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LIOUVILLE-TYPE THEOREMS FOR AN ELLIPTIC SYSTEM
INVOLVING FRACTIONAL LAPLACIAN OPERATORS WITH

MIXED ORDER
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Abstract. We study the nonexistence of nontrivial solutions for the nonlinear
elliptic system

Gα,β,θ(up, uq) = vr

Gλ,µ,θ(vs, vt) = um

u, v ≥ 0,

where 0 < α, β, λ, µ ≤ 2, θ ≥ 0, m > q ≥ p ≥ 1, r > t ≥ s ≥ 1, and Gα,β,θ is
the fractional operator of mixed orders α, β, defined by

Gα,β,θ(u, v) = (−∆x)α/2u+ |x|2θ(−∆y)β/2v, in RN1 × RN2 .

Here, (−∆x)α/2, 0 < α < 2, is the fractional Laplacian operator of order

α/2 with respect to the variable x ∈ RN1 , and (−∆y)β/2, 0 < β < 2, is

the fractional Laplacian operator of order β/2 with respect to the variable

y ∈ RN2 . Via a weak formulation approach, sufficient conditions are provided
in terms of space dimension and system parameters.

1. Introduction

Liouville theorem [18] states that any bounded complex function which is har-
monic (or holomorphic) on the entire space is constant. The first proof of this
theorem is credited to Cauchy [1]. In the recent literature, this result was extended
to the case of non-negative solutions of semilinear elliptic equations in the whole
space RN or in half-spaces, by Gidas and Spruck [9]. In the case of the whole space
RN , they established that if 1 ≤ p < N+2

N−2 , then the unique non-negative solution
of

−∆u = Cup in RN ,
where C is a stricly positive constant, is the trivial solution. Using the moving
planes method, a simple proof was presented by Chen and Li [2] in the range
0 < p < N+2

N−2 . This result is optimal in the sense that for any p ≥ N+2
N−2 , we have

infinitely many positive solutions.
Several Liouville-type results were proved for various classes of degenerate equa-

tions. In [24], Serrin and Zou generalized the standard Liouville theorem for
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p-harmonic functions on the whole space and on exterior domains. In [14, 15],
Liouville-type properties for some degenerate elliptic operators such as X-elliptic
operators, Kohn-Laplacian and Ornstein-Uhlenbeck operators were presented. In
[5], Dolcetta and Cutri considered an elliptic inequality involving the Grushin op-
erator. More precisely, they studied the problem

u ≥ 0, Gθu ≥ up in RN1 × RN2 , (1.1)

where θ > 1 and Gθ is the Grushin operator defined by

Gθu = (−∆x)u+ |x|2θ(−∆y)u, (x, y) ∈ RN1 × RN2 . (1.2)

They proved that if 1 < p < Q
Q−2 , then the only solution of (1.1) is the trivial

solution. Here, Q is the homogeneous dimension of the space, given by Q = N1 +
(θ+1)N2. In [26], Takase and Sleeman considered the system of semilinear parabolic
equations

ut = ∆1u+ vp

vt = ∆2v + uq

(x, t) ∈ RN × [0, T ), u, v ≥ 0,
(1.3)

with p, q ≥ 1, pq > 1, under the initial boundary conditions

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ RN , (1.4)

where

∆i =
Ni∑
j=1

∂2

∂x2
j

, i = 1, 2, xj ∈ Ri, Ni = dim(Ri) ≤ N,

Ri is a subspace of RN , and the algebraic sum R1 + R2 = RN . In the case of
R1 6= R2, they proved that any solution to (1.3)-(1.4) blows up in finite time if

max
{
α1 −

N1

2
− n2

2q
, α2 −

N2

2
− n1

2p
}
> 0,

where α1 = p+1
pq−1 , α2 = q+1

pq−1 , and ni = Ni − dim(R1 ∩ R2), i = 1, 2. For other
results in this directions, we refer to [3, 17, 20, 21, 27].

