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HARNACK’S INEQUALITY FOR p-LAPLACIAN EQUATIONS
WITH MUCKENHOUPT WEIGHT DEGENERATING IN PART

OF THE DOMAIN

YURIY A. ALKHUTOV, SARVAN T. HUSEYNOV

Communicated by Ludmila S. Pulkina

Abstract. In this article we consider quasi-linear second-order elliptic equa-

tions of divergence structure with Makenhaupt weight that degenerates over

a small part of the domain. We show that the classical Harnack’s inequality
does not hold in this case, and prove an appropriate Harnack’s inequality for

the considered equation.

1. Introduction and statement of results

On a domain D ⊂ Rn, n ≥ 2 we consider the family of elliptic equations

Lεu = div
(
ωε(x)|∇u|p−2∇u)

)
= 0, p > 1, (1.1)

where p is a constant, ωε(x) is nonnegative weight depending on small parameter
ε. It is assumed that the domain D is divided by the hyperplane Σ = {x : xn = 0}
into the parts D(1) = D ∩ {x : xn > 0} and D(2) = D ∩ {x : xn < 0}, and

ωε(x) =

{
εω(x), x ∈ D(1),

ω(x), x ∈ D(2),
(1.2)

where ε ∈ (0, 1], ω(x) is a weight satisfying Muckenhoupt’s Ap-condition. Note that
the weight ω(x), defined in the whole space Rn satisfies to Ap-condition (see [11]),
if

sup
( 1
|B|

∫
B

ω(x) dx
)( 1
|B|

∫
B

ω−
1
p−1 (x) dx

)p−1

<∞, 1 < p <∞,

where the supremum is taken over all balls B ⊂ Rn.
To define a solution of (1.1) we introduce the class of functions

Wloc(D,ω) = {u : u ∈W 1,1
loc (D), |∇u|pω ∈ L1

loc(D)},

where W 1,1
loc (D) is a classical Sobolev’s space of the functions which are local sum-

mable in the domain D together with all generalized partial derivatives of the first
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order. As a solution of the equation (1.1) we take the function u ∈ Wloc(D,ω) for
which the integral identity∫

D

ωε(x)|∇u|p−2∇u · ∇ξ dx = 0 (1.3)

is satisfied on the finite test functions ξ ∈Wloc(D,ωε).
The object of the work is the problem of Harnack’s inequality for the nonnegative

solutions of the equation (1.1). A large number of works is devoted to this problem
for the degenerate equations. The most investigated the case is when the weight
function ω(x) satisfies the Muckenhoupt’s Ap− condition and ε = 1.

Below |E| is n-dimensional Lebesque measure of the measurable set E ⊂ Rn,

dµ = ω dx, ω(E) =
∫
E

ω(x) dx,
∫
E

f dµ =
1

ω(E)

∫
E

fω dx.

The important consequences of the Muckenhoupt’s Ap condition are the doubling
conditions [5, 11]

ω(B2r) ≤ cω(Br), (1.4)
inversion of the Holder inequality [5]( 1

|Br|

∫
Br

ω1+δ(x) dx
)1/(1+δ)

≤ C 1
|Br|

∫
Br

ω(x) dx, (1.5)

Friedrichs inequality [6, 7]∫
Ω

|ϕ|p dµ ≤ c(n, ν, p)rp
∫

Ω

|∇ϕ|p dµ,

ϕ ∈ C∞(Ω), ϕ|E = 0, |E| ≥ ν|Ω|, ν > 0,
(1.6)

where Ω ⊂ Br is Lipschitz domain, and Sobolev’s inequality [6, 7](
–
∫
Br

|ϕ|pk dµ
)1/k

≤ c(n, p)rp
∫
Br

|∇ϕ|p dµ, ϕ ∈ C∞0 (Br), k =
n

n− 1
. (1.7)

In [6, 7] is shown that if ω ∈ Ap and ε = 1 then solution of the equation (1.1) is
of Holder property in D and for all nonnegative in B4R ⊂ D solutions it holds the
Harnach inequality

inf
BR

u ≥ const · sup
BR

u. (1.8)

For the considered weight ωε the doubling condition (1.4) with a constant inde-
pendent on ε, does not hold. This implies that in the center of the balls on the
hyperplane Σ the classical Harnack inequality (1.8) does not hold, in which the
constant is independent on ε. This statement is set in the first section of §2.

