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I. INTRODUCTION 

 

In the period following World War II, processes of urbanization in the United 

States began to take on “parasitic” forms (Beauregard, 2006), whereby growth and 

prosperity in some places generated stagnation, shrinkage, and decline in others 

(Beauregard, 2011). For instance, many American central cities became intimately tied to 

notions of poverty, aging infrastructure, crime, and related “urban problems” during this 

era (Weaver et al., 2016). Emerging suburban communities beyond city borders therefore 

allowed some types of households to leave these problems behind, by making a crucial 

trade-off: quick and convenient access to central city employment and consumption 

opportunities were given up in favor of newer homes on larger lots farther from urban 

centers. Hence, households that were (are) able to economically absorb longer commutes 

and higher transportation costs relocate(d) from cities to suburbs in droves (Teaford, 

2007).  

Historically, large-scale patterns of city-to-suburb migration were facilitated by 

American federal programs that promoted homeownership (Hayden, 2004), invested 

heavily in the creation of transportation infrastructure (Leyden and Goldberg, 2015), 

especially highways and interstates (Bullard, 2000), and then eventually devolved almost 

all urban policymaking activities to lower levels of government (Kantor, 2010). The 

result has been a decades-long exercise in sprawl. While the term urban sprawl lacks a 

universal definition, most researchers agree that it refers to: 

“the low-density outward expansion of metropolitan areas often 

characterized by leapfrog development. Rather than laying out compact, 
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contiguous, interconnected subdivisions, developers skip over vacant land 

to create housing tracts or commercial strips ever more distant from the 

metropolitan core. [This situation] implies automobile-dependent 

development where everyone must drive to every destination because 

homes are isolated in homogenous residential subdivisions rather than 

within walking distance of stores and offices” (Teaford, 2007: 188). 

In the United States, sprawl was a novel process of urban development for most 

pre-War cities. Older cities were generally constructed to be “walking cities,” in which 

settlements were dense and heterogeneous, and where the primary mode of transport was 

walking (Weaver et al., 2016). By contrast, American cities that experienced their major 

population booms after World War II were largely built on top of a “culture” of sprawl 

(Briggs, 2009), such that their current urban forms privilege automobility over virtually 

all other forms of movement (e.g., Bullard, 2000; Agyeman, 2013). Indeed, to participate 

in the processes of sprawl, one is effectively required to “have access to an automobile 

because public transit is usually inadequate or nonexistent” in most parts of sprawling 

metropolitan regions (Bullard, 2000: 1).  

Ample research has shown that sprawl has “huge” social and environmental costs 

(Briggs, 2009: 52; also see Agyeman [2005] and Ewing [2008]). Foremost among these 

costs are traffic congestion (Ewing, 2008), 

“inefficient use of water and other natural resources, overburdened 

infrastructure, pollution, disinvestment in older communities, a spatial 

mismatch between where many disadvantaged job seekers live and where 

jobs are growing, and more” (Briggs, 2009: 52). 
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For these reasons, it is widely claimed that sprawl is counter to contemporary 

notions of “sustainability” and “sustainable development” (e.g., Agyeman, 2005; 

Register, 2006; Briggs, 2009). One idea that is often put forward to curb or 

reverse patterns of sprawl is to better organize urban spaces around mass public 

transit systems (Bernick and Cervero, 1997; Register, 2006), or at least to provide 

better and more equitable access to public transit and other forms of mobility in 

existing urban spaces (e.g., Agyeman, 2005, 2013).  

The argument is simply that better access to and greater utilization of 

public transit in U.S. metropolitan regions might help to mitigate some of the 

social and environmental costs of sprawl listed above (e.g., Register, 2006). 

Clearly, then, empirical and applied geographic research on the relationships 

between public transit and the consequences of sprawl can add considerable value 

to policymaking and planning efforts in American urban areas. This thesis seeks 

to contribute to the analytical toolbox and the body of quantitative evidence 

related to these efforts. In that sense, it is beyond the scope of this study to engage 

further with the critical literature on sprawl, sustainability, and the many 

meanings and intersections of these two concepts (see Bullard et al., 2000; 

Weaver, 2015). Rather, to facilitate its analytical and empirical contributions, the 

thesis takes as given three well-developed and testable propositions that are 

implied in the preceding paragraphs. Namely, (1) the roadways of sprawling 

metropolises are frequently characterized by substantial traffic congestion (e.g., 

Ewing, 2008); (2) accessibility to and usage of public transit has the capacity to 

alleviate some of the costs of sprawl, including traffic congestion (e.g., Bernick 
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and Cervero, 1997); and (3) access to and usage of public transit tend to be 

unevenly distributed in many cities (e.g., Bullard et al., 2000; Agyeman, 2005).  

The thesis tests these three general propositions for the specific case of 

Austin, Texas and its surrounding metropolitan region. Austin is one of the 

fastest-growing cities in one of the fastest growing metropolitan regions in the 

United States, with most of its growth occurring after World War II (Weissmann, 

2015). Accordingly, Austin is said to be an “exemplar of urban sprawl” (Torrens, 

2008: 5) that is located in a state where the “sprawling development patterns that 

require so much driving” are a “primary cause of congestion” (Surface 

Transportation Policy Project, 1999: 5). Austin is therefore assumed to be a 

meaningful case for analyzing relationships between congestion and public transit 

in a sprawling metropolis.  

With these points in mind, the study will test the three above-mentioned 

propositions in the context of the following research questions and subquestions: 

1. What is the geographic distribution of traffic congestion in the greater 

Austin area? 

a. What is the relationship between traffic congestion and public 

transit access? 

b. What is the relationship between traffic congestion and public 

transit usage? 

2. Are traffic problems and access to public transit distributed equitably 

between socioeconomic groups in the city of Austin?  
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In addressing these questions, a core objective of the study is to develop 

an analytical framework and adopt a methodology for operationalizing the 

concepts of “traffic congestion” and “public transit access,” using readily 

available state and federal administrative data sources. Researchers argue that 

quantifying these concepts is typically necessary in transportation planning 

projects and applied urban geographic investigations; yet both are difficult to 

measure. With respect to traffic congestion, traffic data tend to be sparse and are 

usually only available for highways and other major roadways (e.g., Lowry and 

Dixon, 2012). As a result, mapping congestion across an entire metropolitan road 

network can be extremely difficult. With respect to public transit access, public 

transportation data tend to be maintained by individual transit operators. Because 

transit operators take on various forms—including public/private partnerships, 

public corporations, and private corporations—public transit data necessarily vary 

from region to region. In that sense, it is a challenge to measure “access” 

consistently across space.  

To push back against these challenges, this thesis leverages data from the 

state of Texas Department of Transportation (TxDOT) and the federal 

Environmental Protection Agency (EPA). Following existing regression-based 

techniques from the literature (e.g., Anderson et al., 2006), the TxDOT data are 

used to spatially extrapolate known Average Daily Traffic (ADT) counts, as well 

as Designed ADT counts, for major roadways to every road segment in the greater 

Austin area. These results allow for an operational definition of “traffic 

congestion.” From there, spatial analytical tools and techniques within a 
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Geographic Information Systems (GIS) environment enable that measure of 

congestion to be mapped across the entire study area, and to be summarized for 

small subareas (U.S. census block groups) in the Austin city limits. The EPA data 

are then used to compute a composite index of “public transit access” in the city 

limits of Austin. The index is based on a neighborhood’s average distance to a 

transit stop, as well as the aggregate frequency of transit trips that run in the given 

neighborhood. Ultimately, these two variables are used to evaluate the 

relationships, if any, that exist between traffic congestion and public transit access 

in the city of Austin. The latter (access) measure can further be evaluated for 

unevenness in its distribution between different types of socioeconomic 

neighborhoods. To the extent that the study’s methodology relies on publicly 

available datasets that are relatively consistent across study areas, the analyses can 

easily be replicated in other metropolitan or micropolitan regions, cities, and 

states for purposes of transportation planning and related applied geographic 

research.  
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II. LITERATURE ON TRAFFIC CONGESTION MODELING AND 

PUBLIC TRANSIT ACCESS 

 

 Modeling traffic congestion and public transit accessibility allows researchers to 

pinpoint problem areas in transportation systems. Among other uses, traffic modeling 

helps transportation planners to identify roads or road segments whose existing flows are 

near, at, or over capacity (e.g., Rodrigue et al., 2006). Put differently, modeling assists 

researchers in locating those parts of the road network where existing traffic volumes 

exceed their intended or designed volumes. Concerning transit accessibility, many 

individuals and families, particularly those in low income groups, lack access to 

automobiles (Sanchez and Brenman, 2007). For such individuals, inadequate provision of 

public transportation negatively affects one’s ability to reach employment opportunities 

or other amenities (Bullard et al. 2000). In some cases, urban public transportation 

networks either do not physically connect to certain neighborhoods, or, in cities such as 

Austin, Texas, high traffic congestion can decrease the functionality and viability of 

available public transit options. As the literature surveyed below will show, both traffic 

congestion and public transit access have received significant attention from scholars and 

practitioners. In many cases, though, the two concepts are studied somewhat 

independently. Synthesizing the two lines of literature here is therefore crucial for 

moving forward with the project outlined in Chapter I, which will consider the 

interrelationships between congestion and public transit in Austin, Texas. 
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Traffic Congestion Modeling 

 One of the most widely used approaches for estimating traffic congestion begins 

with Average Daily Traffic (ADT) count data (Anderson et al., 2006). ADT is a measure 

used primarily in transportation planning and transportation engineering. It is the total 

volume of vehicle traffic on a road segment for one year, divided by 365 days. 

Importantly, however, due to limited resources and manpower, ADT cannot practically 

be measured on every single road segment—not even within a single city. Consequently, 

researchers have focused on spatially extrapolating ADT counts from a given location 

(often major roadways and highways) to other locations within a road network (often 

minor and residential streets).  

Regression Based Modeling 

 In a widely cited study, Anderson et al. (2006) developed a multiple linear 

regression model to estimate demand for various roadways using ADT data for a small 

town in Alabama. The authors note that their study was specifically designed just for this 

particular town. However, their methods have a wider range of applicability (Anderson et 

al., 2006; Lowry and Dixon, 2012). In brief, Anderson et al. (2006) sampled 96 roadways 

around the town of Anniston, Alabama, and collected data on the following independent 

variables: roadway functional classification, number of lanes, population within a half 

mile radius of the roadway, employment within a half mile radius, and a variable 

indicating the roadway as a through street or designation street based on side friction. The 

dependent variable for the model was ADT. The authors reported that the model’s R-

squared value of 0.819 suggested that it was a good fit for the data.  
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Another approach is based on spatial regression methods. Eom et al (2006) used a 

spatial regression model in their study of predicting Average Annual Daily Traffic 

(AADT), where averages were taken over a multi-year period. The authors propose that 

AADT at one monitoring station is correlated with AADT counts at neighboring 

monitoring stations. Their method provides reliable AADT estimates for coverage counts 

which they argued can improve the predictive capability of the aspatial regression model. 