Recently, a lot of attention has been paid to the study of Liouville-type properties
for elliptic equations and inequalities involving fractional operators. In [19], via the
moving plane method, Ma and Chen obtained a Liouville-type result for the system
of equations

(−∆)µ/2u = vq

(−∆)µ/2v = up

u, v ≥ 0,

where µ ∈ (0, 2), 1 < p, q ≤ N+µ
N−µ , and N ≥ 2. Here, (−∆)µ/2 is the fractional

Laplacian operator of order µ/2. Using the test function method [5], Dahmani et
al. [4] extended the result in [19] to various classes of systems involving fractional
Laplacian operators with different orders. Some liouville-type results were estab-
lished recently by Quaas and Xia in [23] for a class of fractional elliptic equations
and systems in the half space. For other related works, we refer to [6, 7, 8, 10, 13],
and the references therein.
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In this work, we establish Liouville-type results for the nonlinear elliptic system

Gα,β,θ(up, uq) = vr

Gλ,µ,θ(vs, vt) = um

u, v ≥ 0,
(1.5)

where 0 < α, β, λ, µ ≤ 2, θ ≥ 0, m > q ≥ p ≥ 1, r > t ≥ s ≥ 1, and Gα,β,θ is the
fractional operator of mixed orders α, β, defined by defined by

Gα,β,θ(u, v) = (−∆x)α/2u+ |x|2θ(−∆y)β/2v, in RN1 × RN2 ,

where, (−∆x)α/2, 0 < α < 2, is the fractional Laplacian operator of order α/2
with respect to the variable x ∈ RN1 , and (−∆y)β/2, 0 < β < 2, is the fractional
Laplacian operator of order β/2 with respect to the variable y ∈ RN2 . Observe that
the standard Grushin operator defined by (1.2) can be written in the form

Gθu = G2,2,θ(u, u).

Via a weak formulation approach, we provide sufficient conditions for the nonexis-
tence of nontrivial solutions to system (1.5) in terms of space dimension and system
parameters.

Before stating and proving the main results of this work, let us present some
basic definitions and some lemmas that will be used later.

The nonlocal operator (−∆)s, 0 < s < 1, is defined for any function h in the
Schwartz class through the Fourier transform

(−∆)sh(x) = F−1
(
|ξ|2sF(h)(ξ)

)
(x),

where F stands for the Fourier transform and F−1 for its inverse. It can be also
defined via the Riesz potential

(−∆)sh(x) = cN,s PV
∫

RN

h(x)− h(x)
|x− x|N+2s

dx,

where cN,s is a normalisation constant and PV is the Cauchy principal value (see
[16, 25]).

Lemma 1.1 ([11]). Suppose that δ ∈ (0, 2], β + 1 ≥ 0, and ψ ∈ C∞0 (RN ), ψ ≥ 0.
Then the following point-wise inequality holds:

(−∆)δ/2ψβ+2(x) ≤ (β + 2)ψβ+1(x)(−∆)δ/2ψ(x).

Lemma 1.2 ([12]). Let X,Y,A1, B1, A2, B2 be non-negative functions, and let αi
and θi, i = 1, 2, be positive reals such that α1, α2 ≥ 1 and α1θ1 > max{α2, θ2, α2θ2}.
Suppose that

Xα1 ≤ A1Y +B1Y
θ2 ,

Y θ1 ≤ A2X +B2X
α2 .

Then there is some constant C > 0 such that

Y α1θ1 ≤ C
[

(Aα1
2 A1)

α1θ1
α1θ1−1 + (Aα1

2 B1)
α1θ1

α1θ1−θ2

+ (Bα1
2 Aα2

1 )
α1θ1

α1θ1−α2 + (Bα1
2 Bα2

1 )
α1θ1

α1θ1−α2θ2
]
.
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2. Main results

In this section, we state an prove the main results in this paper. We consider
the elliptic system (1.5) under the assumptions

0 < α, β, λ, µ ≤ 2, θ ≥ 0, m > q ≥ p ≥ 1, r > t ≥ s ≥ 1. (2.1)

We adopt the following definition of solutions for (1.5).

