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OSCILLATORY AND ASYMPTOTIC BEHAVIOR OF
THIRD-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

WITH DISTRIBUTED DEVIATING ARGUMENTS

ERCAN TUNÇ

Abstract. This article concerns the oscillatory and asymptotic properties of

solutions of a class of third-order neutral differential equations with distributed
deviating arguments. We give sufficient conditions for every solution to be

either oscillatory or to converges to zero. The results obtained can easily be

extended to more general neutral differential equations and neutral dynamic
equations on time scales. Two examples are also provided to illustrate the

results.

1. Introduction

We are interested in the oscillation and asymptotic behavior of solutions to the
third-order neutral differential equations with distributed deviating arguments(

r(t)
(
(x(t) + p(t)x(τ(t)))′′

)α)′ + ∫ b

a

q(t, ξ)xα(φ(t, ξ))dξ = 0, t ≥ t0 > 0, (1.1)

where α is a quotient of odd positive integers and 0 < a < b.
In the remainder of the paper we assume that:

(i) r ∈ C([t0,∞), (0,∞)) and
∫∞
t0
r−1/α(s)ds =∞;

(ii) p ∈ C([t0,∞),R) with p(t) ≥ 1, and p(t) 6≡ 1, eventually;
(iii) q(t, ξ) ∈ C([t0,∞)× [a, b], [0,∞));
(iv) τ ∈ C([t0,∞),R) is strictly increasing, τ(t) < t, and limt→∞ τ(t) =∞;
(v) φ(t, ξ) ∈ C([t0,∞)× [a, b],R) is nonincreasing in ξ, and

lim
t→∞

φ(t, ξ) =∞, ξ ∈ [a, b].

The cases
τ(t) ≥ φ(t, ξ), ξ ∈ [a, b], (1.2)

and
τ(t) ≤ φ(t, ξ), ξ ∈ [a, b], (1.3)

are both considered.
By defining the function

z(t) = x(t) + p(t)x(τ(t)), (1.4)

2010 Mathematics Subject Classification. 34C10, 34C15, 34K11.
Key words and phrases. Neutral differential equation; oscillation; asymptotic behavior;

distributed deviating arguments.
c©2017 Texas State University.

Submitted September 9, 2016. Published January 13, 2017.

1
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equation (1.1) can be written as(
r(t)(z′′(t))α

)′ + ∫ b

a

q(t, ξ)xα(φ(t, ξ))dξ = 0. (1.5)

By a solution of (1.1) we mean a function x : [tx,∞) → R such that z(t) ∈
C2([tx,∞),R) and r(t)(z′′(t))α ∈ C1([tx,∞),R), and which satisfies equation (1.1)
on [tx,∞). Without further mention, we will assume throughout that every solution
x(t) of (1.1) under consideration here is continuable to the right and nontrivial, i.e.,
x(t) is defined on some ray [tx,∞), for some tx ≥ t0, and sup{|x(t)| : t ≥ T} > 0
for every T ≥ tx. Moreover, we tacitly assume that (1.1) possesses such solutions.
Such a solution is said to be oscillatory if it has arbitrarily large zeros on [tx,∞);
otherwise it is called nonoscillatory.

The oscillatory behavior of solutions of various classes of functional differential
equations and functional dynamic equations on time scales is an active and im-
portant area of research, and we refer the reader to the papers [1, 2, 3, 4, 8, 9,
10, 11, 14, 16, 17, 20] and the references therein as examples of recent results on
this topic. However, oscillation results for third order neutral differential equations
and/or third order neutral dynamic equations on time scales with distributed devi-
ating arguments are relatively scarce in the literature; some results can be found,
for example, in [5, 6, 7, 15, 18, 19, 21, 22] and the references contained therein.

The asymptotic and oscillatory behavior of solutions of neutral differential equa-
tions is of both theoretical and practical interest. One reason for this is that they
arise, for example, in applications to electric networks containing lossless transmis-
sion lines. Such networks appear in high speed computers where lossless transmis-
sion lines are used to interconnect switching circuits. They also occur in problems
dealing with vibrating masses attached to an elastic bar and in the solution of vari-
ational problems with time delays. Interested readers can refer to the book by Hale
[12] for some applications in science and technology.

