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ABSTRACT
The ability to assess and select new suppliers quickly and efficiently is a critical requirement for improving the 
agility of manufacturing supply chains. The Digital Manufacturing Market (DMM) is a web-based platform 
for intelligent supply chain configuration. This research enhances the DMM’s performance by developing a 
column generation method for solving the supplier selection problem. The objective of the proposed method is 
to maximize the technological competencies of the selected suppliers while meeting their capacity constraints. 
The column generation method resolves the issue of limited scalability of a traditional linear programming 
formulation and can be integrated into the DMM. Additionally, using test generated problems, this research 
evaluates the effect on reducing the threshold distance traveled by semi-finished parts in the work orders. The 
results show that an economy of distance can be imposed with little effect on average match compatibility.
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INTRODUCTION

Manufacturing companies continuously strive 
to improve the responsiveness and flexibility of 
their supply chains by finding alternative means 
of sourcing. Managing the sourcing process has 
been a challenge in the last decade for many 
corporations (Saen, 2009). In particular, sup-
plier discovery and evaluation is increasingly 
becoming complex and resource-intensive in 
global supply chains. There is a need for com-
putational tools and techniques for efficient 

identification of prospective suppliers to enable 
rapid formation and reconfiguration of agile 
supply chains. This need is more pronounced 
when supply chain transactions are conducted on 
the web, where a huge number of stakeholders 
are involved in trading manufacturing services. 
Electronic marketplaces (e-market) for manu-
facturing services have recently become popular 
venues for sourcing particularly among small 
and medium sized companies. A web-based 
framework allows for interaction with a far 
greater number of potential suppliers and also 
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enables automation of computational tasks like 
supplier discovery and evaluation. 

Despite their advantages, existing manu-
facturing e-markets fail in building accurate 
connections between buyers and sellers due 
primarily to the syntactic (keyword-based) 
nature of the search. Ameri and Dutta (2008) 
proposed a semantic approach to supplier 
selection by developing a market framework, 
called Digital Manufacturing Market (DMM), 
based on the Semantic Web (SW) technology. 
DMM is an agent-based environment in which 
buyers (i.e., manufacturing companies) describe 
their needs by posting queries and sellers (i.e., 
suppliers) state their capabilities by creating 
advertisements. Both buyers’ needs and sellers’ 
capabilities are represented by software agents 
using a formal ontology called Manufacturing 
Service Description Language (MSDL) (Ameri, 
2006). Semantic search engines quantify the 
similarities between service provisions (adver-
tisements) and service requests (queries). The 
details of the semantic search methodology are 
in (Ameri & Dutta, 2008). 

The semantic search engine returns a 
numeric similarity or matching score between 
0 (completely dissimilar) and 1 (completely 
similar) for each DMM advertisement-query 
pair. Suppliers (i.e., sellers) are ranked according 
to the similarity assessment, and the supplier 
with the highest similarity score is selected to 
fulfill a service. This methodology of one-to-one 
matching is adequate if manufacturers’ work 
orders require only a few services and the supply 
chain has few suppliers. However, as the size 
of the supply chain increases, the one-to-one 
matching technique becomes less efficient. 
Also, the matching mechanism in DMM does 
not reflect the trade-offs on operational criteria, 
such as time, cost, and capacity. The similarity 
score is purely based on technological criteria, 
such as the available processes and equipment, 
achievable geometries and tolerances, and 
required materials. 

This paper studies a supply chain configura-
tion problem in which manufacturing companies 
place work orders requiring several services 
that can be provided by multiple suppliers. This 

problem relates to a Multiple Sourcing Supplier 
Selection Problem (MSSSP). While a Single 
Sourcing Supplier Selection Problem finds the 
best supplier to satisfy a work order, MSSSP 
finds more than one supplier that will satisfy 
portions of the work order. Three mathematical 
optimization models are proposed. The contri-
bution of the models is that they simultaneously 
consider operational and technological aspects 
such as suppliers’ technological competency, 
capacity, and geographic location, and manu-
facturers’ expected lead time for work orders. 
All models maximize the semantic similarity 
score between requested services and suppliers’ 
advertisements. 

The first model is a linear program named 
the traditional formulation without distance 
constraints. It considers only suppliers’ capacity 
and provides a baseline. The second model is 
a nonlinear program that, including suppliers’ 
capacity, also incorporates manufacturers’ 
expected lead times for work orders and sup-
pliers’ geographic locations. This model is 
named the traditional formulation with distance 
constraints. The third model is a linear program 
that uses the column generation method to solve 
the first model more efficiently. It is called the 
column generation formulation. We show that 
the column generation method efficiently re-
solves the issue of limited scalability observed 
in the traditional formulation without distance 
constraints. The paper is divided into four 
sections. They are literature review, problem 
assumptions and mathematical optimization 
models, numerical results, and conclusions. 

