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MULTIPLE POSITIVE SOLUTIONS FOR

SCHRÖDINGER-POISSON SYSTEMS INVOLVING

CONCAVE-CONVEX NONLINEARITIES

HAINING FAN

Abstract. In this article, we study the existence of multiple positive solu-
tions for Schrödinger-Poisson systems involving concave-convex nonlinearities

and sign-changing weight potentials. With the help of Nehari manifold and

Ljusternik-Schnirelmann category theory, we investigate how the coefficient
g(x) of the critical nonlinearity affects the number of positive solutions. Fur-

thermore, we obtain a relationship between the number of positive solutions

and the topology of the global maximum set of g.

1. Introduction

In present article, we study the existence of multiple positive solutions to the
Schrödinger-Poisson system

−∆u+ l(x)φu = fλ(x)uq−1 + g(x)u5, x ∈ Ω,

−∆φ = l(x)u2, x ∈ Ω,

φ = u = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ R3 is a bounded domain with smooth boundary and 1 < q < 2. More-
over, l and g are continuous functions on Ω. The function fλ(x) = λf+ +f−, where
λ > 0 is a small parameter and f± = ±max{±f(x), 0}.

In recent years, the nonlinear Schrödinger-Poisson system

−∆u+ V (x)u+ l(x)φu = f(x, u),

−∆φ = l(x)u2,
(1.2)

has been widely investigated and it is well known that it has a strong physical mean-
ing because they appear in quantum mechanics models (see [4, 18]) and in semicon-
ductor theory [19, 21]. In particular, system (1.2) was introduced in [2, 3] as a model
describing solitary waves, for nonlinear stationary equations of Schrödinger type in-
teracting with an electrostatic field, and are usually known as Schrödinger-Poisson
systems. We refer to [2] for more details on physical aspects. Many researches
have been devoted to the study of (1.2) in the recent literature, see for example,
[12, 13, 15, 22, 23, 25] and the references therein.
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On a bounded domain, Azzollini [1] studied the Schrödinger-Poisson system

−∆u+ εqφf(u) = η|u|p−1, x ∈ Ω,

−∆φ = 2qF (u), x ∈ Ω,

φ = u = 0, x ∈ ∂Ω,

(1.3)

where Ω ⊂ R3 is a bounded domain with smooth boundary ∂Ω, 1 < p < 5, q > 0,

ε, η = ±1, f : R → R is a continuous function and F (t) =
∫ t

0
f(s)ds. By using

the method of a cut-off function and variational arguments, the authors proved the
existence and multiplicity results based on f a subcritical growth condition and
they also considered the existence and nonexistence results under the critical case.
Recently, Lei et al. [14] considered the Schrödinger-Poisson system

−∆u+ λφu = λuq−1 + u5, x ∈ Ω,

−∆φ = u2, x ∈ Ω,

φ = u = 0, x ∈ ∂Ω,

(1.4)

where Ω ⊂ R3 is a bounded domain with smooth boundary and λ > 0 is a real pa-
rameter, 1 < q < 2. By using the Ekelands variational principle and the Mountain
Pass Theorem, they proved that (1.4) has at least two positive solutions provided
λ enough small.

Under the assumption l(x) 6= 0, (1.1) can be regarded as a perturbation problem
of the problem

−∆u = fλ(x)uq−1 + g(x)u5, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.5)

It is well known that the existence of positive solutions of (1.5) is affected by the
topology of the global maximum set of g. This has been the focus of a great
deal of research by several authors. In particular, fλ and g satisfy the following
assumptions:

(A1) There exist k points a1, a2, . . . , ak in Ω such that

g(ai) = max
x∈Ω

g(x) = 1 for 1 ≤ i ≤ k,

and for a positive number ρ with ρ > 3 such that g(x)−g(ai) = O(|x−ai|ρ)
as x→ ai uniformly in i.

(A2) Choosing ρ0 > 0 such that

Bρ0(ai)
⋂
Bρ0(aj) = ∅ for i 6= j and 1 ≤ i, j ≤ k,

and ∪ki=1Bρ0(ai) ⊂ Ω, where Bρ0(ai) = {x ∈ R3; |x− ai| ≤ ρ0}.
(A3) fλ(x), g(x) > 0 for x ∈ ∪ki=1Bρ0(ai).

Fan [6] proved that (1.5) admits at least k + 1 positive solutions when fλ is small
enough. Lin [20] Li and Wu [16] also proved a similar result. There are several
generalizations of this result, we refer to [7, 8, 17].

A natural question now is whether the same existence results as [15-20] occur
for problem (1.1). Motivated by this idea, we aim to investigate how the coefficient
g(x) of the critical nonlinearity affects the number of positive solutions of (1.1) in
this work. We consider the relationship between the number of positive solutions
and the topology of global maximum set of g by the idea of category. Moreover,
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we should point out that the appearance of the poisson equation prevents us from
using the variational methods that used in [6, 7, 8, 16, 17, 20] in a standard way.

To state our main result, we introduce precise conditions on l, fλ and g:

(A4) l(x), g(x) > 0 on Ω.
(A5) There exist a non-empty closed set M = {z ∈ Ω : g(z) = maxx∈Ω g(x) = 1}

and a positive number ρ > 3 such that g(z)− g(x) = O(|x− z|ρ) as x→ z
and uniformly in z ∈M .

(A6) fλ(x) > 0 for x ∈M .

Remark 1.1. Let Mr = {x ∈ R3; dist(x,M) < r} for r > 0. Then by (A4)–(A6),
there exist C0, r0 > 0 such that

fλ(x) > 0, ∀x ∈Mr0 ⊂ Ω,

g(z)− g(x) ≤ C0|x− z|ρ ∀x ∈ Br0(z)

uniformly in z ∈M , where Br0(z) = {x ∈ R3 : |x− z| < r0}.

The main result of this work in the following theorem.

Theorem 1.2. Assume (A4)–(A6) hold. Then for each δ < r0, there exists Λδ > 0
such that if λ ∈ (0,Λδ), (1.1) has at least catMδ

(M) + 1 distinct positive solutions,
where cat means the Ljusternik-Schnirelmann category (see [24]).

Remark 1.3. Suppose (A1)–(A3) hold. By Theorem 1.2, we obtain that (1.1) has
at least k + 1 positive solutions when λ is small enough.