Types of third-order neutral differential equations and/or third order neutral
dynamic equations on time scales with distributed deviating arguments that have
been dealt with in the relevant literature have generally the forms(

r2(t)
(

(r1(t)(x(t) + p(t)x(τ(t))′)α1)′
)α2
)′

+
∫ b

a

q(t, ξ)f(x(g(t, ξ)))dσ(ξ) = 0,

(1.6)(
r(t)

(
(x(t) + p(t)x(τ(t)))∆∆

)α)∆

+
∫ d

c

f(t, x(φ(t, ξ)))∆ξ = 0, (1.7)

{
r(t)

[
a(t)(x(t) + p(t)x(τ(t)))∆

]∆}∆ +
∫ b

a

F (t, ξ, x(φ(t, ξ)))∆ξ = 0, (1.8)[
r(t)

([
x(t) +

∫ b

a

p(t, µ)x(τ(t, µ))dµ
]′′)α]′

+
∫ d

c

q(t, ξ)f(x(φ(t, ξ)))dξ = 0, (1.9)[
r(t)

([
x(t) +

∫ b

a

p(t, µ)x(τ(t, µ))∆µ
]∆∆)α]∆

+
∫ d

c

q(t, ξ)xλ(φ(t, ξ))∆ξ = 0,

(1.10)

and the results obtained are for the cases where 0 ≤ p(t) ≤ p0 < 1 or 0 ≤∫ b
a
p(t, µ)dµ ≤ p0 < 1, and 0 ≤

∫ b
a
p(t, µ)∆µ ≤ p0 < 1, see, for example, [5, 6,

7, 15, 18, 19, 21, 22].
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However, to the best of our knowledge, there does not appear to be any results
for third order neutral differential equations and/or third order neutral dynamic
equations on time scales with distributed deviating arguments in the case p(t) ≥ 1.
The main objective of this paper is to establish some new criteria for the oscillation
and asymptotic behavior of solutions of (1.1) in the case p(t) ≥ 1. It should be
noted that the results in this paper are new even for the α = 1, and for the constant
delays such as τ(t) = t− c with c > 0 and φ(t, ξ) = t± ξ. Furthermore, the results
in this paper can easily be extended to more general equations (1.6)-(1.8) as well
as the more general third order neutral differential equations and/or third order
neutral dynamic equations with distributed deviating arguments of the type (1.1).
It is therefore hoped that the present paper will contribute significantly to the study
of oscillatory and asymptotic behavior of solutions of third order neutral differential
equations and neutral dynamic equations on time scales with distributed deviating
arguments.

2. Main results

We begin with the following lemmas that are essential in the proofs of our the-
orems. For simplicity in what follows, it will be convenient to set:

θ1(t) := φ(t, a), θ2(t) := φ(t, b), η′+(t) := max{0, η′(t)},

R1(t, t1) :=
∫ t

t1

ds

r1/α(s)
for t ≥ t1, R2(t, t2) :=

∫ t

t2

R1(s, t1)ds for t ≥ t2 > t1.

Throughout this paper, we assume that

p∗(t) :=
1

p(τ−1(t))
(1− 1

p(τ−1(τ−1(t)))
) > 0 (2.1)

and

p∗(t) :=
1

p(τ−1(t))

(
1− 1

p(τ−1(τ−1(t)))
R2(τ−1(τ−1(t)), t2)
R2(τ−1(t), t2)

)
> 0, (2.2)

for all sufficiently large t, where τ−1 is the inverse of τ , and we let

q1(t) :=
∫ b

a

q(t, ξ)(p∗(φ(t, ξ)))αdξ, q2(t) :=
∫ b

a

q(t, ξ)(p∗(φ(t, ξ)))αdξ.

Lemma 2.1 ([13]). If X and Y are nonnegative and λ > 1, then

λXY λ−1 −Xλ ≤ (λ− 1)Y λ,

where equality holds if and only if X = Y .

Lemma 2.2. Assume that conditions (i)-(v) hold and let x(t) be an eventually
positive solution of (1.1). Then for sufficiently large t, either

(I) z(t) > 0, z′(t) > 0, z′′(t) > 0, and (r(t)(z′′(t))α)′ ≤ 0, or
(II) z(t) > 0, z′(t) < 0, z′′(t) > 0, and (r(t)(z′′(t))α)′ ≤ 0.

