within 75 minutes 
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Table 32. Trauma Centers placed for Improvement System in 75 minutes 

D1 Level I C21, C47, C57 

Level II C10, C11, C13, C15, C17, C18, C19, C20, C25, C29, 

C30, C32, C34, C36, C38, C39, C40, C44, C53, C54, 

C56, C58, C59, C8 

D2/D3/D4/D5 Level I C44, C47, C57 

Level II C10, C11, C13, C15, C17, C18, C19, C20, C25, C29, 

C30, C32, C34, C36, C38, C39, C40, C53, C54, C56, 

C58, C59, C8 
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5. CONCLUSION 

 

The conclusion part of the thesis is divided into two sub-sections. Sub-section 

5.1 will discuss and summarize the findings for the forecasting and analysis part of the 

thesis in addition to providing recommendations for future research. Sub-section 5.2 will 

discuss and summarize the observations and results obtained for the stochastic part of 

the thesis while providing recommendations for future research. 

 

5.1 Forecasting analysis conclusions 

Trauma care access is an important public health issue that must be considered 

by Texas public officials in an ongoing basis due to the continuous increase in 

population experienced by the state in the last few years. The focus was on analyzing 

and forecasting physical trauma injuries in rural areas of the state. Five types of 

forecasting methods were analyzed to determine the best option to utilize for forecasting 

for individual data sets. The following insights were obtained from a descriptive analysis 

of the data. The results show that regional locations around Travis and Bexar counties 

reported the highest number of injuries. Those two counties are home to major cities 

such as Austin and San Antonio. The results also showed high variability in the number 

of trauma injuries reported per year in regions 780, 781, 783, and 788 which are mostly 

rural regions. Ongoing analysis of the variability of these regions is important for the 

future expansion of the trauma network in Texas.  

In terms of trauma center levels, the results showed that Level-I TCCs treat at 

least 35% of the trauma injuries per year, treating more trauma patients than Level-II, 
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Level-III, and Level-IV TCCs. These findings are relevant because only 6% of TCCs in 

Texas are designated as Level-I trauma facilities. Possible explanations for this 

phenomenon are that Level-I TCCs are located in large metropolitan areas with high 

population densities. In addition, it could indicate that there is a need for better protocols 

at the time of selecting the Trauma hospital to transport the injured patients for care. 

Better trauma hospital selection processes can help in avoiding facilities overutilization 

or underutilization.  

Level-I TCCs are comprehensive trauma facilities and they are expected to 

manage mostly severe cases with high ISS. Although the ISS for patients served at 

TCCs Level-I were highly variable, the results showed that patients with very low ISS 

were served at Level-I trauma facilities. This finding supports the recommendation of 

developing better protocols for deciding where to transport patients (i.e. TCC level) 

when they have suffered accidents. In terms of injury environment, it was observed that 

the industrial facilities environment (i.e. code 849.3) accounts for the least number of 

trauma injuries for any given year. The homes environment (i.e. code 849.0) accounts 

for the highest number of trauma injuries for any given year with zip code 782 

presenting the regional location with the highest number of injuries.  

The following insights were obtained from the predictive analysis of the data. 

The EWMA and ARIMA forecasting methods provided the best performance for 

forecasting trauma injuries in the studied region. Out of the 24 evaluated time series, 

EWMA provided the best performance for 9 and ARIMA provided the best performance 

for 12. It was also observed that the increase in variability (i.e. CV) in the time series 

resulted in an increase in the forecasting error. Zip codes 783 and 788 reported the 
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largest values for the CV and the MAPE. Those regional locations observed less 

numbers of trauma injuries, when compared to the rest, for all years considered in this 

study. The limited number of observations could be the reason for the observed higher 

values for CV and MAPE. Better MAPE results were obtained for those regional 

locations with higher number of injuries reported (i.e. 782 and 787). 

In terms of future research, we propose to formulate a stochastic programming 

(SP) optimization model to study the expansion of the TCC network in the studied 

regions. The SP model will utilize the forecasting results and models to predict future 

needs. The results of the ISS analysis will be used to test different assignment patient-

hospital protocols to prioritize the assignment of trauma facilities based on their 

capabilities to allow for maximum utilization. The combination of all these constraints 

will provide a more dynamic, non-deterministic approach to develop policies for public 

health decisions related to the expansion of the trauma network. Appendices A and B 

contain additional information required that pertains to the data and results for the study. 

Appendix A contains the ARIMA model parameters. Appendix B contains total trauma 

level visits for all years, injury severity score insights, fitted values against injuries per 

data sets for the best performing models.  

The primary limitation faced with this aspect of forecasting was the lack of exact 

data pertaining to the trauma injuries location. Two data sets were provided by DSHS. 

The data set with injury locations contained data at the county level providing only three 

digits zip codes, while the other set contained the injury data in terms of trauma level 

designation and injury severity score statistics. There was no way to determine a link 

between these sets, as there were no unique identifiers. Since the data sets cannot be 
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linked, the study did not want to assume trends and extrapolate patterns without any 

concrete foundations. If the complete sets can be made available in the future, 

correlations between data sets can be made to determine the actual patterns and yearly 

trends for specific locations in Texas.  

 

5.2 Stochastic programming conclusions 

The goal of the stochastic programming part of the thesis was to analyze and 

determine the performance, in terms of population coverage, for Trauma Service Area 

‘P’ as shown in chapter 4, sub-sections 4.2 and 4.4. Zip codes within the region were 

identified and categorized as demand nodes and trauma centers, both officially 

designated and general hospitals and medical centers, were also identified. Distances 

between demand nodes and trauma centers were calculated to construct a matrix which 

would determine if a given demand node was in reach of trauma centers within 45, 60, 

and 75 minutes driving time, respectively. Demand was divided into instances which 

comprised six scenarios withing each instance. Scenarios would represent daily average 

cases recorded according to the data available from the DSHS for the years 2014 to 2016 

and recent COVID-19 cases. Demand instances would change their weightage in a 

decreasing order where instance D1 would represent 50% of the demand attributed to 

COVID-19 while instance D5 would represent just 10% of COVID-19 demand and the 

remainder 90% of the demand would be the cases recorded during nominal operations. 

A two-stage stochastic programming model was introduced along with its variations of 

which the latter are modified versions of the original model that are used to represent 

modified networks of the current trauma network to determine their coverage. The 
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current trauma network was termed as the Benchmark-System, the network to test all 

proposed networks against. The Free-System would develop a new network with a wider 

assortment of hospitals and medical centers available at its disposal. The Semi-

Constrained System had to limit its Level-I facility placement to three and the 

Constrained System had to place both Level-I and Level-II facilities according to the 

numbers in the current trauma network. The Improvement-System was developed to 

determine changes in coverage when facilities were added incrementally to the current 

trauma network and observe improvements. The results obtained were showed as both 

narrative and illustrative based to provide insights and discuss relationships between 

numerical and visual aspects.  

The Benchmark system is the current trauma network of which all proposed 

systems are tested against. When considering population coverage for Level-I facilities, 

the Free-System has the highest coverage percentage across all demand probability 

instances and for all time limits, with the exception of coverage at demand D5 at 45 

minutes where it is tied with the Semi-Constrained System. The Free-System also has 

the highest number of individual Level-I trauma centers placed when compared to all 

systems across all demand probability instances and for all time limits, which makes 

sense due to its relaxed bounds for placing trauma centers not inhibited by placing limits 

on individual trauma levels. The Improvement-System has the highest overall 

population coverage for Level-II facilities yet does not have the same performance when 

it comes to coverage at Level-I. It is a clear indication that the Benchmark-System can 

be redesigned and planned with fewer trauma centers to improve coverage. We have 

also seen that incremental increase of facilities in the current network produces an 
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improvement of almost 4% in coverage for Level-I trauma centers when comparing the 

Benchmark and Improvement Systems, the latter of which is considered to be more 

pragmatic approach to coverage improvement rather than the complete restructuring of 

the current network. As coverage pertaining to Level-II facilities was already 

significantly high, the remainder 1% - 2% gap in coverage is a challenge within itself 

and will require more facilities to be considered. The cost with respect to coverage 

relationship brings into foray the desired performance; greater coverage reduces 

resultant cost, especially pertaining to the Free and Semi-Constrained System which do 

better than the rest, albeit the cost coefficients vary system to system. Every system 

apart from the Benchmark-System improves Level-I coverage while Level-II will 

require closer scrutiny, in terms of increased facility numbers, to provide maximum 

coverage. Even if we consider the comparisons between the Benchmark System and the 

Improvement System, we see improvements from 84% to 87% for Level-I, from 98% to 

99.69% for Level-II, when considering the standard time of 60 minutes. As discussed in 

previous sub-sections, improvements for Level-II coverage will require greater scrutiny 

and analysis of demand at a case by case level for exact locations to be placed at. 

The next evolutionary stage of this model is to be scaled up to cover more land, 

in terms of counties. Entire states with their trauma networks can be mapped and 

analyzed to determine their performance and recommend strategies for either expansion 

or re-designation. A desired scenario would be to cover the state of Texas to determine 

its overall population coverage. This model can theoretically be scaled up to cover a 

country provided the necessary computing power and exact databases for distances are 

available. 
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There are several additions to the decision-making model that can improve the 

outcome significantly. The model does not include characteristics of the facilities 

themselves such as bedding capacity, available personnel, and equipment available. The 

model can be tailored to plan medical services in disaster prone areas to prepare for 

inevitable natural calamities so that administrations are prepared to meet the challenges 

of providing rapid and accessible care to residents. Additions that involve micro-

management of facilities that are combined with macro-based factors will undoubtedly 

improve the decision-making process of the model proposed. An aspect that although is 

contained in the model, but not being a focus for study, is the location for heliports that 

can provide rapid access to patients over larger distances in a short span of time. Several 

trauma centers have access to helipads and airborne EMS services yet fall under the 

responsibility of said trauma center. What can be done is to place these heliports and 

designate them as their own separate entities that operate independently from the trauma 

center to provide coverage for far flung rural areas.  

Disaster prone areas are a viable location to make use of the programming 

model. It can be altered to suit the demands of locations that are subject to calamities by 

using forecasting to determine the extent of services needed and thus plan for either 

redesignation or expansion from scratch. Using low cost facilities for areas with 

restricted access and utilizing the programming model with resource allocation can 

assist in setting up new healthcare services in developing regions that do not require 

large scale facilities initially.  
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APPENDIX SECTION 

APPENDIX A 

ARIMA model Parameters 

Zip Code/Year ARIMA Model 

Parameters 

780 /2014 (1,0,6) 

781/2014 (1,0,18) 

783/2014 (1,0,3) 

786/2014 (1,0,0) 

787/2014 (1,0,3) 

788/2014 (1,0,14) 

781/2015 (1,0,14) 

787/2015 (1,0,1) 

788/2015 (1,0,8) 

780/2016 (1,0,9) 

781/2016 (1,0,3) 

788/2016 (1,0,4) 

 

 

APPENDIX B 

Total Trauma level visits 

  

 

 

 

 

Data analysis revealed an interesting aspect of facilities assigning injury scores. 

Three specific scores accounted for the largest percentage of injuries for all three years. 

The table below presents these observations in percentages.  

 

Trauma 

Level 2014 2015 2016 

Level I 39,616 38,151 43,115 

Level II 13,861 16,828 16,919 

Level III 28,498 29,950 32,466 

Level IV 24,047 25,197 26,873 

Total  106,022 110,126 119,373 
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Injury Severity Score Percentages 

Injury 

Severity   

Score 

Percentage in 2014 Percentage in 2015 Percentage in 2016 

1 17.05 18.39 19.48 

4 21.62 22.32 21.79 

9 22.87 20.45 20.04 

Sum 61.54 61.16 61.31 

 

Figures 1 to 24 present the fitted values for the best performing forecast model 

with respect to the number of injuries. Figures are presented in a yearly basis; example, 

Figure 1, and by individual zip codes; example, Figure 2. The fitted values were 

calculated in Minitab© and the software uses the fitted values in the formula to calculate 

the MAPE. These figures are presented to showcase the comparison of the best suited 

model performance to the respective data set  

 

 
Figure 1. Fitted Values value comparison for Total Injuries in 2014 
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Figure 2. Fitted Value for injuries for zip code 780 in 2014 

 

 
Figure 3. Fitted Value for Injuries in Zip Code 781 (2014) 
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Figure 4. Fitted Value for Injuries in Zip Code 782 (2014) 

 

 

 
Figure 5. Fitted Value for Injuries in Zip Code 783 (2014) 
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Figure 6. Fitted Value for Injuries in Zip Code 786 (2014) 

 

 

 
Figure 7. Fitted Value for Injuries in Zip Code 787 (2014) 
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Figure 8. Fitted Value for Injuries in Zip Code 788 (2014) 

 

 

 
Figure 9. Fitted Value for Total Injuries in 2015 

0

5

10

15

20

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0
0

1
1
1

1
2
2

1
3
3

1
4
4

1
5
5

1
6
6

1
7
7

1
8
8

1
9
9

2
1
0

2
2
1

2
3
2

2
4
3

2
5
4

2
6
5

2
7
6

2
8
7

2
9
8

3
0
9

3
2
0

3
3
1

3
4
2

3
5
3

3
6
4

V
al

u
es

Days

Fitted Values for Injuries in Zip 788 (2014)

Incidents ARIMA Fitted

200

220

240

260

280

300

320

340

360

380

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0
0

1
1
1

1
2
2

1
3
3

1
4
4

1
5
5

1
6
6

1
7
7

1
8
8

1
9
9

2
1
0

2
2
1

2
3
2

2
4
3

2
5
4

2
6
5

2
7
6

2
8
7

2
9
8

3
0
9

3
2
0

3
3
1

3
4
2

3
5
3

3
6
4

V
al

u
es

Days

Fitted Values for Total Injuries in 2015

Incidents Moving Average Fitted



 

129 

 
Figure 10. Fitted Value for Injuries in Zip Code 780 (2015) 

 

 

 

 
Figure 11. Fitted Value for Injuries in Zip Code 781 (2015) 
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Figure 12. Fitted Value for Injuries in Zip Code 782 (2015) 

 

 

 

 
Figure 13. Fitted Value for Injuries in Zip Code 783 (2015) 
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Figure 14. Fitted Value for Injuries in Zip Code 786 (2015) 

 

 

 

 
Figure 15. Fitted Value for Injuries in Zip Code 787 (2015) 
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Figure 16. Fitted Value for Injuries in Zip Code 788 (2015) 

 

 

 
Figure 17. Fitted Values for Total Injuries in 2016 
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Figure 18. Fitted Value for Injuries in Zip Code 780 (2016) 

 

 

 

 
Figure 19. Fitted Value for Injuries in Zip Code 781 (2016) 
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Figure 20. Fitted Value for Injuries in Zip Code 782 (2016) 

 

 

 

 
Figure 21. Fitted Value for Injuries in Zip Code 783 (2016) 
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Figure 22. Fitted Value for Injuries in Zip Code 786 (2016) 

 

 

 

 
Figure 23. Fitted Value for Injuries in Zip Code 787 (2016) 
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Figure 24. Fitted Value for Injuries in Zip Code 788 (2016) 
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