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SOLUTION TO A SEMILINEAR PSEUDOPARABOLIC
PROBLEM WITH INTEGRAL CONDITIONS

ABDELFATAH BOUZIANI, NABIL MERAZGA

Abstract. In this article, we use the Rothe time-discretization method to

prove the well-posedness of a mixed problem with integral conditions for a third
order semilinear pseudoparabolic equation. Also we establish the convergence

of the method and an error estimate for a semi-discrete approximation.

1. Statement of the problem

This paper concerns the problem of finding a function v = v(x, t) satisfying, in
a weak sense, the semilinear pseudoparabolic equation

∂v

∂t
− ∂2v

∂x2
− η

∂3v

∂x2∂t
= F (x, t, v) , (x, t) ∈ (0, 1)× [0, T ], (1.1)

subject to the initial condition

v(x, 0) = V0(x), 0 ≤ x ≤ 1, (1.2)

and to the integral conditions∫ 1

0

v(x, t)dx = E(t), 0 ≤ t ≤ T, (1.3)∫ 1

0

xv(x, t)dx = G(t), 0 ≤ t ≤ T, (1.4)

where F , V0, E and G are given functions which are sufficiently regular, and T and
η are positive constants.

This problem has a practical relevance, for instance in the context of soil ther-
mophysics, (1.1) describes the dynamics of moisture transfer in a subsoil layer
0 < x < 1 for t ∈ [0, T ], while (1.3)-(1.4) represent the moisture moments (see [5]
and references therein). Equations of type (1.1) (with eventually variable coeffi-
cients and additional nonlinear terms) have also many other applications in various
physical situations, notably in the non-steady flows of second order fluids [23, 8];
in the infiltration of homogeneous fluids through fissured rocks [1]; in the diffusion
of imprisoned resonant radiation through a gas [15, 16, 22] (which has applications
in the analysis of certain laser systems [18]); in the theory of the two temperatures
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in heat conduction [7]; in the monodirectional propagation of nonlinear dispersive
long waves [2, 10], and so forth. This is the main reason for which the investigation
of (classical) mixed problems for such equations have been the subject of many
works for a long time, (see, e.g. [3, 11, 13, 17, 20, 21, 24, 25]).

Recently, mixed problems with integral condition(s) for some generalizations of
equation (1.1) have been treated by the second author in [5, 6] using the energy-
integral method. Differently to these works, in the present paper we use a construc-
tive method (Rothe time-discretization method) to build the solution, which is more
suitable for numerical computations. It is interesting to note that the application
of Rothe method to this nonlocal problem is made possible thanks, essentially, to
the use of a nonclassical function space (see also [14]).

By the the transformation

u(x, t) := v(x, t)− r(x, t), (x, t) ∈ (0, 1)× [0, T ],

where
r(x, t) = 6(2G(t)− E(t))x− 2(3G(t)− 2E(t)),

problem (1.1)-(1.4) with inhomogeneous integral conditions (1.3) and (1.4) is con-
verted to the following equivalent problem with homogeneous conditions for the
new unknown function u:

∂u

∂t
− ∂2u

∂x2
− η

∂3u

∂x2∂t
= f(x, t, u) , (x, t) ∈ (0, 1)× I, (1.5)

u(x, 0) = U0(x), 0 ≤ x ≤ 1, (1.6)∫ 1

0

u(x, t)dx = 0, t ∈ I, (1.7)∫ 1

0

xu(x, t)dx = 0, t ∈ I, (1.8)

where the notation I := [0, T ] is used and

f(x, t, u) := F (x, t, u + r)− ∂r

∂t
(x, t),

U0(x) := V0(x)− r(x, 0).

Hence, instead of looking for the function v, we seek the function u. The solution
of problem (1.1)-(1.4) will be simply given by the formula v = u + r.

This paper is organized as follows: In Section 2, we introduce function spaces
needed in our investigation and recall an auxiliary result. We also state the as-
sumptions on data and make precise concept of the solution. In Section 3, approxi-
mate solutions of problem (1.5)-(1.8) are constructed by solving the corresponding
linearized time-discretized problems. Then, some a priori estimates for the approx-
imations are derived in Section 4, while the convergence of the method and the
well-posedness of the problem under study are established in Section 5.

2. Preliminaries and main result

Let H2(0, 1) be the (real) second order Sobolev space on (0, 1) with norm ‖ ·
‖H2(0,1) and let (·, ·) and ‖ · ‖ be the usual inner product and the corresponding
norm respectively in L2(0, 1). The nature of the boundary conditions (1.7)-(1.8)
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suggests to introduce the following space

V :=
{
φ ∈ L2(0, 1) :

∫ 1

0

φ(x)dx =
∫ 1

0

xφ(x)dx = 0
}

(2.1)

which is clearly a Hilbert space for (·, ·).
Our analysis requires the use of the nonclassical function space B1

2(0, 1) defined
for example in [4] as the completion of the space C0(0, 1) of real continuous functions
with compact support in (0, 1), for the inner product

(u, v)B1
2

=
∫ 1

0

=xu · =xv dx, (2.2)

and the associated norm

‖v‖B1
2

=
√

(v, v)B1
2
,

where =xv :=
∫ x

0
v(ξ)dξ for x ∈ (0, 1). We recall that, for v ∈ L2(0, 1), the

inequality

‖v‖2B1
2
≤ 1

2
‖v‖2 (2.3)

holds, implying the continuity of the embedding L2(0, 1) → B1
2(0, 1). Moreover,

we will work in the standard functional spaces C(I,X), C0,1(I,X) and L2(I,X)
where X is a Banach space, the main properties of which can be found in [12].

The notation θ(t) is automatically used for the same function θ(x, t) considered
as an abstract function of the variable t ∈ I into some functional space on (0, 1).
Strong or weak convergence are denoted by → or ⇀ respectively.
The Gronwall Lemma in the following continuous and discrete forms will be very
useful to us thereafter.

Lemma 2.1. (i) Let x(t) ≥ 0, h(t), y(t) be real integrable functions on the
interval [a, b]. If

y(t) ≤ h(t) +
∫ t

a

x(τ) y(τ)dτ, ∀t ∈ [a, b],

then

y(t) ≤ h(t) +
∫ t

a

h(τ) x(τ) exp
( ∫ t

τ

x(s)ds
)
dτ, ∀t ∈ [a, b].

In particular, if x(τ) ≡ C is a constant and h(τ) is nondecreasing, then

y(t) ≤ h(t)eC(t−a), ∀t ∈ [a, b].

(ii) Let {ai} be a sequence of real nonnegative numbers satisfying

a1 ≤ a,

ai ≤ a + bh
i−1∑
k=1

ak, ∀i = 2, . . . ,

where a, b and h are positive constants. Then

ai ≤ aeb(i−1)h, ∀i = 1, 2, . . . .
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Proof. The proof of assertion (i) is the same as in [9, Lemma 1.3.19]. To establish
assertion (ii), we use induction on i giving

ai ≤ a(1 + bh)i−1, ∀i = 1, 2, . . . .

from where, the desired inequality follows thanks to the elementary inequality 1 +
t ≤ et, for all t ∈ R+. �

We shall work under the following hypotheses:
(H1) f(t, w) ∈ L2(0, 1) for each pair (t, w) ∈ I × L2(0, 1) and the Lipschitz

condition

‖f(t, w)− f(t′, w′)‖B1
2
≤ l

[
|t− t′|(1 + ‖w‖B1

2
+ ‖w′‖B1

2
) + ‖w − w′‖B1

2

]
,

is satisfied for all t, t′ ∈ I and w,w′ ∈ V , where l is some positive constant.
(H2) U0 ∈ H2(0, 1)
(H3) the compatibility condition: U0 ∈ V , i.e.

∫ 1

0
U0(x)dx =

∫ 1

0
xU0(x)dx = 0.

We look for a weak solution in the following sense:

Definition 2.2. By a weak solution of Problem (1.5)-(1.8), we mean a function
u : I → L2(0, 1) such that

(i) u ∈ C0,1(I, V );
(ii) u has (a.e. in I) a strong derivative du

dt ∈ L∞(I, L2(0, 1));
(iii) u(0) = U0 in V ;
(iv) the equality(du

dt
(t), φ

)
B1

2
+

(
u(t), φ

)
+ η

(du

dt
(t), φ

)
=

(
f(t, u(t)), φ

)
B1

2
, (2.4)

holds for all φ ∈ V and all t ∈ I.

We remark that since u ∈ C0,1(I, V ) ⊂ C(I, V ) the condition (iii) makes sense,
and in view of (i), (ii) and Assumption (H1) each term in (2.4) is well defined. On
the other hand, the fulfillment of the integral conditions (1.7) and (1.8) is included
in the fact that u(t) ∈ V , for all t ∈ I.

In this paper, we will demonstrated the following main result.

Theorem 2.3. Assuming (H1)–(H3), problem (1.5)-(1.8) admits a unique weak
solution u in the sense of Definition 2.2, that depends continuously upon the data
f and U0. Moreover, u is the limit as n → ∞ of the sequence of Rothe functions
(3.13) in the following sense:

u(n) → u in C(I, V ), (with convergence order O(n−1/2)),

du(n)

dt
⇀

du

dt
in L2(I, L2(0, 1)).

3. Rothe approximations

To solve problem (1.5)-(1.8) by the Rothe method, we divide the time interval
I into n subintervals [tj−1, tj ], j = 1, . . . , n, where tj = jh and h := T/n is the
time-step. Then, replacing ∂u

∂t , at each point t = tj , j = 1, . . . , n, by the difference
quotient δuj := uj−uj−1

h , where uj is destined to be an approximation of u(·, tj),
we are conducted to solve successively for j = 1, . . . , n the linearized problem

δuj −
d2uj

dx2
− η

d2δuj

dx2
= fj , x ∈ (0, 1), (3.1)
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0

uj(x)dx = 0, (3.2)∫ 1

0

xuj(x)dx = 0, (3.3)

where fj := f(tj , uj−1), starting from

u0 = U0. (3.4)

To this purpose, it is astute to introduce the following auxiliary functions

wj = uj + ηδuj , j = 1, . . . , n. (3.5)

In this case, we have

uj =
h

η + h
wj +

η

η + h
uj−1, j = 1, . . . , n,

from which, it follows

δuj =
1

η + h
(wj − uj−1), j = 1, . . . , n, (3.6)

so that, problem (3.1)-(3.3) is seen to be equivalent to the problem of finding the
function wj : (0, 1) → R satisfying:

−d2wj

dx2
+

1
η + h

wj = fj +
1

η + h
uj−1 , x ∈ (0, 1), (3.7)∫ 1

0

wj(x)dx =
∫ 1

0

xwj(x)dx = 0, (3.8)

with the update

uj =
h

η + h
wj +

η

η + h
uj−1, j = 1, . . . , n. (3.9)

Of course, this coupled problem has to be solved successively for j = 1, . . . , n
starting from u0 = U0.

Developing an idea of [19], we, first, look for a function w′j(x) = w′j(x;λ, µ) which
solves equation (3.7) supplemented by the classical Dirichlet boundary conditions

w′j(0) = λ and w′j(1) = µ, (3.10)

instead of nonlocal conditions (3.8), where (λ, µ) is for the moment an arbitrary
fixed ordered pair of real numbers.

Since

f1 +
1

η + h
u0 := f(t1, U0) +

1
η + h

U0 ∈ L2(0, 1),

the Lax-Milgram Lemma guarantees the existence and uniqueness of a strong solu-
tion w′1 ∈ H2(0, 1) to the elliptic problem (3.7) and (3.10) with j = 1. Let us show
that the parameters λ and µ can be chosen in a suitable way such that the cor-
responding function w′1(·;λ, µ) is also a solution of problem (3.7)-(3.8) with j = 1
provided that n is large enough.
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In fact, the function w′1(·;λ, µ) shall be a solution to problem (3.7)-(3.8), with
j = 1, if and only if the pair (λ, µ) satisfies∫ 1

0

w′1(x;λ, µ)dx = 0,∫ 1

0

xw′1(x;λ, µ)dx = 0,

(3.11)

thus, the above equation will provide all the solutions to problem (3.7)-(3.8) with
j = 1. But,

w′1(x;λ, µ) = w′1(x; 0, 0) + w̃1(x;λ, µ), x ∈ (0, 1),
where w̃1 is the solution to the problem:

−d2w̃1

dx2
+

1
η + h

w̃1 = 0, x ∈ (0, 1),

w̃1(0) = λ, w̃1(1) = µ.

One can readily find that

w̃1(x) = k1e
x/
√

η+h + k2e
−x/

√
η+h,

where

k1 =
µ− λe−1/

√
η+h

e1/
√

η+h − e−1/
√

η+h
, k2 =

λe1/
√

η+h − µ

e1/
√

η+h − e−1/
√

η+h
.

Then, replacing in (3.11) and performing some computations and elementary sim-
plifications, we finally obtain the following equivalent linear algebraic system

λ + µ =
sinh(1/

√
η + h)√

η + h(1− cosh(1/
√

η + h))

∫ 1

0

w′1(x; 0, 0)dx,

(1−
√

η + h sinh
1√

η + h
)λ + (

√
η + h sinh

1√
η + h

− cosh
1√

η + h
)µ

=
sinh(1/

√
η + h)√

η + h

∫ 1

0

xw′1(x; 0, 0)dx

(3.12)

whose determinant is

D(h) = 2
√

η + h sinh
1√

η + h
− cosh

1√
η + h

− 1.

It can be shown that the real function Φ(s) := 2
√

s sinh 1√
s
− cosh 1√

s
− 1 possesses

a unique real root s ' 3.448 × 1015. Therefore, if η ≥ s then D(h) 6= 0 for all
h > 0 and the system (3.12) which is equivalent to (3.11) admits a unique solution
(λ1, µ1) ∈ R2, hence problem (3.7)-(3.8), with j = 1 , is uniquely solvable. In the
case where η < s, then D(h) vanishes only for h = s− η, consequently the system
(3.12) which is equivalent to (3.11) has a unique solution for every h < s − η and
so is problem (3.7)-(3.8) with j = 1. To summarize, let n0 be the smallest positive
integer satisfying T/n0 ≤ h0 where

h0 :=

{
T, if η ≥ s,

min{s− η, T}, if η < s.

Then we have shown that problem (3.7)-(3.8), with j = 1, admits a unique solution
w1 = w′1(·;λ1, µ1) ∈ H2(0, 1) and consequently the solution u1 ∈ H2(0, 1) of prob-
lem (3.1)-(3.3), with j = 1, is uniquely determined via the formula (3.9) provided
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that n > n0 holds. Replacing in (3.7) with j = 2, this latter is seen to admit
a unique strong solution w′2 ∈ H2(0, 1) satisfying (3.10) wiht j = 2. Thanks to
Lax-Milgram Lemma since f2 + 1

η+hu1 ∈ L2(0, 1). Similarly as above, the function
w′2(·;λ, µ) is seen to be the unique solution of problem (3.7)-(3.8) with j = 2 for a
suitable choice of (λ, µ) if n > n0 is true. Accordingly, the solution u2 ∈ H2(0, 1)
of problem (3.1)-(3.3) with j = 2 is uniquely determined due to relation (3.9).
Proceeding in this way step by step, we will be able to state the following result:

Theorem 3.1. There exists n0 ∈ N such that, for all n > n0 and for all j =
1, . . . , n, the problems (3.7)-(3.8) and (3.1)-(3.3) admit a unique solution wj ∈
H2(0, 1) and uj ∈ H2(0, 1) respectively.

So, for all n > n0, we can define the Rothe approximation u(n) : I → H2(0, 1)∩V
as a piecewise linear interpolation of the uj (j = 1, . . . , n) with respect to time, i.e.

u(n)(t) = uj−1 + δuj(t− tj−1), t ∈ [tj−1, tj ], j = 1, . . . , n, (3.13)

as well as the corresponding step function u(n) : I → H2(0, 1) ∩ V :

u(n)(t) =

{
uj for t ∈ (tj−1, tj ], j = 1, . . . , n.

U0 for t ∈ [−T
n , 0]

(3.14)

4. A priori estimates for the approximations

In this section, we will derive some a priori estimates which are the key points
to establish Theorem 2.3. Note that, in the rest of the paper, positive constants
are denoted by C, Ci (i = 1, 2, . . . ).

Lemma 4.1. There exist C > 0 such that, for all n > n0, the solutions uj of the
time-discretized problems (3.1)-(3.3), j = 1, . . . , n, satisfy the estimates

(i) ‖uj‖ ≤ C
(ii) ‖δuj‖ ≤ C.

Proof. First of all, we write problem (3.7)-(3.8) in a variational form. Suppose that
n > n0 and let φ be any function from the space V defined in (2.1). A standard
integration by parts yields∫ x

0

(x− ξ)φ(ξ)dξ = =2
xφ, for all x ∈ (0, 1), (4.1)

where

=2
xφ := =x(=ξφ) =

∫ x

0

dξ

∫ ξ

0

φ(η)dη.

Hence, taking x = 1 in (4.1), we get

=2
1φ =

∫ 1

0

(1− ξ)φ(ξ)dξ =
∫ 1

0

φ(ξ)dξ −
∫ 1

0

ξφ(ξ)dξ = 0. (4.2)

Next, taking for all j = 1, . . . , n, the inner product in L2(0, 1) of equation (3.7) and
=2

xφ, we get

−
∫ 1

0

d2wj

dx2
(x)=2

xφdx+
1

η + h

∫ 1

0

wj(x)=2
xφdx =

∫ 1

0

(fj(x)+
1

η + h
uj−1(x))=2

xφdx.

(4.3)
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Carrying out some integrations by parts and invoking (4.2), we obtain for each term
in (4.3): ∫ 1

0

d2wj

dx2
(x)=2

xφdx =
dwj

dx
(x)=2

xφ
∣∣x=1

x=0
−

∫ 1

0

dwj

dx
(x)=xφdx

= −wj(x)=xφ
∣∣x=1

x=0
+

∫ 1

0

wj(x)φ(x)dx

= (wj , φ),∫ 1

0

wj(x)=2
xφdx =

∫ 1

0

d

dx
(=xwj)=2

xφdx

= =xwj=2
xφ

∣∣x=1

x=0
−

∫ 1

0

=xwj=xφdx

= −(wj , φ)B1
2
,

and ∫ 1

0

(fj(x) +
1

η + h
uj−1(x))=2

xφdx

=
∫ 1

0

d

dx

[
=x

(
fj +

1
η + h

uj−1

)]
=2

xφdx

= =x

(
fj +

1
η + h

uj−1

)
=2

xφ
∣∣x=1

x=0
−

∫ 1

0

=x

(
fj +

1
η + h

uj−1

)
=xφdx

= −
(
fj +

1
η + h

uj−1, φ
)
B1

2
.

So that (4.3) becomes

(wj , φ) +
1

η + h
(wj , φ)B1

2
=

(
fj +

1
η + h

uj−1, φ
)
B1

2
, ∀j = 1, . . . , n. (4.4)

Now, testing this identity with φ = wj which is in V thanks to (3.8), with the help
of the Cauchy-Schwarz inequality we obtain

‖wj‖2 +
1

η + h
‖wj‖2B1

2
≤

[
‖fj‖B1

2
+

1
η + h

‖uj−1‖B1
2

]
‖wj‖B1

2
,

from where we deduce

‖wj‖ ≤ ‖fj‖B1
2

+
1

η + h
‖uj−1‖B1

2
, (4.5)

as well as
‖wj‖B1

2
≤ (η + h)‖fj‖B1

2
+ ‖uj−1‖B1

2
. (4.6)

Hence, (3.9) gives for all j = 1, . . . , n,

‖uj‖B1
2
≤ h

η + h
‖wj‖B1

2
+

η

η + h
‖uj−1‖B1

2

≤ h

η + h
((η + h)‖fj‖B1

2
+ ‖uj−1‖B1

2
) +

η

η + h
‖uj−1‖B1

2
,

i.e.,
‖uj‖B1

2
≤ h‖fj‖B1

2
+ ‖uj−1‖B1

2
,
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then, iterating this last inequality, we may arrive at

‖uj‖B1
2
≤ h

i=j∑
i=1

‖fi‖B1
2

+ ‖U0‖B1
2
, ∀j = 1, . . . , n. (4.7)

But, for all i ≥ 1 we have in view of Assumption (H1):

‖fi‖B1
2
≤ ‖f(ti, ui−1)− f(ti, 0)‖B1

2
+ ‖f(ti, 0)‖B1

2
≤ l‖ui−1‖B1

2
+ M, (4.8)

where M := maxt∈I ‖f(t, 0)‖B1
2
. So that substituting in (4.7),

‖uj‖B1
2
≤ h

i=j∑
i=1

(l‖ui−1‖B1
2

+ M) + ‖U0‖B1
2

= jhM + (1 + lh)‖U0‖B1
2

+ lh

i=j∑
i=2

‖ui−1‖B1
2

≤ TM + (1 + lh0)‖U0‖B1
2

+ lh

i=j−1∑
i=1

‖ui‖B1
2
,

from where it comes due to the discrete Gronwall’s Lemma

‖uj‖B1
2
≤ (TM + (1 + lh0)‖U0‖B1

2
)el(j−1)h.

Then
‖uj‖B1

2
≤ C1, j = 1, . . . , n, (4.9)

with C1 := (TM +(1+ lh0)‖U0‖B1
2
)elT . Then, From (3.6), (4.6) and (4.8), we have

the estimate

‖δuj‖B1
2

=
1

η + h
‖wj − uj−1‖B1

2

≤ 1
η
(‖wj‖B1

2
+ ‖uj−1‖B1

2
)

≤ 1
η

(
(η + h)‖fj‖B1

2
+ 2‖uj−1‖B1

2

)
≤ 1

η

(
((η + h)l + 2)‖uj−1‖B1

2
+ (η + h)M

)
,

finally, due to (4.9),
‖δuj‖B1

2
≤ C2, j = 1, . . . , n, (4.10)

where C2 := 1
η ([(η + h0)l + 2]C1 + (η + h0)M). Now, combining (4.5) and (4.8),

‖wj‖ ≤
(
l +

1
η + h

)
‖uj−1‖B1

2
+ M.

Consequently by (4.9), we get

‖wj‖ ≤ C3, j = 1, . . . , n, (4.11)

with C3 := (l + 1
η )C1 + M . On the other hand, iterating (3.9) we may obtain for

j = 1, . . . , n

uj =
h

η + h
wj +

η

η + h
uj−1

=
h

η + h
wj +

η

η + h

( h

η + h
wj−1 +

η

η + h
uj−2

)
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=
h

η + h

(
wj +

η

η + h
wj−1

)
+

( η

η + h

)2
uj−2

= . . .

=
h

η + h

[
wj +

η

η + h
wj−1 + (

η

η + h
)2wj−2 + · · ·+ (

η

η + h
)j−1w1

]
+ (

η

η + h
)jU0.

So that by (4.11), we have

‖uj‖ ≤
h

η + h

[
‖wj‖+

η

η + h
‖wj−1‖+ (

η

η + h
)2‖wj−2‖+ · · ·+ (

η

η + h
)j−1‖w1‖

]
+ (

η

η + h
)j‖U0‖

≤ C3h

η + h

[
1 +

η

η + h
+ (

η

η + h
)2 + · · ·+ (

η

η + h
)j−1

]
+ ‖U0‖,

since η
η+h < 1. But

1 +
η

η + h
+ (

η

η + h
)2 + · · ·+ (

η

η + h
)j−1 =

1− ( η
η+h )j

1− η
η+h

≤ 1
1− η

η+h

=
η + h

h
,

then

‖uj‖ ≤
C3h

η + h

η + h

h
+ ‖U0‖ = C3 + ‖U0‖, for j = 1, . . . , n, (4.12)

which proves estimate (i) with C := C3 + ‖U0‖. Finally, using (3.5), (4.11) and
(4.12), we derive

‖δuj‖ ≤
1
η
(‖wj‖+ ‖uj‖) ≤

1
η
(2C3 + ‖U0‖), for j = 1, . . . , n.

Thus, estimate (ii) is proved with C := 1
η (2C3+‖U0‖), and so the proof is complete.

�

We deduce the following estimates that we shall use later.

Corollary 4.2. For all n > n0, the functions u(n) and u(n) satisfies the inequalities
(i) ‖u(n)(t)‖ ≤ C, ‖u(n)(t)‖ ≤ C, for all t ∈ I,
(ii) ‖du(n)

dt (t)‖ ≤ C, a.e. in I,
(iii) ‖u(n)(t)− u(n)(t)‖ ≤ C

n , for all t ∈ I

(iv) ‖u(n)(t)− u(n)(t− T
n )‖ ≤ C

n , for all t ∈ I.

Proof. Inequalities (i) follow immediately from Lemma 4.1 (i) with the same con-
stant, whereas inequality (ii) is an easy consequence of Lemma 4.1 (ii), also with
the same constant, noting that we have

du(n)

dt
(t) = δuj , ∀t ∈ (tj−1, tj ], 1 ≤ j ≤ n.

As for inequalities (iii) and (iv), since we have

u(n)(t)− u(n)(t) = (tj − t)δuj , ∀t ∈ (tj−1, tj ], 1 ≤ j ≤ n,

and
u(n)(t)− u(n)(t− T

n
) = uj − uj−1, ∀t ∈ (tj−1, tj ], 1 ≤ j ≤ n,
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it follows that
‖u(n)(t)− u(n)(t)‖ ≤ h max

1≤j≤n
‖δuj‖, ∀ t ∈ I,

and
‖u(n)(t)− u(n)(t− T

n
)‖ ≤ h max

1≤j≤n
‖δuj‖, ∀ t ∈ I.

Hence, applying Lemma 4.1 (ii), we get the desired inequalities (iii) and (iv) with
C := T

η (2C3 + ‖U0‖). �

5. Convergence and Existence result

Using relations (3.5) and (3.6), we can rearrange the variational equations (4.4)
as follows

(δuj , φ)B1
2

+ (uj , φ) + η(δuj , φ) = (fj , φ)B1
2
, ∀φ ∈ V, j = 1, . . . , n.

If we define, for all n > n0, the abstract step function f
(n)

: I × V → L2(0, 1) by

f
(n)

(t, v) = f(tj , v), t ∈ (tj−1, tj ], j = 1, . . . , n,

the previous equations may be rewritten as(du(n)

dt
(t), φ

)
B1

2
+

(
u(n)(t), φ

)
+ η

(du(n)

dt
(t), φ

)
=

(
f

(n)
(t, u(n)(t− T

n
)), φ

)
B1

2
, (5.1)

for all φ ∈ V , t ∈ (0, T ]. Before performing a limiting process in the approximation
scheme (5.1), we have to prove some convergence assertions.

Theorem 5.1. The sequence {u(n)}n>n0 converges under the the norm of C(I, V )
to some function u ∈ C(I, V ) and the error estimate

‖u(n) − u‖C(I,V ) ≤
C

n1/2
, (5.2)

takes place for all n > n0.

Proof. The main idea of the proof is to show that {u(n)}n>n0 is a Cauchy sequence
in the Banach space C(I, V ). Let u(n) and u(m) be the Rothe functions (3.13)
corresponding to the step lengths hn = T

n and hm = T
m respectively with m > n >

n0. Testing the difference of (5.1) for n and m, with φ = u(n)(t) − u(m)(t) (∈ V ),
we get for all t ∈ (0, T ]:( d

dt

(
u(n)(t)− u(m)(t)

)
, u(n)(t)− u(m)(t)

)
B1

2

+
(
u(n)(t)− u(m)(t), u(n)(t)− u(m)(t)

)
+ η

( d

dt

(
u(n)(t)− u(m)(t)

)
, u(n)(t)− u(m)(t)

)
=

(
f

(n)
(t, u(n)(t− T

n
))− f

(m)
(t, u(m)(t− T

m
)), u(n)(t)− u(m)(t)

)
B1

2

,

or after some rearrangement
1
2

d

dt
‖u(n)(t)− u(m)(t)‖2B1

2
+

η

2
d

dt
‖u(n)(t)− u(m)(t)‖2 + ‖u(n)(t)− u(m)(t)‖2

=
(
u(n)(t)− u(m)(t), (u(n)(t)− u(n)(t)) + (u(m)(t)− u(m)(t))

)
+

(
f

(n)
(t, u(n)(t− T

n
))− f

(m)
(t, u(m)(t− T

m
)), u(n)(t)− u(m)(t)

)
B1

2

.

(5.3)
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But, from the fact that

f
(n)

(t, u(n)(t− T

n
)) = f(tj , uj−1) := fj , ∀t ∈ (tj−1, tj ], j = 1, . . . , n,

we deduce, in view of (4.8), that

‖f (n)(
t, u(n)(t− T

n
)
)
‖B1

2
≤ max

1≤j≤n
‖fj‖B1

2

≤ l max
1≤j≤n

‖uj−1‖B1
2

+ M, ∀t ∈ I.

Therefore, due to (4.9),

‖f (n)(
t, u(n)(t− T

n
)
)
‖B1

2
≤ lC1 + M, ∀t ∈ I. (5.4)

Thus, from the identity

(u(n)(t), φ) =
(
f

(n)(
t, u(n)(t− T

n
)
)
− du(n)

dt
(t), φ

)
B1

2

− η
(du(n)

dt
(t), φ

)
,

for all t ∈ I, φ ∈ V , which follows from (5.1), due to (4.10), (5.4) and Corollary
4.2(ii), we obtain

|(u(n)(t), φ)| ≤
[
‖f (n)(

t, u(n)(t− T

n
)
)
‖B1

2
+ ‖du(n)

dt
(t)‖B1

2
+ η‖du(n)

dt
(t)‖

]
‖φ‖

≤ C4‖φ‖, ∀t ∈ I, ∀φ ∈ V,

(5.5)
with C4 := lC1 + M + C2 + 2C3 + ‖U0‖. Applying (5.5) for

φ = (u(n)(t)− u(n)(t)) + (u(m)(t)− u(m)(t)),

together with Corollary 4.2 (iii), we can dominate the first term in the right-hand
side of (5.3) as follows(

u(n)(t)− u(m)(t), (u(n)(t)− u(n)(t)) + (u(m)(t)− u(m)(t))
)

≤ 2C4

(
‖u(n)(t)− u(n)(t)‖+ ‖u(m)(t)− u(m)(t)‖

)
≤ C5(

1
n

+
1
m

), ∀t ∈ I,

(5.6)

with C5 := 2C4T
η (2C3 + ‖U0‖). It remains to majorize the second term in the right

hand side in (5.3). To this end, we use the Cauchy inequality

αβ ≤ ε

2
α2 +

1
2ε

β2, ∀α, β ∈ R, ