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Uniqueness of rapidly oscillating periodic

solutions to a singularly perturbed

differential-delay equation ∗

Hari P. Krishnan

Abstract

In this paper, we prove a uniqueness theorem for rapidly oscillating
periodic solutions of the singularly perturbed differential-delay equation
εẋ(t) = −x(t) + f(x(t − 1)). In particular, we show that, for a given
oscillation rate, there exists exactly one periodic solution to the above
equation. Our proof relies upon a generalization of Lin’s method, and is
valid under generic conditions.

1 Introduction

The singularly perturbed differential-delay equation

εẋ(t) = −x(t) + f(x(t− 1)) (1.1)

has been studied in detail over the past twenty years. A great deal of research
has concentrated upon the relationship between the map dynamics generated
by (1.1) when ε = 0, and the dynamics of (1.1) when ε is small [5, 8]. If we
formally set ε = 0, then (1.1) reduces to the discrete difference equation

x(t) = f(x(t− 1)). (1.2)

In general, (1.2) exhibits a rich dynamical structure; if the nonlinear feedback
term f is chosen properly, then equation (1.2) will generate chaotic dynamics
[4]. In [8], f is chosen so that (1.2) possesses a locally asymptotically stable,
period 2 orbit when ε = 0. More specifically, it is assumed that (1.2) has an
asymptotically stable solution of the form

x0(t) =

{
a , t ∈ (2n, 2n+ 1)
−b , t ∈ (2n+ 1, 2n+ 2)

for n in Z. It can be seen that x0(t) has jumps at the countable set of points
n ∈ Z but is otherwise smooth. When ε > 0 but small, it is shown in [8]
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that (under general conditions) there exists a smooth periodic solution which
is uniformly close to x0(t) away from the points of discontinuity. Such a so-
lution is said to have a square wave profile. In [6], the result in [8] is proved,
using local bifurcation analysis. We will describe the general approach, loosely
called Lin’s method, in the Sections 2 and 3. This method is developed for
slowly oscillating periodic solutions in Sections 2 and 3. In this paper, we will
make similar assumptions about the shape of the feedback function f as in [6],
but will concentrate upon rapidly oscillating periodic solutions - solutions x(t)
which cross the x = 0 axis more than once per unit time interval. We prove
that, for a fixed oscillation rate, there exists at most one square wave periodic
solution to (1.2) in the limit as ε→ 0. Our uniqueness result will be stated and
proven precisely in Section 3. Our result gives additional, detailed information
about the global attractor associated with equation (1.1). In [7], it is shown
that the oscillation rate (defined appropriately) of a solution to (1.1) decreases
monotonically over time. In addition, numerical experiments [2] suggest that
periodic solutions which oscillate about the t axis more than once per delay
interval are locally unstable. For a given oscillation rate, we show in this paper
(the original result appears as Theorem 5.1 in Section 5) that there exists at
least one rapidly oscillating periodic solution to (1.1), and that this solution is
unique in the limit as ε approaches 0. We will rely upon Melnikov-type methods
to prove this statement.
In [8], a change of variables is made to eliminate the explicit dependence of

equation (1.1) upon the parameter ε. In particular, we assume that the period
of xε(t) is an integer multiple of p(ε) = 2 + O(ε) = 2 + 2εr, where r = r(ε),
y(t) = x(−εrt) and z(t) = x(−εrt− 1− εr). (We note that we can study slowly
and rapidly oscillating periodic solutions using this rescaling.) Substituting y
and z into (1.1), we obtain the system of transition-layer equations

ẏ(t) = ry(t) − rf(z(t− 1)) ,

ż(t) = rz(t)− rf(y(t− 1)). (1.3)

We observe that the period 2 orbit {−b, a} of (1.2) corresponds to two equilib-
rium points for (1.3), namely (−b, a) and (a,−b) ∈ R2. It is known that (see [1]),
when f is monotone decreasing (and under other technical conditions), there
exists a unique value r(0) > 0 under which (2.1) possesses a heteroclinic orbit
(p(t), q(t)) connecting (−b, a) to (a,−b). From the symmetry of (1.3), we also
have that the orbit (q(t), p(t)) connects (a,−b) to (−b, a). In addition, at the
point r0, the heteroclinic orbits (p(t), q(t)) and (q(t), p(t)) are unique. In our
analysis (following [6]), we shall assume the conclusion of the above statement,
without assuming that f is monotone.
We may formally regard (1.3) as an evolutionary system with respect to the

phase space C([−1, 0],R2), and shall look for a periodic solution (yt(·), zt(·))
of (2.1) which approaches a chain of heteroclinic solutions as r → r0. The
heteroclinic chain consists of the equilibria (−b, a) and (a,−b) and the orbits
(pt(·), qt(·)) and (qt(·), pt(·)). The periodic solutions we consider need not con-
nect after only one loop, in contrast to [6].
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Assuming that the period 4w of (yt(·), zt(·)) is large and positive, we know
that ε, r and w are related by the equation 4εrw = 2+ 2εr, or

ε =
1

(2w − 1)r(w)
. (1.4)

It is shown in [8] that, under appropriate conditions, there exists a periodic
solution (yt(·), zt(·)) ∈ C([−1, 0],R2) which lies uniformly close to the hetero-
clinic chain given above, whenever |r−r0| is sufficiently small. In [6], Mel’nikov’s
method is generalized and applied, and we shall use some of the notation and
technique of this paper.

2 Technical Assumptions

As in [6], we will need to make the following assumptions, labeled (A1)-(A5).

(A1) The equilibria p1 = (−b, a) and p2 = (a,−b) of (1.3) are hyperbolic for
all r ∈ [r1, r2], where 0 < r1 < r2. In particular, we shall assume that, for
Ω ⊂ C the spectrum of the linear system

ẏ(t) = r0y(t)− r0f
′(pi)z(t− 1)

ż(t) = r0z(t)− r0f
′(pi)y(t− 1) (2.1)

with i = 1, 2, 0 < ρ = min{Reλ : λ ∈ Ω , Reλ > 0}, and
0 < γ = min{−Reλ : λ ∈ Ω , Reλ < 0}.

(A2) There exists a unique element r0 ∈ [r1, r2] such that (1.3), r = r0, pos-
sesses a heteroclinic solution. The solutions (pt(·), qt(·)) and (qt(·), pt(·))
are the only orbits connecting (−b, a), (a,−b) to (a,−b), (−b, a), respec-
tively.