Remark 1.4. Suppose l(x) = f(x) ≡ λ and g(x) ≡ 1, Then Theorem 1.2 is the
result of the recent paper [14]. We should point out that the condition that l(x) is
small enough is important in [14]. However, we do not need this condition due to
our precise estimates in this paper. Moreover, we assume that fλ(x) maybe sign-
changing in this work. Lei and Suo obtained that (1.1) has at least two positive
solutions in [14], while we will obtain a relationship between the number of positive
solutions and the topology of global maximum set of g in this paper.

This article is organized as follows. In Section 2, we give some preliminary
results and obtain the first positive solution of (1.1). In Section 3, we present some
technical results and useful estimates which are crucial in the proof of Theorem 1.2.
In Section 4, we use the Ljusternik-Schnirelmann category theory to prove Theorem
1.2. Throughout this paper we denote by → (resp. ⇀) the strong (resp. weak)
convergence. We will use C,C0, C1, C2, . . . to denote various positive constants.

2. Preliminaries

Throughout this article by | · |r we denote the Lr-norm. On the space H1
0 (Ω) we

consider the norm

‖u‖ =
(∫

Ω

|∇u|2dx
)1/2

.

Let S be the best Sobolev constant of the embedding H1
0 (Ω) ↪→ L6(Ω) given by

S := inf
{∫

Ω

|∇u|2dx;u ∈ H1
0 (Ω), |u|6 = 1

}
.
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It is well known that S is independent of Ω and is never achieved except when
Ω = R3. Moreover, S is achieved by the function

vε(x) =
(3ε)1/4

(ε+ |x|2)1/2
, for any ε > 0. (2.1)

We obtain that ∫
R3

|∇vε|2dx =

∫
R3

|vε|6dx = S3/2. (2.2)

For every u ∈ H1
0 (Ω), the Lax-Milgram theorem implies that there exists a unique

solution φu ∈ H1
0 (Ω) for the second equation of (1.1). We substitute φu into the

first equation of (1.1), then (1.1) transforms into the equation

−∆u+ l(x)φuu = fλ(x)uq−1 + g(x)u5, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(2.3)

We can easily proved that (u, φ) ∈ H1
0 (Ω)×H1

0 (Ω) is a solution of (1.1) if and only
if u solves (2.3) and φ = φu. The energy functional associated with (2.3) is defined
by

Jλ(u) =
1

2
‖u‖2 +

1

4

∫
Ω

l(x)φuu
2dx− 1

q

∫
Ω

fλ(x)|u|qdx− 1

6

∫
Ω

g(x)|u|6dx.

Moreover, if u ∈ H1
0 (Ω) is called a weak solution of (2.3), then (u, φu) is a solution

of (1.1) and

〈J ′λ(u), v〉 =

∫
Ω

∇u∇v dx+

∫
Ω

l(x)φuuv dx−
∫

Ω

fλ(x)uq−1v dx−
∫

Ω

g(x)u5v dx = 0

for all v ∈ H1
0 (Ω). At first, we introduce the following lemma (see [2, 14]).

Lemma 2.1. For every u ∈ H1
0 (Ω), there exists a unique φu ∈ H1

0 (Ω) solution of

−∆φ = l(x)u2, x ∈ Ω,

φ = 0, x ∈ ∂Ω,

and

(i) ‖φu‖2 =
∫

Ω
l(x)φuu

2dx.
(ii) φu ≥ 0. Moreover, φu > 0 when u 6= 0.

(iii) For each t 6= 0, φtu = t2φu.
(iv)

∫
Ω
l(x)φuu

2dx = ‖φu‖2 ≤ S−1|u|412/5.

(v) Assume that un ⇀ u in H1
0 (Ω), then φun → φu in H1

0 (Ω) and∫
Ω

l(x)φununv dx→
∫

Ω

l(x)φuuv dx

for every v ∈ H1
0 (Ω).

(vi) Set L(u) =
∫

Ω
l(x)φuu

2dx then L : H1
0 (Ω)→ H1

0 (Ω) is C1 and

〈L′(u), v〉 = 4

∫
Ω

l(x)φuuvdx, ∀v ∈ H1
0 (Ω).

As Jλ is not bounded from below on H1
0 (Ω), we consider the behaviors of Jλ on

the Nehari manifold

Nλ := {u ∈ H1
0 (Ω)\{0} : 〈J ′λ(u), u〉 = 0},
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where 〈, 〉 denotes the usual duality between H1
0 (Ω) and H−1. Clearly, u ∈ Nλ if

and only if

‖u‖2 +

∫
Ω

l(x)φuu
2dx =

∫
Ω

fλ(x)|u|qdx+

∫
Ω

g(x)|u|6dx. (2.4)

On the Nehari manifold Nλ, by (2.4), Sobolev and Young inequalities, it follows

Jλ(u) = Jλ(u)− 1

4
〈J ′λ(u), u〉

=
1

4
‖u‖2 +

1

12

∫
Ω

g(x)|u|6dx−
(1

q
− 1

4

) ∫
Ω

fλ(x)|u|qdx

≥ 1

4
‖u‖2 − λ

(1

q
− 1

4

)
C|f+|∞‖u‖q

≥ 1

4
‖u‖2 − 1

4
‖u‖2 −Dλ

2
2−q

= −Dλ
2

2−q ,

(2.5)

where D denotes a positive constant independent of u ∈ H1
0 (Ω). Let

ψλ(u) := 〈J ′λ(u), u〉 = ‖u‖2+

∫
Ω

l(x)φuu
2dx−

∫
Ω

fλ(x)|u|qdx−
∫

Ω

g(x)|u|6dx. (2.6)

Then for u ∈ Nλ, we have

〈ψ′λ(u), u〉 = 2‖u‖2 + 4

∫
Ω

l(x)φuu
2dx− q

∫
Ω

fλ(x)|u|qdx− 6

∫
Ω

g(x)|u|6dx

= (4− q)
∫

Ω

fλ(x)|u|qdx− 2‖u‖2 − 2

∫
Ω

g(x)|u|6dx

= (2− q)‖u‖2 + (4− q)
∫

Ω

l(x)φuu
2dx+ (q − 6)

∫
Ω

g(x)|u|6dx.

(2.7)

As in [6, 7, 8, 9, 16, 20], we split Nλ into three parts:

N+
λ = {u ∈ Nλ; 〈ψ′λ(u), u〉 > 0},

N0
λ = {u ∈ Nλ; 〈ψ′λ(u), u〉 = 0},

N−λ = {u ∈ Nλ; 〈ψ′λ(u), u〉 < 0}.

Then we have the following results.

Lemma 2.2. Suppose that u0 is a local minimizer for Jλ on Nλ and u0 6∈ N0
λ.