The proof of the above lemma is standard and so it is omitted.

Lemma 2.3. Suppose that conditions (i)-(v) and (2.1) hold, and let x(t) be an
eventually positive solution of (1.1) with z(t) satisfying Case (II) of Lemma 2.2. If∫ ∞

t0

∫ ∞
v

1
r1/α(u)

(∫ ∞
u

q1(s)ds
)1/α

du dv =∞, (2.3)

then limt→∞ x(t) = 0.
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Proof. Let x(t) be an eventually positive solution of (1.1). Then, there exists
t1 ∈ [t0,∞) such that x(t) > 0, x(τ(t)) > 0, and x(φ(t, ξ)) > 0 for t ≥ t1 and
ξ ∈ [a, b]. From (1.4), we have (see also [1, (8.6)]),

x(t) =
1

p(τ−1(t))
(z(τ−1(t))− x(τ−1(t)))

=
z(τ−1(t))
p(τ−1(t))

− 1
p(τ−1(t))p(τ−1(τ−1(t)))

×
(
z(τ−1(τ−1(t)))− x(τ−1(τ−1(t)))

)
≥ z(τ−1(t))
p(τ−1(t))

− 1
p(τ−1(t))p(τ−1(τ−1(t)))

z(τ−1(τ−1(t))).

(2.4)

From τ(t) < t, (iv) and the fact that z(t) is decreasing, we have

z(τ−1(t)) ≥ z(τ−1(τ−1(t))),

using this in (2.4), we obtain

x(t) ≥ p∗(t)z(τ−1(t)),

so
x(φ(t, ξ)) ≥ p∗(φ(t, ξ))z(τ−1(φ(t, ξ))) for t ≥ t2. (2.5)

In view of (2.5), equation (1.1) or (1.5) can be written as

(r(t)(z′′(t))α)′ +
∫ b

a

q(t, ξ)(p∗(φ(t, ξ)))αzα(τ−1(φ(t, ξ)))dξ ≤ 0 (2.6)

for t ≥ t2. From (iv)-(v) and the fact that z(t) is decreasing, (2.6) yields

(r(t)(z′′(t))α)′ + zα(τ−1(θ1(t)))q1(t) ≤ 0 for t ≥ t2. (2.7)

Since z(t) > 0 and z′(t) < 0, there exists a constant κ such that

lim
t→∞

z(t) = κ <∞,

where κ ≥ 0. If κ > 0, then there exists t3 ≥ t2 such that τ−1(θ1(t)) > t2 and

z(t) ≥ κ for t ≥ t3. (2.8)

Integrating (2.7) from t to ∞ two times gives

−z′(t) ≥ κ
∫ ∞
t

1
r1/α(u)

(∫ ∞
u

q1(s)ds
)1/α

du.

An integration of the last inequality from t3 to t yields

z(t3) ≥ κ
∫ t

t3

∫ ∞
v

1
r1/α(u)

(∫ ∞
u

q1(s)ds
)1/α

du dv,

which contradicts (2.3), and so we have κ = 0. Therefore, limt→∞ z(t) = 0. Since
0 < x(t) ≤ z(t) on [t1,∞), we obtain limt→∞ x(t) = 0. This completes the proof of
Lemma 2.3. �

Lemma 2.4. Assume that conditions (i)-(v) and (2.2) hold, and that x(t) is an
eventually positive solution of (1.1) with z(t) satisfying Case (I) of Lemma 2.2.
Then, z(t) satisfies the inequality

(r(t)(z′′(t))α)′ + zα(τ−1(θ2(t)))q2(t) ≤ 0, (2.9)

for large t.
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Proof. Let x(t) be an eventually positive solution of (1.1) such that x(t) > 0,
x(τ(t)) > 0, and x(φ(t, ξ)) > 0, z(t) satisfies Case (I), and (2.2) holds for t ≥ t1
for some t1 ≥ t0 and ξ ∈ [a, b]. Proceeding as in the proof of Lemma 2.3, we again
arrive at (2.4). Since r(t)(z′′(t))α is decreasing, we see that

z′(t) = z′(t1) +
∫ t

t1

(r(s)(z′′(s))α)1/α

r1/α(s)
ds

≥ (r(t)(z′′(t))α)1/αR1(t, t1) for t ≥ t1.
(2.10)

From (2.10), we have for all t ≥ t2 := t1 + 1 that( z′(t)
R1(t, t1)

)′
=
r−1/α(t)[r1/α(t)z′′(t)R1(t, t1)− z′(t)]

(R1(t, t1))2
≤ 0,

so z′(t)/R1(t, t1) is decreasing for t ≥ t2. Next, using that z′(t)/R1(t, t1) is decreas-
ing for t ≥ t2, we obtain

z(t) = z(t2) +
∫ t

t2

z′(s)
R1(s, t1)

R1(s, t1)ds

≥ z′(t)
R1(t, t1)

∫ t

t2

R1(s, t1)ds

=
R2(t, t2)
R1(t, t1)

z′(t) for t ≥ t2.

(2.11)

From (2.11), for all t ≥ t3 := t2 + 1 we have that( z(t)
R2(t, t2)

)′
=
z′(t)R2(t, t2)− z(t)R1(t, t1)

(R2(t, t2))2
≤ 0,

so z(t)/R2(t, t2) is decreasing for t ≥ t3. Next, in view of the fact that z(t)/R2(t, t2)
is decreasing for t ≥ t3 and τ(t) < t or τ−1(t) ≤ τ−1(τ−1(t)), we obtain

R2(τ−1(τ−1(t)), t2)z(τ−1(t))
R2(τ−1(t), t2)

≥ z(τ−1(τ−1(t))). (2.12)

Using (2.12) in (2.4), we obtain

x(t) ≥ p∗(t)z(τ−1(t)),

so
x(φ(t, ξ)) ≥ p∗(φ(t, ξ))z(τ−1(φ(t, ξ))) for t ≥ t3. (2.13)

Substituting (2.13) into (1.1), we arrive at (2.9) and completes the proof. �

We now give oscillation results when (1.2) holds.

Theorem 2.5. Assume that conditions (i)–(v), (1.2), and (2.1)-(2.3) hold. If there
exists a positive function η ∈ C1([t0,∞),R) such that

lim sup
t→∞

∫ t

T

[
η(s)q2(s)

(R2(τ−1(θ2(s)), t2)
R1(s, t1)

)α
−

η′+(s)
(R1(s, t1))α

]
ds =∞, (2.14)

for all t1, t2, T ∈ [t0,∞), where T > t2 > t1, then any solution of (1.1) is either
oscillatory or tends to zero as t→∞.
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Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we
may assume that there exists t1 ∈ [t0,∞) such that x(t) > 0, x(τ(t)) > 0, and
x(φ(t, ξ)) > 0, (2.1)-(2.2) hold, and z(t) satisfies either Case (I) or Case (II) for
t ≥ t1 and ξ ∈ [a, b]. Assume that Case (I) holds and define

w(t) = η(t)
r(t)(z′′(t))α

(z′(t))α
for t ≥ t1. (2.15)

Then w(t) > 0, and from (2.9), we see that

w′(t) = η′(t)
r(t)(z′′(t))α

(z′(t))α
+ η(t)[

(r(t)(z′′(t))α)′

(z′(t))α
− r(t)(z′′(t))α((z′(t))α)′

(z′(t))2α
]

≤ η′+(t)
r(t)(z′′(t))α

(z′(t))α
− η(t)q2(t)

zα(τ−1(θ2(t)))
(z′(t))α

− αη(t)r(t)
(z′′(t))α+1

(z′(t))α+1
.

(2.16)
for t ≥ t3 with t3 ∈ (t2,∞) and t2 ∈ (t1,∞).