(A3) The linear variational system

ẏ(t) = r0y(t)− r0Df(q(t− 1))z(t− 1)

ż(t) = r0z(t)− r0Df(p(t− 1))y(t− 1) (2.2)

possesses a 1-dimensional linear space of bounded solutions, spanned by
(ṗ(t), q̇(t)).

System (2.2) generates a non-autonomous linear semiflow operator, which we
denote by

T (t, s) : C([−1, 0],R2)→ C([−1, 0],R2).

Also, from assumption (A1), we know that T (t, s) possesses an exponential
dichotomy on the intervals (−∞,−τ ] and [τ,∞), where τ > 0 is large. In
particular, using the notation in [1], there exist projections

Pu(s), Ps(s) : C([−1, 0],R
2)→ C([−1, 0],R2), s ∈ I0

and also constants K ≥ 0 and α > 0 (dependent on τ), such that the following
properties hold. Here I0 is one of the intervals (−∞,−τ ] , [τ,∞).
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(i) Pu(s) + Ps(s) = I, the identity operator, for all s ∈ I0.

(ii) Pu and Ps are strongly continuous in s.

(iii) T (t, s)Ps(s) = Ps(t)T (t, s) for any t ≥ s, s, t ∈ I0.

(iv) T (t, s) : Ran(Pu(s)) → Ran(Pu(t)) defines an isomorphism, with inverse
T (s, t) : Ran(Pu(t))→ Ran(Pu(s)).

(v) |T (t, s)Ps(s)| ≤ Ke−α(t−s), t ≥ s, and |T (s, t)Pu(t)(t)| ≤ Ke−α;(t−s), t ≥
s, where “| · |” denotes the sup norm in C([−1, 0],R2).

We next define the backward evolutionary operator T ∗(s, t) : C∗([−1, 0],R2)→
C∗([−1, 0],R2) defined by

〈φ∗, T (t, s)φ〉 = 〈T ∗(s, t)φ∗, φ〉 ,

where φ ∈ C([−1, 0],R2) and φ∗ ∈ C∗([−1, 0],R2). For φ ∈ C([−1, 0],R2) and
ψ ∈ C∗([−1, 0],R2), we have used the convention

〈φ, ψ〉 =

∫ 0
−1
φ(θ)ψ(θ)dθ .

Since T (t, s) admits an exponential dichotomy, it follows that T ∗(s, t) must
also admit an exponential dichotomy on the intervals (−∞,−τ ] and [τ,∞),
with associated projections P ∗u (s), P

∗
s (s) : C

∗([−1, 0],R2) → C∗([−1, 0],R2).
From assumption (A3) and property (iv), we deduce that dimRanPu(−τ) =
dimRanPu(τ) = 1. We shall also assume that

(A4) RanPu(−τ) ∩ [T (τ,−τ)]−1RanPs(τ) is a one dimensional subspace of
C([−1, 0],R2) spanned by ψ0.

We will choose α > 0 to be as close to min{ρ, γ} as necessary in what fol-
lows. From (A4), we may define the operator F : RanPu(−τ) × RanPs(τ) →
C([−1, 0],R2) by φ = v − T (τ,−τ)u. Thus, φ approximates (up to first or-
der) the distance between the unstable manifold of each equilibrium, trans-
lated forward by an amount 2τ , and the stable manifold of the other equilib-
rium. We also define the adjoint operator F∗ of F by F∗ : C∗([−1, 0],R2) →
RanP ∗u (−τ) × RanP

∗
s (τ),F

∗ : φ 7−→ (u∗, v∗), and F∗φ∗ = (−T ∗(−τ, τ)φ∗, φ∗).
The following technical lemma, which appears in [6], is stated without proof.

Lemma 2.1 F : RanPu(−τ) × RanPs(τ) → C([−1, 0],R2) is a Fredholm op-
erator, with dimkerF = codimRanF = 1. Thus the index of F is zero,
ind(F) = 0. In particular,

(i) kerF =
{
(u, r) ∈ RanPu(−τ) × RanPs(τ) : u = ξu0, r = T (τ,−τ)u, ξ ∈

R
}
;

(ii) kerF∗ =
{
ξu∗0 ∈ RanPu(−τ) : T

∗(−τ, τ)u∗0 ∈ RanP
∗
s (−τ), ξ ∈ R

}
;
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(iii) RanF =
{
φ ∈ C([−1, 0],R2) :< u0, φ〉 = 0

}
.

We will construct F∗ from the semiflow T ∗(s, t), where T ∗ is the solution
map associated with the formal adjoint system

ẏ(t) = −r0y(t) + r0Df(p(t))z(t+ 1)

ż(t) = −r0z(t) + r0Df(q(t))y(t+ 1). (2.3)

Given assumption (A3), it follows from the Fredholm alternative that System
(2.3) also possesses a one-dimensional linear subspace of globally bounded so-
lutions. Indeed, dimkerF∗ = dimkerF = 1. We denote a basis for kerF∗ by
ψt(·) ∈ C([−1, 0],R2).
Lastly, we impose the Mel’nikov-type condition

(A5)
∫∞
−∞ψ(t) · (p(t), q(t))dt = C 6= 0.

This condition allows us to perform the local bifurcation analysis that we need
in this section and the next.

3 A Brief Review of Lin’s results - The Slowly

Oscillating Case

We start by reformulating equation (2.1) in a functional-analytic setting. If we
set γ(t) = (y(t), z(t))T and F (γ) = (f(z), f(y))T , we can rewrite (2.1) as

γ̇(t) = rγ(t)− rF (γ(t− 1)). (3.1)

Suppose that γ1(t) satisfies (3.1) and that J is the permutation matrix

(
0 1
1 0

)
.

It follows that γ2(t) = Jγ1(t) must also satisfy (3.1), since

γ̇2(t) = Jγ̇1(t) = J(rγ1(t)− rF (γ1(t− 1)))

= rJγ1(t)− rF (Jγ1(t− 1)) = rγ2(t)− rF (γ2(t− 1)).

Next we set r = r0 and denote the (unique) heteroclinic solutions (p(t), q(t))
T

of (3.1) by W1(t) and W2(t) = JW1(t). If we define γ1(t) = W1(t) + η1(t) and
γ2(t) =W2(t) + η2(t), where η1(t) and η2(t) are small for all t, we may rewrite
(3.1) in variational form as

η̇i(t) = r0ηi(t)− r0DF (Wi(t− 1))ηi(t− 1) +N(ηi(t− 1), r, t− 1) (3.2)

with remainder term

N(ηi(t), r, t) = −rF (Wi(t) + ηi(t)) + r0F (Wi(t)) + r0DF (Wi(t))η
2
i (t)

+(r − r0)(Wi(t) + ηi(t)) = O(|ηi(t)|+ |r − r0|). (3.3)

Here i ≡ i mod (4n+2), and (3.2) is valid for η1(t) close to W1(t), and η2(t)
close to W2(t), respectively (we choose i ≡ i mod (4n+ 2) to cover the general
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case where a solution undergoes 2n+1 oscillations before repeating). We next
define

ηit(·) = ηi(t+ ·) , Wit(·) =Wi(t+ ·) ∈ C([−1, 0],R
2);

hence, using the abstract variation-of-constants formula in C([−1, 0],R2), we
may rewrite (3.2) in integral form as

ηit = T
i(t, σ)ηiσ +

∫ t
σ

T i(t, s)X0N(ηis(−1), r, s− 1) ds, (3.4)

with boundary conditions

η(i−1)w − ηi(−w) =Wi(−w) −W(i−1)w = bi ∈ C([−1, 0],R
2), (3.5)

where T i(t, s) : C([−1, 0],R2) → C([−1, 0],R2) is the linear solution map asso-
ciated with the equation

η̇i(t) = r0ηi(t)− r0DF (Wi(t− 1))ηi(t− 1) (3.6)

and X0 : C([−1, 0],R2) → R2 is the evaluation operator defined by X0φ(·) =
φ(0) for any φ ∈ C([−1, 0],R2). The boundary conditions in (3.5) follow from
the continuity condition

γ(i−1)w = η(i−1)w +W(i−1)w = ηi(−w) +Wi(−w) = γi(−w).

Definition 3.1 For i ∈ Z, define E([−wi, wi],∆) as the linear space of func-
tions η = (η1·, η2·), where ηit(·) ∈ C([−1, 0],R2) for each t ∈ [−wi, wi]\[τ, τ +1)
and ηi has jumps at t = τ along the direction ∆i. In this space we define the
norm ‖η‖E = maxi supt∈[−wi,wi] |zit(·)|, where | · | denotes the supremum norm

in C([−1, 0],R2).

Definition 3.2 A neighborhood Uε1,ε2(0) in E([−wi, wi],∆i) × R is defined
as

Uε1,ε2 =
{
(η, r) : η ∈ E([−wi, wi],∆), r ∈ R, ‖η‖E < ε1, |r − r0| < ε2

}
.

We are now ready to review the main results in [6], where existence and
uniqueness properties of slowly oscillating periodic solutions to (1.1) (for ε > 0
small) are studied.

Lemma 3.1 ([6]) Suppose that (A1)-(A5) are valid. Then there exist constants
ŵ, ε0 > 0 with the following property. If w > ŵ and |r − r0| < ε0, then there
exists a unique piecewise continuous solution η ∈ E([−w,w],∆) × R of (3.4),
(3.5) with 〈ψi, ηi(−τ)〉 = 0, i = 1, 2.

Let ξ be a real number such that ηiτ− − ηiτ+ = ξi∆i. Then

ξi =

∫ w
−w

ψis(−1)N(ηis(−1), r, s−1) ds+ 〈ψi(−w)(·), ηi(−w)(·)〉−〈ψiw(·), ηiw(·)〉.
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The piecewise continuous solution of (3.4), (3.5) will be denoted by (η, r), with
ηit = xi(t; b, r, w).
Since ξi depends upon the parameters w, r, we set ξi = Gi(w, r). Gi : R

2 →
R is called a Mel’nikov function and measures the magnitude of the jump in
ηit(·) at time t = τ along the direction ∆i. We next review the two fundamental
theorems which appear in §5 of [6].

Theorem 3.1 Suppose that (A1)-(A5) are satisfied. Then there exist positive
constants ŵ, ε, ε0, and a continuous function r

∗ : (ŵ,∞)→ (r−ε0, r+ε0) with
the following property. For each w > ŵ, system (1.3) possesses a 4w-periodic
solution (y(t), z(t)) with y(t + 2w) = z(t) and |y(t) − p(t)| + |z(t) − q(t)| < ε,
t ∈ [−w,w], if and only if r = r∗(w). In addition, for r = r∗(w), the periodic
solution is unique up to time translations.

Proof: From Lemma 3.1, we need to solve the bifurcation equations

G1(w, r) =

∫ w
−w

ψ1s(−1)N(η1s(−1), r, s− 1) ds

+〈ψ1(−w)(·), η1(−w)(·)〉 − 〈ψ1w(·), η1w(·)〉

and

G2(w, r) =

∫ w
−w

ψ2s(−1)N(η2s(−1), r, s− 1) ds

+〈ψ2(−w)(·), η2(−w)(·)〉 − 〈ψ2w(·), η2w(·)〉

for w fixed. This follows from the fact that, for any pair (w, r), there exists a
solution η ∈ E([−w,w],∆) to (3.4), (3.5) with 〈η1τ− − η1τ+ ,∆1〉 = G1(w, r)
and 〈η2τ− − η2τ+ ,∆2〉 = G2(w, r). Now we know that ψ2 = Jψ1 and η2 = Jη1.
Since

N(η2t(−1), r, t− 1)

= N(Jη1t(−1), r, t− 1)

= −rF (JW1t(−1) + Jη1t(−1)) + r0F (JW1t(−1))

+r0DF (JW1t(−1))Jη1t(−1) + (r − r0)(JW1t(−1) + Jη1t(−1))

= JN(η1t(−1), r, t− 1) ,

it follows that

G2(w, r) =

∫ w
−w

Jψ1s(−1)JN(η1s(−1), r, s− 1) ds

+〈J2ψ1(−w)(·), η1(−w)(·)〉 − 〈J
2ψ1w(·), η1w(·)〉

= G1(w, r).

Notice here that DF (JW1t(−1)) = DF (W1t(−1)) and J2 = I =

(
1 0
0 1

)
.



8 Uniqueness of rapidly oscillating periodic solutions EJDE–2000/56

Given the above calculations, it is sufficient to solve the Mel’nikov-type equa-
tionG1(w, r) alone, since (by symmetry)G1(w, r) = 0 implies thatG2(w, r) = 0.
Hence, we apply the implicit function theorem and condition (A5). Given that

G1(∞, r0) = 0, we compute
∂G1(∞,r0)

∂r
. We have

∂G1(w, r)

∂r

=
∂

∂r

[ ∫ ∞
−∞

ψ1s(−1)(−rF (W1s(−1) + η1s(−1)) + r0F (W1s(−1))

+r0DF (W1s(−1))η1s(−1))η1s(−1) + (r − r0)(W1s(−1) + η1s(−1)) ds

+〈ψ1(−w)(·), η1(−w)(·)〉 − 〈ψ1w(·)〉
]

and hence

∂G1(∞, r0)

∂r
=

∫ ∞
−∞

ψ1s(−1)
∂

∂r

[
− rF (W1s(−1) + η1s(−1)) + r0F (W1s(−1))

+r0DF (W1s(−1))η1s(−1) + (r − r0)(W1s(−1) + η1s(−1))
]
ds

since ψ1t(·) is independent of r and limt→±∞|ψ1t(·)| = 0. Computing further,
we obtain

∂G1(∞, r0)

∂r

=

∫ ∞
−∞

ψ1s(−1)[−F (W1s(−1) + η1s(−1)) + (W1s(−1) + η1s(−1))] ds

=

∫ ∞
−∞

ψ1s(−1)[−F (W1s(−1)) +W1s(−1)] ds

+

∫ ∞
−∞

ψ1s(−1)[−DF (W1s(−1))η1s(−1) +O(|η1s(−1)|
2) + η1s(−1)] ds.

Since ‖η‖E approaches 0 as w goes to ∞, we must have that

∂G1(∞, r0)

∂r
=

∫ ∞
−∞

ψ1s(−1)[−F (W1s(−1)) +W1s(−1)] ds

= −

∫ ∞
−∞

ψ1s(−1) · (q(s− 1), p(s− 1)) ds

=

∫ ∞
−∞

ψ1(s− 1) · (p(s− 1), q(s− 1)) ds = C 6= 0 ,

from assumption (A5). Thus there exists a unique function r = r∗(w) which
satisfies the bifurcation equation G1(w, r) = 0 for all w > ŵ, and the proof of
Theorem 3.1 is complete. ♦

The next theorem allows us to establish a bijection between the solutions
(y(t), z(t)) of (1.3) with long period 4w and square wave solutions xε(t) of (1.1)
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with period 2+2rε. The crux of the proof is to show that ε is strictly decreasing
in w. It will turn out that the technique of proof can be modified to show that
the period p(ε) of xε(t) is monotone increasing in ε for ε > 0 small.

Theorem 3.2 ([6]) Suppose that (A1)-(A5) are valid. Then there exist ε1, ε2 >
0 such that for each ε ∈ (0, ε1), there exist unique w ∈ (ŵ,∞) and r ∈
(r0 − ε0, r0 + ε0) with the following property. Equation (1.1) admits a unique
periodic solution xε(t) with period p(ε) = 2 + 2εr that satisfies the estimate
|xε(−εrt)− p(t)|+ |xε(−εrt− 1− εr) − q(t)| < ε2 for all t ∈ [−w,w].

The proof of Theorem 3.2 relies upon the following lemma, which again
appears in [6].

Lemma 3.2 Suppose that η1it = ηi(t; b, r, w1) and η
2
it = ηi(t; b, r, w2) satisfy

(3.4), (3.5), with w1, w2 > ŵ. Also suppose that, for any η1 ∈ E([−wj , wj ],∆j),
j = 1, 2, we define the σ-weighted norm ‖ηi‖σ = ‖ηi‖Ej(e

−σ(wi+·)+e−σ(wi−·))−1,
where 0 < σ < α. It follows that ‖η2i − η

1
i ‖σ = O(w2 − w1).

Proof of Theorem 3.2 We start by writing an exponential estimate for the
quantity G1(w2, r) −G1(w1, r). In particular,

|G1(w2, r)−G1(w1, r)|

≤
∣∣∣
∫ w2
−w2

ψ1s(−1)
[
N(η21s(−1), r, s− 1)−N(η

1
1s(−1), r, s− 1)

]
ds
∣∣∣

+
∣∣∣〈ψ1(−w2)(·), η21(−w2)(·)〉 − 〈ψ1w2(·), η21w2 (·)〉
−〈φ1(−w1)(·), η

1
1(−w1)(·)〉+ 〈ψ1w1(·), η

1
1w1 (·)〉

∣∣∣.
We call the first term in absolute value I and the second II, and estimate these
terms separately. Assuming without loss of generality that ŵ < w1 < w2, we
have

I ≤ |

∫ −w1
−w2

ψ1s(−1)N(η
2
1s(−1), r, s− 1)ds|

+|

∫ w2
w1

ψ1s(−1)N(η
2
1s(−1), r, s− 1) ds|

+|

∫ w1
−w1

ψ1s(−1)[N(η
2
1s(−1), r, s− 1)−N(η

1
1s(−1), r, s− 1)] ds|

≤ (w2 − w1)
[
sup

s∈[−w1,w2]
|ψ1s(−1)||N(η

2
1s(−1), r, s− 1)|

+ sup
s∈[w1,w2]

|ψ1s(−1)||N(η
2
1s(−1), r, s− 1)|

]

+|

∫ w1
−w1

ψ1s(−1)[−r(F (W1s(−1) + η
2
1s(−1))− F (W1s(−1) + η

1
1s(−1)))

+r0DF (W1s(−1))(η
2
1s(−1)− η

1
1s(−1)) + (r − r0)(η

2
1s(−1)− η

1
1s(−1))] ds|
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≤ C(w2 − w1)e
−αw1

+|

∫ w1
−w1

ψ1s(−1)[C|η
2
1s(−1)|+ C|η

2
1s(−1)− η

1
1s(−1)|

2] ds|

≤ C(w2 − w1)e
−αw1

×C

∫ w1
−w1

|ψ1s(−1)|‖η
2
1s(−1)− η

1
1s(−1)‖σ(e

−σ(w1−s) + e−σ(w1+s)) ds

≤ C(w2 − w1)e
−αw1 + C

∫ w1
−w1

e−α|s|(w2 − w1)(e
−σ(w1−s) + e−σ(w1+s)) ds,

using Lemma 3.2. Formally integrating the last term yields

I ≤ C(w2 − w1)e
−αw1 + C(w2 − w1)e

−σw1 ≤ C(w2 − w1)e
−σw1

for any σ ∈ (0, α). Now we estimate II.

II ≤ |〈ψ1(−w2)(·), η
2
1(−w2)(·)〉 − 〈ψ1(−w1)(·), η

1
1(−w1)(·), η

1
1(−w1)(·)〉|

+|〈ψ1w2(·), η
2
1w2(·)〉 − 〈ψ1w1 (·), η

1
1w1(·)〉|

≤ |〈ψ1(−w2)(·), η
2
1(−w2)(·)〉 − 〈ψ1(−w1)(·), η

2
1(−w2)(·)〉|

+|〈ψ1(−w1)(·), η
2
1(−w2)(·)− 〈ψ1(−w1)(·), η

1
1(−w1)(·)〉|

+|〈ψ1w2(·), η
2
1w2(·)〉 − 〈ψ1w1 (·), η

2
1w2(·)〉|

+|〈ψ1w1(·), η
2
1w2(·)〉 − 〈ψ1w1 (·), η

1
1w1(·)〉|

≤ C
(
sup
w≥w1

|ψ̇1w(−1)|(w2 − w1) + sup
w≥w1

|ψ1w(−1)|(w2 − w1)
)

≤ C(w2 − w1)e
−αw.

Thus |G1(w2, r) − G1(w1, r)| ≤ (w2 − w1)e
−σw. Next we apply assumption

(A5) to estimate the quality |G1(w2, r2) − G1(w1, r1)|, where G1(w1, r1) =

G1(w2, r2) = 0. Since
∂G1(r0,∞)

∂r
= C 6= 0, we know that, for ŵ sufficiently

large and ε0 > 0 sufficiently small, infw,r

∣∣∣∂G1(r,w)∂r

∣∣∣ ≥ c
2 , where w > ŵ and

|r − r0| < ε0. Thus, setting r1 = r
∗(w1) and r2 = r

∗(w2), we have

c

2
|r2 − r1| ≤ |G1(w1, r2)−G1(w1, r1)| = |G1(w1, r2)|

= |G1(w2, r2)−G1(w1, r2)| ≤ Ce
−σw1(w2 − w1).

It follows directly that |r
∗(w2)−r

∗(w1)|
|w2−w1|

≤ Ce−σr1 for some constant c > 0.

The above estimate enables us to show that, for w2 > w1 > ŵ, ε(w1) −
ε(w2) > 0 and thus ε is monotone decreasing in w > ŵ. In particular,

ε(w1)− ε(w2) =
1

(2w1 − 1)r∗(w1)
−

1

(2w2 − 1)r∗(w2)

=
(2w2 − 1)r∗(w2)− (2w1 − 1)r∗(w1)

(2w1 − 1)(2w2 − 1)r∗(w1)r∗(w2)
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=
(2w2 − 1)r∗(w2)− (2w1 − 1)(r∗(w2) +O((w2 − w1)e−σw1))

(2w1 − 1)(2w2 − 1)r∗(w1)r∗(w2)

=
2(w2 − w1)r∗(w2) + (w2 − w1)O(w1e−σw1)

(2w1 − 1)(2w2 − 1)r∗(w1)r∗(w2)
.

Since r is a continuous function of w, it follows that r(w2) is bounded away from
0 for w2 large. Thus for w1 > ŵ and sufficiently large, O(w1e

−σw1) is small and
the quotient is strictly positive. This completes the proof.

4 Existence of Rapidly Oscillating Periodic So-

lutions

In Section 3, we summarized Lin’s existence and uniqueness proof for slowly
oscillating periodic solutions to (1.1) when ε is small and positive. Here we
move our attention to existence and uniqueness properties of rapidly oscillating
periodic solutions. The analysis in this section leads to a new uniqueneness
result in Section 5.
We start by giving a precise description of what it means for a solution

to be rapidly oscillating [7]. We fix t ∈ R, also set x(t, ϕ) = xt(ϕ, 0) and
σ = σ(t) = inf{s : s ≥ t, x(s, ϕ) = 0}. We then define the integer-valued
functional, V : A × R → N ∪ (+∞), V (xt(ϕ, ·)) as the number of elements in
the set s = {s0 ∈ (σ − 1, σ] : x(s0, ϕ) = 0}. V defines the oscillation rate of
a solution to (1.1). A periodic solution xε(t, ϕ) to (1.1) is said to be rapidly
oscillating if V (xt(ϕ, ·)) > 1 for all t (given the initial condition ϕ). We would
like to establish conditions under which a solution (yt(·), zt(·)) ∈ C([−1, 0],R2)
satisfies (1.3) and oscillates (2n+1)-times before repeating exists. Equivalently,
we would like to find conditions under which the system of boundary-value
problems

ηit = T
i(t, σ)ηiσ +

∫ t
σ

T i(t, s)X0N(ηis(−1), r, s− 1) ds (4.1)

η(i−1)wi − ηi(−wi) =Wi(−wi) −W(i−1)wi = bi (4.2)

with t ∈ [−wi, wi+1], bi ∈ C([−1, 0],R2), and i ≡ i mod (4n + 2) possesses a
solution in

E([−w1, w2],∆1)× · · · × E([−w4n+2, w1],∆4n+2)

without any jump discontinuities along the directions ∆i (defined in Lemma
4.1). Lemma 4.1 is proved using the contraction mapping theorem as done in
[6] for finite dimensions. We shall not repeat the proof here.

Lemma 4.1 Suppose that (A1)-(A5) are valid. Then there exist positive con-
stants ŵ, ε0 with the following property. If {wi}

4n+2
i=1 is a sequence of real num-

bers with each wi > ŵ, and |r − r0| < ε0, then there exists a piecewise continu-
ous solution η ∈ E([−w,w],∆) × R of (4.2), (4.3) with 〈ψi, ηi(−τ)〉 = 0 , i =
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1, 2, · · · , 4n+ 2. Let ξ be such that ηiτ− − ηiτ+ = ξi∆i. Then

ξi =

∫ wi+1
−w1

ψs(−1)N(ηis(−1), r, s− 1) ds

+〈ψi(−wi)(·), ηi(−w2)(·)〉 − 〈ψiwi+1(·), ηiwi+1 〉 . (4.4)

When looking for rapidly oscillating periodic solutions (yt(·), zt(·)) of (1.3),
which satisfy the symmetry condition (yt+2w(·), zt+2w(·)) = (zt(·), yt(·)) and
whose period is 4w, it is possible to make the simplifying assumption

wi ∈ Z2n+1, (4.5)

where Z2n+1 is the quotient group of integers modulo 2n + 1 under addition.
This assumption will reduce the number of bifurcation equations to be solved
by a factor of 2. We shall define the Mel’nikov function G : R4n+2 × R → R
by ξi = G(w1, · · · , w4n+2, r) = G(w, r) to emphasize the dependence of ξi on
w ∈ R4n+2 and r.
The following theorem indicates that there exists at least one rapidly oscil-

lating periodic solution of (1.3) whose lap number is 2n+1, n ∈ Z. The solution
we will construct has zero crossings which are equally spaced, and the proof
reduces to the slowly oscillating periodic case, as in [6].

Theorem 4.1 Suppose that (A1)-(A5) are valid. Then there exists ε0 > 0 with
the following property. For each ε ∈ (0, ε0) and each odd integer 2n+ 1, n ∈ Z,
there exists a rapidly oscillating periodic solution xε(t) of (1.3) whose period is
2/(2n+ 1) +O(ε).

Proof: We shall fix 2n + 1 and choose wi = w/(2n + 1) > Ŵ , where ŵ is
independent of i and depends continuously on w. In this case, we need to solve
the bifurcation equations (here ηi = ηi+2, ψi = ψi+2, Jηi = ηi+1, ξi = ξi+2 and
Jψi = ψi+1, where i ≡ i mod (4n+ 2))

ξi =

∫ w
2n+1

− w
2n+1

ψs(−1)N(ηis(−1), r, s− 1) ds

+〈ψi(− w
2n+1 )

(·), ηi(− w
2n+1 )

(·)〉 − 〈ψi( w
2n+1 )

(·), ηi( w
2n+1 )

(·)〉 , i = 1, 2.

However, if n is fixed then for w large, the conditions in Theorem 3.1 are satis-
fied, since all of the bifurcation equations are equal to 0 if any one is equal to
0. More precisely, for

r̃(w) = r∗
(

w

2n+ 1

)
, ξ1 = G1(w, r̃(w)) = 0.

We now have that, for r = r̃(w), there exists a 4w
2n+1 -periodic solution (y(t), z(t))

of equation (1.3). Now, from the proof of Theorem 3.2, there corresponds a

unique,
(

2
2n+1 +O(ε)

)
-periodic solution xε(t) of (1.1) to each

4w
2n+1 -periodic

solution (y(t), z(t)) of (1.3) (after a time rescaling). This completes the proof.
In the next section we will determine whether it is possible to find other types

of rapidly oscillating periodic solutions to (1.3) when ε is small and positive.
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5 A Uniqueness Theorem for Rapidly Oscillat-
ing Periodic Solutions

Suppose that xε(t) is a rapidly oscillating periodic solution of (1.1) with oscil-
lation rate 3 (i.e., V (xε(t)) = 3 for any time t). Also suppose that xε(t) = 0
at intervals given by a(ε), b(ε) and c(ε). That is, if {ti} is an ordered sequence
of times for which xε(t) = 0, then xε(ti+1) − xε(ti) = a(ε) if i ≡ 0 (mod 3),
xε(ti+1)− xε(ti) = b(ε) if i ≡ 1 (mod 3), and xε(ti+1) − xε(ti) = c(ε) if i ≡ 2
(mod 3).

In this section we will prove that limε→0+ a(ε)/b(ε) = limε→0+ b(ε)/c(ε) = 1,
so that the distance between successive oscillations tends to a constant as ε tends
to 0. The notation we use will be general enough to cover the case where the
rapidly oscillating periodic solution xε(t) has arbitrary lap number 2n+ 1.

Suppose, then, that η ∈ E([−w,w],∆) satisfies the system of integral equa-
tions (4.1) with boundary conditions (4.2), i ∈ {1, · · · , 4n + 2}, and wi =
wi+(2n+1). In order to emphasize that each wi depends on w through the

relation
∑2n+1
i=1 wi = 2w, we shall set wi = ai(w). We wish to show that

limw→∞ ai(w)/aj(w) = 1, independent of i, j ∈ {1, · · · , 4n+ 2}. We shall need
the technical Lemma 5.2 (proved by Lin in 1990) and Lemmas 5.1, 5.3 (proved
here by the author) for our uniqueness result. We suppose that assumptions
(A1)-(A5) are valid throughout.

Lemma 5.1 Consider the bifurcation functions Gi(w, r) defined by (4.4), where

wi = ai(w), w ∈ {1, · · · , 2n + 1} and
∑2n+1
i=1 ai(w) = 2w. Then there exists a

unique, continuous function r = r∗(w) : (ŵ,+∞)→ (r0 − ε0, r0 + ε0) such that
G(w, r) =

∑2n+1
i=1 Gi(w, r) = 0.

Proof: The proof uses assumption (A5) and is a direct application of the
implicit function theorem. We know that G(∞, r0) = 0 (i.e. wi = ∞ for all i)

and compute ∂G(∞,r0)∂r . But now

∂G(∞, r0)

∂r
=

∂

∂r

[2n+1∑
i=1

∫ ∞
−∞

ψs(−1)N(ηis(−1), r, s− 1) ds
]

=
2n+1∑
i=1

∫ ∞
−∞

ψs(−1)
∂

∂r
N(ηis(−1), r, s− 1) ds

=
2n+1∑
i=1

∫ ∞
−∞

ψs(−1)(−F (Ws(−1)) +Ws(−1)) ds

=
1

r0

2n+1∑
i=1

∫ ∞
−∞
(ψ12(−1)ṗs(−1) + ψ

2
s (−1)q̇s(−1)) ds

=
(2n+ 1)

r0
C 6= 0 ,
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and the proof is complete. ♦

The following lemma, which is identical to Lemma 3.3 in [6], gives a precise
estimate for the bifurcation function Gi(w, r) when r = r0 and will play a signif-
icant part in the proof of our main theorem. An important consequence of this
lemma is that the boundary term 〈ψi(−wi)(·), ηi(−wi)(·)〉 − 〈ψiwi+1 (·), ηiwi+1(·)〉
is (generically) large relative to the integral term

∫ wi+1
−wi

ψs(−1)N(ηis(−1), r, s−
1) ds in (4.4) at the point r = r0. In order to give a compact representation for
Gi(w, r0), we need the following notation. Suppose that X,Y are subspaces of
C([−1, 0],R2) with X ⊕ Y = C([−1, 0],R2) and X ∩ Y = {0}; we then define
P (X,Y ) : C([−1, 0],R2) → X to be the orthogonal projection of C onto X .
Hence RanP = X and kerP = Y . Lemma 5.2 is presented without proof.

Lemma 5.2 ([6]) Suppose that (A1)-(A5) hold. Then, for any σ ∈ (0, α) and
any i ∈ Z2n+1, i ≡ i mod (2n+ 1), the following equality is valid.