The spatial model takes into account both spatial trend (mean) and spatial correlation, 

which is modeled using a kriging technique. The study area was Wake County, North 

Carolina. The data used for the regression is divided into three components: AADT, 

roadway characteristics, and census data. Roadway characteristics included urban, 

suburban, or rural area type classification, number of lanes, posted speed limit, functional 

classification, signal density, and presence of a median. The signal density is the number 

of signals within 1 mile in a uniform roadway segment. Census data at the block group 

level included total population, number of households, household size, number of 

households with young children, median income, and employment characteristics.  

The study produced some insightful findings. First, the effect of the Highway 

Functional Class 3—rural arterial—is much higher than the effects of the other functional 

classes. Also, urban area relative to rural area (Area Type 1) and suburban area relative to 

rural area (Area Type 2) have significant higher AADT, as expected. The city of Raleigh 

has much higher predictions with lower standard deviations than the rest of the country 

because the average distance between any two monitoring stations in the city is much 

shorter. As a result, on average, each station in the city has many more neighbors, which 

is crucial in kriging. Additionally, if a spatial correlation exists between AADT at one 
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station and locations of its neighbors, then the overall predictive capability of the 

regression model is much better than that of an ordinary regression model.  

A very similar study by Wang and Kockelman (2009) also used spatial 

interpolation and kriging. Their study used linear extrapolation for temporal predicting 

and kriging for spatial interpolation. They used data from the Texas Department of 

Transportation (TxDOT) for AADT, which includes almost 28,000 sites across the state. 

They predicted the next year’s traffic first, and then circled back and used interpolation to 

predict traffic on roadways without AADT monitors.  

Temporal Extrapolation was done using the ordinary least square regression 

(OLS) based on the seven years of collected traffic records (1999-2005), while the 

kriging method was used for interpolation. Their extrapolated counts are shown in Figure 

1.  
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Figure 1. Predicted counts for sites in 2006 (source: Wang and Kockelman, 

2009). 

 

The results of the spatial interpolation led Wang and Kockelman to conclude that 

variance increases with distance but levels out at a certain point. Most of the data from 

TxDOT is for Class 1 roads (interstate highways) and Class 2 roads (principal arterials). 

The study found that spatial autocorrelation of Class 1 roads is more distance-dependent 

as well as distance sensitive. The authors argue that this phenomenon occurs because 

Class 1 roads are better connected; access points along Class 1 roads lead to fluctuations 

while Class 2 roads appear more continuous.  

While both Eom et al. (2006) and Wang and Kockelman (2006) find that spatially 

explicit modeling can lead to higher predictive power relative to spatial extrapolation 

from linear regression models alone (recall the study by Anderson et al. [2006]), Lowry 

and Dixon (2012: 5) observe that spatially explicit models can be computationally 

complex and rely on data that may not be available in all types of places. In addition, they 

point to the high explanatory power and predictive capabilities of multiple regression 

models that use only a handful of variables (e.g., Mohamad et al. 1998; Anderson et al. 

2006). Ultimately, then, Lowry and Dixon (2012) recommend and illustrate the value of 

using regression-based extrapolation techniques for estimating ADT in practical 

transportation planning applications. They do so by developing a custom toolbox for Esri 

ArcGIS software.  

Lowry and Dixon’s (2012) Custom GIS Toolbox 
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Following earlier regression-based methods (e.g., Mohamad et al. 1998; Anderson 

et al. 2006), Lowry and Dixon (2012) demonstrate how characteristics of a road segment 

and its surrounding area can be used to extrapolate known ADT data to other segments in 

a given road network. In particular, Lowry and Dixon (2012), developed a Geographic 

Information Systems (GIS) toolbox for estimating traffic counts on roads that did not 

have readings in a small town in Idaho. Their toolbox included five related tools. Four of 

the tools involved preparing spatial data for the linear regression, and exploring the 

connectivity of the streets. The fifth, and arguably the most powerful, is then used to 

carry out a linear regression in which ADT is modeled as a function of user-specified 

independent variables. After the authors provided background details on the toolbox, 

Lowry and Dixon (2012) proceeded to use the tools to estimate ADT for minor roadways 

in their study area. In doing so, Lowry and Dixon (2012) highlight the value of 

parsimonious models and methods for engaging in applied transportation planning and 

urban geographic research.  

 

GIS-Based Modeling 

 

 As an applied project, this thesis follows the general regression-based modeling 

strategy used by Lowry and Dixon (2012). However, it is important to note that GIS 

offers transportation researchers much more than the ability to create customized 

analytical tools. Indeed, another way in which traffic congestion can be forecasted and 

simulated is through the use of GIS-based modelling. Much of the existing literature in 
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this area focuses on European cities. However, a growing body of scholarship is now 

applying and developing similar techniques for American cities. 

 Zhong and Hanson (2009) used GIS for travel demand modeling (TDM) to 

estimate traffic on low functional class (i.e., non-primary) roads. The authors point out 

that using travel demand models is currently rare in the extant literature. To address this 

gap, their study used TDM to estimate traffic volumes throughout New Brunswick, 

Canada. They divided the study area into two parts: York County, which includes the 

capital of the province (Fredericton), and the Beresford Census Consolidated 

Subdivision, which is a popular tourist area in the northern part of the province. The 

TDM was developed using TransCAD software, and it relies on a regression equation 

that estimates trips to a zone based on the number of housing units in the zone and the 

zone’s work activity. The results show a clear overestimation of traffic counts. In all 

cases, the volumes were overestimated by a range of 11% to 700%. The authors note that 

only 65% of the roads in the network were associated with traffic flows; so, by default, 

these roads would be more congested in the model. They then used regression to modify 

the TDM and manually add traffic flows to local roads, which improved the overall 

accuracy. However, Zhong and Hanson (2009) identified two specific areas where the 

study could be improved. First, lower class road traffic can be modelled more effectively 

by reducing the size of the study area. However, this would limit the model’s 

effectiveness, especially if it would require connecting multiple study areas through 

complex network algorithms. Second, a more comprehensive model could be made by 

increasing focus of the trip generating sites. This would require data at household levels, 
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which the authors note is sometimes difficult to acquire, and almost always complex to 

include in the overall model.  

Salonen and Toivonen (2013) took a different approach by including three 

different ways to model accessibility to various destinations in Helsinki, Finland. Their 

“simple” approach ignores traffic, congestion, and related factors, while their 

“intermediate” model includes traffic but ignores parking. Finally, their “advanced 

model”, which also had the best results, is known as the “door to door” approach. In this 

model, walking to the car/bus stop, traffic, finding parking and walking from the bus/car 

to work is all factored in. They found that direct comparisons can be made between 

public and private transportation when using the same model, for example, simple private 

and simple public transportation. It is not possible to compare simple private and 

intermediated private. Overall, the authors concluded that it is more efficient to commute 

in Helsinki by private car—a surprising result considering the public transit infrastructure 

and relatively high cost of anything automobile related (the price of the car itself, 

insurance, gasoline, etc.) The biggest downside or gap in this study is the availability of 

data. Salonen and Toivonen were fortunate to be provided data by the Helsinki Regional 

Transport, but they note that their particular model is “data hungry,” and that it may be 

overwhelming for someone without moderate GIS skills.  

 Tang et al (2003) used four different methods to develop four different models for 

traffic forecasting in Hong Kong. As in previous studies, these models were compared to 

real data to check for accuracy. The four methods include time series, neural network, 

nonparametric regression, and Gaussian maximum likelihood (GML). For the time series, 

the authors used the Box-Jenkins method, a commonly used technique for forecasting 
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either discrete or continuous data. The Neural Network Method (NN) is the idea of 

writing computer software based on the build of the human brain. The structure has three 

parts: the input later, the hidden layers, and the output layer. The Nonparametric 

Regression (NPR) creates predictions based on a group of similar past cases defined 

around the current state at the time of the prediction. This is essentially a nearest neighbor 

analysis. The last method is the GML. The GML was proposed in the early 21
st
 century, 

and it integrates historical traffic information and real-time information. 

In predicting AADT with the four models, the authors note that the GML method 

performed the best, while the ARIMA (time series) performed the worst. NPR was also 

notably accurate in predicting values for known data points. Nevertheless, the authors 

note that while NPR and GML are valuable modeling techniques, they are not perfect. 

NPR is complex because identification of neighbors can be difficult. The GML model, on 

the other hand, makes two restrictive assumptions: the variables must be normally 

distributed and time dependent.  

 

Summary of Traffic Congestion Modeling Literature 

 

 The preceding subsections communicate some of the popular, though diverse, 

strategies used by researchers and practitioners to model traffic and traffic congestion in 

various types of road networks. Two key themes seem to emerge from this literature. 

First, the data needed to answer some of the most important traffic-related research and 

planning questions are sparse. For that reason, statistical methods and/or geospatial 

modeling techniques are needed to estimate otherwise “unknown” or “unobserved” 
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information. Second, there is no universal “best” method or modeling technique for 

performing such analyses. While complex spatial methods can increase predictive 

accuracy in some cases (e.g., Eom et al., 2006; Wang and Kockelman, 2006), 

comparatively simpler multiple regression techniques have noteworthy—if not equal or 

greater—explanatory power (Anderson et al., 2006; Lowry and Dixon, 2012), and may be 

more accessible to practitioners and other applied researchers (e.g., Salonen and 

Toivonen 2013). Given the scope and intended contributions of this thesis, the present 

study adopts a regression-based spatial extrapolation method going forward. 

Notwithstanding this methodological choice, it should be clear from the above 

subsections that the continued methodological developments in traffic modeling—

including the growing number of studies that employ GIS-based modeling techniques—

are valuable and necessary contributions to scholarship in transportation planning and 

urban geography. 

Selected Studies of Access 

 

 Access is a multidimensional concept that deals with the capacity of an entity to 

reach, or to be reached by, other entities. From a public planning perspective, “access” 

therefore plausibly centers on the question of whether individuals can safely travel to 

various types of land uses, such as a mix of [quality] residential, employment, and 

recreation opportunities (e.g., Sanchez and Brenman, 2007). For example, in a study of 

the San Francisco Bay Area by Kawabata and Shen (2006), access to jobs was measured 

as a function of: (1) the travel times between two locations by car and public transit; (2) a 

threshold travel time; (3) the total number of jobs in a given location; (4) the total number 
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of workers (consisting of both the employed and unemployed) living in given location; 

and (5) the proportion of households with cars in that location (Kawabata and Shen, 

2007). Regression analyses showed that in both 1990 and 2000, job accessibility was 

associated with shorter commutes for driving than for public transit. In other words, 

commuting by public transit took workers much longer. The model also found a 

significant negative association between population density and public transit 

commuting, meaning that transport service is better for high density locations. Mean 

income was inversely statistically significantly related to access, suggesting that working 

families with higher incomes accept longer commutes (via automobile) to afford better 

housing (refer to Chapter I). Notably, though, Kawabata and Shen caution that San 

Francisco has an abnormally high public transit usage relative to the national average 

(approximately two times), and that disparities in areas with higher personal vehicle use 

will be different in the Bay Area than in the U.S. as a whole (Kawabata and Shen, 2007).  