In addition to the belonging of the weighting function to the Muckenhoupt’s
class Ap it is assumed that in the open balls BR0 of small enough radiuses R0

with the centers on the hyperplane Σ for almost all points xfrom the semiball
BR0 ∩ {x : xn > 0} is valid

ω(x) ≤ γω(x′), γ = const > 0, (1.9)

where x′ is a point symmetric to x with respect to the hyperplane Σ. In particular
to this condition satisfy the weights |x|α, where −n < α < n(p − 1, and |xn|α,
where −1 < α < p − 1. Besides any weight satisfying to the Muckenhoupt’s Ap
condition, that is indeed even with respect to the hyperplane Σ is suitable for this
case.
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The main aim of this work to formulate and prove the uniform Harnack inequal-
ity over the parameter ε that corresponds to the considered equation. Since the
classical Harnack’s inequality (1.8) does not hold in the balls with the center on
the hyperplane Σ, in the formulation of the problem takes part of such balls and is
assumed that

B−R = BR ∩ {x : −R < xn < −R/2}. (1.10)

Theorem 1.1. If the weight ω(x) satisfies to the Muckenhoupt’s Ap condition,
and the conditions (1.2), (1.9) are satisfied, then for the nonnegative part in the
B4R ⊂ D, with the center on Σ, the solution of the equation (1.1) satisfies the
inequality

inf
BR

u ≥ c0 sup
B−R

u, (1.11)

In which the positive constant c0 < 1 does not depend on u, R and ε.

When p = 2 and ω ≡ 1, Theorem 1.1 first was proved in [2]. In the present work
for the case ε = 1 and p = 2 the inequality (1.11) is proved for the non-negative
solutions of the equation with a particular Muckenhoupt weight ω, that in general
does not satisfy Muckenhoupt’s A2-condition.

The end of this work shows that from Theorem 1.1 it follows the Holder conti-
nuity of the solutions at the points Σ∩D, and in consequence Holder continuity of
the solutions in the domain of D.

Let us consider the family {uε(x)} of the solutions of the equations Lεuε = 0
bounded in L∞ uniformly over ε on the compact subsets D.

Theorem 1.2. If the weight ω satisfies the Muckenhoupt’s Ap condition and con-
ditions (1.2), (1.9) take place, then there exists a constant α ∈ (0, 1) depending only
on p, dimension of the space n, constant γ from (1.9) and the weight ω, such that
the family {uε(x)} is compact in Cα(D′) in any subdomain of D′ b D.

Theorem 1.2 was proved by a different method in an earlier work of the author
[8][. In the case when ω(x) ≡ 1 this statement is given in [7, 8]. Note also the works
[3, 4], when p = 2 and ε = 1, the Holder continuity is proved for the solutions of the
equations with particular Muckenhoupt’s weight ω, of a more general structure.

2. Harnack’s inequality

Absence of the classical Harnack’s inequality. Here by BR we denote the
open ball of radius R with the center on the hyperplane Σ and B(1)

16r = B16r∩{xn >
0}, B(2)

16r = B16r ∩ {xn < 0}. Choose the points x0, y0 by the way that Bx0
5r ⊂ B

(1)
16r,

By05r ⊂ B
(2)
16r. We assume that the points x0 and y0 are symmetric with respect to

the hyperplane Σ. Let Ω = B16r\(Bx0
r/4 ∪B

y0
r/4). Consider the problem

Lu = div(ωε(x)|∇u|p−2∇u) = 0 in Ω
u = 0 on ∂B16r

u = ε−1ω−1(Br) on ∂Bx0
r/4, u = ω−1(Br) on ∂By0r/4.

(2.1)

Show that in the domain Ω usual Harnach’s inequality with the constant not de-
pending on ε does not hold. Solution of the problem (2.1) is a minimizer of the
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variational problem for integral functional

F [v] =
∫

Ω

ωε(x)|∇v|p dx (2.2)

over the smooth functions v, on the closure of the domain D, satisfying boundary
conditions (2.1). Let us continue u to inside of the balls Bx0

r/4 and By0r/4, taking
u = ε−1ω−1(Br) in Bx0

r/4 and u = ω−1(Br) inBy0r/4.
For the compact K belonging to the open set U , its p-volume with respect to U

is defined as follows

capp(K,U) = inf
∫
U

ω(x)|∇ϕ|p dx,

where the sharp lower bound is taken over the set of functions from C∞0 (U) being
equal to unit in the neighborhood of K.