Gi(w, r0)

= −〈ψi(−wi)(·), P (RanP
i
s(−wi),RanP

i−1
u (wi))bi(·)〉

−〈ψiwi+1(·), P (RanP
i
u(wi+1),RanP

i+1
s (−wi+1))bi+1(·)〉

+O(|ψi(−wi)(·)|(|bi|
2 + |b|2 + |b|(e−2σwi−1 + e−2σwi + e−2σwi+1)))

+O(|ψiwi+1(·)|(|bi+1|
2 + |b|(e−2σwi + e−2σwi+1 + e−2σwi+2))) (5.1)

+O(
{
|bi|
2 + |bi+1|

2 + |b|2(e−4σwi + e−4σwi+1 + e−4σwi+2)
}

×(e−σwi + e−σwi+1).

In (5.1), we have set |φ| = 〈φ(·), φ(·)〉1/2, where φ(·) ∈ C([−1, 0],R2). The
following lemma will be vital in the proof of Theorem 5.1.

Lemma 5.3 Suppose that (A1)-(A5) are valid and that wi = ai(w) : R → R,
i ∈ Z2n+1. Further suppose that there exists a function r∗ = r(w) : (ŵ,∞)→ R
such that Gi(w, r

∗) = 0 for all i ∈ Z2n+1 and that, for every pair j, k ∈ Z,
limw→∞Gj(w, r0)/Gk(w, r0) 6= 0. It follows that limw→∞Gj(w, r0)/Gk(w, r0) =
1, independent of j, k ∈ Z2n+1.

Proof: We shall use assumption (A5) and the fact that Gi(w, r) is jointly
continuous in w, r. First we set w = (a1(w), · · · , a2n+1(w)) and suppose that
there exists a continuous function r∗ = r∗(w) : R+ → R+ satisfying Gk(w, r∗) =
0 for all w > ŵ sufficiently large. Then there exist continuous functions δ1, δ2 :
(ŵ,∞)→ R with limw→∞δ1(w) = limw→∞δ2(w) = 0 such that

Gk(w, r
∗) = Gk(w, r0) + (1 + δ1(w))

∂Gk(∞, r0)

∂r
(r∗ − r0)

= Gk(w, r0) + C(1 + δ1(w))(r
∗ − r0) ,

Gj(w, r
∗) = Gj(w, r0) + (1 + δ2(w))

∂Gj(∞, r0)

∂r
(r∗ − r0)

= Gj(w, r0) + c(1 + δ2(w))(r
∗ − r0) .
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Since Gk(w, r
∗) = 0, we gain

(r∗ − r0) =
1

C(1 + δ1(w))
(Gk(w, r

∗)−Gk(w, r0)) = −
Gk(w, r0)

C(1 + δ1(w))
.

Substituting for (r∗ − r0) into our expression for Gj yields

Gj(w, r
∗) = Gj(w, r0)−

(1 + δ2(w))

(1 + δ1(w))
Gk(w, r0)

= Gj(w, r0) = Gk(w, r0) +
δ2(w)− δ1(w))

(1 + δ1(w))
Gk(w, r0)

= (1 −
Gk(w, r0)

Gj(w, r0)
)Gj(w, r0) +

(δ2(w)− δ1(w))

(1 + δ1(w))
Gk(w, r0).

Now suppose, by way of contradiction, that limw→∞Gj(w, r0)/Gk(w, r0) = c̃ 6=
1. Then there exists a continuous function δ3 = δ3(w) : (ŵ,∞) → R with
limw→∞δ3(w) = 0 such that

Gj(w, r
∗) =

(
1−
(1 + δ3(w))

c̃

)
Gj(w, r0) +

(δ2(w) − δ1(w))

(1 + δ1(w))
Gk(w, r0).

From the hypotheses of our lemma we know that Gk(w, r0) = O(Gj(w, r0)).
Hence, for w > ŵ sufficiently large, we know thatGj(w, r

∗) ∼
(
1− 1

c̃

)
Gj(w, r0) 6=

0. Thus there cannot exist a continuous function r∗ : (ŵ,∞) → R such that
Gi(r

∗, w) = 0 for all i unless limw→∞Gj(w, r0)/Gk(w, r0) = 1 for all pairs j, k,
and the proof is complete. ♦

We will require the following two assumptions in addition to (A1)-(A5).

(A6) There exist non-negative integers h1, h2, `1 and `2, and strictly positive
real numbers c1, c2, d1 and d2 such that, for all i ∈ Z2n+1,

lim
t→−∞

|ψit(·)|

|t|h1eγt
= c1 , lim

t→+∞

|ψit(·)|

t`1e−ρt
= d1 ,

lim
t→−∞

|Wit(·)|

|t|h2eρt
= c2 , lim

t→+∞

|Wit(·)|

t`2e−γt
= d2 .

(A7) There exists a positive constant c0 such that, for wi = w > ŵ and i ∈
Z2n+1,

|〈ψi(−wi)(·),W(i−1)wi (·)〉 − 〈ψiwi+1 (·) , W(i+1)(−wi+1)(·)〉|

|ψi(−wi)(·)||Wi−1)wi (·)|+ |ψiwi+1(·)||W(i+1)(−wi+1)(·)|
> c0

whenever infi∈Zwi > ŵ is sufficiently large.

Conditions (A6)-(A7) are not new but are rather applications of Sil’nikov’s
conditions for the bifurcation of periodic orbits from homoclinic orbits [6] to
bifurcations from heteroclinic chains. Condition (A6) guarantees that ψ and W
decay at an appropriate exponential rate and condition (A7) stipulates that the
local stable and unstable manifolds in (2.2.4) must intersect transversely. Both
(A6) and (A7) are generic conditions.
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Theorem 5.1 Suppose that (A1)-(A7) are valid and that equation (1.1) pos-
sesses a rapidly oscillating periodic solution xε(t) satisfying the following con-
ditions:

1. p(ε) is an integer multiple of the period of xε(t); thus, for all t ∈ R, xε(t+
p(ε)) = xε(t), where p(ε) = 2 + 2rε

2. There exists an element n ∈ Z+ such that V (xεt(·)) = 2n+1 for all t ∈ R

3. xε(t) = 0 if and only if t ∈ {ai(ε)}i∈Z, where ai(ε) < aj(ε) for any pair
i < j

4. Uniform closeness condition: there exists a continuous function ε1(ε) :
R+ → R+ with limε→0+ε1(ε) = 0 and a sequence {w̃i}

2n+1
i=1 defined by

the recursive system of equations w̃1 = 0, w̃i = w̃i−1 + wi−1 + wi, i =
2, · · · , 2n+ 1 such that

|xε(−εr(t− w̃i)− p(t)|+ |xε(−εr(t − w̃i)− 1− εr) − q(t)| < ε1

for i odd, and for i even:

|xε(−εr(t− w̃i)− q(t)|+ |xε(−εr(t− w̃i)− 1− εr)− p(t)| < ε1 .

