
Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 261, pp. 1–9.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

TRIGONOMETRIC POLYNOMIAL SOLUTIONS OF
EQUIVARIANT TRIGONOMETRIC POLYNOMIAL ABEL

DIFFERENTIAL EQUATIONS
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Communicated by Vicentiu D. Radulescu

Abstract. Let A(θ) non-constant and Bj(θ) for j = 0, 1, 2, 3 be real trigono-

metric polynomials of degree at most η ≥ 1 in the variable x. Then the

real equivariant trigonometric polynomial Abel differential equations A(θ)y′ =
B1(θ)y+B3(θ)y3 with B3(θ) 6= 0, and the real polynomial equivariant trigono-

metric polynomial Abel differential equations of second kindA(θ)yy′ = B0(θ)+

B2(θ)y2 with B2(θ) 6= 0 have at most 7 real trigonometric polynomial solu-
tions. Moreover there are real trigonometric polynomial equations of these

type having these maximum number of trigonometric polynomial solutions.

1. Introduction and statement of the main results

Abel differential equations of first kind

a(x)ẏ = b0(x) + b1(x)y + b2(x)y2 + b3(x)y3 (1.1)

with b3(x) 6= 0 appear in many textbooks of ordinary differential equations as one
of first non-trivial examples of nonlinear differential equations, see for instance [11].
Here the dot denotes the derivative with respect to the independent variable x. If
b3(x) = b0(x) = 0 or b2(x) = b0(x) = 0 the Abel differential equation reduces to
a Bernoulli differential equation, while if b3(x) = 0 the Abel differential equation
reduces to a Riccati differential equation.

The Abel differential equations (1.2) have been studied intensively, either calcu-
lating their solutions (see for instance [8, 12, 15, 16]), or classifying their centers
(see [2, 3, 4]), and recently in [7, 9, 10, 13] the authors studied the polynomial
solutions of the differential equations y′ =

∑n
i=0 ai(x)yi, or similar.

The analysis of particular solutions (as polynomial or rational solutions) of the
differential equations is important for understanding the set of solutions of a differ-
ential equation. In 1936 Rainville [17] characterized the Riccati differential equa-
tions ẏ = b0(x) + b1(x)y + y2, with b0(x) and b1(x) polynomials in the variable x,
having polynomial solutions.

In 1954, Campbell and Golomb [5] provided an algorithm for determining the
polynomial solutions of the Riccati differential equation a(x)y′ = b0(x) + b1(x)y +
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b2(x)y2, where a, b0, b1, b2 are polynomials in the variable x. In 2006, Behloul
and Cheng [1] gave a different algorithm for finding the rational solutions of the
differential equations a(x)y′ =

∑n
i=0 bi(x)yi, where a, bi are polynomials in the

variable x.
The case in which the Abel differential equations (1.2) where a(x) ∈ R[x] \ {0},

bi(x) ∈ R[x], i = 0, 1, 2, 3 with b3(x) 6= 0, where F = R,C, and F[x] := R[x] is
the ring of polynomials in the variable x with coefficients in F, being either a(x)
constant or not and with the equivariant symmetry (see below) were studied in [14].

Here we go a step beyond and we consider the Abel differential equations (1.1)
for real trigonometric polynomials, that is

A(θ)Y ′ = B0(θ) +B1(θ)Y +B2(θ)Y 2 +B3(θ)Y 3, (1.2)

where the prime denotes derivative with respect to θ and where A(θ) ∈ Rt(θ)\{0},
Bi(θ) ∈ Rt(θ), i = 0, 1, 2, 3, B3(θ) 6= 0, being Rt[θ] := R[cos θ, sin θ] the ring of
trigonometric polynomials in the variables cos θ, sin θ with coefficients in R. We
also assume that A(θ) is not constant. The case A(θ) constant has been studied in
[10]. We also have η := max{α, β0, β1, β2, β3}, where α is the degree of A(θ), βi is
the degree of Bi(θ) for i = 0, 1, 2, 3. We say that the Abel trigonometric polynomial
differential equation (1.2) has degree η.

Equation (1.2) is reversible with respect to the change of variables (θ, Y ) →
(θ,−Y ) if the equation

−A(θ)Y ′ = −(B0(θ)−B1(θ)Y +B2(θ)Y 2 −B3(θ)Y 3)

coincides with equation (1.2). In particular this implies B1(θ) = B3(θ) = 0, and
since B3(θ) = 0 we do not consider these reversible differential equations.