LITERATURE REVIEW

Electronic markets are defined as a network 
information system that enable buyers and 
sellers to exchange information, transact, and 
perform other related activities (Lancastre 
& Lages, 2006). Electronic markets require 
dynamic coordination of their business agents 
(Mahdavi, Mohebbi, Cho & Paydar, 2008). 
Agile supply chain configuration (ASCC) plays 
a key role in the efficiency of electronic markets 
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and corresponds to solve a Supplier Selection 
Problem (SSP). Both ASSC and SSP consider 
multiple suppliers. However, ASCC can be 
more extensive than SSP because ASCC may 
include multiple buyers (i.e., manufacturers) 
while SSP usually involves one buyer. SSP is a 
multi-criteria, decision-making problem (Çebi 
& Bayraktar, 2003), as well as ASCC. A typi-
cal optimization model for the SSP may have 
multiple objectives (Aguezzoul & Ladet, 2007), 
one for each criterion, such as minimizing the 
purchasing price and manufacturing lead time, 
and maximizing the quality of the finished goods 
(Huo &Wei, 2008). Dickson (1966) proposed 
23 criteria for evaluating suppliers, including 
capacity, delivery time, and quantity-based price 
discounts. Additional studies have identified 
up to 60 criteria to assess suppliers (Roa & 
Kiser, 1980).

SSP has been studied for over 50 years. 
Ware, Singh & Banwet (2012) mention about 
more than 150 refereed journal articles related 
to SSP. These articles appeared in rated jour-
nals from 1991 to 2011. Aguezzoul & Ladet 
(2007) have classified the modeling approaches 
developed by researchers and practitioners 
into 3 categories, which are: linear weighting 
models, mathematical programming models 
and statistical/probabilistic approaches. The 
authors mention that few articles have proposed 
mathematical programming techniques. 

This research identified that SSP has 
been modeled using linear programming 
(Kingsman, 1986; Sanayei, Farid-Mousavi, 
Abdi & Mohaghar, 2008), mixed integer pro-
gramming (Bender, Brown, Isaac, & Shapiro, 
1985; Chaudhry, Forst, & Zydiac, 1993), 
multi-objective programming (Aguezzoul & 
Ladet, 2007; Buffa & Jackson, 1983; Liao & 
Rittscher, 2007; Weber & Current, 1993), and 
nonlinear programming (Auguezzoul & Ladet, 
2007; Benton, 1991; Ghodsypour & O’Brien, 
2001; Liao & Rittscher, 2007; Razmi & Rafiei, 
2010; Vencheh, 2011). 

Some of the methods to solve SSP include 
goal programming (Aguezzoul & Ladet, 2007; 
Çebi & Bayraktar, 2003; Karpak, Kumcu, & 
Kasuganti, 1999), data envelopment analysis 

(Azadi & Saen, 2014; Liu, Ding, & Lall, 2000), 
fuzzy multi-objective integer programming 
(Huo & Wei, 2008), analytical hierarchy pro-
cess (AHP) (Özgen, Önüt, Gülsun, Tuzkaya, 
U. & Tuzcaya, G., 2008; Nydick & Hill, 1992), 
analytic network process (Kirytopoulos, Leop-
oulos, Mavrotas, & Voulgaridou, 2010; Razmi 
& Rafiei, 2010), artificial neural network (Wu, 
Zhang, Zheng, & Xi, 2010), expert systems 
(Valluri & Croson, 2005), multi-attribute utility 
approach (Min, 1994), genetic algorithms (Ding, 
Benyoucef, & Xie, 2004; Liao & Rittscher, 
2007) and tabu search (Ko, Kim, & Hwang, 
2001). AHP can be combined with different 
methods, such as cluster analysis, neural net-
works, and data envelopment analysis. AHP 
was combined with linear programming to 
solve order allocation problems across multiple 
suppliers considering tangible and intangible 
factors (Ghodsypour & O’Brien, 1998). Hybrid 
models have varying degrees of success since 
they are affected by the inherent disadvantages 
of the combined methods (Sanayei et al., 2008).

Chamodrakas, Batis, and Martakos (2010) 
simplified the SSP in a business-to-business 
e-market environment by breaking it into two 
stages. In the initial screening stage, satisficing 
hard constraints was used as criteria to qualify 
vendors. In the second stage, a variant of the 
fuzzy preference programming method was 
applied. The computational complexity of the 
second stage problem reduced significantly 
due to the screening process in the first stage.

The aforementioned approaches deal 
directly with optimization of various supplier 
criteria but do not include other relevant criteria 
in agile supply chain configuration. In the SSP 
solved by Aguezzoul & Ladet (2007), distances 
and transportation costs between suppliers and 
the single-buyer were considered. Saen & Ger-
shon (2010) also mention distance and supply 
variety as nondiscretionary criteria to consider 
in a SSP. In ASCC, inter-supplier distance is a 
high-level parameter that may be more crucial 
than other individual supplier criteria. The cost 
or risk associated with inter-supplier transpor-
tation may outweigh benefits attributed to an 
individual supplier. 
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While current supplier selection approach-
es include lead time, the models proposed in this 
work consider both suppliers’ available capac-
ity and manufacturers’ (i.e., buyers) expected 
lead times. The lead times are represented as 
the maximum threshold distance a work order 
will be allowed to travel. Effective analytical 
tools for agile supply chain configuration should 
model multiple nuances that matter to manu-
facturing businesses. The models presented in 
this paper intend to fill this need.

PROBLEM ASSUMPTIONS 
AND MATHEMATICAL 
OPTIMIZATION MODELS

The assumptions to model the Supplier Selec-
tion Problem (SSP) and ultimately the Agile 
Supply Chain Configuration (ASCC) problem 
are below.

Assumption 1: Sequence for services in work 
orders

A manufacturer’s work order (WO) consists 
of multiple manufacturing services (such as 
casting, machining, and coating) that must be 
completed in a single serial order. Any process 
involving services that can be performed in 
parallel or in any other flexible order (i.e., an 
assembly process) will be clearly delineated 
into separate work orders. 

Assumption 2: Number of suppliers per work 
order

Services (S) in a work order can be per-
formed by one or multiple suppliers.

Assumption 3: Size of the supplier’s pool

The supplier’s pool is composed of a large 
number of suppliers. 

Assumption 4: Distance traveled in a work 
order

The distance in a work order is the sum 
of the distance traveled between suppliers by 
the semi-finished parts. Models do not include: 
(a) the distance traveled by the raw materials 
from the warehouse to the first supplier in a 
work order, and (b) the distance traveled by 
the finished part from the last supplier to the 
manufacturer posting the work order.

Assumption 5: Transportation costs can be 
modeled through distance 

This is an assumption commonly used in 
supply chain papers such as the ones related to 
vehicle routing problems (Gendreau, Laporte, 
& Seguin, 1986; Novoa & Storer, 2009). In 
many practical cases, fuel costs are proportional 
to distances and are the main element of the 
variable transportation costs. 

Assumption 6: Suppliers are properly qualified 
to perform the services

The DMM search agent qualifies all pos-
sible matches between suppliers and services 
above the minimum acceptance threshold. In 
order to preclude incompatible assignments 
the search agent reports only the acceptable 
matches.

Assumption 7: Input data for the proposed 
models (i.e., parameters) is hypothetical 

Data for the models is based on reason-
able assumptions made by the authors and 
some general knowledge of manufacturing 
industries. Once the DMM proposed by Ameri 
and Dutta (2008) collects information from 
soliciting manufacturers, the models can use 
more specific data. 

In the remainder of this section, we provide 
the input data (i.e. input parameters), decision 
variables, and formulation for each one of the 
three proposed models.

Model 1: Traditional formulation without 
distance constraints
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Table 1 presents the notation and descrip-
tion for all input parameters in Model 1. Table 
2 exemplifies values for these parameters for 
a hypothetical supply chain with 5 potential 
suppliers, 3 work orders, 3 services in work 
orders 1 and 3 and two services in work order 
2. The bolded area of Table 2 corresponds to 
the matching score, 

iij k
score . If the reader vi-

sualizes work orders as overlaid layers, match-
ing score, 

iij k
score , is a three-dimensional 

matrix, capacity required by service ji in work 
order i, 

iij
c , is a two-dimensional matrix, and 

supplier’s capacity,  
k

C , is a one-dimensional 
array. 

Model 1 decision variable is notated as 

iij k
x . This variable is binary and takes the 
value of 1 if supplier k ends assigned to service 
ji in work order i. For the hypothetical example 
in Table 2, there are 40 decision variables since 
there are 5 suppliers, 3 services in work orders 
1 and 3 and 2 services in work order 2 (5*3 + 
5*2 + 5*3). 

The linear programming formulation for 
Model 1 is given below. Model 1 is a gen-
eralized assignment (Cattrysse, Salomon, & 

Wassenhove, 1994; Fisher, Jaikumar, & Van 
Wassenhove, 1986; Rardin, 1998; Savelsbergh, 
1997). Its single objective function (TOF) ag-
gregates the individual scores of the selected 
suppliers. 

Max 	

( )
1 1 1

         
i

i i

i

JI K

Score ij k ij k
i j k

Tot Score x TOF
= = =

= ∑∑∑ 	

s.t.	

( )
1

 1 , ,
1                           1  

1, ,i

K

ij k
i ik

i I
x T

j J
=

 = …=  = …
∑ 	

( )
1 1

      1, ,              2
i

i i

i

JI

ij ij k k
i j

c x C k K T
= =

≤ = …∑∑ 	

1                

0       i

i
ij k

if k isselected for service j
x

otherwise


� 	

Constraint T1 requires each service, in 
each work order, to be assigned to a single 
supplier. Constraint T2 forbids each supplier 
from exceeding its capacity when fulfilling the 

Table 1. Model 1 input parameters 

Notation Description

i Index that represents a single work order. The maximum number of work orders in the system is notated 
as I  and therefore i=1,…,I.

i
j

Index that represents a single service nested in work order i. The maximum number of services in a 

work order is notated as 
i
J  and therefore ji=1,…, Ji.

k Index that represents a single supplier. The maximum number of suppliers in the system is notated as 
 K and therefore k=1,…,K.

iij k
score

Matching score if assigning supplier k to service ji in work order i. Matching scores are real numbers 
between 0 and 1 obtained from the DMM as described in the introduction (second and third paragraphs) 
of this paper. The closer the score is to 1, the better the match. The score is a dimensionless quantity.

iij
c

Capacity required by service ji in work order i. It is given in units of time, for example, hours necessary 
to perform service ji in work order i. 

k
C

Total available capacity of supplier k. The units for this input parameter are the same as for the capacity 

required by service, 
iij

c .
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services assigned. The last line in the model 
indicates that the decision variables are binary. 
Using the parameter values in Table 2 and the 
model above, the model optimal solution was 
obtained with Excel Solver and with FICO 
Xpress Optimization Software. The resulting 
assignment is: for work order 1, supplier 5 is 
assigned to service 1, supplier 3 is assigned to 
service 2 and supplier 2 is assigned to service 
3. For work order 2, supplier 5 is assigned to 
service 1 and supplier 4 is assigned to service 
2. For work order 3, supplier 1 is assigned to 
service 1, supplier 4 is assigned to service 2 
and supplier 2 is assigned to service 3. The 
total score for the resulting assignment is 5.35. 
Xpress took 0.032 seconds to find the optimal 
solution to Model 1.

Model 2: Traditional formulation with distance 
constraints 

Model 2 keeps the notation for input pa-
rameters and decision variables used in Model 
1. Three additional input parameters and their 
notation are introduced in Table 3. Table 4 
provides the inter-supplier distances to input 
to Model 2 assuming the same hypothetical 
supply chain of 5 suppliers provided in Table 2.

Model 2 formulation is given below. The 
objective function and the constraints D1 and 
D2 in Model 2 are equivalent to TOF, T1 and 
T2 in Model 1.

Max 	

( )
1 1 1

          
i

i i

i

JI K

Score ij k ij k
i j k

Tot Score x DOF
= = =

= ∑∑∑ 	

s.t.	

( )
1

 1 , ,
 1                       1  

1, ,i

K

ij k
i ik

i I
x D

j J
=

 = …=  = …
∑ 	

Table 2. Input parameter values for a hypothetical supply chain 

Supplier 
1

Supplier 
2

Supplier 
3

Supplier 
4

Supplier 
5

Capacity Required By 

Service, 
iij

c  (hours)

WO1

S11 0.64 0.32 0.50 0.43 0.71 3

S21* 0.23 0.63 0.95 0.58 0.01 7

S31 0.15 0.56 0.40 0.42 0.54 9

WO2

S12 0.11 0.32 0.38 0.67 0.89 11

S22 0.55 0.67 0.34 0.78 0.29 10

WO3

S13 0.39 0.58 0.22 0.33 0.24 5

S23 0.41 0.08 0.92 0.62 0.78 8

S33 0.29 0.45 0.34 0.07 0.11 3

Supplier’s

Capacity, 
k

C
(hours)

17 13 12 19 17

*: S21=Service two in work order (WO) one.
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i
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i
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−

+
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1         

0 i

i
ij k

if k isselected for service j
x

otherwise


� 	

Constraints D3 require that the distance 
traveled in every work order be less than a par-
ticular threshold. Constraints D3 make Model 
2 an integer nonlinear program (NLP). NLP’s 
are challenging to solve (Bonami, Kilinc, & 
Linderoth, 2012). The number of terms in the 
left side of constraints D3 grows as the number 
of services and suppliers increases. Only a 
few terms in the left side of the constraint will 

be non-zero, but it cannot be known until the 
problem is solved. Constraints D3 resemble the 
ones in the objective function of a Quadratic 
Assignment Problem (Rardin, 1998). Solving 
Model 2 to optimality turns difficult for large 
problems. 

Using the parameter values in Tables 2 and 
4, values for 

imax
D  equal to 100, 101, and 102 

for work orders 1-3, respectively, and the non-
linear programming model presented above, 
the optimal solution (i.e., optimality gap 0.17%) 
to Model 2 was obtained with FICO Xpress 
Optimization Software. Programming the ge-
neric equation for the constraint D3 was easier 
to do in Xpress than in Excel Solver. The result-
ing assignment is: for work order 1, supplier 5 
is assigned to service 1, supplier 2 is assigned 
to service 2 and supplier 4 is assigned to service 
3. The distance traveled in work order 1 is 92. 
For work order 2, supplier 5 is assigned to 
service 1 and supplier 4 is assigned to service 
2. The distance traveled in work order 2 is 18. 
For work order 3, supplier 2 is assigned to 

Table 3. Additional input parameters for Model 2 

Notation Description

kl
D Distance between supplier k and supplier l. 

( )1,
jiij k l

D
+

Distance traveled if supplier k is assigned to service ji in work order i and supplier l is assigned to 
service (ji+1) in work order i. 

i
Dmax  

Manufacturer’s (i.e. buyer’s) predefined threshold for the maximum distance traveled by the semi-
finished parts in work order i. 

Table 4. Distances between suppliers’ k and l,  
kl
D for a hypothetical supply chain 

Supplier 1 Supplier 2 Supplier 3 Supplier 4 Supplier 5

Supplier 1 0 34 45 87 22

Supplier 2 34 0 89 69 23

Supplier 3 45 89 0 13 35

Supplier 4 87 69 13 0 18

Supplier 5 22 23 35 18 0
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service 1, supplier 3 is assigned to services 2 
and 3. The distance traveled in work order 3 is 
89. The total score for the resulting assignment 
is 5.27. As expected, this score is lower than 
the optimal score of 5.35 found in Model 1. 
However, the percentage difference is only 
1.49% and the solution in Model 2 satisfy the 
distance constraint. Xpress took 0.10 seconds 
to find the optimal solution to Model 2.

This paper proposes an alternative meth-
odology to avoid solving the nonlinear program 
in Model 2. The approach is to iteratively and 
dynamically introduce constraints that ulti-
mately permit to find a solution that satisfies 
the distance thresholds. First, a model is solved 
without inclusion of any constraints of type D3. 
Thus the model solved is linear. Then, the 
program coded to solve the problem analyzes 
the solution and identifies the work orders that 
exceed 

imax
D . In iteration 1, constraints D3î  

are added to preclude the selection of the same 
assignment of suppliers to services in the work 
orders that exceed 

imax
D . In ˆ3D i , '

iij k
x  denotes 

those decision variables with a current value 
of 1 in the work order i, Ti is the set grouping 
all the  ' , 

iij k
x variables, and |Ti | represents the 

set cardinality (i.e., set size). At least one of the 
current assignments will be removed from each 
work order i that does not satisfy the distance 
threshold. The program with objective function 
DOF and constraints D1, D2 and ˆ3D i  is solved. 
If the new generated solution still has work 
orders violating the distance constraints, a new 
iteration is started and the step of adding new 
constraints of type ˆ3D i  is repeated.

( )
1 1

ˆ' 1                       3D i
= =

≤ −∑∑
i

i

i

J K

ij k i
j k

x T 	

( )                     3workorder ithat violates D∀ 	

The authors used the alternative methodol-
ogy described above for solving the hypo-
thetical supply chain problem exemplified in 

Tables 2 and 4 . The same assumed values for
 

imax
D  were used (i.e., 100, 101, and 102). The 
methodology was coded in FICO Xpress Op-
timization Software. The resulting assignment, 
distances traveled, and optimal score exactly 
match the ones obtained with the nonlinear 
Model 2. Xpress took 0.045 seconds to find the 
optimal solution. The constraints of type ˆ3D i   
added at iteration 1 in the hypothetical supply 
chain example were:  ' ' '

115 123 132
2x x x+ + ≤  

for work order 1 and ' ' '
314 324 332

2x x x+ + ≤  for 
work order 3. A second iteration was necessary 
for work order 3. The new added constraint was

' ' '
311 323 332

 2x x x+ + ≤ .

Model 3: Column generation

For integer programming models with huge 
numbers of decision variables, it is sometimes 
inefficient to consider all columns of the linear 
programming relaxation model, and most of 
the columns will have an associated decision 
variable equal to zero in an optimal solution 
anyway (Savelsbergh, 2009). Column genera-
tion algorithms start with the linear program-
ming relaxation of the integer programming 
model. The relaxation has an incomplete set 
of columns. This is called the Master model. 
Every time the Master model is solved, new 
information about its dual variables is gathered. 
Sub-problems are separately solved and they 
use information about the dual variables. The 
solutions to each sub-problem correspond to 
new valid columns in the Master model that 
prove to be beneficial to the problem. These 
new columns, if found, are added to the Master 
model. The new Master model is solved again. 
The steps of (1) solution of the current Master 
model and collection of dual variables values, 
(2) solution of sub-problems, and (3) addition of 
new columns to the Master model are repeated 
iteratively until all sub-problems cannot find 
any attractive columns to incorporate into the 
Master model. The reader can refer to Desaul-
niers, Desroisers, & Solomon (2010) to learn 
more about the column generation method.
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In this research, the first author of the 
paper developed a column generation scheme 
in a transposed representation of the supplier 
selection problem depicted in Table 2 for a 
hypothetical supply chain. The author learned 
that in the supplier selection problem, there is 
a large number of ways in which services in the 
work orders may be satisfied by the suppliers. 
Oguz (2002) mentions multiple previous works 
in which column generation was useful because 
the problem had an extremely large number of 
possible columns, and explicit inclusion of all 
of them was impossible or consumed too much 
memory. Oguz (2002) also states that the effi-
ciency of column generation is more noticeable 
in problems where the ratio between columns 
(n) and rows (m) exceeds 10. 

In a supply chain configuration problem 
with 40 work orders, 50 services, and 250 
suppliers, the transposed representation will 
have more than 2000 columns (40*50*ways to 
satisfy a service in a work order) and 250 rows. 
The ratio between columns and rows, n/m, will 
easily exceed 10. Thus a transposed representa-
tion would facilitate to exploit the benefits of 
column generation. In Model 3, suppliers are 
represented in the rows and work orders and 
services are represented in the columns. In the 
proposed column generation scheme, a gener-
ated column is a way to satisfy a particular 
service in a given work order. Model 3 includes 
the Master and the sub-problems models. 
Model 3 keeps most of the notation used for 
input parameters in Model 1. Table 5 presents 
additional notation needed and its meaning.

Table 6 depicts the ( )
  iji

i

b

ij
z variables and their 

possible values (bolded rows 3 and 4). This 
table also exemplifies some possible values for 

the ( )iji
i

b

ij k
r binary coefficients (see columns in the 

constraints’ coefficients matrix) for the hypo-
thetical supply chain example with 5 suppliers, 
3 services in work orders 1 and 3 and 2 ser-
vices in work order 2. Even for this small hy-
pothetical example, it is difficult to depict en-
tirely the array of decision variables and the 
constraints coefficients matrix. To keep the 
table under the page width limitations, informa-
tion is partly exemplified just for the first work 
order (WO1). To clarify the notation used in 
the table, first sub-column under column S21 
under work order 1 (i.e. 1 

12
)z   means the way 

number 1 of satisfying service 2 in work order 
1. In Table 6, the subscripts accompanying 
superscript b were dropped to simplify the 
notation. The Master model and the generic 
sub-problem model for Model 3 are presented 
below.

Model 3: Master problem

  
cg

Max Grandscore = 	

( ) ( ) ( )
1 1 1

  
iji i

ij iji i

i i i

i iji

BJI k
b b

ij k ij k ij
i j b k

score r z CGOF
= = =

= ∑∑∑∑ 	

s.t.	

( ) ( )
1

  1, ,  
 1                  1

 1, ,

iji
iji

i

iji

B
b

ij
i ib

i I
z CG

j J
=

 = …=  = …
∑ 	

Table 5. Additional input parameters and decision variables for Model 3 

Notation Description

( )iji
i

b

ij k
r

Binary parameters that correspond to the columns of the constraint coefficients matrix in the Master 
model. They are also the decision variables in a sub-problem model. A single-value of this parameter 
is 1 if the way b (b=1,…,B) for satisfying service ji in work order i includes supplier k and 0 otherwise. 

( )
 iji

i

b

ij
z

This new binary decision variable equals 1 if way b (b=1,…,B) of satisfying service ji in work order i is 
selected and 0 otherwise.
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( ) ( ) ( )
1 1

    k 1 .   2
i

ij iji i

i i i

i

JI
b b

ij k ij ij k
i j

r c z C K CG
= =

≤ = …∑∑ 	

The decision variables ( )iji
i

b

ij
z take any value 

between zero and one. The removal of the in-

tegrality constraints for the variables ( )iji
i

b

ij
z en-

able to solve the Master problem as a linear 
program and find the dual variables. The dual 
variables 

iij
π  obtained from the convexity 

constraints (CG1) let to price the sub-problem 
solutions and to identify a stopping point for 
the iterative process. The dual variables 

k
δ  are 

associated with the capacity constraints (CG2). 

Model 3: Sub-problem to solve for each service 
ji and work order i.

Max 	

( ) ( )
1

   
i i

K

ij k k k ij
k

Totval score r SPOFδ π
=

 = − −  ∑ 	

s.t.	

( )
1

1 3
K

k
k

r
=

=∑                                                     CG 	

 

1       

0 k

if supplier k isselected
r

otherwise


� 	

Constraint CG3 is essentially the same as 
T1. It ensures that each service in each work 
order is assigned to a single supplier. The last 
line in the sub-problems for Model 3 corre-
sponds to the binary sign constraints for the 
decision variables, 

k
r . Constraints CG3 and 

the sign constraints ensure the generation of 
new valid columns for the Master model. Since 
the transposed decomposition scheme solves a 
simple sub-problem for each service ji and work 
order i, the column generation model researched 

Table 6. Representation of Model 3 for a hypothetical supply chain 
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in this paper is capable of solving problems 
with a large number of services and work orders. 

A sub-problem solution generates a way ( )iji
i

b

ij k
r

in which a given service in a work order can 
be satisfied given the price in the sub-problem 
objective function (SPOF) is positive. This way 
is added as a column to the Master problem. 
The process of solving assignment sub-prob-
lems stops when there are no solutions that 
provide a positive value for SPOF. In this work, 
the resulting Master problem after no more 
columns can be added was solved as an integer 
program. However, this is not a general sce-
nario; for certain problem sizes and input pa-
rameter values, the integer program may be 
very difficult to solve to optimality. Thus, the 
solution approach in this work is heuristic in 
general if compared to using the branch and 
price method (Savelsbergh, 2009). 

The authors tested the column generation 
method described using the input parameters 
for the hypothetical supply chain problem in 
Table 2. The methodology was coded in FICO 
Xpress Optimization Software. The resulting 
assignment and optimal score exactly match 
the one obtained with the linear programing 
Model 1. More extensive comparisons regard-
ing computational time and solution quality for 
Model 1 vs. Model 3 are in the next section.

NUMERICAL RESULTS

Models experimentation was done in an Intel® 
CoreTM i7 2600 CPU @ 3.4 GHz, 16.00 GB 
of RAM, Microsoft Windows 7, 64-bit Operat-
ing System computer. Ten test problems with 
5 replicates in each problem were generated. 
The methodology to compute the values for the 
model input parameters for these problems is 
explained in Table 7. The problems have 5-50 
work orders, 10 services, and 500-5000 suppli-
ers. Thus in each problem the ratio of suppliers 
to total services in work orders is kept as 10:1. 
A single test problem number and replicate is 
called an instance. The model runs are random-
ized and run serially with a program developed 
with the FICO Xpress Optimization Suite. The 

results of each run are transmitted automatically 
to an Excel database.

Results Comparison: Model 1 Traditional 
Formulation without Distance Constraints 
vs. Model 3 Column Generation

Tables 8 and 9 show the computational 
times and objective function values after running 
Models 1 and 3 on the test problems generated. 
Both models solved the problems to optimal-
ity. Model 3 was faster in general, especially 
if a problem has more than 15 work orders, 10 
services, and 1500 suppliers.

With the computational resources used 
in this research, Model 1 is limited to effi-
ciently solve problems with 5,000 suppliers and 
2500,000 variables. Model 1 solves a problem 
with 100 work orders of 10 services each, and 
10,000 suppliers in 17 minutes, 14 seconds. 
Model 1 solves a problem with the same number 
of work orders and services but 12,500 suppliers 
in about 26 minutes. Furthermore, the computer 
lacked sufficient memory to generate larger 
problems. On the other hand, the performance 
of Model 3 could improve further by solving 
the sub-models in parallel.

Results for Model 2: Traditional Formulation 
with Distance Constraints

For small problems, solving the NLP 
Model 2 with quadratic distance constraint took 
about the same time than using the method of 
adding constraints ( )̂3D i  dynamically. How-
ever, the NLP problem became quickly intrac-
table. Nevertheless, the results obtained in the 
small problems solved confirm that the qua-
dratic formulation with distance constraint 
functions as intended. Further research could 
involve looking for ways to linearize the distance 
constraint and/or to efficiently incorporate it 
into Model 3. However, the column generation 
model without distance constraints is still ap-
pealing to solve practical supplier selection 
problems. In some cases, by imposing con-
straints on the distance traveled by work orders, 
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suppliers may end concentrated in the same 
geographical region. It can be undesirable if 
the manufacturing company (i.e. the buyer) is 
too vulnerable to cost risks in the particular 
area such as spikes in transportation costs due 
to a strike in the port of origin (Beil, 2010).

Effect of Reducing the Input 
Parameter 

imaxD

This work also investigated the effect in the 
resulting average matching score if the input 
parameter, pre-defined threshold distance trav-
eled in work orders,  

imax
D , is reduced in the 

range of 5% to 75%. Fourteen new test problems 
were generated with the characteristics shown 
in Table 10 . When 

imax
D  was reduced by 75% 

no feasible solution was found. Figure 1 shows 
the results of this investigation. The poor results 
on the bottom half of Figure 1 come only from 
problems with the smallest number of suppliers 
(i.e., 25 suppliers). This supplier pool size is 
much smaller than it is expected in the practical 
web-based platform application. We conclude 
that for the problems generated and for pools 
larger than 175 suppliers, the average matching 
score stays over 0.99 even when the distance 

threshold value reduces up to 50%. This result 
agrees with the authors’ intuition: “Problems 
with a larger pool of suppliers are less sensitive 
to threshold distance reductions”. 

Figure 2 shows the difference in resulting 
average matching scores by number of suppli-
ers if comparing the Model 2 without reduction 
in threshold distance to the one with a 37.5% 
reduction. Figure 2 show that for problems with 
100 suppliers the impact on average score is 
close to 0.1% and that for problems with 175 
suppliers the impact is near 0.05%.

CONCLUSION

This research demonstrates how an Agile Supply 
Chain Configuration (ASSC) problem, a vari-
ant of the multiple sourcing supplier selection 
problem (MSSSP), can be effectively modeled 
as a generalized assignment problem when 
supplemented with a search agent in the digital 
manufacturing market (DMM). At the best of 
our knowledge this is the first work modeling 
a multiple sourcing supplier selection problem 
as a generalized assignment problem. 

In the test problems studied, the scalability 
problem in Model 1 Traditional formulation 

Table 7. Methodology to compute the values for the input parameters in the models 

Input 
Parameter

Description

iij k
score

Matching score values were obtained through the DMM as described in the Introduction section 
(second and third paragraphs). 

iij
c Average duration for each service in a work order is a number between 1 and 13 time units.

k
C

Individual supplier capacity varies between 25% and 50% in excess of the ratio between total capacity 
demanded in all work orders and number of suppliers. 

kl
D Distances between suppliers k and l were generated as random numbers between 1 and 100.

imax
D

The first author computed the maximum distance traveled for different feasible assignments of suppliers 

to services in work order i, and the average maximum distance was selected as 
imax

D . Since distance 

traveled parallels to time, 
imax

D  parallels to the expected manufacturer’s lead time for a work order.
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without distance constraints improves by solv-
ing Model 3 Column generation. The General-
ized Assignment Problem (GAP) is NP-hard 
(Cattrysse, Salomon, & Wassenhove, 1994; 
Fisher, Jaikumar, & Van Wassenhove, 1986), 
and many approaches have been developed to 
solve it either approximately or exactly. In the 
GAP, the more limited in capacity the machines 
are, the more difficult is to solve the problem 

to optimality. However, suppliers do not seem 
to exactly resemble the machines in the GAP 
because a very limited suppliers’ capacity is not 
always the case in the practical manufacturing 
marketplace and it wasn’t the case studied in 
the generated test problems. This suppliers’ 
characteristic, allows us to exploit a simpler 
customized decomposition scheme for the 
column generation method. The scheme gener-

Table 8. Computational times and objective function values for models 1 and 3 ran on test 
problems 1-5 

Model 1 
Traditional formulation

Model 3 
Column Generation

Instance 
number

 
WO

 
Services

 
Suppliers

Total 
Variables

Time 
(sec)

Objective 
Value

Time 
(Sec)