Since the weight ω satisfies the Muckenhoupt’s Ap-condition then (see [6]) in the
domains B(1)

16r\B
x0
r/4 and B(2)

16r\B
y0
r/4 is valid the classical Harnachk’s inequality that

we use in the form

sup
B
x0
4r \B

x0
r/2

u ≤ C inf
B
x0
4r \B

x0
r/2

u, (2.3)

sup
B
y0
4r \B

y0
r/2

u ≤ C inf
B
y0
4r \B

y0
r/2

u. (2.4)

By [7] there exists positive constants c1, c2, not depending on r such that

c1r
−pω(Bx0

r ) ≤ capp(B
x0
r/4, B

x0
2r ) ≤ c2r−pω(Bx0

r ), (2.5)

c1r
−pω(By0r ) ≤ capp(B

y0
r/4, B

y0
2r ) ≤ c2r−pω(By0r ). (2.6)

Lower estimate of the solution. Put w = u · εω(Br). Then

Lw = 0 in B16r, w = 1 in ∂Bx0
r/4, w = ε in ∂By0r/4.

By the miximum principle 0 < w ≤ 1 in B16r.
Let η be a cutoff function being equal to zero outside of the ball Bx0

2r , and to
unit in the ball Bx0

r , |∇η| ≤ Cr−1, 0 ≤ η ≤ 1. Since ωε(x) = εω(x) in Bx0
2r , then

by the definition of the volume∫
B
x0
2r

ωε(x)|∇(wη)|p dx ≥ εcapp(B
x0
r/4, B

x0
2r ). (2.7)

Then∫
B
x0
2r

ωε(x)|∇(wη)|p dx ≤ C
∫
B
x0
2r

ωε(x)|∇w|p dx+ Cεr−p
∫
B
x0
2r \B

x0
r/4

ω(x)wp dx.

Using the estimate 0 ≤ w ≤ 1, for which wp ≤ wp−1, we obtain∫
B
x0
2r

ωε(x)|∇(wη)|p dx ≤ C
∫
B
x0
2r

ωε(x)|∇w|p dx+ Cεr−p
∫
B
x0
2r \B

x0
r/4

ω(x)wp−1 dx.

Let us estimate the last integral in the right hand side of the last inequality through
the sharp upper bound of w. Applying Harnack’s inequality (2.3) to the solution u
of (2.1) and doubling condition (1.4) for the weight ω we arrive to the estimation∫

B
x0
2r

ωε(x)|∇(wη)|p dx ≤ C
∫
B
x0
2r

ωε(x)|∇w|p dx+ Cεr−pω(Br)( min
∂B

x0
r

w)p−1. (2.8)
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Now we estimate the first integral in the right hand side of (2.8). Choosing in
the integral identity ∫

Ω

ωε(x)|∇w|p−2∇w · ∇ϕdx = 0 (2.9)

The test function as ϕ = (1−w)ξp, where ξ ∈ C∞0 (Bx0
3r ), ξ = 1 in Bx0

2r , |∇ξ| ≤ Cr−1

and 0 ≤ ξ ≤ 1, we obtain∫
B
x0
2r

ωε(x)|∇w|p dx ≤ p
∫
B
x0
3r \B

x0
2r

ωε(x)|∇w|p−1(1− w)|∇ξ|ξp−1 dx

≤ p
∫
B
x0
3r \B

x0
2r

ωε(x)|∇w|p−1|∇ξ| dx

≤ Cr−1

∫
B
x0
3r \B

x0
2r

ωε(x)|∇w|p−1 dx.