The Abel differential equation (1.2) is equivariant with respect to the change of
variables (θ, Y )→ (θ,−Y ) if the following equation

−A(θ)Y ′ = B0(θ)−B1(θ)Y +B2(θ)Y 2 −B3(θ)Y 3

coincides with equation (1.2). This implies B0(θ) = B2(θ) = 0. In this paper
first we focus our study in these kind of equivariant trigonometric polynomial Abel
equations, i.e. in the equations

A(θ)Y ′ = B1(θ)Y +B3(θ)Y 3. (1.3)

Theorem 1.1. Real equivariant trigonometric polynomial Abel differential equa-
tions with B3(θ) 6= 0 and A(θ) non-constant, have at most 7 trigonometric poly-
nomial solutions. Moreover there are equations of this type having these maximum
number of trigonometric polynomial solutions.

The proof of Theorem 1.1 is given in section 3.
Our second objective in this paper is on the Abel trigonometric polynomial

differential equations of second kind, i.e. on the equations of the form

A(θ)Y Y ′ = B0(θ) +B1(θ)Y +B2(θ)Y 2, (1.4)

where again the prime denotes derivative in the variable θ, A(θ), Bi(θ) ∈ Rt(θ)
for i = 0, 1, 2, with A(θ) and B2(θ) non-zero. We also consider the ones that
are equivariant with respect to the change (θ, Y ) → (θ,−Y ). Then we have that
B1(θ) = 0 and so equation (1.4) becomes

A(θ)Y Y ′ = B0(θ) +B2(θ)Y 2. (1.5)
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We also assume that B(θ) 6= 0 (otherwise would be linear) and A(θ) is not
constant, because the case A(θ) constant has been studied in [7]. We say that
system (1.5) is an equivariant trigonometric polynomial Abel differential equation
of second kind. The study of the number of polynomial solutions of equivariant
Abel polynomial differential equations of the second kind

a(x)yẏ = b0(x) + b2(x)y2

where the dot means derivative with respect to x, a(x), b0(x), b2(x) ∈ R[x] with
a(x) non constant and b0(x)b2(x) 6= 0 was done in [14].

Theorem 1.2. Real equivariant trigonometric polynomial Abel differential equa-
tions of second kind with B2(θ) 6= 0 and A(θ) non-constant, have at most 7 trigono-
metric polynomial solutions. Moreover there are equations of this type having these
maximum number of trigonometric polynomial solutions.

The proof of Theorem 1.2 is given in section 4.

2. Preliminary results

As we will see the proof of Theorems 1.1 and 1.2 are based on divisibility ar-
guments in the ring of polynomials. In the ring of trigonometric polynomials we
do not have a Unique Factorization Domain. This can be seen for instance using
the identity cos2 θ + sin2 θ = (1− sin θ)(1 + sin θ). So, cos θ divides the right hand
expression but it does not divide the left hand expression. This difficulty can be
overcome by using the isomorphism Φ: Rt(θ)→ R(x) given by

(cos θ, sin θ) 7→
(1− x2

1 + x2
,

2x
1 + x2

)
between the fields Rt(θ) = R(cos θ, sin θ) and R(x) being R(x) the ring of rational
functions. In fact we have the following well-known result.

Lemma 2.1. Let P (θ) ∈ Rt[θ] with deg(P ) = η. Then

Φ(P (θ)) =
p(x)

(1 + x2)η
,

where gcd(p(x), 1 + x2) = 1 and deg(p(x)) ≤ 2η. Conversely, any rational function
g(x)/(1+x2)η with g(x) an arbitrary polynomial of degree at most 2η can be written
as a trigonometric polynomial through the inverse change Φ−1.

Another result that we will us is the following theorem proved in [6].

Theorem 2.2. Let p, q ∈ R[x] be polynomials satisfying gcd(p, q) = 1 and

p2 + q2 = r2, p2 + α2q2 = s2 (2.1)

where r, s ∈ R[x] and α ∈ R. Then either α = 0 or α2 = 1.

Now we write how equation (1.3) can be written in terms of a(x), b1(x), b3(x) ∈
R[x].