Then there exists a positive constant c1, independent of i ∈ Z2n+1, such that
limε→0+(ai+1(ε)− ai(ε)) = c1.

Proof: From Lemma 3.1, for any sequence (w, r) = (w1, · · · , w2n+1, r) ∈
R
2n+2, there exists a unique piecewise continuous function η ∈ E([−w,w],∆)
which satisfies (3.4), (3.5). A necessary and sufficient condition for the existence
of a globally continuous solution η of (2.2.1) is Gi(w, r) = 0 for all i ∈ Z2n+1.
We shall characterize those pairs (w, r) such that every Gi is identically 0. Using
Theorem 1.3.2 and Lemma 2.3.1, we may uniquely define wi = bi(w) for each
i ∈ {1, · · · , 2n+1}, where bi(w) : (ŵ,∞)→ (ŵ,∞). It is immediately seen that
limε→0+(ai+1(ε)− ai(ε)) = c1 for all i if and only if limw→∞ bi(w)/bi+1(w) = 1,
independent of i ≡ imod 2n + 1. We shall prove the latter statement by con-
tradiction.
Let us suppose, then, that there exists an element i∗ ∈ {1, · · · , 2n+ 1} such

that limw→∞ ai∗(w)/ai(w) ≤ 1 for all i ∈ Z2n+1 and also
limw→∞ ai∗(w)/ai∗+1(w) = c2 < 1. Without loss of generality, it is possible
to choose i∗ = 1, for the following reason. Supposing that X = (ŵ,∞) and
Σ : X2n+1 → X2n+1 is the left shift map defined by Σ(a1(w), · · · , a2n+1(w)) =
(a2(w), · · · , a2n+1(w), a1(w)), it follows directly from equation (2.2.3) that
Gi(Σw, r) = Gi+1(w, r). Thus we need only apply Σ(2n + 2 − i∗)- times to w
in order to ensure that limw→∞ a1(w)/ai(w) ≤ 1 and limw→∞ a1(w)/a2(w) =
c2 < 1. Again, without loss of generality , we assume that 0 < γ ≤ ρ. There are
now two subcases to consider, first the case where γ < ρ and second the case
where γ = ρ; we consider these separately.
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Case I (γ < ρ): We show that G2(w, r0) = o(G1(w, r0)). From Lemma 5.2
and assumptions (A6)-(A7), we have that

G1(w, r0) = −〈ψ1(−a1(w))(·) , P (RanP
1
s (−a1(w)), RanP

2n+1
u (a1(w)))b1(·)〉

−〈ψ1a2(w)(·) , P (RanP
1
u (a2(w)) ,RanP

2
s (−a2(w)))b2(·)〉

+O(G1(w, r))

= 〈ψ1(−a1(w))(·), (W(2n+1)a1(w)(·) + o(W(2n+1)a1(w)(·))〉

−〈ψ1a2(w)(·), (W2(−a2(w))(·) + o(W2(−a2(w))(·))〉

∼ c1d2|a1(w)|
h1+`2e−2γa1(w).

Although we did not, a priori, know that the remainder terms were smaller than
the boundary terms in Lemma 5.2, it turns out that this is the case from as-
sumption (A6). It is thus justifiable to treat the remainder terms as o(G1(w, r))
in the expression above. Proceeding in the same way, we can show that

G2(w, r0) ∼ c1d2|a2(w)|
h1+`2e−2γa2(w) − c2d1|a3(w)|

h2+`1e−2ρa3(w)

= o(G1(w, r0)).

Using the same argument as in the proof of Lemma 5.3, it follows that if
G1(w, r

∗) = 0 for some function r∗ = r∗(w) : X → R, then G2(w, r∗) 6= 0,
a contradiction. In particular, G1(w, r

∗) = 0 if and only if

r∗ − r0 = −
c1d2|a1(w)|h1+`2e−2γa1(w)

c(1 + δ4(w))

for some continuous function δ4 : X → R with limw→∞δ4(w) = 0 and
G2(w, r

∗) ∼ c1d2|a1(w)|h1+`2e−2γa1(w).

Case II (γ = ρ): We have γ = ρ, limw→∞ a1(w)/ai(w) ≤ 1 for i ∈ Z2n+1
and limw→∞ a1(w)/a2(w) < 1 and shall show that, if G1(w, r

∗) = G2(w, r
∗) =

· · · = G2n(w, r
∗) = 0 for some function r∗ : X → R , r∗ = r∗(w), then

G2n+1(w, r
∗) = G0(w, r

∗) 6= 0. From Lemma 5.3, a necessary condition for the
existence of a function r∗ such that G1(w, r

∗) = G2(w, r
∗) = · · · = G2n(w, r∗) =

0 is limw→∞
Gj(w,r0)
Gk(w,r0)

= 1 for all pairs j, k ∈ Z , j, k 6≡ 0 mod 2n + 1 (where

Gj(w, r0) , Gk(w, r0) 6= 0). Since

G1(w, r0) ∼ c1d2|a1(w)|
h1+`2e−2γa1(w),

G2(w, r0) ∼ c1d2|a2(w)|
h1+`2e−2γa2(w) − c2d1|a3(w)|

h2+`1e−2γa3(w),

we must then have limw→∞
a1(w)
a3(w)

= 1 , h1 + `2 = h2 + `1 and c2d1 = −c1d2;

by induction, we further have that, for all integers (2i + 1) ∈ Z2n+1 with i ∈

Z , limw→∞
a1(w)

a(2i+1)(w)
= 1. It is now possible to establish a contradiction by

showing that limw→∞
G1(w,r0)
G0(w,r0)

6= 1. In particular, by direct computation,

G0(w, r0) = G2n+1(w, r0)

∼ c1d2|a2n+1(w)|
h1+`2e−2γa2n+1(w) − c2d1|a1(w)|

h2+`1e−2γa1(w)

∼ 2G1(w, r0),
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and the proof is complete. ♦
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