From this by the Holder inequality we find that∫
B
x0
2r

ωε(x)|∇w|p dx

≤ C
(∫

B
x0
3r \B

x0
2r

ωε(x)w−a|∇w|p dx
)(p−1)/p(∫

B
x0
3r \B

x0
2r

ωε(x)wa(p−1)r−p dx
)1/p

,

(2.10)
where 0 < a < 1. To estimate the fist integral in the right hand side of (2.10)
we choose in the integral identity (2.9) the test function as ϕ = w1−aηp, where
η ∈ C∞0 (Bx0

4r \B
x0
3r/2), η = 1 in Bx0

3r \B
x0
2r , |∇η| ≤ Cr−1 and 0 ≤ η ≤ 1. A a result

we obtain

(1− a)
∫
B
x0
4r \B

x0
3r/2

ωε(x)w−a|∇w|pηp dx ≤ p
∫
B
x0
4r \B

x0
3r/2

ωε(x)|∇w|p−1|∇η|ηp−1 dx.

Applying Young’s inequality to the integrand of the right-hand side, and because
of the choice of the cutoff function we obtain the estimate∫

B
x0
3r \B

x0
2r

ωε(x)w−a|∇w|p dx ≤ Cr−p
∫
B
x0
4r \B

x0
3r/2

ωε(x)wp−a dx. (2.11)

Thus from (2.10) and (2.11)) we have∫
B
x0
2r

ωε(x)|∇w|p dx

≤ C
(
r−p

∫
B
x0
4r \B

x0
3r/2

ωε(x)wp−a dx
)(p−1)/p(∫

B
x0
3r \B

x0
2r

ωε(x)wa(p−1)r−p dx
)1/p

.

We estimate the integrals on the right side through the upper bounds w. Since
ωε = εω in Bx0

2r , using Harnack’s inequality (2.3) and doubling condition (1.4) we
obtain ∫

B
x0
2r

ωε(x)|∇w|p dx ≤ Cεr−pω(Br)( min
∂B

x0
r

w)p−1 . (2.12)

Comparing (2.12), (2.8), (2.7), (2.5) and using again in (2.5) the doubling condition
(1.4) we obtain

min
∂B

x0
r

w ≥ C,
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From which due to the explicit form of w follows,

min
∂B

x0
r

u ≥ Cε−1ω−1(Br) (2.13)

with the constant C that does not depend on ε.

Upper bound of the solution. Let η1 ∈ C∞0 (Bx0
2r ), η1 = 1 in Bx0

r and η2 ∈
C∞0 (By02r ), η2 = 1 in By0r . Take K1 = ε−1ω−1(Br), K2 = ω−1(Br).

Since the solution u of (2.1) minimizes the functional (2.2), following to the
variational principle, the choice of the cutoff functions η1, η2 and condition (1.2)
we have∫

B
y0
2r

ω(x)|∇u|p dx ≤ ε
∫
B
x0
2r

ω(x)|∇(η1K1)|p dx+
∫
B
y0
2r

ω(x)|∇(η2K2)|p dx.

Hence, from the arbitrary choice of η1 and η2 it follows that∫
B
y0
2r

ω(x)|∇u|p dx ≤ εKp
1 capp(B

x0
r/4, B

x0
2r ) +Kp

2 capp(B
y0
r/4, B

y0
2r ).

Thus by (2.5), (2.6) and doubling condition (1.4), we obtain∫
B
y0
2r

ω(x)|∇u|p dx ≤ εKp
1ω(Br)r−p +Kp

2ω(Br)r−p. (2.14)

Then by the Friedrichs inequality (1.6),∫
B

(2)
16r

ω(x)up dx ≤ Crp
∫
B

(2)
16r

ω(x)|∇u|p dx

and from (2.14) we obtain∫
B
y0
r \B

y0
r/2

ω(x)up dx ≤ εKp
1ω(Br) +Kp

2ω(Br).

Now from (2.4) and doubling condition (1.4) we have

max
∂B

y0
r

u ≤ Cω−1/p(Br)(ε1/pK1ω
1/p(Br) +K2ω

1/p(Br)).

or considering the explicit forms of K1 and K2

max
∂B

y0
r

u ≤ C(ε1/p−1ω−1(Br) + ω−1(Br)).

or
max
∂B

y0
r

u ≤ Cε1/p−1ω−1(Br) (2.15)

with the constant C that does not depend on ε.
If we suppose that the classical Harnack’s inequality holds uniformly with respect

to ε in the domain Ω, then
min
∂B

x0
r

u ≤ C max
∂B

y0
r

u,

where C does not depend on ε. This inequality leads to the contradiction with the
estimates (2.13) and (2.15).
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2.1. Estimation of the minimum of thenon-negative solution. Below BR ⊂
D stands for the ball with the centers on Σ∩D, B(i)

R = Br ∩D(i) for the semiballs,
i = 1, 2. Note that Sobolev’s inequality (1.7) entails a corresponding inequality for
the semiballs (

–
∫
B

(i)
R

|ϕ|pk dµi
)1/k

≤ CRp–
∫
B

(i)
R

|∇ϕ|p dµi,

ϕ ∈ C∞0 (BR), k =
n

n− 1
, i = 1, 2.

(2.16)

Let u(x) be a non-negative solution of (2.1), ũ(x) be even continuation of u(x)
from D(2) to D(1) relative to hyperplane Σ and B4R ⊂ D. Below it is assumed that

v(x) =

{
min(u(x), ũ(x)), if x ∈ D(1)

u(x), if x ∈ D(2).
(2.17)

Lemma 2.1. If (1.9) is fulfilled then for any q > 0, we have

inf
BR

u(x) ≥ C
(

–
∫
B2R

v−q(x) dµ
)−1/q

(2.18)

with the constant C that does not depend on u or R.

Proof. Not loosing generality we assume that u(x) is positive. Otherwise one should
consider the function u(x)+δ and then pass to limit at δ → 0 in the estimate (2.18).
First we show that for any R ≤ ρ < r ≤ 2R and q0 > 0, it holds

inf
Bρ
u(x) ≥ C

(r − ρ
r

)a(–
∫
B

(1)
r

v−q0(x) dµ
)−1/q0

, (2.19)

in which a = a(n, q0, p) > 0, and C does not depend on r, ρ, u(x) or ε. Choose in
(1.3) the test function ξ = uβ(x)ηp(x), where η(x) ∈ C∞0 (B3R) is radially symmetric
and β < 1− p. After some simple estimations using Yuong’s inequality we come to
the inequality

–
∫
B3R

|∇u|puβ−1ηpωε dx ≤ C(p)–
∫
B3R

uβ+p−1|∇η|pωε dx. (2.20)

In particular, by (2.2) and (2.9), we have

–
∫
B

(2)
3R

|∇u|puβ−1ηp dµ

=
1

ω(B(2)
3R )

–
∫
B

(2)
3R

|∇u|puβ−1ηp dµ

≤ C(p, γ)
(

–
∫
B

(1)
4R

uβ+p−1|∇η|p dµ+ –
∫
B

(2)
3R

uβ+p−1|∇η|p dµ
) (2.21)

Following the Sobolev’s embedding theorem (2.16) we obtain(
–
∫
B

(2)
3R

uk(β+p−1)ηkp dµ
)1/k

≤ C(|β|+ p− 1)pRp
(

–
∫
B

(1)
3R

uβ+p−1|∇η|p dµ+ –
∫
B

(2)
3R

uβ+p−1|∇η|p dµ
)
,

(2.22)

where C = C(n, p, γ).
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It is not possible to obtain a similar estimate in the ball B(1)
4R by this method.

Take
GR = B

(1)
3R ∩ {x : u(x) < ũ(x)} (2.23)

and assuming that GR 6= ∅, put in (2.3) the test function

ξ(x) =

{
(uβ(x)− ũβ(x))ηp(x) in GR,

0, in B3R\GR,

where η and β have the same sense as above. This test function is valid by condition
(1.9). We have

|β|
∫
GR

|∇u|puβ−1ηp dµ

≤ |β|
∫
GR

|∇u|p−1|∇ũ|ũβ−1ηp dµ+ p

∫
GR

|∇u|p−1|∇η|ũβηp−1 dµ

+ p

∫
GR

|∇u|p−1|∇η|uβηp−1 dµ

From this and using definition of GR and young’s inequality we find that∫
GR

|∇u|puβ−1ηp dµ

≤ C(p)
(∫

GR

|∇ũ|pũβ−1ηp dµ+
∫
GR

ũβ+p−1|∇η|p dµ+
∫
GR

uβ+p−1|∇η|p dµ
)

or since ũβ−1 ≤ uβ−1 on the set GR we have∫
B

(1)
3R\GR

|∇ũ|pũβ−1ηp dµ+
∫
GR

|∇u|puβ−1ηp dµ

≤ C
(∫

B
(1)
3R

|∇ũ|pũβ−1ηp dµ+
∫
B

(1)
3R

uβ+p−1|∇η|p dµ

+
∫
B

(2)
3R

uβ+p−1|∇η|p dµ
)
,

(2.24)

where C = C(p). Since the function ũ is an even continuation of the function u
from D(2) to D(1) and the function η is even with respect to the hyperplane Σ, by
(2.9) we have ∫

B
(1)
3R

|∇ũ|pũβ−1ηp dµ ≤ γ
∫
B

(2)
3R

|∇u|puβ−1ηp dµ

and from (2.20), (1.2) we have∫
B

(1)
3R

|∇ũ|pũβ−1ηp dµ ≤ C(p, γ)
(∫

B
(1)
3R

uβ+p−1|∇η|p dµ+
∫
B

(2)
3R

uβ+p−1|∇η|p dµ
)
.

Considering the last relation in (2.24) and using the definition of the function v
(see (2.17)), we obtain∫

B
(1)
3R

|∇v|pvβ−1ηp dµ ≤ C(p, γ)
(∫

B
(1)
3R

vβ+p−1|∇η|p dµ+
∫
B

(2)
3R

uβ+p−1|∇η|p dµ
)
.
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Applying here Sobolev’s embedding theorem (2.16), by the doubling condition (1.4)
we arrive at the estimate(

–
∫
B

(1)
3R

vk(β+p−1)ηpk dµ
)1/k

≤ C(|β|+ p− 1)pRp
(

–
∫
B

(1)
3R

vβ+p−1|∇η|p dµ+ –
∫
B

(2)
3R

uβ+p−1|∇η|p dµ
)
,

(2.25)

in which C = C(n, p, γ). Thus according to (2.22), (2.25) and definition of the
function v,(

–
∫
B

(1)
3R

vk(β+p−1)ηpk dµ+ –
∫
B

(2)
3R

uk(β+p−1)ηpk dµ
)1/k

≤ C(|β|+ p− 1)pRp
(

–
∫
B

(1)
3R

vβ+p−1|∇η|p dµ+ –
∫
B

(2)
3R

uβ+p−1|∇η|p dµ
)
,

where C = C(n, p, γ). Now from (2.7) and doubling condition (2.4) follows that(
–
∫
B3R

vk(β+p−1)ηpk dµ
)1/k

≤ C(n, p, γ)(|β|+ p− 1)pRp–
∫
B3R

vβ+p−1|∇η|p dµ.
(2.26)

Until now we have assumed that GR 6= ∅. If GR = ∅ then v(x) = ũ(x) in B
(1)
3R

and (2.26) follows immediately from (2.22) and the condition (1.9). Choosing in
(2.26) test function as η = 1 in Br, |∇η| ≤ Cr(R(r − ρ))−1, by the condition (2.4)
we obtain (

–
∫
Bρ

vk(β+p−1)ηpk dµ
)1/k

≤ C(n, p, γ)(|β|+ p− 1)p(
r

r − ρ
)p
(

–
∫
Br

vβ+p−1 dµ
)
.

(2.27)

Let us iterate this inequality. Let j = 0, 1, . . . . Denote rj = ρ + 2−j(r − ρ),
χj = −q0k

j and take in (2.13) r = rj , ρ = rj+1, β = χi + 1− p. As a result for

Φj =
(

–
∫
B

(1)
rj

vχj dµ
)1/χj

we obtain the following recurrence relation

Φj ≤ C1/|χj |(2j(1 + |χj |))p/|χj |(
r

r − ρ
)p/|χj |Φj+1,

that implies estimate (2.19) (see [10]). Taking in this estimate ρ = R and r = 2R,
we obtain

inf
BR

u(x) ≥ C
(

–
∫
B2R

v−q0(x) dµ
)−1/q0

. (2.28)

To prove (2.18) we take s = 2(1 + δ)δ−1, where δ is a constant from (2.5), and
apply to the integral

–
∫
B2R

v−q0(x)ω(x) dx = –
∫
B2R

v−q0(x)ω1/p(x)ω−1/p(x)ω(x) dx
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triplet Holder inequality with orders p1 = p2 = s, p3 = (1 + δ)−1. As a result
considering condition(2.5) we find( 1

ω(B2R)

∫
B2R

v−q0(x)ω(x) dx
)1/q0

≤
( 1
ω(B2R)

)1/q0(∫
B2R

ω−1(x) dx
)1/pq0(∫

B2R

ω1+δ(x) dx
)1/q0(1+δ)

×
(∫

B2R

v−pq0(x)ω(x) dx
)1/pq0

≤ C
(

–
∫
B2R

v−pq0(x) dµ
)1/pq0

,

That (2.28) leads to the estimate

inf
BR

u(x) ≥ C
(

–
∫
B2R

v−pq0(x) dµ
)1/pq0

.

Taking q0 = q/p we arrive to(2.18). The proof is complete. �

The statement of the Lemma 2.1 becomes true for the nonnegative super solu-
tions u(x) of the equation (1.1) i.e. for such nonnegative solutions u that∫

D

ωε(x)|∇u|p−2∇u · ∇ξ dx ≥ 0, ∀ξ ∈ C∞0 (D), ξ ≥ 0.

2.2. Harnack’s inequality. Below u(x) stands for the nonnegative solution of
(1.1) and B3R ⊂ D for the ball with the center on Σ. To prove the Harnack’s
inequality we need John-Nirenberg’s lemma for the function v(x)defined in (2.17).

Lemma 2.2. For an arbitrary ball B2r ⊂ B3R we have∫
Br

|∇ ln v|p dµ ≤ Cr−pω(Br), (2.29)

in which the constant C does not depend on u, r, R or ε.

Proof. As above without loss of generality we assume the solution is positive and
B

(i)
r = Br ∩D(i), i = 1, 2. Take the cutoff function η ∈ C∞0 (B2r) such that η ≡ 1

in Br, |∇η| ≤ Cr−1. Assuming in (1.3) and ξ = u1−pηp as in (2.20) we obtain∫
B2r

|∇ lnu|pηpωε dx ≤ C(p)r−p
∫
B2r

ωε dx.

If B2r ∩ Σ = ∅, then from (1.2) and (1.4) we arrive to (2.29). Now let Bx0
r be

arbitrary open ball of radius r with the center x0 = (x0
1, x

0
2, . . . , x

0
n), such that

Bx0
2r ⊂ B3R and Bx0

2r ∩ Σ 6= ∅. To prove the statement it is sufficient to set∫
B
x0
r

|∇ ln v|p dµ ≤ Cr−pω(Bx0
r ) (2.30)

with the constant C, not depending on u, r, R and ε. Denote by y0 the point that
is symmetric to x0 with respect to the hyperplane Σ and take d = |x0 − y0|. It is
clear that 0 < d < 4r. Consider the cylinder

Cr =
{
x :
( n−1∑
i=1

(xi − x0
i )

2
)1/2

< 2r, |xn| ≤ d
}
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And introduce the symmetric with respect to the hyperplane Σ set

Qr = Bx0
2r ∪B

y0
2r ∪ Cr.

Let Q(i)
r = Qr ∩D(i), i = 1, 2. It is not difficult to see that Bx0

2r ⊂ Qr ⊂ B3R and
Bx0
r ⊂ Qr/2.
Consider the symmetric with respect to the hyperplane Σ cut off function η ∈

C∞0 (Qr), by the way that η = 1 in Qr/2 and |∇η| ≤ Cr−1. Choosing in the integral
identity (1.3) the test function as ξ = u1−pηp we obtain∫

Qr

|∇ lnu|pηpωε dx ≤ C(p)r−p
∫
Qr

ωε dx.

Now from (1.2) and (1.4) it follows that∫
Q

(2)
r

|∇ lnu|pηp dµ ≤ C(p)r−pω(Bx0
r ). (2.31)

To prove a similar estimate in Q
(1)
r first we assume that the set GR from (2.23)

is not empty and choose in (1.3) the test function as

ξ(x) =

{
(u1−p(x)− ũ1−p(x))ηp(x) in GR,

0 in B3R\GR,

where η has the same sense as above. Then it is easy to see that (see (1.2))

(p− 1)
∫
GR

|∇ lnu|pηp dµ

≤ (p− 1)
∫
GR

|∇u|p−1|∇ ln ũ|ũ1−pηp dµ+ p

∫
GR

|∇u|p−1|∇η|ũ1−pηp−1 dµ

+ p

∫
GR

|∇u|p−1|∇η|u1−pηp−1 dµ.