Lemma 2.3. If Y (θ) is a nonconstant real trigonometric polynomial solution of
(1.3), set

Y (θ) =
y(x)

(1 + x2)η0
, A(θ) =

a(x)
(1 + x2)η1

, (2.2)
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B1(θ) =
b1(x)

(1 + x2)η2
, B3(θ) =

b3(x)
(1 + x2)η3

with deg(y) ≤ 2η0, deg(a) ≤ 2η1, deg(b1) ≤ 2η2, deg(b3) ≤ 2η3 and gcd(y, 1+x2) =
gcd(a, 1 +x2) = gcd(b1, 1 +x2) = gcd(b3, 1 +x2) = 1. Then equation (1.3) becomes

a(x)
2(1 + x2)η1

(ẏ(x)(1 + x2)− 2η0xy(x))

=
b1(x)

(1 + x2)η2
y(x) +

b3(x)
(1 + x2)η3+2η0

y(x)3,
(2.3)

where the dot denotes derivative with respect to x.

Proof. From the diffeomorphism Φ we have that

x′ =
dx

dθ
=

1 + x2

2
and so

Y (θ)′ =
ẏ(x)(1 + x2)− 2η0xy(x)

2(1 + x2)η0
,

where the dot and the prime denote the derivative with respect to x and θ, respec-
tively. So, equation (1.3) becomes (2.3). �

In the same manner as in the proof of Lemma 2.3 we can see how equation (1.5)
can be written in terms of a(x), b0(x), b2(x) ∈ R[x].

Lemma 2.4. If Y (θ) is a nonconstant real trigonometric polynomial solution of
(1.5), set Y (θ), A(θ) as in (2.2) and

B0(θ) =
b0(x)

(1 + x2)η2
, B2(θ) =

b2(x)
(1 + x2)η3

with deg(y) ≤ 2η0, deg(a) ≤ 2η1, deg(b0) ≤ 2η2, deg(b2) ≤ 2η3, and gcd(y, 1+x2) =
gcd(a, 1 +x2) = gcd(b0, 1 +x2) = gcd(b2, 1 +x2) = 1. Then equation (1.5) becomes

a(x)
2(1 + x2)η1

(y(x)ẏ(x)(1 + x2)− 2η0xy(x)2)

=
b0(x)

(1 + x2)η2−2η0
y(x) +

b2(x)
(1 + x2)η3

y(x)2,
(2.4)

where the dot denotes derivative with respect to x.

3. Proof of Theorem 1.1

First we recall that if Y (θ) 6= 0 is a solution of (1.3), then −Y (θ) is also a
solution of equation (1.3) which is different from Y (θ).

Lemma 3.1. Let Y0(θ) 6= 0, Y1(θ), Y2(θ) be polynomial solutions of equation (1.3)
such that Y1(θ) 6≡ 0, Y2(θ) 6≡ 0 and Y2(θ) 6= −Y1(θ). Set

Yi(θ) =
yi(x)

(1 + x2)ηi
, i = 0, 1, 2

where ηi = deg(Yi) and deg(yi) ≤ 2ηi, η1 ≤ η2 and gcd(yi, 1+x2) = 1 for i = 0, 1, 2.
We write y1(x) = g(x)ỹ1(x) and y2(x) = g(x)ỹ2(x) where g = gcd(y1, y2). Then,
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except the solution Y = 0, all the other polynomial solutions of equation (1.3) can
be expressed as

y0(θ; c) = ± ỹ1(x)ỹ2(x)g(x)(
cỹ2

1(x)(1 + x2)2(η2−η1) + (1− c)ỹ2
2(x)

)1/2 , (3.1)

where c is a constant and
(
cỹ2

1(x)(1+x2)2(η2−η1) +(1−c)ỹ2
2(x)

)1/2 is a polynomial.

Proof. Let Y be a nonzero trigonometric polynomial solution of (1.3). The func-
tions Z0 = 1/Y 2

0 , Z1 = 1/Y 2
1 and Z2 = 1/Y 2

2 are solutions of a linear differential
equation and satisfy

−A(θ)Zi(θ)′ = 2B1(θ)Zi + 2B3(θ), i = 0, 1, 2.

Therefore we have
Z0(θ)′ − Z1(θ)′

Z0(θ)− Z1(θ)
=
Z2(θ)′ − Z1(θ)′

Z2(θ)− Z1(θ)
.