Objective 
Value

1

1

5 10 500

25000 0.249 38.93323 0.655 38.93323

2 25000 0.256 39.93190 0.499 39.93190

3 25000 0.312 45.90898 0.624 45.90898

4 25000 0.479 38.93323 0.515 38.93323

5 25000 0.504 42.92369 0.686 42.92369

2

1

10 10 1000

100000 1.718 78.92174 2.105 78.92174

2 100000 1.673 76.92379 1.809 76.92379

3 100000 1.780 82.91943 1.902 82.91943

4 100000 1.828 83.91909 2.043 83.91909

5 100000 2.807 82.91943 1.934 82.91943

3

1

15 10 1500

225000 5.858 125.9108 4.944 125.9108

2 225000 5.329 119.9137 4.303 119.9137

3 225000 5.689 121.9132 3.945 121.9132

4 225000 5.797 127.9081 4.570 127.9081

5 225000 5.435 123.9121 4.383 123.9121

4

1

20 10 2000

400000 13.768 169.9145 8.876 169.9145

2 400000 13.392 165.9163 8.469 165.9163

3 400000 14.121 171.9138 8.781 171.9138

4 400000 12.849 159.9200 8.579 159.9200

5 400000 12.971 164.9178 8.486 164.9178

5

1

25 10 2500

625000 29.749 204.9168 15.272 204.9168

2 625000 24.306 211.9142 15.553 211.9142

3 625000 25.227 210.9146 15.350 210.9146

4 625000 23.670 204.9168 14.929 204.9168

5 625000 24.113 209.9148 15.349 209.9148
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ates service assignment sub-problems instead 
of supplier sub-problems. 

A marginal intention of this study was 
to identify the degree to which reductions in 
distance thresholds could be imposed to the 
work orders without significantly influencing 
the resulting assignments. Considerations re-
garding the distance traveled by a work order 
are of critical importance in globalized sup-

ply chains. For the test problems studied, the 
results show that, due to the large size of the 
suppliers market, buyers (i.e., manufacturers) 
may impose an economy of distance with little 
effect on match compatibility. 

Furthermore, computational results show 
that using a scoring agent from the DMM to 
find the parameter values for the objective 
function of the models, works well with very 

Table 9. Computational times and objective function values for models 1 and 3 ran on test 
problems 6-10 

Model 1 
Traditional Formulation

Model 3 
Column Generation

Instance 
Number

 
WO

 
Services

 
Suppliers

Total 
Variables

Time 
(sec)

Objective 
Value

Time 
(sec)

Objective 
Value

6

1

30 10 3000

900000 40.462 245.9219 24.617 245.9219

2 900000 48.790 240.924 24.039 240.924

3 900000 41.883 242.9225 24.211 242.9225

4 900000 50.111 252.9204 24.819 252.9204

5 900000 41.688 252.9204 25.037 252.9204

7

1

35 10 3500

1225000 65.648 276.9141 36.534 276.9141

2 1225000 64.727 296.9077 38.906 296.9077

3 1225000 77.340 288.9103 37.751 288.9103

4 1225000 64.867 297.9066 38.766 297.9066

5 1225000 67.637 286.9106 37.564 286.9106

8

1

40 10 4000

1600000 96.241 327.9195 54.678 327.9195

2 1600000 104.588 341.9178 56.69 341.9178

3 1600000 109.395 325.9207 54.304 325.9207

4 1600000 98.8400 331.9191 54.787 331.9191

5 1600000 101.914 335.9188 55.723 335.9188

9

1

45 10 4500

2025000 136.570 373.9103 77.142 373.9103

2 2025000 135.382 360.9132 75.114 360.9132

3 2025000 134.741 370.9108 76.612 370.9108

4 2025000 141.341 375.9098 77.813 375.9098

5 2025000 138.193 374.9099 77.734 374.9099

10

1

50 10 5000

2500000 180.727 418.9161 106.314 418.9161

2 2500000 177.513 401.9190 101.244 401.9190

3 2500000 184.104 412.9168 104.301 412.9168

4 2500000 188.176 410.9173 103.787 410.9173

5 2500000 193.575 421.9157 105.924 421.9157
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Table 10. Characteristics of the problems used to test the effect of reducing 
imax

D  

Problem Size Work Orders Services Suppliers Decision Variables

1 5 5 25 625

2 5 10 25 1250

3 10 10 50 5000

4 10 15 50 7500

5 15 15 75 16875

6 15 20 75 22500

7 20 20 100 40000

8 20 25 100 50000

9 25 25 125 78125

10 25 30 125 93750

11 30 30 150 135000

12 30 35 150 157500

13 35 35 175 214375

14 35 40 175 245000

Figure 1. Impact on average score from reductions in original threshold distance, 
imax

D , between 
5% -75%
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large problem sizes. The scoring agent avoids 
to run an optimization based on vague max/min 
objectives. Also, it avoids the staggered inclu-
sion of constraints, like capacity and distance, 
and the use of complementary models as in 
Chamodrakas, et al. (2010). 

As a further research the authors propose 
to find efficient ways: (1) to deal with the 
non-linear distance constraint D3 presented 
in Model 2 and (2) to incorporate the distance 
constraint in Model 3. The authors are explor-
ing the inclusion of the distance constraint in 
Model 3 by solving the sub-problems by work 
order and generating combinations of suppliers 
that satisfy the requested services within the 
work order under the pre-defined threshold 
distance. A comparison of the complexity and 
efficiency of including the distance constraint 
implicitly vs. explicitly in the sub-problems 
will be studied. Finally, this study used test 
generated problems; the creation of a database 
hosting test problems that multiple researchers 
on the Supplier Selection Problem can access 
would benefit the research community.
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