Then J ′λ(u0) = 0.

Proof. If u0 is a local minimizer for Jλ on Nλ, then u0 is a solution of the opti-
mization problem

minimize Jλ(u) subject to {u ∈ H1
0 (Ω)\{0};ψλ(u) = 0}.

Hence by the theory of Lagrange multipliers, there exists a θ ∈ R such that J ′λ(u0) =
θψ′λ(u0) in H−1. Thus 〈J ′λ(u0), u0〉 = θ〈ψ′λ(u0), u0〉. Moreover, because of u0 6∈ N0

λ,
we obtain 〈ψ′λ(u0), u0〉 6= 0, and so θ = 0. �

Motivated by Lemma 2.2, we will obtain conditions for N0
λ = ∅.

Lemma 2.3. There exists Λ1 > 0 such that N0
λ = ∅ for λ ∈ (0,Λ1).
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Proof. Suppose that N0
λ 6= ∅ for all λ > 0. If u ∈ N0

λ, then from (2.6)-(2.7) and
Sobolev inequality, we obtain

2‖u‖2 ≤ 2‖u‖2 + 2

∫
Ω

g(x)|u|6dx = (4− q)
∫

Ω

fλ(x)|u|qdx ≤ λ(4− q)CS−
q
2 ‖u‖q

and

‖u‖2 ≤ 6− q
2− q

∫
Ω

g(x)|u|6dx ≤ 6− q
2− q

S−3‖u‖6.

Thus we obtain

C1 ≤ ‖u‖ ≤ λ
1

2−qC2,

where C1, C2 > 0 and are independent of the choice of u and λ. For λ is sufficient
small, this is a contradiction. Hence, there exists Λ1 > 0 such that for λ ∈ (0,Λ1),
we have N0

λ = ∅. �

Now we can write Nλ = N+
λ ∪ N

−
λ and define αλ = infu∈Nλ Jλ(u), α+

λ =

infu∈N+
λ
Jλ(u) and α−λ = infu∈N−λ

Jλ(u).

Lemma 2.4. We have the following statements:

(i) α+
λ < 0.

(ii) there exists Λ2 ∈ (0,Λ1) such that α−λ > d0 for some d0 > 0 and λ ∈ (0,Λ2).

In particular, α+
λ = infu∈Nλ Jλ(u) for all λ ∈ (0,Λ2).

Proof. (i) Let u ∈ N+
λ , then we have

(2− q)‖u‖2 + (4− q)
∫

Ω

l(x)φuu
2dx > (6− q)

∫
Ω

g(x)|u|6dx.

Thus,

Jλ(u) = Jλ(u)− 1

q
〈J ′λ(u), u〉

=
(1

2
− 1

q

)
‖u‖2 +

(1

4
− 1

q

) ∫
Ω

l(x)φuu
2dx+

(1

q
− 1

6

) ∫
Ω

g(x)|u|6dx

<
q − 2

4q
‖u‖2 +

q − 4

4q

∫
Ω

l(x)φuu
2dx+

6− q
6q

∫
Ω

g(x)|u|6dx

< −6− q
12q

∫
Ω

g(x)|u|6dx < 0.

Thus αλ ≤ α+
λ < 0.

(ii) Let u ∈ N−λ , then we obtain from (2.7) that

(2− q)‖u‖2 ≤ (2− q)‖u‖2 + (4− q)
∫

Ω

l(x)φuu
2dx

< (6− q)
∫

Ω

|u|6dx ≤ (6− q)S−3‖u‖6.

This implies

‖u‖ ≥
(2− q

6− q
S3
)1/4

, (2.8)

for any u ∈ N−λ . From (2.5), we obtain that

Jλ(u) ≥ ‖u‖q
(1

4
‖u‖2−q − λ

(1

q
− 1

4

)
C|f+|∞

)
(2.9)
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Since 1 < q < 2, (2.7) and (2.8) implies that there exists Λ2 ∈ (0,Λ1) such that
α−λ > d0 for some d0 > 0 and λ ∈ (0,Λ2). �

For each u ∈ H1
0 (Ω) with

∫
Ω
g(x)|u|6dx > 0, we write

tmax =
(∫

Ω
l(x)φuu

2dx+

√(∫
Ω
l(x)φuu2dx

)2
+ 4‖u‖2

∫
Ω
g(x)|u|6dx

2
∫

Ω
g(x)|u|6dx

)1/2

.

Then we have the following Lemma.

Lemma 2.5. For each u ∈ H1
0 (Ω) with

∫
Ω
g(x)|u|6dx > 0, there exists Λ3 ∈ (0,Λ2)

such that we have the following results:
(i) If

∫
Ω
fλ|u|qdx ≤ 0, then there is a unique t− = t−(u) > tmax such that

t−u ∈ N−λ and Jλ(tu) is increasing on (0, t−) and decreasing on (t−,∞). Moreover,
Jλ(t−u) = supt≥0 Jλ(tu).

(ii) If
∫

Ω
fλ|u|qdx > 0, then there is a unique 0 < t+ = t+(u) < tmax < t− such

that t−u ∈ N−λ , t+u ∈ N
+
λ , Jλ(tu) is decreasing on (0, t+), increasing on (t+, t−)

and decreasing on (t−,∞). Moreover, Jλ(t+u) = inf0≤t≤tmax
Jλ(tu); Jλ(t−u) =

supt≥t+ Jλ(tu).

Proof. Fix u ∈ H1
0 (Ω) with

∫
Ω
g(x)|u|6dx > 0. Let

s(t) = t2−q‖u‖2 + t4−q
∫

Ω

l(x)φuu
2dx− t6−q

∫
Ω

g(x)|u|6dx,

for t ≥ 0. We have s(0) = 0, and s(t)→ −∞ as t→∞. The function s(t) achieves
its maximum at tmax, increasing in [0, tmax) and decreasing in (tmax,∞). Moreover,
we obtain

s(tmax) ≥ max
t≥0

(
t2−q‖u‖2 − t6−q

∫
Ω

g(x)|u|6dx
)