Integrating this equality we obtain

Z0(θ) = Z1(θ) + c(Z2(θ)− Z1(θ)),

with c an arbitrary constant. So the general solution of equation (1.3) is

Y 2
0 (θ) =

1
Z0(θ)

=
1

Z1(θ) + c(Z2(θ)− Z1(θ))

=
Y 2

1 (θ)Y 2
2 (θ)

cY 2
1 (θ) + (1− c)Y 2

2 (θ)
In other words,

y0(x)2

(1 + x2)2(η0−η1)
=

g(x)2ỹ2
1(x)ỹ2

2(x)
c(1 + x2)2(η2−η1)ỹ2

1(x) + (1− c)ỹ2
2(x)

. (3.2)

Since the right-hand side of equation (3.2) is not divisible by 1 + x2 we must have
that η0 ≥ η1. However, if η0 > η1 since neither ỹ2 nor y0 (and when η1 = η2 then
also ỹ1) do not divide 1 + x2, we get a contradiction with (3.2). In short we must
have η0 = η1. Then equation (3.2) becomes

y0(x)2 =
g(x)2ỹ2

1(x)ỹ2
2(x)

c(1 + x2)2(η2−η1)ỹ2
1(x) + (1− c)ỹ2

2(x)
with c an arbitrary constant. �

In view of Lemma 2.3, if Y1(θ), Y2(θ) are trigonometric polynomial solutions of
equation (1.3) such that Y1(θ) 6≡ 0, Y2(θ) 6≡ 0, Y2(θ) 6= Y1(θ), then any other
trigonometric polynomial solution different from them is of the form given in (3.1)
for some appropriate constant c such that c 6∈ {0, 1}. In particular, cỹ2

1(x)(1 +
x2)2(η2−η1)+(1−c)ỹ2

2(x), or ỹ2
3(x)+(1−c)ỹ2

2(x)/c, where ỹ3(x) = (1+x2)η2−η1 ỹ1(x)
is a square of a polynomial p and p divides g. In view of Theorem 2.2 there is at
most one constant c 6∈ {0, 1} such that cỹ2

1(1 +x2)2(η2−η1) + (1− c)ỹ2
2 is a square of

a polynomial meaning that equation (1.3) has at most seven different trigonometric
polynomial solutions 0, ±Y1, ±Y2 and Y0.

Example 3.2. Note that in view of Lemma 2.3, the polynomial solutions y1, y2
and y0 can always be taken of the form

y1 = ±rs(r
2 + s2)

2
√
c

, y2 = ±rs(r
2 − s2)

2
√
c− 1

, y0 = ± (r2 + s2)(r2 − s2)
4
√
c
√
c− 1
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with r2 − s2 and r2 + s2 coprime. For instance one can take r = 1, s = 2x, c = 2,
and then

y1 = ±
(

2
√

2x3 +
x√
2

)
, y2 = ±(x− 4x3), y0 = ±

( 1
4
√

2
− 2
√

2x4
)
.

We recall that these are polynomial solutions of the equation

a(x)ẏ = b1(x)y + b3(x)y3,

with

a(x) = −2x+ 48x3 − 768x7 + 512x9,

b1(x) = 2(−1 + 96x4 − 1536x6 + 768x8),

b3(x) = 64.

Therefore, in view of Lemmas 2.3 and 2.1 if we set

A(θ) =
2a(x)

(1 + x2)5
=
−2x+ 48x3 − 768x7 + 512x9

(1 + x2)5
,

B0(θ) =
b0(x)(1 + x2)− 4xa(x)

(1 + x2)5
=
−2 + 6x2 − 2880x6 + 1536x8 − 540x10

(1 + x2)5
,

B2(θ) =
b2(x)

(1 + x2)2
=

64
(1 + x2)2

,

then, the seven solutions

Y1(θ) = ± y1(x)
(1 + x2)2

, Y2(θ) = ± y2(x)
(1 + x2)2

, Y0(θ) = ± y0(x)
(1 + x2)2

, Y3(θ) = 0

are trigonometric polynomial solutions of equation (1.5).

4. Proof of Theorem 1.2

First we recall that if Y (θ) 6= 0 is a solution of (1.5), then −Y (θ) is also a
solution of (1.5) which is different from Y (θ).

Lemma 4.1. Let Y0(θ) 6= 0, Y1(θ), Y2(θ) be polynomial solutions of equation (1.5)
such that Y1(θ) 6≡ 0, Y2(θ) 6≡ 0 and Y2(θ) 6= −Y1(θ). Set

Yi(θ) =
Yi(x)

(1 + x2)ηi
, i = 1, 2

where ηi = deg(Yi) and deg(yi) ≤ 2ηi, η1 ≤ η2 and gcd(yi, 1 + x2) = 1 for i =
1, 2. We write y1(x) = g(x)ỹ1(x) and y2(x) = g(x)ỹ2(x) where g = gcd(y1, y2).
Then, except the solution Y = 0, all the other trigonometric polynomial solutions
of equation (1.5) can be expressed as

y0(θ; c) = ±g(x)
(
cỹ2

1(x)(1 + x2)2(η2−η1) + (1− c)ỹ2
2(x)

)1/2
, (4.1)

where c is a constant.