From (2.10), z′(t) > 0 and z′′(t) > 0, (2.16) yields

w′(t) ≤
η′+(t)

(R1(t, t1))α
− η(t)q2(t)

zα(τ−1(θ2(t)))
zα(t)

zα(t)
(z′(t))α

for t ≥ t3. (2.17)

From (iv) and (1.2), we have
τ−1(θ2(t)) ≤ t,

and thus, in view of the fact that z(t)/R2(t, t2) is decreasing for t ≥ t3, we obtain

z(τ−1(θ2(t)))
z(t)

≥ R2(τ−1(θ2(t)), t2)
R2(t, t2)

for t ≥ t3. (2.18)

Using (2.18) and (2.11) in (2.17), we obtain

w′(t) ≤
η′+(t)

(R1(t, t1))α
− η(t)q2(t)(

R2(τ−1(θ2(t)), t2)
R1(t, t1)

)α for t ≥ t3. (2.19)

An integration of (2.19) from t3 to t yields∫ t

t3

[
η(s)q2(s)

(R2(τ−1(θ2(s)), t2)
R1(s, t1)

)α
−

η′+(s)
(R1(s, t1))α

]
ds ≤ w(t3),

which contradicts (2.14).
This implies that Case (II) holds, and so from Lemma 2.3, we have limt→∞ x(t) =

0. This completes the proof. �

Theorem 2.6. Assume that conditions (i)–(v), (1.2), and (2.1)-(2.3) hold. If there
exists a positive function η ∈ C1([t0,∞),R) such that,

lim sup
t→∞

∫ t

T

[
η(s)q2(s)

(R2(τ−1(θ2(s)), t2)
R1(s, t1)

)α
−

r(s)(η′+(s))α+1

(α+ 1)α+1ηα(s)

]
ds =∞, (2.20)

for all t1, t2, T ∈ [t0,∞), where T > t2 > t1, then any solution of (1.1) is either
oscillatory or tends to zero as t→∞.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we
may assume that there exists t1 ∈ [t0,∞) such that x(t) > 0, x(τ(t)) > 0, and
x(φ(t, ξ)) > 0, (2.1)-(2.2) hold, and z(t) satisfies either Case (I) or Case (II) for
t ≥ t1 and ξ ∈ [a, b]. Assume that Case (I) holds. Proceeding as in the proof of
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Theorem 2.5, we again arrive at (2.16). In view of (2.15), inequality (2.16) takes
the form

w′(t) ≤
η′+(t)
η(t)

w(t)− η(t)q2(t)
zα(τ−1(θ2(t)))

zα(t)
zα(t)

(z′(t))α
− αw(α+1)/α(t)

(η(t)r(t))1/α
. (2.21)

Using (2.11) and (2.18) in (2.21), for t ≥ t3, we obtain

w′(t) ≤
η′+(t)
η(t)

w(t)− η(t)q2(t)
(R2(τ−1(θ2(t)), t2)

R1(t, t1)

)α
− αw(α+1)/α(t)

(η(t)r(t))1/α
. (2.22)

Applying Lemma 2.1 with

X =
α1/λ

[(η(t)r(t))1/α]1/λ
w(t), λ =

α+ 1
α

,

Y =
[ α

α+ 1
[(η(t)r(t))1/α]1/λ

α1/λ

η′+(t)
η(t)

]α
,

we see that

η′+(t)
η(t)

w(t)− α

(η(t)r(t))1/α
w(α+1)/α(t) ≤ 1

(α+ 1)α+1

r(t)(η′+(t))α+1

ηα(t)
.

Substituting this into (2.22), we obtain

w′(t) ≤ −η(t)q2(t)
(R2(τ−1(θ2(t)), t2)

R1(t, t1)

)α
+

1
(α+ 1)α+1

r(t)(η′+(t))α+1

ηα(t)
.

Integrating the above inequality from t3 to t gives∫ t

t3

[
η(s)q2(s)

(R2(τ−1(θ2(s)), t2)
R1(s, t1)

)α
− 1

(α+ 1)α+1

r(s)(η′+(s))α+1

ηα(s)

]
ds ≤ w(t3),

which contradicts (2.20). Therefore Case (II) holds, and so limt→∞ x(t) = 0 by
Lemma 2.3. This completes the proof. �

Theorem 2.7. Let α ≥ 1. Assume that conditions (i)–(v), (1.2), and (2.1)-(2.3)
hold. If there exists a positive function η ∈ C1([t0,∞),R) such that

lim sup
t→∞

∫ t

T

[
η(s)q2(s)

(R2(τ−1(θ2(s)), t2)
R1(s, t1)

)α
− r1/α(s)

4α[R1(s, t1)]α−1

(η′+(s))2

η(s)

]
ds =∞,

(2.23)

for all t1, t2, T ∈ [t0,∞), where T > t2 > t1, then any solution of (1.1) is either
oscillatory or tends to zero as t→∞.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we
may assume that there exists t1 ∈ [t0,∞) such that x(t) > 0, x(τ(t)) > 0, and
x(φ(t, ξ)) > 0, (2.1)-(2.2) hold, and z(t) satisfies either Case (I) or Case (II) for
t ≥ t1 and ξ ∈ [a, b]. Assume Case (I) holds. Proceeding as in the proof of Theorem
2.6, we again arrive at (2.22) which can be rewritten as

w′(t) ≤
η′+(t)
η(t)

w(t)− η(t)q2(t)
(R2(τ−1(θ2(t)), t2)

R1(t, t1)

)α
− αw2(t)w

1
α−1(t)

(η(t)r(t))1/α
. (2.24)
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From (2.10) and (2.15) , we see that

w
1
α−1(t) = (η(t)r(t))

1
α−1

( (z′′(t))α

(z′(t))α
) 1

α−1

= (η(t)r(t))
1
α−1

( z′(t)
z′′(t)

)α−1

≥ (η(t)r(t))
1
α−1

[
r1/α(t)R1(t, t1)

]α−1

= η
1
α
−1

(t)[R1(t, t1)]α−1.

(2.25)

Using (2.25) in (2.24), for t ≥ t3, we obtain

w′(t) ≤
η′+(t)
η(t)

w(t)−η(t)q2(t)
(R2(τ−1(θ2(t)), t2)

R1(t, t1)

)α
− α[R1(t, t1)]α−1

η(t)r1/α(t)
w2(t). (2.26)

Completing the square with respect to w, from (2.26) it follows that

w′(t) ≤ −η(t)q2(t)
(R2(τ−1(θ2(t)), t2)

R1(t, t1)

)α
+

r1/α(t)
4α[R1(t, t1)]α−1

(η′+(t))2

η(t)
.

Integrating this inequality from t3 to t gives∫ t

t3

[
η(s)q2(s)

(R2(τ−1(θ2(s)), t2)
R1(s, t1)

)α
− r1/α(s)

4α[R1(s, t1)]α−1

(η′+(s))2

η(s)

]
ds ≤ w(t3),

which contradicts (2.23).
If Case (II) holds, then again from Lemma 2.3, we have limt→∞ x(t) = 0. The

proof is complete. �

Next, we give oscillation results in the case when (1.3) holds.

Theorem 2.8. Assume that conditions (i)–(v), (1.3), and (2.1)-(2.3) hold. If there
exists a positive function η ∈ C1([t0,∞),R) such that

lim sup
t→∞

∫ t

T

[
η(s)q2(s)

(R2(s, t2)
R1(s, t1)

)α
−

η′+(s)
(R1(s, t1))α

]
ds =∞, (2.27)

for all t1, t2, T ∈ [t0,∞), where T > t2 > t1, then any solution of (1.1) is either
oscillatory or tends to zero as t→∞.

Proof. Let x be a nonoscillatory solution of (1.1). Without loss of generality, we
may assume that there exists t1 ∈ [t0,∞) such that x(t) > 0, x(τ(t)) > 0, and
x(φ(t, ξ)) > 0, (2.1)-(2.2) hold, and z(t) satisfies either Case (I) or Case (II) for
t ≥ t1 and ξ ∈ [a, b]. Assume that Case (I) holds. Proceeding as in the proof of
Theorem 2.5, we again arrive at (2.17). In view of (iv) and (1.3), we have

t ≤ τ−1(θ2(t)),

thus, in view of the fact that z(t) is increasing, we obtain

z(τ−1(θ2(t)))
z(t)

≥ 1. (2.28)

Using (2.28) in (2.17), we obtain that

w′(t) ≤
η′+(t)

(R1(t, t1))α
− η(t)q2(t)

zα(t)
(z′(t))α

for t ≥ t3. (2.29)
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In view of (2.11), (2.29) takes the form

w′(t) ≤
η′+(t)

(R1(t, t1))α
− η(t)q2(t)

(R2(t, t2)
R1(t, t1)

)α
for t ≥ t3. (2.30)