Definition 2.1. We say that the pair (u, v) is a weak solution of (1.5) if, u ≥ 0,
v ≥ 0, (u, v) ∈ Lmloc(RN)× Lrloc(RN), N = N1 +N2, and∫

RN
vrϕdx dy =

∫
RN

up(−∆x)α/2ϕdx dy +
∫

RN
|x|2θuq(−∆y)β/2ϕdx dy,∫

RN
umϕdx dy =

∫
RN

vs(−∆x)λ/2ϕdx dy +
∫

RN
|x|2θvt(−∆y)µ/2ϕdx dy,

for every ϕ ∈ C∞0 (RN ), ϕ ≥ 0.

Let us introduce the following parameters:

Q1 =
m

mr − ps
(αs+ λr), Q1 =

r

mr − ps
(λp+ αm),

Q2 =
m

mr − qs
(
λr − (2θ − β(θ + 1))s

)
,

Q2 =
r

mr − tp
(
αm− (2θ − µ(θ + 1))p

)
,

Q3 =
m

mr − pt
(
αt− (2θ − µ(θ + 1))r

)
,

Q3 =
r

mr − sq
(
λq − (2θ − β(θ + 1))m

)
,

Q4 =
m

mr − qt

(
(µ(θ + 1)− 2θ)r + (β(θ + 1)− 2θ)t

)
,

Q4 =
r

mr − qt

(
(β(θ + 1)− 2θ)m+ (µ(θ + 1)− 2θ)q

)
.

Our main result in this article is the following Liouville-type theorem.

Theorem 2.2. Let (u, v) be a weak solution of system (1.5). Under assumptions
(2.1), if

Q < max{Λ1,Λ2}, (2.2)

where

Q = N1 +N2(θ + 1), Λ1 = min{Q1, Q2, Q3, Q4}, Λ2 = min{Q1, Q2, Q3, Q4},

then the solution (u, v) is trivial.

Proof. Suppose that (u, v) is a weak solution of (1.5) such that (u, v) 6≡ (0, 0). Let
ω be a real number such that

ω > max
{ m

m− q
,

r

r − t
}
. (2.3)

By the weak formulation of (1.5), for all ϕ ∈ C∞0 (RN ), ϕ ≥ 0, we have∫
RN

vrϕω dx dy =
∫

RN
up(−∆x)α/2ϕω dx dy+

∫
RN
|x|2θuq(−∆y)β/2ϕω dx dy (2.4)
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and∫
RN

umϕω dx dy =
∫

RN
vs(−∆x)λ/2ϕω dx dy +

∫
RN
|x|2θvt(−∆y)µ/2ϕω dx dy.

(2.5)
Using Lemma 1.1 and Hölder’s inequality with parameters m

p and m
m−p , we obtain∫

RN
up(−∆x)α/2ϕω dx dy

≤ ω
∫

RN
upϕω−1|(−∆x)α/2ϕ| dx dy

= ω

∫
RN

upϕ
ωp
m ϕ(ω−1−ωpm )|(−∆x)α/2ϕ| dx dy

≤ ω
(∫

RN
umϕω dx dy

)p/m(∫
RN

ϕ(ω−1−ωpm ) m
m−p |(−∆x)α/2ϕ|

m
m−p dx dy

)m−p
m

= ω
(∫

RN
umϕω dx dy

)p/m(∫
RN

ϕω−
m
m−p |(−∆x)α/2ϕ|

m
m−p dx dy

)m−p
m

.

Note that thanks to the choice (2.3) of the parameter ω, we have∫
RN

ϕω−
m
m−p |(−∆x)α/2ϕ|

m
m−p dx dy <∞.

Therefore, we have the estimate∫
RN

up(−∆x)α/2ϕω dx dy

≤ ω
(∫

RN
umϕω dx dy

)p/m(∫
RN

ϕω−
m
m−p |(−∆x)α/2ϕ|

m
m−p dx dy

)m−p
m

.

(2.6)

Again, using Lemma 1.1 and Hölder’s inequality with parameters m
q and m

m−q , we
obtain∫

RN
|x|2θuq(−∆y)β/2ϕω dx dy

≤ ω
∫

RN
uq|x|2θϕω−1|(−∆y)β/2ϕ| dx dy

= ω

∫
RN

uqϕ
ωq
m |x|2θϕ(ω−1−ωqm )|(−∆y)β/2ϕ| dx dy

≤ ω
(∫

RN
umϕω dx dy

)q/m(∫
RN
|x|

2θm
m−qϕ(ω−1−ωqm ) m

m−q |(−∆y)β/2ϕ|
m
m−q dx dy

)m−q
m

= ω
(∫

RN
umϕω dx dy

)q/m(∫
RN
|x|

2θm
m−qϕω−

m
m−q |(−∆y)β/2ϕ|

m
m−q dx dy

)m−q
m

.