Proof. Let Y be a nonzero trigonometric polynomial solution of equation (1.3).
The functions Z0 = Y 2

0 , Z1 = Y 2
1 and Z2 = Y 2

2 are solutions of a linear differential
equation and satisfy

A(θ)Z ′i = 2B0(θ) + 2B2(θ)Zi, i = 0, 1, 2.
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Therefore
Z0(θ)′ − Z1(θ)′

Z0(θ)− Z1(θ)
=
Z2(θ)′ − Z1(θ)′

Z2(θ)− Z1(θ)
.

Integrating this equality we obtain

Z0(θ) = Z1(θ) + c(Z2(θ)− Z1(θ)),

with c an arbitrary constant. So the general solution of equation (1.3) is

Y 2
0 (θ) = Z0(θ) = Z1(θ) + c(Z2(θ)− Z1(θ)) = (1− c)Y 2

1 (θ) + cY 2
2 (θ),

where c is an arbitrary constant. Hence, we have

y2
0

(1 + x2)2η0
=

(1− c)y2
1(x)

(1 + x2)2η1
+

cy2
2(x)

(1 + x2)2η2

=
(1− c)y2

1(x)(1 + x2)2(η2−η1) + cy2(x)2

(1 + x2)2η2
.

In other words,

y0(x)2

(1 + x2)2(η0−η2)
= g(x)2((1− c)ỹ1(x)2(1 + x2)(2(η2−η1) + cỹ2(x)2). (4.2)

Since the right-hand side of equation (4.2) is a polynomial and y0(x) does not divide
1 + x2, we must have that η0 ≤ η2. However, if η0 < η2 since ỹ2 does not divide
1 + x2 we get a contradiction with (4.2). In short we must have η0 = η2. Then
equation (4.2) becomes

y0(x)2 = g(x)2((1− c)ỹ1(x)2(1 + x2)2(η2−η1) + cỹ2(x)2)

with c an arbitrary constant. �

In view of Lemma 2.3, if Y1(θ), Y2(θ) are trigonometric polynomial solutions of
equation (1.5) such that Y1(θ) 6≡ 0, Y2(θ) 6≡ 0 and Y2(θ) 6= −Y1(θ) then any other
trigonometric polynomial solution is of the form as in (4.1) for some appropriate
constant c. In particular, cỹ2

1(x)(1 + x2)2(η2−η1) + (1 − c)ỹ2
2(x) is a square of a

polynomial pP . In view of Theorem 2.2 this c is unique and we conclude that (1.5)
has at most seven different trigonometric polynomial solutions 0, ±Y1, ±Y2 and Y0.

Example 4.2. Note that in view of Lemma 4.1, the polynomial solutions y1, y2
and y0 can always be taken of the form

y1 = ±r
2 + s2√
c

, y2 = ±r
2 − s2√
c− 1

, y0 = ±2rs

with r2 − s2 and r2 + s2 coprime. For instance one can take

r =
√

2x, s =
1√
2
, c = 2,

and then

y1 = ±
(√

2x2 +
1

2
√

2

)
, y2 = ±

(
2x2 − 1

2

)
, y0 = ±2x.

We recall that these are polynomial solutions of the equation

a(x)yẏ = b0(x)y + b2(x)y2,

with

a(x) = 2x4 − 3x2 +
1
8
,
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b0(x) =
x

2
− 8x5,

b2(x) = 4x3 − 3x.

Therefore, in view of Lemmas 2.4 and 2.1, if we set

A(θ) =
2a(x)

(1 + x2)5
=

4x4 − 6x2 + 1/4
(1 + x2)5

,

B0(θ) =
b0(x)(1 + x2)− 2xa(x)

(1 + x2)5
=
x(1 + 26x2 − 48x4 − 32x6)

4(1 + x2)5
,

B2(θ) =
b2(x)

(1 + x2)2
=

4x3 − 3x
(1 + x2)2

,

then, the solutions

Y1(θ) =
y1(x)
1 + x2

, Y2(θ) =
y2(x)
1 + x2

, Y0(θ) =
2x

1 + x2
, Y3(θ) = 0

are trigonometric polynomial solutions of equation (1.5).
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[10] J. Giné, M. Grau, J. Llibre; On the polynomial limit cycles of polynomial differential equa-

tions, Israel J. Math. 181 (2011), 461–475.
[11] E. Kamke; Differentialgleichungen: Lösungsmethoden und Lösungen, Springer 1977.
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