=
( (2− q)‖u‖2

(6− q)
∫

Ω
g(x)|u|6dx

) 2−q
4 ‖u‖2

−
( (2− q)‖u‖2

(6− q)
∫

Ω
g(x)|u|6dx

) 6−q
4

∫
Ω

g(x)|u|6dx

= ‖u‖q
[(2− q

6− q
) 2−q

4 −
(2− q

6− q
) 6−q

4

]( ‖u‖6∫
Ω
g(x)|u|6dx

) 2−q
4

≥ ‖u‖q
( 4

6− q
)(2− q

6− q
) 2−q

4 D(S),

(2.10)

where D(S) > 0 is a constant depends on S. We consider two cases now.
(i)
∫

Ω
fλ|u|qdx ≤ 0. There is a unique t− > tmax such that s(t−) =

∫
Ω
fλ|u|qdx

and s′(t−) < 0, which implies t−u ∈ N−λ . Because of t > tmax, we have

(2− q)‖tu‖2 + (4− q)
∫

Ω

l(x)φ(tu)(tu)2dx− (6− q)
∫

Ω

g(x)|tu|6dx < 0

and

d

dt
Jλ(tu)|t=t−

=
{
t‖u‖2 + t3

∫
Ω

l(x)φuu
2dx− tq−1

∫
Ω

fλ|u|qdx− t5
∫

Ω

g(x)|u|6dx
}
|t=t− = 0.
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Thus Jλ(tu) is increasing on (0, t−) and decreasing on (t−,∞). Moreover, Jλ(t−u) =
supt≥0 Jλ(tu).

(ii)
∫

Ω
fλ|u|qdx > 0. By (2.10), we know that there exists Λ3 > 0 such that

s(0) = 0 <

∫
Ω

λf+|u|qdx ≤ λC|f+|∞S−
q
2 ‖u‖q (2.11)

< ‖u‖q
( 4

6− q
)(2− q

6− q
) 2−q

4 D(S) ≤ s(tmax) (2.12)

for λ ∈ (0,Λ3). It follows that there are a unique t+ and a unique t− such that for
0 < t+ < tmax < t−, and we obtain

s(t+) =

∫
Ω

fλ|u|qdx = s(t−)

and s′(t+) > 0 > s′(t−).
Similarly as in case (i), we have t+u ∈ N+

λ , t−u ∈ N−λ , and Jλ(t−u) ≥ Jλ(tu) ≥
Jλ(t+u) for each t ∈ [t+, t−]. Furthermore, we can get Jλ(t+u) ≤ Jλ(tu) for each
t ∈ [0, t+]. In other words, Jλ(tu) is decreasing on (0, t+), increasing on (t+, t−)
and decreasing on (t−,∞) again. Moreover,

Jλ(t+u) = inf
0≤t≤tmax

Jλ(tu); Jλ(t−u) = sup
t≥t+

Jλ(tu).

This completes the proof. �

Next we establish that Jλ satisfies the (PS)c-condition for c ∈ (−∞, α+
λ + 1

3S
3/2).

Lemma 2.6. For λ ∈ (0,Λ3), Jλ satisfies the (PS)c-condition for c ∈ (−∞, α+
λ +

1
3S

3/2).

Proof. Let {un} ⊂ H1
0 (Ω) be a (PS)c-sequence for Jλ and c ∈ (−∞, α+

λ + 1
3S

3/2).
Since

o(‖un‖) + α+
λ +

1

3
S3/2 = Jλ(un)− 1

4
〈J ′λ(un), un〉

=
1

4
‖un‖2 +

1

12

∫
Ω

g(x)|un|6dx− λ
(

1

q
− 1

4

)∫
Ω

fλ|u|qdx

≥ 1

4
‖un‖2 − λ

(
1

q
− 1

4

)
C‖un‖q,

we obtain that {un} is bounded in H1
0 (Ω). Thus, there exist a subsequence still

denoted by {un} and u ∈ H1
0 (Ω) such that un ⇀ u weakly in H1

0 (Ω). By the
compactness of Sobolev embedding, we obtain∫

Ω

fλ|un|qdx =

∫
Ω

fλ|u|qdx+ o(1);

‖un − u‖2 = ‖un‖2 − ‖u‖2 + o(1);∫
Ω

g|un − u|6dx =

∫
Ω

g|un|6dx−
∫

Ω

g|u|6dx+ o(1).

Moreover, we obtain from Lemma 2.1 that∫
Ω

l(x)φunu
2
ndx→

∫
Ω

l(x)φuu
2dx,
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Ω

l(x)φununudx→
∫

Ω

l(x)φuu
2dx,

as n → ∞. Then we can obtain J ′λ(u) = 0 in H−1. Since Jλ(un) = c + o(1) and
J ′λ(un) = o(1) in H−1, we deduce that

1

2
‖un − u‖2 −

1

6

∫
Ω

g|un − u|6dx = c− Jλ(u) + o(1) (2.13)

and

o(1) = 〈J ′λ(un), un − u〉 = 〈J ′λ(un)− J ′λ(u), un − u〉

= ‖un − u‖2 −
∫

Ω

g|un − u|6dx+ o(1).

Now we may assume that

‖un − u‖2 → a and

∫
Ω

g|un − u|6dx→ a as n→∞,

for some a ∈ [0,+∞).
Suppose a 6= 0 and notice the fact g ≤ 1, using the Sobolev embedding theorem

and passing to the limit as n→∞, we have a ≥ Sa1/3, i.e.,

a ≥ S3/2. (2.14)

Then by (2.10)-(2.13) and u ∈ Nλ ∪ {0},

c = Jλ(u) +
a

N
≥ α+

λ +
1

3
S3/2,

which contradicts the definition of c. Hence a = 0, i.e., un → u strongly in H1
0 (Ω).

�

Next we obtain the existence of a local minimizer for Jλ on N+
λ .

Theorem 2.7. For each λ ∈ (0,Λ3), Jλ has a minimizer u+
λ in N+

λ which satisfies:

(i) u+
λ is a positive solution of (1.1);

(ii) Jλ(u+
λ ) = α+

λ ;

(iii) Jλ(u+
λ )→ 0 as λ→ 0;

(iv) ‖u+
λ ‖ → 0 as λ→ 0.

Proof. Similarly as [9, Lemma 4.7], we can obtain a (PS)α+
λ

-sequence for Jλ defined

by {un} ⊂ Nλ. By Lemma 2.6, there exists a subsequence still denoted by {un}
and u+

λ ∈ H1
0 (Ω) such that un → u+

λ in H1
0 (Ω) as n→∞. Since N0

λ = ∅, we deduce

that u+
λ ∈ N

+
λ and Jλ(u+

λ ) = α+
λ < 0. Note that Jλ(un) = Jλ(|un|), we obtain that

u+
λ ≥ 0 and u+

λ 6≡ 0. Recalling that φu+
λ
> 0 and φu+

λ
∈ C0(Ω), then the strong

maximum principle suggests that u+
λ > 0 in Ω. Then we can obtain the assertion

(i) and (ii).
By (2.5), we have

0 > Jλ(u+
λ ) ≥ −Dλ

2
2−q .