The remainder of the proof is similar to that of Theorem 2.5 and so we omit it. �

Theorem 2.9. Assume that conditions (i)–(v), (1.3), and (2.1)-(2.3) hold. If there
exists a positive function η ∈ C1([t0,∞),R) such that

lim sup
t→∞

∫ t

T

[
η(s)q2(s)

(R2(s, t2)
R1(s, t1)

)α
− 1

(α+ 1)α+1

r(s)(η′+(s))α+1

ηα(s)

]
ds =∞, (2.31)

for all t1, t2, T ∈ [t0,∞), where T > t2 > t1, then every solution of (1.1) is either
oscillatory or tends to zero as t→∞.

The above theorem follows from (2.28) and Theorem 2.6; we omit its proof.

Theorem 2.10. Let α ≥ 1. Assume that conditions (i)–(v), (1.3), and (2.1)-(2.3)
hold. If there exists a positive function η ∈ C1([t0,∞),R) such that

lim sup
t→∞

∫ t

T

[
η(s)q2(s)

(R2(s, t2)
R1(s, t1)

)α
− r1/α(s)

4α[R1(s, t1)]α−1

(η′+(s))2

η(s)

]
ds =∞, (2.32)

for all t1, t2, T ∈ [t0,∞), where T > t2 > t1, then every solution of (1.1) is either
oscillatory or tends to zero as t→∞.

The above theorem follows from (2.28) and Theorem 2.7; we omit its proof.

Example 2.11. Consider the neutral differential equation with distributed devi-
ating arguments(((

x(t) + 9x(
t

2
)
)′′)3)′

+
∫ 2

1

(t2 + ξ)x3(
t

2
− ξ)dξ = 0, t ≥ 1. (2.33)

Here we have α = 3, τ(t) = t/2, φ(t, ξ) = t/2 − ξ, q(t, ξ) = t2 + ξ, r(t) = 1, and
p(t) = 9. Then, we obtain

R1(t, t1) = R1(t, 1) = t− 1,

R2(t, t2) = R2(t, 2) = (t2 − 2t)/2,

R2(τ−1(t), t2) = R2(2t, 2) = 2t2 − 2t,

R2(τ−1(τ−1(t)), t2) = R2(4t, 2) = 8t2 − 4t,

R2(τ−1(θ2(t)), t2) = R2(t− 4, 2) = (t2 − 10t+ 24)/2,

and

p∗(t) = 8/81 > 0, (2.34)

p∗(t) =
1
9

(1− 1
9

8t2 − 4t
2t2 − 2t

) =
1
81

(5− 2
t− 1

) ≥ 1
27

> 0, for t ≥ t2 = 2. (2.35)

In view of (2.34) and (2.35) , we see that

q1(t) =
∫ 2

1

(t2 + ξ)
( 8

81
)3
dξ =

( 8
81
)3(t2 + 3/2), (2.36)

q2(t) ≥
∫ 2

1

(t2 + ξ)
( 1

27
)3
dξ ≥

( 1
27
)3(t2 + 3/2) for t ≥ t2 = 2, (2.37)
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respectively. With (2.36), condition (2.3) becomes∫ ∞
t0

∫ ∞
v

1
r1/α(u)

(∫ ∞
u

q1(s)ds
)1/α

du dv

=
∫ ∞

1

∫ ∞
v

(∫ ∞
u

( 8
81

)3

(s2 + 3/2)ds
)1/3

du dv =∞

because
∫∞
u

(s2 +3/2)ds =∞ for u ≥ 1, and so condition (2.3) holds. With η(t) = t
and (2.37), we see that∫ t

T

[
η(s)q2(s)(

R2(τ−1(θ2(s)), t2)
R1(s, t1)

)α −
η′+(s)

(R1(s, t1))α
]
ds

≥
∫ t

3

[
s(

1
27

)3(s2 + 3/2)
(s2 − 10s+ 24

2(s− 1)

)3

− 1
(s− 1)3

]
ds =∞,

because
∫ t

3
1

(s−1)3 ds <∞ and∫ t

3

[
s
( 1

27
)3(s2 + 3/2)

(s2 − 10s+ 24
2(s− 1)

)3]
ds =∞,

so condition (2.14) holds. Thus, all conditions of Theorem 2.5 are satisfied. There-
fore, by Theorem 2.5, any solution of (2.33) is either oscillatory or converges to
zero.