From this considering u(x) ≤ ũ(x) on GR, by the help of Young’s inequality we
find ∫

GR

|∇ lnu|pηp dµ ≤ C(p)(
∫
GR

|∇ ln ũ|pηp dµ+
∫
GR

|∇η|p dµ)

or adding to both sides of this inequality the integral∫
Q

(1)
r \GR

|∇ ln ũ|pηp dµ,

because of the choice of the cutoff function η and doubling condition (1.4), we have∫
Q

(1)
r \GR

|∇ ln ũ|pηp dµ+
∫
GR

|∇ lnu|pηp dµ

≤ C(p)
(∫

Q
(1)
r

|∇ ln ũ|pηp dµ+ r−pω(Bx0
r )
)
.

(2.32)

Since the function ũ is an even continuation of the function u from D(2) to D(1)

and the cutoff function is even relative to Σ, then according to condition (1.9),∫
Q

(1)
r

|∇ ln ũ|pηp dµ ≤ γ
∫
Q

(2)
r

|∇ lnu|pηp dµ
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and from (2.31) it follows that∫
Q

(1)
r

|∇ ln ũ|pηp dµ ≤ C(p, γ)r−pω(Bx0
r ).

Considering the last relation in the right-hand side of (2.32) we have∫
Q

(1)
r \GR

|∇ ln ũ|pηp dµ+
∫
GR

|∇ lnu|pηp dµ ≤ C(p, γ)r−pω(Bx0
r ). (2.33)

Now from (2.31), (2.33) and definition of the function v (see. (2.17)) we arrive to
the estimate ∫

Qr

|∇ ln v|pηp dµ ≤ C(p, γ)r−pω(Bx0
r ),

that implies the relation (2.30) since η = 1 in Bx0
r and Bx0

r ⊂ Qr.
If the set GR is empty then v(x) = ũ(x) in B

(1)
3R and (2.30) follows from (2.31)

and condition (1.9). The proof is complete. �

The statement of the Lemma 2.2 is true for the nonnegative supersolutions of
the equation (1.1). The consequence of this lemma is John-Nirenberg’s lemma the
proof of which may be found in [7].

Corollary 2.3. There exist positive constants q and C not depending on u, R or
ε, such that (

–
∫
B2R

v−q(x) dµ1

)−1/q

≥ C(n, p)
(

–
∫
B2R

vq(x) dµ1

)1/q

. (2.34)

Proof of Theorem 1.1. Let u(x) be nonnegative solution of the equation (1.1) and
B−R be a set defined in (1.10). Using (2.18), (2.34) and doubling condition (1.4) we
obtain

inf
BR

u(x) ≥ C
(

–
∫
B2R

vq(x) dµ
)1/q

≥ C inf
B−R

u(x).

Now (1.11) follows from the classical Harnack’s inequality for the solutions of (1.1)
in the domain D(2), according which infB−R u(x) ≥ c(n, p) supB−R u(x). The proof is
complete. �

Proof of Theorem 1.2. From the results in [6, 7] is known that solution has the
Holder property inside D(1) and D(2). It remains to prove the Holder property of
the solutions on Σ ∩D, since the holder property inside of D may be obtained by
elementary gluing of the Holder property on Σ ∩D and D(1), D(2). Let B4R ⊂ D
be a ball with the center on Σ and

M4R = sup
B4R

u(x), m4R = inf
B4R

u(x), M−R = sup
B−R

u(x), m−R = inf
B−R

u(x).

Since the functions M4R − u(x) and u(x)−m4R are nonnegative solutions in B4R,
by the Harnack’s inequality (1.11),

M4R −MR ≥ c0(M4R −m−R), mR −m4R ≥ c0(M−R −m4R).

Summing these relations and using the fact that c0 < 1, we obtain the scattering
lemma

MR −mR ≥ (1− c0)(M4R −m4R),
that shows the Holder continuity of the solutions on Σ∩D. The proof is complete.

�
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