This implies Jλ(u+
λ )→ 0 as λ→ 0+. We obtain (iii).

Now we show (iv). Since u+
λ ∈ N

+
λ and (2.6), we know

‖u+
λ ‖

2 ≤ 4− q
2

∫
Ω

fλ|u|qdx ≤ λC|f+|∞‖u+
λ ‖

q. (2.15)
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Moreover, because Jλ is coercive and bounded from below on Nλ, {u+
λ }λ is bounded

in H1
0 (Ω). It follows from (2.15) that

‖u+
λ ‖

2−q ≤ Cλ
1

2−q .

Then ‖u+
λ ‖ → 0, as λ→ 0+. �

3. Technical results

In this Section, we will recall and prove some lemmas which are crucial in the
proof of the main theorem.

For b > 0, we define

Jb∞(u) =
1

2
‖u‖2 − b

6

∫
Ω

g|u|6dx,

N b
∞ = {u ∈ H1

0 (Ω)\{0}; 〈(Jb∞)′(u), v〉 = 0}.

Lemma 3.1. For each u ∈ N−λ , we have

(i) There is a unique tbu such that tbuu ∈ N b
∞ and

max
t≥0

Jb∞(tu) = Jb∞(tbuu) =
1

3
b−1/2

( ‖u‖6∫
Ω
g|u|6dx

)1/2

.

(ii) For µ ∈ (0, 1), there is a unique t1u such that t1uu ∈ N1
∞. Moreover,

J1
∞(t1uu) ≤ (1− µ)−3/2

(
Jλ(u) +

2− q
2q

µ
q
q−2λ

2
2−qC

)
.

Proof. (i) For each u ∈ N−λ , let

h(t) = Jb∞(tu) =
t2

2
‖u‖2 − b

6
t6
∫

Ω

g|u|6dx.

We have h(t)→ −∞ as t→∞,

h′(t) = t‖u‖2 − bt5
∫

Ω

g|u|6dx,

h′′(t) = t‖u‖2 − 5bt4
∫

Ω

g|u|6dx.

Set

tbu =
( ‖u‖2∫

Ω
bg|u|6dx

)1/4

> 0.

Then h′(tbu) = 0, tbuu ∈ N b
∞ and h′′(tbu) = −4‖u‖2 < 0. Hence there is a unique

tbu > 0 such that tbuu ∈ N b
∞ and

max
t≥0

Jb∞(tu) = Jb∞(tbuu) =
1

3
b−1/2

( ‖u‖6∫
Ω
g|u|6dx

)−1/2

.

(ii) For µ ∈ (0, 1), we have∫
Ω

λf+|tbuu|qdx ≤ λC‖tbuu‖q

≤ 2− q
2

(λCµ−
q
2 )

2
2−q +

q

2

(
µ
q
2 ‖tbuu‖q

)2/q

=
2− q

2
µ

q
q−2Cλ

2
2−q +

qµ

2
‖tbuu‖2.
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Then letting b = 1
1−µ , by part (i), we have

Jλ(u) = max
t≥0

Jλ(tu) ≥ Jλ(t
1

1−µ
u u)

≥ 1− µ
2
‖(t

1
1−µ
u u)‖2 +

1

4
(t

1
1−µ
u )4

∫
Ω

l(x)φuu
2dx

− 1

6
(t

1
1−µ
u )6

∫
Ω

g|u|6dx− 2− q
2q

µ
q
q−2Cλ

2
2−q

≥ (1− µ)J
1

1−µ
∞ (t

1
1−µ
u u)− 2− q

2q
µ

q
q−2Cλ

2
2−q

= (1− µ)3/2 1

3

( ‖u‖6∫
Ω
g|u|6dx

)−1/2

− 2− q
2q

µ
q
q−2Cλ

2
2−q

= (1− µ)3/2J1
∞(t1uu)− 2− q

2q
µ

q
q−2Cλ

2
2−q .

This completes the proof. �

Let η(x) ∈ C∞0 (R3) be a radially symmetric function with 0 ≤ η ≤ 1, |∇η| ≤ C,
and

η(x) =

{
1, if |x| ≤ r0

2 ,

0, if |x| ≥ r0.

For any z ∈M , we define

ωε,z(x) = η(x− z)vε(x− z).

where vε(x) is given by (2.1). From the same arguments of [24] we know that∫
Ω

|∇ωε,z|2dx = S
3
2 +O(ε1/2) (3.1)

and

C1ε
q/4 ≤

∫
Ω

|ωε,z|qdx ≤ C2ε
q/4, 1 ≤ q < 3,

C3ε
q/4| ln ε| ≤

∫
Ω

|ωε,z|qdx ≤ C4ε
q/4| ln ε|, q = 3,

C5ε
(6−q)/4 ≤

∫
Ω

|ωε,z|qdx ≤ C6ε
(6−q)/4, 3 < q < 6.

Lemma 3.2. We have ∫
Ω

g|ωε,z|6dx = S
3
2 +O(ε3/2)

For a proof of the above lemma, see [10, Lemma 3.1].

Lemma 3.3. There exists ε0 > 0 small enough such that for ε ∈ (0, ε0), we have
σ(ε0) > 0 and

sup
t≥0

Jλ(u+
λ + tωε,z) < α+

λ +
1

3
S3/2 − σ(ε0)

uniformly for z ∈M . Furthermore, there exists t−z > 0 such that

u+
λ + t−z ωε,z ∈ N−λ , ∀z ∈M.
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Proof. It is easy to see that

lim
t→0

Jλ(u+
λ + tωε,z) = α+

λ < 0 and lim
t→∞

Jλ(u+
λ + tωε,z) = −∞,

for all ε > 0 small enough. Thus, there exists t0 > 0 small enough and t1 > 0 large
enough such that

Jλ(u+
λ + tωε,z) < α+

λ +
1

3
S3/2, for t ∈ (0, t0] ∪ [t1,+∞).

We only need to prove that

Jλ(u+
λ + tωε,z) < α+

λ +
1

3
S3/2, for t ∈ [t0, t1].

It is easy to see that for 1 < q < 2 it holds

(a+ b)q ≥ aq + qaq−1b, (a+ b)6 ≥ a6 + b6 + 6a5b+ 6ab5, for a, b ≥ 0. (3.2)

Since u+
λ is a solution of (1.1), it holds∫

Ω

∇u+
λ∇ωε,zdx+

∫
Ω

l(x)φu+
λ
u+
λ ωε,zdx

−
∫

Ω

fλ(x)(u+
λ )q−1ωε,zdx−

∫
Ω

g(x)(u+
λ )5ωε,zdx = 0.