Example 2.12. Consider the neutral differential equation with distributed devi-
ating arguments(((

x(t)+
7t+ 8
t+ 1

x(t−2)
)′′)1/5)′

+
∫ 2

1

(t+ ξ)x1/5(t−2+
1
ξ

)dξ = 0, t ≥ 2. (2.38)

Here we have α = 1/5, τ(t) = t− 2, φ(t, ξ) = t− 2 + 1/ξ, q(t, ξ) = t+ ξ, r(t) = 1,
and p(t) = (7t+ 8)/(t+ 1). Then, we obtain

7 ≤ p(t) < 8,

R1(t, t1) = R1(t, 2) = t− 2,

R2(t, t2) = R2(t, 3) = (t2 − 4t+ 3)/2,

R2(τ−1(t), t2) = R2(t+ 2, 3) = (t2 − 1)/2,

R2(τ−1(τ−1(t)), t2) = R2(t+ 4, 3) = (t2 + 4t+ 3)/2,

and

p∗(t) ≥ 3/28 > 0, (2.39)

p∗(t) ≥
1
8
(
1− 1

7
t2 + 4t+ 3
t2 − 1

)
=

1
28
(
3− 2

t− 1
)
≥ 1

14
> 0, t ≥ t2 = 3. (2.40)

In view of (2.39) and (2.40), we see that

q1(t) ≥
∫ 2

1

(t+ ξ)
( 3

28
)1/5

dξ = (
3
28

)1/5(t+ 3/2), (2.41)

q2(t) ≥
∫ 2

1

(t+ ξ)
( 1

14
)1/5

dξ ≥
( 1

14
)1/5(t+ 3/2) for t ≥ t2 = 3, (2.42)
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respectively. By (2.41), condition (2.3) becomes∫ ∞
t0

∫ ∞
v

1
r1/α(u)

(∫ ∞
u

q1(s)ds
)1/α

du dv

≥
∫ ∞

2

∫ ∞
v

(∫ ∞
u

(
3
28

)1/5(s+ 3/2)ds
)5

du dv =∞

because
∫∞
u

(s+ 3/2)ds =∞ for u ≥ 2; so condition (2.3) holds.
With η(t) = c > 0, where c is a constant, and (2.42), we see that∫ t

T

[
η(s)q2(s)

(R2(s, t2)
R1(s, t1)

)α
− 1

(α+ 1)α+1

r(s)(η′+(s))α+1

ηα(s)

]
ds

≥
∫ t

4

[
c
( 1

14
)1/5(s+ 3/2)

(s2 − 4s+ 3
2(s− 2)

)1/5]
ds

>

∫ t

4

[
c
( 1

14
)1/5(s− 2)

(s2 − 4s+ 3
2(s− 2)

)1/5]
ds =∞;

so condition (2.31) holds. Now, all conditions of Theorem 2.9 are satisfied. There-
fore, by Theorem 2.9, a solution of (2.38) is either oscillatory or converges to zero.

Remark 2.13. The results of this paper can easily be extended to the third order
neutral dynamic equations with distributed deviating arguments of the form(

r(t)
(

(x(t) + p(t)x(τ(t)))∆∆
)α)∆

+
∫ b

a

q(t, ξ)xα(φ(t, ξ))∆ξ = 0,

on an arbitrary time scale T with sup T =∞. Where, α > 0 is the ratio of odd pos-
itive integers, r ∈ Crd(T, (0,∞)) with

∫∞
t0
r−1/α(s)∆s = ∞, p ∈ Crd(T, (0,∞))

with p(t) ≥ 1 and p(t) 6≡ 1 eventually, τ : T → T is strictly increasing and
limt→∞ τ(t) = ∞, q(t, ξ) ∈ Crd(T × [a, b]T, [0,∞)), [a, b]T = {ξ ∈ T : a ≤ ξ ≤ b},
φ(t, ξ) ∈ Crd(T× [a, b]T,T) is nonincreasing in ξ, and limt→∞ φ(t, ξ) =∞, ξ ∈ [a, b].
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