In another study, Hess (2005) examined access to employment for low-income 

populations in Erie and Niagara Counties in western New York State. This study reached 

several interesting conclusions with respect to the social aspect of connectivity. In effect, 

the author found that access to employment in the city via public transportation is better 

than access to employment in the suburbs (Hess, 2005). While at first this may seem like 

a positive thing, the study also found that there are many more jobs in the suburbs. 

Furthermore, African Americans in the study area had considerably less access to 

automobiles relative to whites. As such, the areas that African Americans might search 

for jobs is limited to where public transit is accessible, which is predominantly within the 

city. Because more African Americans live in the city than in the suburbs—specifically, 
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Buffalo is 37% African American whereas the suburbs are only 2% African American—

lack of access to both automobiles and public transit is a severe limiting factor in finding 

employment. 

 Another article, by Handy (2005), explores how certain propositions from 

proponents of “smart growth” are affecting the country. The propositions include: (1) 

building more highways will contribute to more sprawl; (2) building more highways will 

lead to more driving; (3) investing in light rail systems will increase densities; and (4) 

adopting New Urbanism design strategies will reduce automobile use (Handy, 2005). In 

other words, the propositions seem to argue that, as summarized in Chapter I above, 

access to highways facilitates sprawl; while access to public transit can mitigate the costs 

of sprawl. The evidence produced by Handy suggests these claims are likely to be true, 

but to what extent they are true remains to be seen.  

As Handy (2005) observes, “[n]ew roads fuel the already explosive growth in the 

amount we drive. New and wider roads bring short-term relief, at great expense”. The 

author also found that increase in lane miles is associated with a 3-11% increase in 

vehicle miles traveled (Handy, 2005). Handy then argues that light rail systems 

potentially impact development and growth in two ways. First, if these systems reduce 

travel time, they may actually encourage residents to live farther out because of decreased 

travel time. However, she notes that most light rails are built in areas that are already 

developed, in which case the density may increase. Next, if there is not development 

along a proposed new light rail, development might spring up around the line once it is 

built. Overall, the study showed that investing in light rail—increasing access—will 

increase population density; but only if the conditions are right. Areas of success will 
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likely need economic growth, station locations in areas that can grow, and maybe most 

important of all, public sector involvement (Handy, 2005).  

Finally, Handy explores the degree to which strategies recommended by the 

Congress for the New Urbanism (CNU) can reduce automobile dependency. A general 

claim associated with the CNU is that if designed correctly, a “New Urban” city will 

make it easier to walk and not depend so much on the automobile. The study found that 

trip frequencies are mostly affected by socioeconomic characteristics but trip lengths are 

affected more by the built environment. Furthermore, the mode of transportation depends 

on the combination of socioeconomics and built environment (Handy, 2005). Handy cites 

a previous study that found residents of an Austin neighborhood chose to live there 

because it was within walking distance to the grocery store. Generally, New Urbanist 

strategies do make it easier to live without so much reliance on the automobile, but like 

the previous points, it is uncertain just how much driving it really saves.  

In his book Growing Stronger, Robert Bullard (2008) discusses issues related to 

inequitable access to a variety of resources between minority and non-minority 

population subgroups. He observes that tax subsidies help create suburban sprawl 

because money was allocated towards building more roads, rather than expanding public 

transportation. In turn, this sprawl leaves the most disadvantaged populations “behind” in 

the depopulating areas. Bullard (2008) further observes that traffic congestion, long 

commutes, and lost time and efficiency for business are results of sprawl. Crippled 

central cities and declining suburbs are a drag on the entire regional economy (Bullard, 

2008: 54). However, social justice advocates are skeptical of anti-sprawl movements 

because they have a regional focus. People are unaware that what is happening outside of 
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the inner city affects them. They are also afraid to lose cultural and neighborhood 

identities by placing their trust in regional entities (Bullard, 2008: 60). Finally, Bullard 

writes that it is possible for certain regions to be doing so well that concentrated poverty 

is not seen as an issue (Bullard, 2008: 61).  

 In a case study of the Atlanta metropolitan area, Bullard (2008) found that the 

majority of entry level jobs were not within a quarter mile of (i.e., accessible to) public 

transportation. In addition, 39% of all Black households in Atlanta do not have access to 

cars, and in 2000, only 34% of the region’s jobs were within a one-hour public transit 

ride of low-income neighborhoods (Bullard, 219). The author concludes that “[w]hether 

highway or airport sprawl is “good” or “bad” will almost always depend on where you 

live, and whether or not you own a car” (Bullard, 2008: 241). According to Bullard, 40% 

of public transit riders are low income individuals. The problem is jobs are located in 

areas that are not accessible. Bullard advocates for construction of affordable housing 

near rail transit lines. He references a study done in 2004 where it was discovered that 

housing demand near rail transit stations is high (Bullard, 2008: 305).  

 

Summary of Selected Access(ibility) Literature 

 

The foregoing, non-exhaustive survey of accessibility studies that are relevant to 

this thesis suggests that access in a transportation planning context depends, at minimum, 

on spatial distance (Bullard 2008) and quality of the entity being accessed (e.g., Sanchez 

and Brenman, 2007; Agyeman, 2005, 2013). In what follows, these insights will guide 

this study’s definition of access to public transit in the city of Austin. 
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III. DATA, ANALYTICAL FRAMEWORK, AND METHODS 

 

Data Sources 

 

The data for this study came from three different sources: The Texas Department 

of Transportation (TxDOT), the Smart Location Database is published by the U.S. 

Environmental Protection Agency (EPA), and the most recent U.S. Census Five-Year 

American Community Survey (ACS) for the period 2010-2014. Data obtained from 

TxDOT contain spatial and nonspatial characteristics for every road segment in the 

greater Austin region (Figure 2). Following existing studies (Mohamad et al., 1998; 

Anderson et al., 2006; Lowry and Dixon, 2012), the main road segment attributes of 

interest are: known Average Daily Traffic (ADT) counts, year ADT was recorded, the 

ADT volume for which the road segment was designed (“Designed ADT”), functional 

classification of the road, and number of lanes. In addition, GIS-based zoning data from 

the city of Austin were used to calculate the spatial distance (in kilometers) from each 

road segment to Austin’s “central business district” zoning area.  

Next, the EPA’s Smart Location Database (SLD) was developed to address the 

growing demand for data products and tools that consistently compare the location 

efficiency of various places. The SLD summarizes several demographic, employment, 

public transportation, and built environment variables for every census block group 

(CBG) in the United States (Ramsey and Bell, 2014). Once again with existing traffic 

modeling studies in mind (e.g., Mohamad et al., 1998; Anderson et al., 2006), data on the 

total level of employment (number of jobs) and total population in each CBG in the 
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metro area were extracted from the SLD. The SLD further provides data on the distance 

from a CBG’s population-weighted center to the nearest transit stop, in meters, and the 

aggregate frequency of transit service (number of trips) per square mile in each CBG. 

Data on the locations transit stops and frequency of services were obtained by the EPA 

from Capital Metro, the city of Austin’s public transportation operator. The employment 

and population totals contained in the SLD are for the Decennial Census year 2010, while 

the public transit data correspond to 2012 (Ramsey and Bell, 2014). Because the Capital 

Metro services are not provided throughout the entire greater Austin region, these latter 

public transit variables are only obtained for CBGs that fall within Austin’s city limits. 

 Finally, data were extracted from the most recent U.S. Census ACS in order to 

classify CBGs in the city of Austin based on a variety of relatively current socioeconomic 

status (SES) and demographic characteristics. Doing so allows for an assessment of the 

second research question articulated earlier in this thesis—namely, whether access to 

public transit is distributed equally between different types of socioeconomic 

neighborhoods (or, in this case, CBGs). ACS data were also obtained on the percentage 

of workers (16 years and older) who commute to their jobs via public transportation. 
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Figure 2. The state of Texas and the Austin Metropolitan Area with roadways. 

 

Approaching Research Question #1 

 

Descriptive statistics and additional details on the above-mentioned data are 

provided later in this section. For now, it is possible to present the general analytical 

framework/workflow adopted herein to answer the parts of research question #1 that were 

laid out in Chapter I. Recall that research question #1 was stated as follows: 
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1. What is the geographic distribution of traffic congestion in the greater 

Austin area? 

a. What is the relationship between traffic congestion and access 

to public transit? 

b. What is the relationship between traffic congestion and public 

transit usage? 

 The workflow for addressing these questions is illustrated in Figure 3. In summary, the 

analysis begins with a multiple regression model of ADT on several explanatory 

variables that are suggested by the literature (e.g., Mohamad et al., 1998; Anderson et al., 

2006; Lowry and Dixon, 2012) and practical expectations. Because ADT is only 

available for a subset of road segments in the Austin study area (see below), the 

parameter estimates from that model are used to estimate ADT for all road segments for 

the most recent year of observed ADT data (i.e., 2014). Next, the same progression is 

followed for a second regression model, in which “Designed ADT” is the dependent 

variable. The TxDOT dataset provides information on Designed ADT for a large subset 

of road segments. As such, the parameters estimated from the second regression model 

are used to estimated Designed ADT for all road segments in the greater Austin area.  

Following these two regression and extrapolation exercises, kernel density 

estimation (KDE) is used to generate two density surfaces with equal resolutions—one 

that corresponds to estimated ADT, and one that corresponds to estimated Designed 

ADT. KDE is a geospatial analytical technique that computes the density of linear 

features within a given “neighborhood” (Silverman, 1986). That is, (Designed) ADT for a 

given road segment is considered in the context of (Designed) ADT in its surrounding 
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“neighborhood,” in order to generate a continuous surface of (Designed) ADT across the 

study area. Following the creation of these surfaces, map algebra is used to divide the cell 

values in the estimated ADT surface by the corresponding cell values in the estimated 

Designed ADT surface. This operation cancels out the originals units, leaving only a ratio 

of estimated ADT to estimated Designed ADT for the full extent of the study area. In 

other words, the result is a capacity ratio that can be mapped for the whole road network. 

Values greater than 1.0 indicate that, collectively and with respect to the surrounding 

street grid, the road segments within a given cell in the network are over intended 

capacity. Values less than 1.0 indicate a collection of road segments that are operating 

below capacity. Hence, values greater than 1.0 reasonably represent areas of the road 

network that are congested.  