(3.3)

It follows from Theorem 2.7 and (3.2)-(3.3) that

Jλ(u+
λ + tωε,z)

= Jλ(u+
λ ) +

t2

2
‖ωε,z‖2 + t

∫
Ω

[∇u+
λ∇ωε,z + lφu+

λ
u+
λ ωε,z

− g(u+
λ )5ωε,z − fλ(u+

λ )q−1ωε,z]dx

+
1

4

∫
Ω

l[φu+
λ+tωε,z

(u+
λ + tωε,z)

2 − φu+
λ

(u+
λ )2 − 4φu+

λ
u+
λ (tωε,z)]dx

− 1

6

∫
Ω

g[(u+
λ + tωε,z)

6 − (u+
λ )6 − 6(u+

λ )5tωε,z]dx

− 1

q

∫
Ω

fλ[(u+
λ + tωε,z)

q − (u+
λ )q − q(u+

λ )q−1tωε,z]dx

≤ α+
λ + k(t) + h(t),

(3.4)

where

k(t) =
t2

2
‖ωε,z‖2 −

t6

6

∫
Ω

g(ωε,z)
6dx− t5

∫
Ω

gu+
λ (ωε,z)

5dx,

h(t) =
1

4

∫
Ω

l[φu+
λ+tωε,z

(u+
λ + tωε,z)

2 − φu+
λ

(u+
λ )2 − 4φu+

λ
u+
λ (tωε,z)]dx.

Note that ∫
Ω

gu+
λ (ωε,z)

5dx =

∫
Ω

gu+
λ (η(x− z)vε(x− z))5dx

≥ C
∫
B2ρ

(3ε)5/4

(ε+ |x|2)5/2
dx

≥ Cε1/4

∫ ρ

0

r2

(1 + r2)
5
2

dr

≥ Cε1/4,
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for some C > 0, we have

k(t) ≤ t2

2
‖ωε,z‖2 −

t6

6

∫
Ω

g(ωε,z)
6dx− Cε1/4

≤ 1

3

( ‖ωε,z‖2( ∫
Ω
g(ωε,z)6dx

)1/3)3/2

− Cε1/4

≤ 1

3

(
S3/2 +O(ε1/2)

(S3/2 +O(ε3/2))1/3

)3/2

− Cε1/4

≤ 1

3
S3/2 +O(ε1/2)− Cε1/4.

(3.5)

We claim that

h(t) ≤ Cε1/2, for t ∈ [t0, t1]. (3.6)

In fact, by calculations we arrive at

h(t) =
1

4

∫
Ω

l[φu+
λ+tωε,z

(u+
λ + tωε,z)

2 − φu+
λ

(u+
λ )2 − 4φu+

λ
u+
λ (tωε,z)]dx

= t

∫
Ω

lωε,zu
+
λ φtωε,zdx+

t2

2

∫
Ω

lφu+
λ

(ωε,z)
2dx+

t2

4

∫
Ω

lφtωε,z (ωε,z)
2dx

+ t2
∫

Ω×Ω

1

|x− y|
l(y)u+

λ (y)ωε,z(y)l(x)u+
λ (x)ωε,z(x) dx dy.

(3.7)

Using the Hölder inequality, (3.1) and the fact that t ∈ [t0, t1], we obtain that∫
Ω

lωε,zu
+
λ φtωε,zdx ≤ |l|∞|φωε,z |6|u

+
λ |12/5|ωε,z|12/5 ≤ C|ωε,z|312/5 ≤ Cε

3/4; (3.8)∫
Ω

lφtωε,z (ωε,z)
2dx ≤ |l|∞|φtωε,z |6|ωε,z|212/5 ≤ C|ωε,z|

4
12/5 ≤ Cε; (3.9)∫

Ω

lφu+
λ

(ωε,z)
2dx ≤ |l|∞|φu+

λ
|6|ωε,z|212/5 ≤ Cε

1/2. (3.10)

Moreover, by [9, Lemma 2, P.31], it holds∫
Ω×Ω

1

|x− y|
l(y)u+

λ (y)ωε,z(y)l(x)u+
λ (x)ωε,z(x) dx dy

≤
(∫

Ω

|l(x)u+
λ (x)ωε,z(x)|6/5dx

)5/3

≤ C|u+
λ |

2
12/5|ωε,z|

2
12/5 ≤ Cε

1/2.

(3.11)

It follows from (3.7)-(3.11) that (3.6) holds. We deduce from (3.4)-(3.6) that

Jλ(u+
λ + tωε,z) < α+

λ +
1

3
S3/2 + Cε1/2 − Cε1/4,

for t ∈ [t0, t1]. Consequently, there exists ε0 > 0 small enough such that for
ε ∈ (0, ε0), we have σ(ε0) > 0 and

sup
t≥0

Jλ(u+
λ + tωε,z) < α+

λ +
1

3
S3/2 − σ(ε0) uniformly in z ∈M.

Now, we prove that there exists t−z > 0 such that

u+
λ + t−z ωε,z ∈ N−λ , for all z ∈M.
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Let

U1 =
{
u ∈ H1

0 (Ω)\{0}; 1

‖u‖
t−
( u

‖u‖
)
> 1
}
∪ {0};

U2 =
{
u ∈ H1

0 (Ω)\{0}; 1

‖u‖
t−
( u

‖u‖
)
< 1
}
.

Then N−λ disconnects H1
0 (Ω) into two connected components U1 and U2. Moreover,

H1
0 (Ω)\N−λ = U1 ∪ U2. For each u ∈ N+

λ , we have

1 < tmax < t−(u).

Since t−(u) = 1
‖u‖ t

−
(

u
‖u‖

)
, then N+

λ ⊂ U1. In particular, u+
λ ∈ U1. We claim that

we can find a constant c > 0 such that

0 < t−
( u+

λ + tωε,z

‖u+
λ + tωε,z‖

)
< c for each t ≥ 0 and z ∈M.

Otherwise, there exists a sequence {tn} such that tn →∞ and

t−
( u+

λ + tnωε,z

‖u+
λ + tnωε,z‖

)
→∞ as n→∞.

Let

vn =
u+
λ + tnωε,z

‖u+
λ + tnωε,z‖

.

Since t−(vn)vn ∈ N−λ ⊂ Nλ and by the Lesbesgue dominated convergence theorem,∫
Ω

g|vn|6dx =
1

‖u+
λ + tnωε,z‖6

∫
Ω

g|u+
λ + tnωε,z|6dx

=
1

‖u
+
λ

tn
+ ωε,z‖6

∫
Ω

g|
u+
λ

tn
+ ωε,z|6dx

→
∫

Ω
g|ωε,z|6dx
‖ωε,z‖6

> 0, as n→∞,

we have

Jλ(t−(vn)vn) =
1

2
[t−(vn)]2 +

(t−(vn))4

4

∫
Ω

lφvnv
2
ndx−

[t−(vn)]q

q

∫
Ω

fλ|vn|qdx

− [t−(vn)]6

6

∫
Ω

g|vn|6dx→ −∞ as n→∞.

This contradicts that Jλ is bounded below on Nλ and the claim is proved. Let

tλ =
|c2 − ‖u+

λ ‖2|1/2

‖ωε,z‖
+ 1 .

Then

‖u+
λ + tλωε,z‖2 = ‖u+

λ ‖
2 + t2λ‖ωε,z‖2 + 2tλ〈u+

λ , ωε,z〉

> ‖u+
λ ‖

2 + |c2 − ‖u+
λ ‖

2|+ 2tλ

∫
Ω

u+
λ ωε,zdx

> c2 >
[
t−
( u+

λ + tλωε,z

‖u+
λ + tλωε,z‖

)]2
,
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that is u+
λ + tλωε,z ∈ U2. Thus there exists 0 < t−z < tλ such that u+

λ + t−z ωε,z ∈
N−λ . �

Lemma 3.4. We have

inf
u∈N1

∞

J1
∞(u) = inf

u∈N∞
J∞(u) =

1

3
S3/2,

where

J∞(u) =
1

2
‖u‖2 − 1

6

∫
Ω

|u|6dx, N∞ = {u ∈ H1
0 (Ω)\{0}; 〈(J∞)′(u), u〉 = 0}.

Proof. From [24], we have

inf
u∈N∞

J∞(u) =
1

3
S3/2.

Thus it suffices to show that infu∈N1
∞
J1
∞(u) = 1

3S
3/2. Since

max
t≥0

(a
2
t2 − b

6
t6
)

=
1

3

( a

b1/3

)3/2

for any a > 0 and b > 0, by (3.1) and Lemma 3.2 we deduce that

sup
t≥0

J1
∞(tωε,z) =

1

3

( ‖ωε,z‖2( ∫
Ω
g|ωε,z|6dx

)1/3)3/2

=
1

3
S3/2 +O(ε1/2).

Then we obtain

inf
u∈N1

∞

J1
∞(u) ≤ 1

3
S3/2, as ε→ 0+.

Since g ≤ 1, for each u ∈ H1
0 (Ω)\{0}, we have

sup
t≥0

J∞(tu) ≤ sup
t≥0

J1
∞(tu).

Hence

1

3
S3/2 = inf

u∈N∞
J∞(u) = inf

u∈H1
0 (Ω)\{0}

sup
t≥0

J∞(tu)

≤ inf
u∈H1

0 (Ω)\{0}
sup
t≥0

J1
∞(tu) = inf

u∈N1
∞

J1
∞(u) ≤ 1

3
S3/2.

This completes the proof. �

4. Proof of Theorem 1.2

In this section, we use the idea of category to get positive solutions of (1.1) and
give the proof of Theorem 1.2. Initially, we state the following two propositions
related to category theory.

Proposition 4.1 ([5, Theorem 2.1]). Let R be a C1,1 complete Riemannian man-
ifold (modelled on a Hilbert space) and assume F ∈ C1(R,R) bounded from below.
Let −∞ < infR F < a < b < +∞. Suppose that F satisfies (PS)-condition on the
sublevel {u ∈ R;F (u) ≤ b} and that a is not a critical level for F . Then

]{u ∈ F a;∇F (u) = 0} ≥ catFa(F a),

where F a ≡ {u ∈ R;F (u) ≤ a}.
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Proposition 4.2 ([5, Lemma 2.2]). Let Q,Ω+ and Ω− be closed sets with Ω− ⊂ Ω+;
let φ : Q→ Ω+, ϕ : Ω− → Q be two continuous maps such that φ◦ϕ is homotopically
equivalent to the embedding j : Ω− → Ω+. Then catQ(Q) ≥ catΩ+(Ω−).

The proof of Theorem 1.2 is based on Propositions 4.1 and 4.2. To argue further,
we need to introduce the following Lemma.

Lemma 4.3. Let {un} ⊂ H1
0 (Ω) be a nonnegative function sequence with |un|6 = 1

and
∫

Ω
|∇un|2dx→ S. Then there exists a sequence (yn, θn) ∈ R3 × R+ such that

vn(x) := θ1/2
n un(θnx+ yn)

contains a convergent subsequence denoted again by {vn} such that vn → v in
D1,2(R3) with v(x) > 0 in R3. Moreover, we have θn → 0 and yn → y ∈ Ω.

For a proof of the above lemmas, see See Willem [24]. Next we define the
continuous map Φ : H1

0 (Ω)\G→ RN by

Φ(u) :=

∫
Ω
x|u− u+

λ |6dx∫
Ω
|u− u+

λ |6dx
,

where G = {u ∈ H1
0 (Ω);

∫
Ω
|u− u+

λ |6dx = 0}. Then we have the following lemma.

Lemma 4.4. For each 0 < δ < r0, there exist Λδ, δ0 > 0 such that if u ∈ N1
∞,

J1
∞(u) < 1

3S
3/2 + δ0 and λ < Λδ, then Φ(u) ∈Mδ.

Proof. Suppose the contrary. Then there exists a sequence {un} ⊂ N1
∞ such that

J1
∞(un) = 1

3S
3/2 + o(1), λ→ 0+, and

Φ(un) 6∈Mδ ∀n.

It is easy to show that {un} is bounded in H1
0 (Ω) and there is a sequence {t∞n } ⊂ R+

such that {t∞n un} ∈ N∞ and

1

3
S3/2 ≤ J∞(t∞n un) ≤ J1

∞(t∞n un) ≤ J1
∞(un) =

1

3
S3/2 + o(1). (4.1)

We obtain t∞n = 1 + o(1) as n→∞ and

lim
n→∞

J∞(un) = lim
n→∞

1

3
‖un‖2 = lim

n→∞

1

3

∫
Ω

|un|6dx

= lim
n→∞

1

3

∫
Ω

g|un|6dx =
1

3
S3/2 + o(1).

(4.2)

Let

Un =
un( ∫

Ω
|un|6dx

)1/6 .
We see that

∫
Ω
|Un|6dx = 1. Furthermore, it follows from (4.2) that

lim
n→∞

‖Un‖2 = S.

By Lemma 4.3, there is a sequence {(xn, εn)} ⊂ R3 × R+ such that εn → 0,

xn → x0 ∈ Ω and ωn(x) = ε
1/2
n Un(εnx+ xn)→ ω strongly in D1,2(R3) with ω > 0

as n→∞. Then by (4.2),

1 = o(1) +

∫
Ω

g|Un|6dx = ε−3
n

∫
Ω

g
∣∣ωn(x− xn

εn

)∣∣6dx+ o(1) = g(x0),
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as n→∞, which implies x0 ∈M . By the Lebesgue dominated convergence theorem
again, we have

Φ(un) =

∫
Ω
x|un − u+

λ |6dx∫
Ω
|un − u+

λ |6dx
(4.3)

=

∫
Ω
x|un|6dx∫

Ω
|un|6dx

+ o(1), (4.4)

=
ε−3
n

∫
Ω
x
∣∣ωn(x−xnεn

)∣∣6dx
ε−3
n

∫
Ω

∣∣ωn(x−xnεn

)∣∣6dx + o(1) (4.5)

→ x0 ∈M as n→∞, λ→ 0 (4.6)

which is a contradiction. �

Lemma 4.5. There exists Λδ > 0 small enough such that if λ < Λδ and u ∈ N−λ
with Jλ(u) < 1

3S
3/2 + δ0

2 (δ0 is given in Lemma 4.4), then Φ(u) ∈Mδ.

Proof. By Lemma 3.1, for µ ∈ (0, 1), there is a unique t1u such that t1uu ∈ N1
∞ and

J1
∞(tuu) ≤ (1− µ)−3/2(Jλ(u) + Cµ

q
q−2λ

2
2−q ).

Thus there exists Λδ > 0 small enough such that if λ < Λδ and Jλ(u) < 1
N S

N/2
α,β + δ0

2 ,

J1
∞(t1uu) ≤ 1

3
S3/2 + δ0.

By Lemma 4.4 and ‖u+
λ ‖ → 0 as λ→ 0, we complete the proof. �

Now we denote cλ := α+
λ + 1

3S
3/2 − σ(ε0) and consider the filtration of the

manifold of N−λ as follows:

N−λ (cλ) := {u ∈ N−λ ; Jλ(u) ≤ cλ}.

Then catMδ
(M) critical points of Jλ will be obtained from N−λ (cλ) in the following.

At first, we show that a critical point of Jλ restrict on N−λ is in fact a critical point
of Jλ in H1

0 (Ω).

Lemma 4.6. If u is a critical point of Jλ on N−λ , then it is a critical point of Jλ
in H1

0 (Ω).

Proof. If u ∈ N−λ , then 〈J ′λ(u), u〉 = 0. On the other hand,

J ′λ(u) = τψ′λ(u)

for some τ ∈ R, where ψλ is defined in (2.6). Thus we have

0 = τ〈ψ′λ(u), u〉,

which combined with the definition of N−λ imply that τ = 0, i.e. J ′λ(u) = 0. �

In the succeeding text, we denote by JN−λ
the restriction of Jλ on N−λ and show

that JN−λ
satisfies (PS)-condition on N−λ (cλ).

Lemma 4.7. Any sequence {un} ⊂ N−λ such that JN−λ
(un) → β ∈ (−∞, cλ] and

J ′
N−λ

(un)→ 0 contains a convergent subsequence.
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Proof. By hypothesis there exists a sequence {θn} ⊂ R such that

J ′λ(un) = θnψ
′
λ(un) + o(1).

Recall that un ∈ N−λ and so

〈ψ′λ(un), un〉 < 0.

If 〈ψ′λ(un), un〉 → 0, we from (2.7) deduce that

Jλ(un)

= Jλ(un)− 1

q
〈J ′λ(un), un〉

=
(1

2
− 1

q

)
‖un‖2 +

(1

4
− 1

q

) ∫
Ω

l(x)φunu
2
ndx−

(1

q
− 1

6

) ∫
Ω

g(x)|un|6dx

=
q − 2

2q
‖un‖2 +

q − 4

4q

∫
Ω

l(x)φunu
2
ndx−

6− q
6q

∫
Ω

g(x)|un|6dx

=
q − 2

3q
‖un‖2 +

q − 4

12q

∫
Ω

l(x)φunu
2
ndx ≤ 0.

Hence we arrive at a contradiction to that α−λ > 0 (Lemma 2.4 (ii)). Thus we may
assume that 〈ψ′λ(un), un〉 → l < 0. Because 〈J ′λ(un), un〉 = 0, we conclude that
θn → 0 and, consequently, J ′λ(un)→ 0. Using this information we have

Jλ(un)→ β ∈ (−∞, cλ] and J ′λ(un)→ 0,

so by Lemma 2.6, the proof is complete. �

Lemma 4.8. Let δ,Λδ > 0 be as in Lemmas 4.4 and 4.5. Then for λ < Λδ, Jλ has
at least catMδ

(M) critical points in N−λ (cλ).

Proof. For z ∈M , by Lemma 3.3, we can define

F (z) = u+
λ + t−z ωε,z ∈ N−λ (cλ).

Furthermore, Jλ satisfies (PS)-condition on N−λ (cλ). Moreover, it follows from

Lemma 4.5 that Φ(N−λ (cλ)) ⊂Mδ for λ < Λδ. Define ξ : [0, 1]×M →Mδ by

ξ(θ, z) = Φ
(
u+
λ + t−z ω(1−θ)ε,z

)
∈ N−λ (cλ).

Then straightforward calculations provide that ξ(0, z) = Φ◦F (z) and limθ→1− ξ(θ, z) =
z. Hence Φ ◦ F is homotopic to the inclusion j : M → Mδ. Combining Lemma
4.7 with Propositions 4.1 and 4.2, we obtain that JN−λ (cλ) has at least catMδ

(M)

critical points in N−λ (cλ). By Lemma 4.6, we know that Jλ has at least catMδ
(M)

critical points in N−λ (cλ). �

Proof of Theorem 1.2. By Theorem 2.7 and Lemma 4.8, applying N+
λ

⋂
N−λ = ∅

and the strong maximum principle, we obtain the statement of Theorem 1.2. �
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