From the choice (2.3) of the parameter ω, we have∫
RN
|x|

2θm
m−qϕω−

m
m−q |(−∆y)β/2ϕ|

m
m−q dx dy <∞.

Therefore, we have the estimate∫
RN
|x|2θuq(−∆y)β/2ϕω dx dy
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≤ ω
(∫

RN
umϕω dx dy

)q/m(∫
RN
|x|

2θm
m−qϕω−

m
m−q |(−∆y)β/2ϕ|

m
m−q dx dy

)m−q
m

.

Combining this with (2.4) and (2.6), we obtain∫
RN

vrϕω dx dy ≤ Aϕ
(∫

RN
umϕω dx dy

)p/m
+Bϕ

(∫
RN

umϕω dx dy
)q/m

, (2.7)

where

Aϕ = ω
(∫

RN
ϕω−

m
m−p |(−∆x)α/2ϕ|

m
m−p dx dy

)m−p
m

,

Bϕ = ω
(∫

RN
|x|

2θm
m−qϕω−

m
m−q |(−∆y)β/2ϕ|

m
m−q dx dy

)m−q
m

.

Similarly, using Hölder’s inequality with parameters r
s and r

r−s , we obtain∫
RN

vs(−∆x)λ/2ϕω dx dy

≤ ω
(∫

RN
vrϕω dx dy

)s/r(∫
RN

ϕω−
r
r−s |(−∆x)λ/2ϕ|

r
r−s dx dy

) r−s
r

.

(2.8)

Again, Hölder’s inequality with parameters r
t and r

r−t yields∫
RN
|x|2θvt(−∆y)µ/2ϕω dx dy

≤ ω
(∫

RN
vrϕω dx dy

)t/r(∫
RN
|x|

2θr
r−tϕω−

r
r−t |(−∆y)µ/2ϕ|

r
r−t dx dy

) r−t
r

.

(2.9)

Combining (2.5) with the estimates (2.8) and (2.9), we obtain∫
RN

umϕω dx dy ≤ Cϕ
(∫

RN
vrϕω dx dy

)s/r
+Dϕ

(∫
RN

vrϕω dx dy
)t/r

, (2.10)

where

Cϕ = ω
(∫

RN
ϕω−

r
r−s |(−∆x)λ/2ϕ|

r
r−s dx dy

) r−s
r

,

Dϕ = ω
(∫

RN
|x|

2θr
r−tϕω−

r
r−t |(−∆y)µ/2ϕ|

r
r−t dx dy

) r−t
r

.

Let

X =
(∫

RN
umϕω dx dy

)p/m
, Y =

(∫
RN

vrϕω dx dy
)s/r

.

Combining the estimates (2.7) and (2.10), we obtain the system of inequalities

Xm/p ≤ CϕY +DϕY
t
s ,

Y r/s ≤ AϕX +BϕX
q
p .

Using Lemma 1.2, we obtain

Y
mr
ps ≤ C

((
Am/pϕ Cϕ

) mr
mr−ps

+
(
Am/pϕ Dϕ

) mr
mr−pt

+
(
Bm/pϕ C

q
p
ϕ

) mr
mr−qs

+
(
Bm/pϕ D

q
p
ϕ

) mr
mr−qt

)
.

(2.11)
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Similarly, we obtain

X
mr
ps ≤ C

((
Cr/sϕ Aϕ

) mr
mr−ps

+
(
Cr/sϕ Bϕ

) mr
mr−qs

+
(
Dr/s
ϕ A

t
s
ϕ

) mr
mr−pt

+
(
Dr/s
ϕ B

t
s
ϕ

) mr
mr−qt

)
.

(2.12)

Now, as a test function, we take

ϕ(x, y) = ϕ0

( |x|2
R2

+
|y|2

R2(θ+1)

)
, (x, y) ∈ RN1 × RN2 ,

where ϕ0 is the classical cutoff function, that is, ϕ0 ∈ C∞0 (0,∞) is a smooth
decreasing function such that

0 ≤ ϕ0 ≤ 1, |ϕ′0(η)| ≤ Cη−1,

ϕ0(η) =

{
1 if 0 < η ≤ 1,
0 if η ≥ 2.

We use the change of variables

x = Rz and y = Rθ+1w.

In this case, we have

η :=
|x|2

R2
+
|y|2

R2(θ+1)
= |z|2 + |w|2, (z, w) ∈ RN1 × RN2 .

Let Ω be the subset of RN1 × RN2 defined by

Ω = {(z, w) ∈ RN1 × RN2 : 1 ≤ |z|2 + |w|2 ≤ 2}.

We have the following estimates.
• Estimate of Aϕ. Using the above change of variables, we obtain

Aϕ = ωR
Q(m−p)−αm

m

(∫
Ω

[ϕ0(η)]ω−
m
m−p |(−∆z)α/2ϕ0(η)|

m
m−p dz dw

)m−p
m

.

Observe that ∫
Ω

[ϕ0(η)]ω−
m
m−p |(−∆z)α/2ϕ0(η)|

m
m−p dz dw

is a real number independent on R. Therefore, we have

Aϕ = CR
Q(m−p)−αm

m , (2.13)

where C is a positive constant independent on R.
• Estimate of Bϕ. Using the same change of variable as above, we obtain

Bϕ = ωR
(2θ−β(θ+1))m+Q(m−q)

m

×
(∫

Ω

|z|
2θm
m−q [ϕ0(η)]ω−

m
m−q |(−∆w)β/2ϕ0(η)|

m
m−q dz dw

)m−q
m

.

Since ∫
Ω

|z|
2θm
m−q [ϕ0(η)]ω−

m
m−q |(−∆w)β/2ϕ0(η)|

m
m−q dz dw

is a real number independent on R, we have

Bϕ = CR
(2θ−β(θ+1))m+Q(m−q)

m . (2.14)



8 M. JLELI, B. SAMET EJDE-2017/105

• Estimate of Cϕ. We argue as previously, to obtain

Cϕ = CR
Q(r−s)−λr

r . (2.15)

• Estimate of Dϕ. We have the estimate

Dϕ = CR
(2θ−µ(θ+1))r+Q(r−t)

r . (2.16)

Using the estimates (2.12), (2.13), (2.14), (2.15) and (2.16), we obtain

X
mr
ps ≤ C (Rτ1 +Rτ2 +Rτ3 +Rτ4) , (2.17)

where

τ1 =
( rm

rm− ps
)(Q(mr − ps)−m(λr + αs)

ms

)
,

τ2 =
( rm

rm− qs
)(Q(mr − sq) +m(s(2θ − β(θ + 1))− λr)

ms

)
,

τ3 =
( rm

rm− pt
)(Q(mr − pt) +m(r(2θ − µ(θ + 1))− αt)

ms

)
,

τ4 =
( rm

rm− qt
)(Q(mr − qt) +m(r(2θ − µ(θ + 1)) + (2θ − β(θ + 1)))

ms

)
.

Similarly, using the estimates (2.11), (2.13), (2.14), (2.15) and (2.16), we obtain

Y
mr
ps ≤ C (Rκ1 +Rκ2 +Rκ3 +Rκ4) , (2.18)

where

κ1 =
( rm

rm− ps
)(Q(mr − ps)− r(αm+ λp)

rp

)
,

κ2 =
( rm

rm− tp
)(Q(mr − pt) + r(p(2θ − µ(θ + 1))− αm)

rp

)
,

κ3 =
( rm

rm− sq
)(Q(mr − sq) + r(m(2θ − β(θ + 1))− λq)

rp

)
,

κ4 =
( rm

rm− tq
)(Q(mr − qt) + r(m(2θ − β(θ + 1)) + (2θ − µ(θ + 1)))

rp

)
.

Now, using (2.2), we can see that

max{τi : i =, 1, 2, 3, 4} < 0

or
max{κi : i =, 1, 2, 3, 4} < 0.

Case 1. If max{τi : i =, 1, 2, 3, 4} < 0. In this case, passing to the limit as R→∞
in (2.17), and using the monotone convergence theorem, we obtain

lim
R→∞

(∫
RN

um
[
ϕ0

( |x|2
R2

+
|y|2

R2(θ+1)

)]ω
dx dy

)r/s
=
(∫

RN
um dx dy

)r/s
= 0,

which yields (u, v) ≡ (0, 0), that is a contradiction with the fact that (u, v) is a
nontrivial solution.
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Case 2. If max{κi : i =, 1, 2, 3, 4} < 0. As in the previous case, passing to the
limit as R→∞ in (2.18), and using the monotone convergence theorem, we obtain

lim
R→∞

(∫
RN

vr
[
ϕ0

( |x|2
R2

+
|y|2

R2(θ+1)

)]ω
dx dy

)m/p
=
(∫

RN
vr dx dy

)m/p
= 0,

which yields (u, v) ≡ (0, 0), that is a contradiction.
In both cases, we get a contradiction. As consequence, we infer that the only

weak solution to system (1.5) is the trivial solution. �

The following Liouville-type results follow from Theorem 2.2. Taking α = λ,
β = µ = 2 and p = s = q = t = 1 in Theorem 2.2, we obtain the following
Liouville-type property.

Corollary 2.3. Let (u, v) be a weak solution of the elliptic system

(−∆x)α/2u+ |x|2θ(−∆y)u = vr

(−∆x)α/2v + |x|2θ(−∆y)v = um, u, v ≥ 0,

where 0 < α ≤ 2, θ ≥ 0, m > 1 and r > 1. If

Q <
α

mr − 1
max {m(r + 1), r(m+ 1)} ,

then (u, v) is trivial.

Taking α = 2 in Corollary 2.3, we obtain the following Liouville-type property
for an elliptic system involving the standard Grushin operator.

Corollary 2.4. Let (u, v) be a weak solution of the elliptic system

(−∆x)u+ |x|2θ(−∆y)u = vr

(−∆x)v + |x|2θ(−∆y)v = um

u, v ≥ 0,

where θ ≥ 0, m > 1 and r > 1. If

Q <
2

mr − 1
max {m(r + 1), r(m+ 1)} ,

then the solution (u, v) is trivial.

Taking u = v and m = r in Corollary 2.3, we obtain the following result.

Corollary 2.5. Let u be a weak solution of the elliptic equation

(−∆x)α/2u+ |x|2θ(−∆y)u = ur, u ≥ 0,

where 0 < α ≤ 2, θ ≥ 0. If

1 < r <
Q

Q− α
, (2.19)

then the solution u is trivial.

Remark 2.6. Taking α = 2 in Corollary 2.5, condition (2.19) becomes

1 < r <
Q

Q− 2
.

Such condition was obtained by Dolcetta and Cutri in [5].

Taking α = λ = 2, β = µ and p = s = q = t = 1 in Theorem 2.2, we obtain the
following Liouville-type property.
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Corollary 2.7. Let (u, v) be a weak solution of the elliptic system

(−∆x)u+ |x|2θ(−∆y)β/2u = vr

(−∆x)v + |x|2θ(−∆y)β/2v = um

u, v ≥ 0,

where 0 < β ≤ 2, θ ≥ 0, m > 1 and r > 1. If

Q <
β(θ + 1)− 2θ

mr − 1
max {m(r + 1), r(m+ 1)} ,

then the solution (u, v) is trivial.

Remark 2.8. Taking β = 2 in Corollary 2.7, we obtain the Liouville-type property
given by Corollary 2.4.

Taking u = v and m = r in Corollary 2.7, we obtain the following result.

Corollary 2.9. Let u be a weak solution of the elliptic equation

(−∆x)u+ |x|2θ(−∆y)β/2u = ur, u ≥ 0,

where 0 < β ≤ 2, θ ≥ 0. If

1 < r <
Q

Q− β(θ + 1) + 2θ
,

then the solution u is trivial.

Remark 2.10. Taking β = 2 in Corollary 2.9, we obtain again the Dolcetta-Cutri
condition [5]:

1 < r <
Q

Q− 2
.
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