With this operational definition of congestion in hand, the ADT-to-capacity raster 

surface is used for two purposes (Figure 3). First, it can be reclassified into easier-to-

interpret categories. For simplicity, five practical categories are chosen in this analysis: 

(1) below 50% of capacity; (2) between 50% and 100% of capacity; (3) between 100% 

and 150% of capacity; (4) between 150% and 200% of capacity; and (5) over 200% of 

capacity. The first two categories are therefore “under” and “approaching” capacity, 

while the final three correspond to increasingly problematic situations of congestion (or 

“over” capacity scenarios). From there, the five data classes can be vectorized, or 

converted into polygons. The purpose of vectorizing the raster data is to facilitate a 

spatial join between the TxDOT road segment spatial data layer and the congestion 

classification. Within a GIS environment, a spatial join takes two or more input layers 

that share a data model (e.g., vector) and geographic projection and coordinate system, 
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and it combines them into a new layer that takes on attributes of the initial input layers 

(e.g., Bolstad, 2012). The resulting layer in this case is the set of all road segments in the 

greater Austin area, where each segment features an attribute with its respective traffic 

congestion category. The road segments can then be mapped to present a simple visual 

depiction of the geographic distribution of congestion in the Greater Austin area (research 

question #1). 

Second, the ADT-to-capacity raster surface can be summarized by CBGs, where 

CBGs are the unit of analysis that feature in the EPA SLD and the U.S. Census ACS data. 

Using the Zonal Statistics tool in Esri’s ArcGIS software, it is straightforward to 

aggregate ADT and Designed ADT to CBG boundaries. From there, the former aggregate 

measure is divided by the latter to create a CBG-level estimate of congestion. That 

measure can then be compared to measures of public transit access and usage to answer 

the two subquestions associated with research question 1—namely, (a) what is the 

relationship between traffic congestion and access to public transit; and (b) what is the 

relationship between traffic congestion and public transit usage? 
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Figure 3. Workflow/analytical framework for answering research question #1. 

  

Table 1 lists and defines all of the variables employed in the forthcoming analyses 

according to the source from which they were collected. Three tables found in the 

remainder of this section—Table 2 to 4—provide descriptive statistics on those variables 

for the different analytical samples that are used herein. The following subsections 

discuss each of these samples in detail.  

 

Table 1. A list of all variables for this analysis and their sources. 

Variable Description Source 

Average Daily Traffic 
(ADT)*† 

Average daily traffic (ADT) represents 
the total traffic for a year divided by 
365, or the average traffic volume per 
day.  

TxDOT 

Number of lanes The amount of lanes in a particular 
roadway segment 

TxDOT 

ADT year‡ The year in which Average Daily 
Traffic (ADT) was last collected in a 
particular roadway segment 

TxDOT 
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Table 1-Continued 

Designed ADT†† Designed average daily traffic 
represents the total traffic for a year 
divided by 365, or the average traffic 
volume per day that a roadway was 
designed to handle 

TxDOT 

Road functional class The process by which streets and 
highways are grouped into classes, 
or systems, according to the 
character of traffic service that they 
are intended to provide. This data set 
contains the following: local road, 
major collector, minor arterial, 
principal arterial, urban freeway, and 
interstate. 

TxDOT 

Distance from CBD Distance from a road segment to the 
Austin central business zoning 
district, in kilometers 

Computed 
in GIS 

Surrounding population* Sum of total population in all census 
block groups (CBGs) that are 
intersected by the given road 
segment 

EPA SLD 

Surrounding employment* Sum of total employment (jobs) in all 
CBGs that are intersected by the 
given road segment 

EPA SLD 

Distance from population-
weighted centroid to 
nearest transit stop 

The minimum walk distance between 
the population weighted CBG 
centroid and the nearest transit stop. 
 

EPA SLD 

Aggregate frequency of 
transit trips per square 
mile 

Measures transit frequency per  
square mile of land area 
 

EPA SLD 

% Minority population Fraction of total population in a CBG 
classified as non-white 

Census 
ACS 

% Adults without a high 
school diploma 

Fraction of total population 25 years 
or over in a CBG without a high 
school education 

Census 
ACS 

Unemployment rate Fraction of unemployed civilian 
workers relative to the civilian labor 
force in a CBG 

Census 
ACS 

% Households on public 
assistance 

Fraction of all households in a CBG 
that receive public assistance income 

Census 
ACS 

% Renters Fraction of occupied housing units 
that are renter-occupied in a CBG 

Census 
ACS 
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Table 1-Continued 

% House burdened Fraction of all occupied housing units 
in a CBG (renter and owner 
combined) for which householders 
spend more than 30% of their gross 
monthly income on housing 

Census 
ACS 

% Poor or struggling Fraction of all persons for whom 
poverty status is determined with an 
income-to-poverty ratio below 2.0 

Census 
ACS 

*Indicates that variable was log-transformed for regression analysis. For total population and total 

employment, the precise transformation was log(x+1), where x is the original value of the 

variable. This choice was made because a handful of road segments took on 0 values for these 

variables (see Quinn and Keough, 2002); †indicates dependent variable in regression model 1; 

††indicates dependent variable in regression model 2; ‡There were only two road segments with 

an ADT Year of 2013. In the analysis, these two observations were combined with the ADT data 

for the prior year, 2012. 

Note: shaded cells refer to variables used for research question #2 

 

TxDOT Data and Regression Model Samples 

 

 A request made to the Texas Department of Transportation (TxDOT) yielded a 

geographic dataset, in Esri shapefile format, containing 23,939 road segments in the 

greater Austin area (Figure 2). As mentioned above, among the road segment attributes 

included in the TxDOT dataset are ADT, ADT Year, and Designed ADT. Recall that 

ADT is a count variable that measures average traffic volume on a given road segment 

over the course of a calendar year. The ADT Year variable, then, provides information on 

the precise calendar year for which the ADT variable was measured. For the majority of 

road segments (n=15,701, or 66% of all segments), the reported ADT Year is 1978. 
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Within this set of observations, virtually all segments that share the same Functional 

Class (Table 1) take on identical ADT values. Thus, the 1978 measures are not likely to 

be reliable, particularly insofar as Austin has experienced tremendous population growth 

since that time. Of the remaining 8,238 road segments, then, fewer than one percent 

(n=70) are associated with ADT Year values between 2000 and 2007. On the other hand, 

more than 99% of those segments (n=8,168) have recent ADT Year values, between 2010 

and 2014. For these reasons, the road segments with ADT values for this more recent 

five-year period—i.e., 2010 to 2014—were selected as the sample for designing the first 

regression model described above in Figure 3. In a related fashion, only 34% (n=8,232) 

of the 23,939 road segments in the dataset have nonzero values for the Designed ADT 

attribute. As such, this sample of road segments is used to design the second regression 

model mentioned in Figure 3.  

 With those caveats in mind, for any given road segment, both ADT and Designed 

ADT are hypothesized to vary as functions of: (1) its number of lanes, (2) its functional 

classification (see Table 1), (3) its distance from Austin’s CBD, (4) an interaction 

between its functional classification and its distance from Austin’s CBD, (5) the size of 

the surrounding population, and (6) the total number of jobs in the surrounding area. With 

respect to item (4), the [multiplicative] interaction term is simply an acknowledgement 

that certain types/classes of roads—e.g., freeways—will have different relationships with 

traffic volume depending on how near they are to Austin’s urban core. Roadways that are 

nearer to the CBD may have different ADT volumes compared to the same classes of 

roadways farther from the CBD. Finally, for the ADT model, but not the Designed ADT 

model, we add (7) time dummy variables, which take on a value of 1 if ADT was 
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recorded in a given year (e.g., 2011) and a value of 0 otherwise. Descriptive statistics for 

the ADT and Designed ADT regression samples are presented in Table 2 and Table 3, 

respectively. Whereas variables (1) through (4), as well as (7) can all be derived from the 

TxDOT data, variables (5), (6), and several other variables come from the U.S. 

Environmental Protection (EPA) Smart Location Database (SLD).  

 

Table 2. Descriptive Statistics for the ADT Model. 

Variable Mean Standard Deviation 

ADT† 6.982 2.251 

Number of Lanes 2.576 1.175 

Distance from CBD (km) 19.167 11.076 

Surrounding Population† 7.925 0.906 

Surrounding Employment† 6.334 1.613 

ADT Year = 2010* 0.571 n/a 

ADT Year = 2011* 0.183 n/a 

ADT Year = 2012/13*‡ 0.003 n/a 

ADT Year = 2014* 0.243 n/a 

Road Functional Class = Local Road* 0.520 n/a 

Road Functional Class = Major Collector* 0.245 n/a 

Road Functional Class = Minor Arterial* 0.083 n/a 

Road Functional Class = Principal Arterial* 0.089 n/a 

Road Functional Class = Urban Freeway* 0.044 n/a 

Road Functional Class = Interstate* 0.018 n/a 

   

n=8,168   
†Indicates variable was log-transformed for regression analysis (see Quinn and Keough, 2002); 

‡There were only two road segments with an ADT Year of 2013. In the analysis, these two 

observations were combined with the ADT data for the prior year, 2012; *indicates dichotomous 

variable (mean = proportion of sample) 

 

Table 3. Descriptive Statistics for the designed ADT Model. 

Variable Mean Standard Deviation 

Designed ADT† 6.977 2.253 

Number of Lanes 2.585 1.179 

Distance from CBD 19.219 11.102 

Surrounding Population† 7.930 0.905 
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Table 3-Continued 

Surrounding Employment† 6.344 1.618 

Road Functional Class = Local Road* 0.506 n/a 

Road Functional Class = Major Collector* 0.256 n/a 

Road Functional Class = Minor Arterial* 0.085 n/a 

Road Functional Class = Principal Arterial* 0.091 n/a 

Road Functional Class = Urban Freeway* 0.044 n/a 

Road Functional Class = Interstate* 0.017 n/a 

n=8,232   
†Indicates variable was log-transformed for regression analysis (see Quinn and Keough, 2002); 

*indicates dichotomous variable (mean = proportion of sample) 

 

EPA SLD Data: Public Transit Access 

 

 The U.S. EPA SLD “is a nationwide geographic data resource for measuring 

location efficiency” (EPA, n.d.). SLD data are collected and provided at the census block 

group (CBG) level of analysis. The CBG-level variables that were extracted from the 

SLD for this thesis (refer to Table 1) include: (1) total population, (2) total 

employment/number of jobs, (3) distance from the CBG’s population-weighted centroid 

to the nearest public transit stop, and (4) the aggregate frequency of public transit service 

(i.e., number of transit trips) per square mile within the CBG. Variables (1) and (2) 

feature in the ADT and Designed ADT regression models, as discussed above. On the 

other hand, variables (3) and (4) are used to derive a measure of access to public transit in 

Austin. That being said, the Capital Metro public transit service from which variables (3) 

and (4) are derived (see Ramsey and Bell, 2014) is not available throughout the greater 

Austin area. Specifically, CBGs outside of the Austin city limits do not receive the vast 

majority of Capital Metro services. Consequently, our measurement and analysis of 

public transit access will be limited to only those CBGs with (a) centroids that fall within 
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the Austin city limits, and (b) non-missing data for both variables (3) and (4) listed 

above. 

 Having said that, there are a total of 814 CBGs that intersect with the road 

network pictured that is in Figure 1. Of these, 399 have valid, non-missing data entries 

for both of the transit-related variables mentioned in the preceding paragraph. In the 

interest of comparing proverbial “apples to apples,” note that of these 399 CBGs, 385 

have centroids that lie within Austin’s city limits, while the remaining 14 fall mostly or 

entirely outside of the city. Accordingly, it is the 385 city CBGs that form the sample for 

analyzing the relationship between congestion and public transit access (research 

question #1a). The next task, then, is to operationalize the concept of access using the 

two aforementioned SLD variables. To do so, we begin from the proposition that access 

is a function of both proximity and functionality (e.g., Bullard 2008). With respect to the 

former, the SLD variable distance from a CBG’s population-weighted center to the 

nearest transit stop (hereafter the distance variable) is a useful proxy for proximity, 

insofar as it captures the spatial distance between where people live and the nearest 

transit access point (Ramsey and Bell, 2014). Nevertheless, proximity alone cannot be a 

surrogate for access. For instance, it could be the case that a transit stop is within walking 

distance to most people in a given CBG; but that there are very few trips which depart 

from or stop at that location. In other words, the transit stop might not be very functional. 

Along those lines, the SLD variable aggregate frequency of transit trips in a CBG per 

square mile (hereafter the frequency variable) is proposed here as a proxy for 

functionality.  
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Thus, only where transit stops are simultaneously proximate to the people within 

a CBG and functional are they considered veritably accessible. Because both 

dimensions—nearness and functionality—are therefore [relatively] equally important in 

this conception of accessibility, they ought to be combined in a way that gives them equal 

weight in a composite measure/index of public transit access. Following the method used 

by the United Nations (UN) to compute its Human Development Index (United Nations, 

2015), Weaver et al. (2016) argue that collapsing multiple, equally important variables 

into a single composite index can be achieved through the calculation of a geometric 

mean. A geometric mean is a product-based average, as opposed to the conventional 

arithmetic mean, which is additive. In that sense, such a mean captures compounding, or 

interrelationships among its constituent parts (Weaver et al., 2016). In the present case, 

the frequency (i.e., functionality) variable relates positively to our conceptualization of 

access. By contrast, the distance (i.e., proximity) variable is inversely related to access—

as distance increases, transit stops become less accessible. Therefore, the proximity 

variable must be reverse-coded prior to its inclusion in the geometric mean. With these 

points in mine, we define public transit access here as: 

FPAccess  , (Eq. 1) 

where P and F are, respectively, indices of proximity and functionality that range from 0 

to 1 in the limit, where values near 0 indicate low accessibility and values near 1 indicate 

high accessibility. P is computed as: 

)min()max(

)min(
1

dd

dd
P i




 , (Eq. 2) 

where d_i is the value of the distance variable for CBG i, and min(d) and max(d) are the 

minimum and maximum values of the distance variable in the sample. Note that the final 
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term on the right hand side of the equation is subtracted from 1, so that higher distances 

lead to smaller values of P. And F is computed as: 

)min()max(

)min(

ff

ff
F i




 , (Eq. 3) 

where f_i is the value of the frequency variable for CBG i, and min(f) and max(f) are the 

minimum and maximum values of the frequency variable in the sample.  

 Table 4 presents descriptive statistics for the SLD variables described in this 

subsection, as well as for our adopted index of access. 

 

Table 4. Descriptive Statistics for access variables. 

Variable Mean Standard Deviation 

Distance from population-weighted centroid to 
nearest transit stop (km) 

0.434 0.279 

Aggregate frequency of transit trips per square 
mile 

747.585 1,225.606 

P index (see Eq. 2) 0.637 0.233 

F index (see Eq. 3) 0.069 0.113 

Access 0.180 0.141 

n=385   

  

U.S. Census American Community Survey Data: Public Transit Usage 

  

To round out the data collection for all parts of research question #1, commuting 

data were collected from the most recent five-year (2010-2014) vintage of the U.S. 

Census American Community Survey (ACS). The ACS is a rolling survey that takes 

place each year. However, data are provided at the CBG level only for five-year period 

increments rather than annually in order to increase the reliability of the estimates. Within 

the data reported by the ACS, Table B08301 contains data on “means of transportation to 

work.” Among the modes of transportation for which data are reported is “public 
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transportation (excluding taxicab)”. The universe to which the reported data applies is the 

population of all workers 16 years of age or older.
1
 Hence, by dividing the number of 

workers in each block group who commute using “public transportation (excluding 

taxicab)” by the total number of workers 16 years or older, one can obtain the fraction of 

workers in any given CBG who use public transit. For the 385 CBG sample described in 

the preceding subsection, the mean fraction of workers who use public transit is 0.054 

with a standard deviation of 0.063.  

 

Correlation Analysis for Research Question #1 

 

 While the road network, population, and employment data can described above be 

used to map the geography of congestion across the entire greater Austin region pictured 

in Figure 1, the SLD data limit our investigation of the relationships between congestion, 

public transit access, and public transit usage to CBGs within the Austin city limits 

exclusively. For the sample of 385 CBGs within Austin that contain all relevant public 

transit data, correlation analysis is used to study these relationships. First, bivariate 

correlations are derived for each pairwise relationship between these three variables. 

Second, the partial correlation is found between public transit usage and traffic 

congestion, controlling for public transit access. The latter method is employed to test 

the hypothesis that for a given level of access, public transit usage might contribute to a 

reduction in traffic congestion.  

 

 

                                            
1
 http://censusreporter.org/tables/B08301/ 
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Approaching Research Question #2 

 

 Recall from Chapter I that research question #2 was stated as: 

2. Are traffic problems and access to public transit distributed equitably 

between socioeconomic groups in the city of Austin?  

Two analytical procedures are essential for addressing this question. First, it is necessary 

to classify the census block groups (CBGs) in the city of Austin into socioeconomic 

status (SES) groups. Such a classification can be achieved in a straightforward manner 

through a multivariate k-means clustering analysis. K-means clustering is used to create 

groups such that observations within groups have low variability in their attributes, while 

there is relatively high between group variation in attributes (e.g., Weaver, 2015). 

Second, tests for equality of mean (or median, if appropriate) traffic congestion and 

public transit access between the derived SES groups allow for an assessment of the 

degree to which mobility-depressing traffic congestion and/or mobility-enhancing public 

transit access are (un)equally distributed across SES groups. The next subsection 

describes the demographic and socioeconomic status variables that were selected for the 

first (k-means cluster analysis) procedure. 

Demographic and Socioeconomic Variables from the U.S. Census ACS 

 In addition to the public transit usage data that were obtained from the most recent 

U.S. American Community Survey (ACS) for research question #1 (see above), several 

demographic and socioeconomic variables were extracted from the ACS to facilitate the 

clustering of CBGs into SES groups. Drawing on literature that describe similar 

analytical exercises (e.g., Sampson et al., 2002; Manturuk et al., 2009; Weaver et al., 
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2016), the variables listed and described in the shaded portion of Table 1 were selected 

for this purpose.  

 

Summary 

 In summary, this thesis is interested in the: (1) geographic distribution of traffic 

congestion in greater Austin, (2) relationships between traffic congestion, public transit 

access, and public transit usage in the city of Austin, and (3) the extent to which these 

variables are evenly distributed among socioeconomic groups in the city of Austin. The 

next chapter presents findings on these matters derived by carrying out the analytical 

operations described throughout this chapter.  
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IV. RESULTS AND PRELIMINARY DISCUSSION 

 

Regression Results and the Geography of Traffic Congestion in Austin 

 

 The results from estimating the two regression models described in Figure 3 are 

presented in Table 5 and Table 6 below. The results for the first model are highly 

consistent with existing literature (e.g., Mohamad et al., 1998; Anderson et al., 2006). 

Namely, Average Daily Traffic (ADT) is directly and statistically significantly related to 

number of lanes, surrounding population, and surrounding employment. Moreover, as 

expected, distance from the Austin CBD is inversely related to ADT, suggesting that 

traffic eases the farther a road segment is from the urban core. ADT is higher in every 

year relative to the reference year of 2010, which implies that traffic has been on the rise 

as the Austin region continues to explode in population (e.g., Weissman, 2015). 

Likewise, relative to the reference road functional classification category of interstate, all 

other types of road segments experience lower traffic volumes. Two significant 

interaction effects between road functional classification and distance from the Austin 

CBD are also detected in the model. Overall, the R-squared value of the model is 0.85, 

which is consistent with or outperforms the findings from related literature (see the 

review by Lowry and Dixon, 2012).  

 

Table 5. Regression Output for ADT Model. 

Variable Coefficient Standard 
Error 

 

Number of Lanes 0.339 0.013 *** 

Distance from CBD -0.017 0.005 ** 

Surrounding Population† 0.042 0.011 *** 
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Table 5-Continued 

Surrounding Employment† 0.071 0.007 *** 

ADT Year = 2011 1.396 0.045 *** 

ADT Year = 2012/13 0.759 0.199 *** 

ADT Year = 2014 1.910 0.045 *** 

Road Functional Class = Local Road -2.749 0.142 *** 

Road Functional Class = Major Collector -1.398 0.137 *** 

Road Functional Class = Minor Arterial -0.718 0.144 *** 

Road Functional Class = Principal Arterial -0.675 0.137 *** 

Road Functional Class = Urban Freeway -0.234 0.153  

Local Road*Distance from CBD -0.002 0.005  

Major Collector *Distance from CBD -0.007 0.005  

Minor Arterial *Distance from CBD -0.012 0.006 * 

Principal Arterial *Distance from CBD 0.002 0.006  

Urban Freeway *Distance from CBD -0.031 0.008 *** 

Constant 6.907 0.175 *** 

n=8,168    

R-squared: 0.885    

Adjusted R-squared: 0.846    

Dependent variable: ADT†    
†Indicates variable was log-transformed; ***p<0.001; **p<0.010; *p<0.050; .p<0.100  

 

 As discussed above (see especially the workflow pictured in Figure 3), the 

parameter estimates reported in Table 5 were then used to predict ADT values for all 

road segments in the greater Austin region from Figure 2. As part of the prediction 

procedure, the ADT Year variable was set to 2014 for all road segments in the TxDOT 

dataset, in order to estimate contemporary levels of traffic volume throughout the greater 

Austin road network. The means and 95% confidence intervals of these predicted values, 

separated by road functional class, are presented in Table 3. They are also shown 

graphically in the left panel of Figure 4. Expectedly, interstates and other major roadways 

are characterized by the highest mean predicted ADT values, while local and minor roads 

are predicted to experience lower daily traffic volumes.  
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Table 6. Descriptive Statistics for Predicted ADT Variable. 

Road Functional 
Class 

Mean Standard 
Deviation 

Lower 
Bound of 

95% 
Confidence 

Interval 

Upper 
Bound of 

95% 
Confidence 

Interval 

Interstate 81,068.95 55,515.92 72,001.35 90,136.55 

Local Road 1,299.53 337.16 1,294.83 1,304.23 

Major Collector 6,297.70 2,993.69 6,172.60 6,422.80 

Minor Arterial 17,420.84 11,129.48 16,598.11 18,243.56 

Principal Arterial 30,590.51 15,250.94 29,499.01 31,682.00 

Urban Freeway 45,155.41 34,767.36 41,583.69 48,727.12 
n=23,939 (all road segments in TxDOT dataset) 

 

 The results for the Designed ADT regression model, which are presented in Table 

8, also match expectations. Number of lanes and surrounding employment are directly 

and statistically significantly correlated with Designed ADT, while distance from the 

Austin CBD is inversely related to Designed ADT. Relative to the reference road 

classification of interstate, all other road types are predicted to have been designed for 

lower traffic capacities. Similar to the ADT model, three significant interaction effects 

exist between road functional class and distance from the CBD. 

 

Table 7. Regression Output for Designed ADT Model. 

Variable Coefficient Standard 
Error 

 

Number of Lanes 0.376 0.015 *** 

Distance from CBD -0.015 0.006 * 

Surrounding Population† 0.013 0.013  

Surrounding Employment† 0.059 0.008 *** 

Local Road -4.592 0.156 * 

Major Collector -1.852 0.154 *** 

Minor Arterial -1.347 0.161 *** 

Principal Arterial -1.096 0.155 *** 

Urban Freeway -0.091 0.176  

Local Road*Distance from CBD -0.005 0.006  

Major Collector *Distance from CBD -0.012 0.006 . 



 

42 

Table 7-Continued 

Minor Arterial *Distance from CBD 0.003 0.007  

Principal Arterial *Distance from CBD 0.021 0.007 ** 

Urban Freeway *Distance from CBD -0.028 0.009 ** 

Constant 9.326 0.193 *** 

n=8,232    

R-squared: 0.810    

Adjusted R-squared: 0.810    

Dependent variable: Designed ADT†    
†Indicates variable was log-transformed in the regression model; ***p<0.001; **p<0.010; 

*p<0.050; .p<0.100  

 

Following the workflow pictured in Figure 3 from Chapter II, the parameter 

estimates reported in Table 7 were used to predict Designed ADT for all 23,939 road 

segments in the TxDOT dataset. The means and 95% confidence intervals of these 

predicted values, separated by road functional class, are presented in Table 8. As above, 

they are also shown graphically in the right panel of Figure 4. Expectedly, interstates and 

other major roadways are characterized by the highest mean predicted Designed ADT 

values, while local and minor roads are predicted to have been designed for lighter traffic 

volumes. 

 

Table 8. Descriptive Statistics for Predicted Designed ADT Variable. 

Road Functional 
Class 

Mean Standard 
Deviation 

Lower 
Bound of 

95% 
Confidence 

Interval 

Upper 
Bound of 

95% 
Confidence 

Interval 

Interstate 127,787.33 91,876.37 112,780.85 142,793.80 

Local Road 268.37 69.73 267.40 269.34 

Major Collector 5,116.90 2,645.83 5,006.34 5,227.46 

Minor Arterial 16,117.56 8,935.67 15,457.01 16,778.11 

Principal Arterial 36,515.14 17,631.05 35,253.30 37,776.98 

Urban Freeway 84,029.27 68,278.42 77,014.90 91,043.64 
n=23,939 (all road segments in TxDOT dataset) 
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Figure 4. Mean predicted ADT and mean predicted Designed ADT by road class. 

 

 With extrapolated values for ADT and Designed ADT now available for all 23,939 

road segments from the TxDOT dataset, the next step in the workflow (Fig. 3) for this 

project is to use kernel density estimation (KDE) to compute the density of predicted 

traffic volume (ADT) and predicted traffic capacity (Designed ADT) across the full spatial 

extent of the road network in greater Austin. KDE is adopted insofar as “density maps are 

particularly useful for looking at patterns rather than at the locations of individual) 

features, and for mapping areas of different sizes” (Mitchell, 1999: 70). Mitchell (1999: 

70) continues to say that:  
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“while [one] can see concentrations [e.g., of traffic volume] by simply 

mapping the locations of features, in areas with many features it may be 

difficult to see which areas have higher concentration than others. A 

density map lets [one] measure the number of features using a uniform 

areal unit…[to] clearly see the distribution [across an entire study area]”. 

In other words, density maps view traffic on road segments as existing within larger 

neighborhoods. Thus, the interest is not simply in the predicted ADT and Designed ADT 

values for each individual road segment. Rather, the interest is in how ADT and Designed 

ADT vary spatially within their broader geographic surroundings. That being said, KDE 

was applied to the 23,939 road segments using, first, predicted ADT as the population 

field of interest; and, second, predicted Designed ADT as the field of interest. In both 

cases, the uniform cell resolution was set to 195 meters, which was suggested for the 

dataset by a default cell size calculator algorithm in ArcGIS. The resulting two surfaces 

were then classified by ArcGIS’s built-in stretching function using one standard deviation 

specification.
2
 The predicted ADT surface is shown on the left-hand-side of Figure 5, 

while the predicted Designed ADT surface is on the right of the same figure. The figure 

further illustrates that the ArcGIS map algebra tool was used to divide the former by the 

latter, in order to create a unitless ratio of predicted traffic volume to predicted traffic 

capacity. The surface that corresponds to that unitless ratio is mapped in Figure 6.  

 

                                            
2
 https://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/stretch-

function.htm  

https://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/stretch-function.htm
https://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/stretch-function.htm
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Figure 5. Map Algebra formula used to predict ratio of Predicted ADT to Designed 

ADT. 
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Figure 6. A map of the unitless ratio of Predicted ADT to Designed ADT. 
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As a next step, the continuously varying values of the traffic-to-capacity ratio 

pictured above in Figure 6 were reclassified into five discrete values, which were chosen 

by the researcher. Of the five categories, two describe locations in the road network 

where predicted ADT is less than predicted Designed ADT. In other words, such areas are 

considered to be “below capacity.” The remaining three classifications describe 

increasingly problematic cases in which areas along the road network are “above 

capacity,” or such that predicted ADT exceeds predicted Designed ADT. The five classes 

are pictured below in Figure 7.  
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Figure 7. Ratio of Predicted ADT to Designed ADT, reclassified. 

The reclassified figure shown above allows for an easier interpretation of the 

resulting patterns. In short, some of the largest traffic-to-capacity ratios—i.e., the areas of 
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the network that are experiencing the operational definition of congestion defined earlier 

in this thesis—tend to exist at entry points to the city of Austin. Major roadways that 

move cars from surrounding suburban communities into and out of the Austin city limits 

are predicted to experience the greatest daily capacity issues. Commuter areas in the 

northern portion of the greater Austin area also experience severe capacity issues at the 

borders of the region. These capacity issues first decrease along major roadways from the 

northern boundaries of the region toward Austin; but they increase again at the city 

limits.  

 Whereas the reclassified raster surface pictured in Figure 7 provides a concise, 

general summary of daily traffic capacity issues in greater Austin, the analysis can be 

made more specific. In particular, each individual road segment is capable of being 

classified on the basis of its location in one of the five traffic-to-capacity categories 

visualized above. To achieve this objective, the reclassified raster surface must be 

converted into a vector (polygon) GIS data layer. This step is necessary to facilitate a 

spatial join, wherein road segments are given the attributes—here, the traffic capacity 

category—of the new vector data layer. Such a join cannot be facilitated between the 

vector (line-based) road segment GIS data layer and a raster data layer. The results of this 

join operation are pictured in Figure 8, where all road segments are symbolized on the 

basis of the traffic-to-capacity category in which they fall. This figure presents an even 

clearer picture of the notion that major roadways that connect suburban communities to 

the Austin city limits experience capacity issues, particularly where they act as entry 

points into the city. 
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Figure 8. A map of road congestion in Austin for every street in the dataset. 

 

Correlation between Congestion, Transit Access, and Transit Usage 
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 The final figure presented in the preceding subsection (Figure 8) offers several 

interesting insights with respect to the first part of research question #1—namely, the 

geographic distribution of average daily traffic congestion in the greater Austin area. To 

explore the subparts of this question—i.e., those that examine relationships between 

congestion, public transit access, and public transit usage—it is necessary to keep in mind 

that public transit access and public transit usage were measured at the census block 

group (CBG) level of analysis. Thus, prior to addressing the subquestions of research 

question #1, it is first required that traffic congestion be measured at this same level. 

Within Esri’s ArcGIS software, the Zonal Statistics tool allows users to compute various 

statistics for polygon “zones,” such as CBGs, from raster surfaces. For this project, the 

Zonal Statistics tool was used to sum the (1) predicted ADT values and (2) predicted 

Designed ADT values, both shown in Figure 5, for each CBG. Hence, for each CBG, we 

obtained the aggregate traffic volume (sum of predicted ADT) and aggregate traffic 

capacity (sum of predicted Designed ADT). Next, the former value can be divided by the 

latter to create a ratio of traffic-to-capacity for each CBG in the greater Austin study area. 

Figure 9 visualizes these ratios using a simplified, three-category classification scheme. 

The mean of the mapped ratio variable for the 814 CBGs in greater Austin is 1.11, with a 

standard deviation of 0.42.  
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Figure 9. Congestion in Census Block Groups. 
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 Recall now that the public transit data described above were only available for 

385 CBGs that fall within Austin’s city limits. Accordingly, to explore relationships 

between traffic congestion, public transit access, and public transit usage, correlation 

analysis was performed exclusively on this sample of 385 CBGs. As described above, the 

first step in answering the two subparts of research question #1 involved computing 

bivariate Pearson correlations between the variables of interest. These correlations are 

reported in Table 9.  

 

Table 9. Bivariate Correlations. 

Research 
Question 

Variable #1 Variable #2 Pearson 
Correlation 
Coefficient 

p-value 

#1a Traffic 
Congestion 

Transit Access +0.174 0.001** 

#1b Traffic 
Congestion 

Transit Usage -0.054 0.293 

**p<0.01 

 

 Concerning the relationship between traffic congestion and transit access 

(research question #1a), the bivariate Pearson correlation coefficient is +0.174 and 

statistically significant at a 99% level of confidence. With respect to the relationship 

between traffic congestion and transit usage (research question #1b), the Pearson 

correlation coefficient is -0.054 and not statistically significant. These results have two 

immediate takeaways. First, the significant positive relationship between congestion and 

transit access on its face appears counterintuitive. Indeed, one might reason that better 

access to public transit ought to reduce traffic congestion. Second, public transit usage 

does appear to have a negative relationship with traffic congestion, as one might expect. 

However, the relationship is relatively weak in magnitude and does not achieve statistical 
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significance. In essence, then, the bivariate correlation results appear to undermine—or, 

minimally, do not support—the notion that public transit can be an effective means for 

alleviating traffic congestion issues in the city of Austin.  

 Recall from Chapter II, though, that public transit usage was hypothesized to 

contribute to a reduction in traffic congestion for a given level of transit access. In other 

words, the non-significant relationship between congestion and transit usage from Table 

9 does not account for the underlying variation in our adopted index of transit access. 

Thus, a more appropriate method for analyzing this relationship is arguably a partial 

correlation analysis, in which the Pearson correlation is computed for traffic congestion 

and transit usage while controlling for transit access. Using this method, the correlation 

coefficient between congestion and transit usage increases in magnitude to -0.108, and 

achieves statistical significance at a 95% level of confidence (p=0.035). Although this 

magnitude is still relatively weak, the finding suggests that when access is accounted for, 

the greater the fraction of the population that uses public transit, the less problematic are 

the issues of daily traffic congestion in the city of Austin.  

 

k-Means Cluster Analysis Results for Grouping Austin CBGs by Socioeconomic Status 

 

 In order to assess equity in the distributions of both mobility-constraining traffic 

congestion problems and mobility-enhancing public transit access on the basis of 

socioeconomic status (SES), k-means cluster analysis was used to classify census block 

groups (CBGs) on various demographic and socioeconomic dimensions. Drawing on 

existing literature (e.g., Sampson et al., 2002; Manturuk et al., 2009; Weaver et al., 2016), 
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the seven variables were used for this purpose: (1) minority population; (2) adults without 

a high school diploma or equivalency degree; (3) unemployment rate; (4) households on 

public assistance; (5) renter-occupied housing units; (6) cost-burdened households; and 

(7) size of the poor and struggling population (see Table 1 from Chapter II for additional 

information). These seven variables featured in an initial run of a k-means cluster 

analysis, where the number of data clusters (k) was allowed to vary from two to 20. For 

each value of k, a pseudo F statistic was computed to quantify the ratio of intra-group 

homogeneity to inter-group heterogeneity. The larger the value of this ratio, the more 

appropriate the given value of k for the analysis (Calinski and Harabasz, 1974). That 

being said, a k value of 2—which corresponds to two socioeconomic status (SES) 

groups—had the highest pseudo F statistic and was adopted for the remainder of the 

analysis. Stated differently, the 385 city of Austin CBGs were classified into two groups 

on the basis of the seven variables listed above. The resulting grouping structure is 

mapped in Figure 10 below, and Table 10 summarizes descriptive statistics for the two 

groups. Insofar as one group, on average, appears to be more disadvantaged in the 

relevant socioeconomic variables relative to the other, one group is named the “low SES” 

group and the other the “high SES” group. The low SES group is predominantly 

concentrated in east Austin, which is widely known to be the disadvantaged area of the 

city (e.g., Herrick, 2008).  
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Figure 10. The city of Austin divided into Low and High Socioeconomic Status. 
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Table 10. Descriptive Statistics for Socio-economic Groups. 

 Low SES Group High SES Group 

Variable Mean Std. 
Dev. 

Mean Std. 
Dev. 

% Minority population 0.738 0.177 0.335 0.166 

% Adults without a high school 
diploma 

0.285 0.156 0.055 0.060 

Unemployment rate 0.098 0.062 0.054 0.041 

% Households on public assistance 0.024 0.031 0.009 0.017 

% Renters 0.667 0.246 0.517 0.264 

% House burdened 0.587 0.165 0.411 0.115 

% Poor or struggling 0.631 0.154 0.259 0.132 
n=385 CBGs in the Austin city limits 

 

T-Tests and Mann-Whitney Results for Equal Measures of Central Tendency in Traffic 

Congestion and Traffic Access Between SES Groups 

 

 Given the delineation of Austin CBGs into high and low SES groups (Fig.10), it is 

possible to compare measures of central tendency in key variables of interest for these 

two groups in order to evaluate the degree to which those variables are (in)equitably 

distributed across the city of Austin. Per research question #2, we begin by looking at 

results that compare the means and [effectively] the medians of the key traffic congestion 

and transit access variables for the two SES groups. Once again, the first variable 

(congestion) is a hindrance to mobility. It is measured here as a ratio of total average 

daily traffic (ADT) in a CBG to the total capacity (Designed ADT) in that block group. A 

ratio equal to 1.0 indicates that a CBG is at capacity—the daily volume of traffic 
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experienced is the same as the volume for which the CBG-based road network was 

designed. Ratios greater than 1.0 indicate situations in which the road network within a 

CBG is over-capacity, i.e., congested. The second variable, transit access, was measured 

as a multiplicative function of distance to the nearest transit stop in a CBG and the 

frequency of transit trips within that CBG. This composite index ranges in value from 0 

(no access) to 1 (highest access in the Austin study area). The SES group-specific means 

of these two variables were compared using a t-test with Welch’s correction for unequal 

variances. Their medians were [effectively] compared with the nonparametric Mann-

Whitney U test. Even though the parametric t-test is relatively robust to departures from 

distributional assumptions (e.g., Rogerson, 2015), both tests were performed here for 

reasons of comprehensiveness. The results from both tests, for both variables, are 

reported in Table 11.  

 

Table 11. Tests for Equality in Means and Medians of Variables for 
Research Question #2. 

Variable Measure of Central 
Tendency 

Low 
SES 

High 
SES 

Test 
Statistic 

p-value 

Traffic 
Congestion 

Mean 1.08 1.00 t = -3.32 
(df=317.6)† 

0.001** 

 Median 1.09 0.95 z = -3.20†† 0.001** 

Transit 
Access 

Mean 0.22 0.15 t = -4.85 
(df=258.0) † 

<0.001*** 

Median 0.18 0.12 z = -4.89†† <0.001*** 
***p<0.001 **p<0.01; †approximate degrees of freedom for Welch’s correction (unequal 

variances); ††z-score is based on a nonparametric Mann-Whitney U statistic 

 

 The results from Table 11 speak to somewhat of a paradox. Namely, while mean 

(median) transit access is statistically significantly higher in low SES neighborhoods 

relative to high SES neighborhoods, so is traffic congestion. In other words, on one hand 
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there are greater opportunities to use public transit in low SES neighborhoods. But, on the 

other, these opportunities do not coincide with lower traffic congestion in these areas. 

This seeming paradox may be due to the fact that several major roadways and interstates 

cut through low SES neighborhoods (Herrick, 2008) and are used by commuters. The end 

result is that traffic congestion is unevenly distributed across Austin, and the problems 

may be most severe in the most disadvantaged neighborhoods. More optimistically, 

though, to the extent that individuals within low SES areas tend to be the least mobile, in 

Austin access to public transit is greatest in these spaces. Moreover, supplementary t- and 

Mann-Whitney tests on the transit usage variable from the Census American Community 

Survey show that workers in low SES CBGs use public transit at significantly higher 

rates than workers in high SES CBGs. Hence, the increased transit access available in 

these areas appears to be strongly linked to increase usage. 

 

Table 12. Supplemental Test for Equality in Means and Medians of Transit 
Usage. 

Variable Measure of Central 
Tendency 

Low 
SES 

High 
SES 

Test 
Statistic 

p-value 

Transit 
Usage 

Mean 0.07 0.04 t = -5.31 
(df=259.2†) 

<0.001*** 

Median 0.06 0.02 z = -5.67†† <0.001*** 
***p<0.001 **p<0.01; †approximate degrees of freedom for Welch’s correction (unequal 

variances); ††z-score is based on a nonparametric Mann-Whitney U statistic 

 

Summary of Results Chapter 

 

 To recap, the results from this chapter uncover important patterns for planners. 

First, the regression model used to estimate ADT for all of Austin’s roadways produced 
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results similar to those found by Mohamad et al. (1998) and Anderson et al. (2006). 

Namely, ADT counts are a function of number of lanes, population, and employment. As 

number of lanes, population, and local employment increase, so does ADT. Also, the 

further away from the CBD, the lower the traffic volume. The second regression model, 

of Designed ADT on relevant explanatory variables, then allowed for a comparison of 

predicted ADT to predicted road capacity. The results suggest that many roadways in the 

Austin area were designed to handle lower traffic capacity than what they are presently 

experiencing—perhaps traffic planners did not anticipate such a large population surge.  

 The second part of research question #1 produced some surprising results. 

Essentially, the analysis found that access to public transit might actually contribute to 

congestion [before controlling for transit use]. That being said, when controlling for 

public transit usage, access is in fact negatively and significantly correlated with 

congestion; however, the magnitude of this relationship is relatively small. This finding 

suggests that when people have better access to public transit and choose to use it, they 

may be less likely to experience as much congestion.  

 Next, to address research question #2, census block group data were used to 

divide Austin into two groups: disadvantaged and not disadvantaged (Low SES and High 

SES). The results here have very important implications. First off, the lower SES 

neighborhoods have greater access to public transit. However, the research also shows 

that traffic congestion is also higher in these areas. This is troublesome because it shows 

that individuals who rely most on public transit are experiencing the most delays. 

However, one can be cautiously optimistic because it also appears that individuals in low 

income neighborhoods use public transit at a much higher rate than those in higher 
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income neighborhoods. Therefore, it can be concluded that these areas have high usage 

because of high access. Low income neighborhoods contribute least to congestion but are 

most negatively affected by it. This is certainly an area that further research will need to 

explore. 
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V. DISCUSSION, CONCLUSIONS, LIMITATIONS, AND FUTURE RESEARCH 

 

Revisiting Research Question #1: Geographies of Congestion and Public Transit 

 

This study was divided into two separate but important questions. Research 

question #1 asked about the geographic distribution of traffic congestion in the greater 

Austin area. That question was broken down into two components: a. what is the 

relationship between traffic congestion and access to public transit? b. what is the 

relationship between traffic congestion and public transit usage. The workflow for 

studying this question is illustrated in Figure 3. Recall that for this study, congestion will 

be measured as a ratio of ADT (Average Daily Traffic) to Designed ADT. If a roadway 

has a ratio above 1, that roadway will be considered congested, whereas if the ratio is 

below 1, it will be considered not congested.  

Also recall that access in this study is measured by distance from a Census Block 

Group’s (CBG) population-weighted centroid to the nearest public transit stop and 

aggregate frequency of public transit service (number of transit trips) per square mile 

with a CBG. Remember that the distance variable has an inverse relationship to access, 

meaning as distance increases, transit stops become less available. It is important to 

remember that for this study, access will be a function of both distance and functionality 

(Bullard 2008). The previously mentioned variables accomplish this task. This is 

important for a few reasons. First, suppose an area has many transit stops but is not 

serviced frequently. In this case, travel times will be longer because even though there are 

many stops, there are not enough busses/transit lines/etc. to timely transport people. 
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Second, it is possible that there is a transit stop that is serviced frequently, but it may be 

the only stop in a certain distance. In this case, the frequency of service is essentially 

negated by the fact that the stop is located far away from a significant portion of the 

population. Therefore, it is important that access factor both proximity and frequency 

because both are equally important.  

The results have important implications when compared to previous literature and 

the overall context. The most congested roadways in Austin are the major thoroughfares. 

Interstate highways, primary arterials, and major collectors all have statistically 

significant relationships with congestion according to the regression model. Specifically, 

State Highway 130, portions of Interstate 35 in northern Austin, and portions of US 

Highway 183 in western and northwestern Austin show up as the most congested 

roadways in the city. Overall, the map in Figure 8 reveals that the majority of roadways 

in this study are at least at capacity, and a significant portion of them are above or 

significantly above capacity. Also note that roadways near interstates or urban freeways 

generally have more congestion than roads further away. This is a trend that was picked 

up in previous literature (Eom et al, 2006). This is significant because it limits options for 

travelers who encounter congestion and clogs up major side roads that are often 

frequented by busses.  

Furthermore, these results can be tied back into sprawl. Recall the three 

statements from Chapter I: 1. the roadways of sprawling metropolises are frequently 

characterized by substantial traffic congestion (e.g., Ewing, 2008); (2) accessibility to and 

usage of public transit has the capacity to alleviate some of the costs of sprawl, including 

traffic congestion (e.g., Bernick and Cervero, 1997); and (3) access to and usage of public 
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transit tend to be unevenly distributed in many cities (e.g., Bullard et al., 2000; Agyeman, 

2005). Indeed, Austin certainly fits the first and third statements. The map in Figure 8 

clearly supports the first statement while tables 11 and 12 support the third statement.  

The second statement from the previous paragraph leaves many things to be desired from 

Austin. First, there is only one metro/light rail line in the entire city. While this light rail 

covers a respectable distance from Leander (northwest Austin) to downtown, it leaves 

many areas of the city unable to use light rail for any practicality. However, results from 

table 9 suggest that transit usage and transit access are important, even in cities like 

Austin which have underdeveloped networks. The most important finding here is that 

when access is accounted for, the greater the population that uses public transit, the less 

problematic the issues of congestion are. These results make an argument for more public 

transit (especially in sprawling cities like Austin) and support the second statement made 

by Bernick and Cervero (1997).  

 

Revisiting Research Question #2: Congestion, Transit, and Socioeconomic Status 

 

 The second part of the study addressed the problems of traffic and access to 

public transit in relation to distribution between socio-economic groups in Austin. In this 

study, socioeconomic status was defined on the basis of seven variables: (1) minority 

population; (2) adults without a high school diploma or equivalency degree; (3) 

unemployment rate; (4) households on public assistance; (5) renter-occupied housing 

units; (6) cost-burdened households; and (7) size of the poor and struggling population. 

These variables were chosen based on previous studies (Sampson et al., 2002; Manturuk 
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et al., 2009; Weaver et al., 2016). The study used a k-means clustering and found that the 

optimal number of socioeconomic groups in the dataset, based on the seven variables, 

was two. For the purpose of this study, these two groups were called “disadvantaged” and 

“not-disadvantaged” based on their in-group values of the selected variables.  

 There are several important implications from this study, but one may stand out as 

most important. This study found that transit access is statistically significantly higher in 

low SES neighborhoods (disadvantaged populations) than in higher SES neighborhoods 

(less disadvantaged populations). This finding certainly seems positive, given that lower 

SES populations tend to rely more on public transit and, in Austin, such populations 

appear to have better access to this mode of mobility. However, the study also found that 

traffic congestion in these areas is higher than in areas with relatively advantaged 

populations. Essentially, lower SES neighborhoods have greater access to transit, but 

perhaps because public transit in Austin consists of almost entirely buses, it seems that 

the worst traffic problems are also in the most disadvantaged neighborhoods. 

Additionally, this outcome might be partially caused by the fact that major roadways and 

interstates in Austin go through low SES neighborhoods (Herrick, 2008). This finding 

should not be overlooked, especially considering that those who commute into the city 

may be contributing most to sprawl.  

 The above results have several meaningful consequences. The literature stresses 

that lower SES groups may be more dependent on public transit for every day uses and 

errands. Many members of these groups do not own automobiles. Therefore, public 

transit is one of the only options for daily travel. As such, if the highest traffic congestion 

is in these neighborhoods, it makes it even more burdensome to travel by bus. Along 
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those lines, recall two of the four observations made by Handy (2005): (1) investing in 

light rail systems will increase densities (2) adopting New Urbanism design strategies 

will reduce automobile use. Given the findings from this study, it is likely that a city such 

as Austin might benefit from such policies. If the city of Austin invests in new light rail, 

it might experience some relief in traffic (some of which is two times that of which it was 

designed to carry). That being said, elements of New Urbanism can already be seen in 

Austin. However, these places are usually not located near low SES neighborhoods and 

are usually somewhat unaffordable for the lowest income residents. The New Urbanist 

Mueller Development, a neighborhood created from an old airport in east Austin, offers 

some affordable housing options, but it is a considerable distance (timewise) from the 

central city. The above statement shows similar findings to that of Bullard (2008). 

“Whether highway or airport sprawl is “good” or “bad” will almost always depend on 

where you live, and whether or not you own a car” (Bullard, 2008: 241). In the case of 

Atlanta, nearly 4 out of 10 Black households do not have access to a car. Furthermore, 

only about a third of the jobs in that area were within a one-hour public transit ride of low 

income neighborhoods (Bullard, 219). An area of future study for Austin would be to see 

where exactly in the city are jobs located, and perhaps more importantly, is there access 

to those jobs. Also, a study similar to Bullard (2008) could be done to see the percentage 

of lower income residents that have access to automobiles.  

 In sum, the analysis of research question #2 calls attention to important social 

justice issues in the transportation geography of Austin. Lower SES neighborhoods have 

might greater access to public transit—and use it more frequently than higher SES 

neighborhoods; but they are also most [negatively] affected by congestion. In the words 
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of one transportation planner: “The traffic problem in Austin can’t be solved right now, 

we can only make it less bad” (Rain Nox, panelist on “managing urbanization” at Texas 

State University, 30 November, 2015). Statements like this are alarming for a city that 

continues to grow at a fast rate. This growth is pushing lower income families further out, 

where housing is more affordable. City leaders and planners struggle with this issue 

because younger generations can afford to live in downtown in new developments. This 

is a problematic phenomenon because of lower SES individuals relying more on public 

transit in areas where the networks may be sparse.  

 

Limitations and Future Research 

 

 There are several limitations to this study. First, the average daily traffic (ADT) 

data used to operationalize congestion measures aggregate traffic throughout an entire 

day. It does not factor in things such as peak hours of congestion, time of day, or day of 

the week. It is simply a count of all of the cars that passed through a certain roadway 

segment in a given day. Therefore, it is entirely possible that there are times of the day 

where some of the most congested roads on a daily basis are not congested at all. 

Conversely, there may be times of day where roads that are not considered congested by 

our operational definition are quite congested.  

 Additionally, Eom et al (2006) suggest that traffic on local roadways may not be 

correlated to traffic on freeways, even if the two types of roadways are close together. 

This observation is important to this study because a significant amount of congestion in 

Austin occurs on secondary and tertiary roads near freeways—yet the TxDOT dataset 
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does not provide ADT data for most of these roadways. As such, conventional spatial 

extrapolation techniques (e.g., Lowry and Dixon, 2012) were used to predict ADT across 

the greater Austin road network from data that were mostly measured for freeways.  

 Next, there is always uncertainty in statistical modelling. Zhao and Chung (2014) 

add that regression models in their current forms may not be adequate enough to meet the 

standards of engineers or designers, but that they are improving. Their study found that 

functional class of roadway outperformed other variables, but that they did not explain 

the causes that determine ADT because they were also determined by other factors 

including traffic volume. Functional classes were not consistently related to ADT, but 

models that excluded ADT completely had the worst performance (Zhao and Chung 

2014). Anderson et al (2006) also add that even though their regression models account 

for 82% of variability in ADT, future work could focus on reducing uncertainty by 

including additional variables in the analysis.  

 Furthermore, because Austin public transit consists primarily of bus routes, it is 

highly likely that these buses run on the most trafficked—and thus most congested—

roads in the city. Looking again at the map in Figure 8, a large part of the city is either at 

or above capacity, indicating congestion. Buses use many of these roads, so it is possible 

that they are contributing to traffic.
3
 Downtown Austin has bus only lanes, but these lanes 

are mostly restricted to the central city and do not extend very far past the central 

business district (CBD). Therefore, some citizens may be skeptical about using public 

transit because it might take considerably longer to get to their destinations. Recall from 

Chapter II that even in Helsinki, a city with an extensive public transit network, mean 

                                            
3
 Crucially, this fact may be a driving force behind the positive and significant bivariate correlation 

detected between traffic congestion and transit access in Table 11. 
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travel times were found to be longer than private automobile (Salonen and Toivonen, 

2013). Future studies could look at travel times within the city of Austin, comparing 

private vehicle trips to public transit trips, similar to Salonen and Toivonen (2013). 

 In addition, data from Capital Metro, the Austin public transit authority, is fairly 

difficult to obtain. Some of it was incorporated into the U.S. Environmental Protection 

Agency (EPA) Smart Location Database (SLD). However, outside of that dataset, we 

were unable to obtain reliable data for alternative time periods or locations beyond 

Austin’s city limits. Anderson et al (2006) experienced similar problems in their study. 

They note that a major limitation in these models is the availability of data that can fit the 

rigorous calibration required to use them effectively. Salonen and Toivonen (2013) were 

able to acquire comprehensive data for their study. However, this is not the norm. Wang 

and Kockelman (2009) also mention variables like housing price, trip generation rates, 

pavement conditions, and crash rates could further enhance studies. However, they note 

that finding such data is difficult.  

 Also, the neighborhood typologies in this study are very basic. This study looks at 

only seven dimensions of socioeconomic status (SES), and even then does not consider 

every possible variable. It is broken down into very simplistic categories (disadvantaged 

and not disadvantaged groups) that were suggested by data, not by bottom-up 

community-based initiatives. Future work can look at different social and economic 

variables and determine their relationship to congestion and public transit. It will also be 

important to collect primary data through surveys and other community-engaged 

methods, given that secondary data do not always reflect local conditions and local 

knowledge.  
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 Also, this study was limited by one of the most important geographic themes: 

scale. This analysis was performed on the Census Block Group (CBG) scale, therefore 

the results and conclusions can only be made at this scale. Further research could be 

performed to see how scale impacts this study and studies similar to it. Here, the 

Modifiable Areal Unit Problem (MAUP) affects this study.  

 Finally, one aspect that has not been mentioned thus far is environmental impact. 

The focus of this study was on the spatial distribution of congestion and neighborhood 

access to public transit. The SLD database, and a related H+T index database,
4
 contain 

several environmental variables that could measure the relationship between congestion 

and environmental impact. Of particular interest are the potential effects that various 

features of traffic congestion—e.g., idling, emissions, etc.—have on variables like air 

quality. In turn, harmful effects on air quality can pose serious health risks to surrounding 

populations. Given that low SES neighborhoods in Austin seem to be disproportionately 

affected by traffic congestion (see Table 11 from Chapter IV), such effects are likely to 

give rise to several environmental injustices. Hence, future research on environmental 

impacts, especially from the environmental and social justice perspectives, is an 

important next step for this area of inquiry. The results of this study could be compared to 

measures of pollution in Austin. Because the study found relatively strong connections in 

regards to socio-economic status and congestion, a comparison to environmental impact 

could make an even stronger case for policy implications.  

 

 

 

 

 

                                            
4
 http://htaindex.cnt.org/map/ 
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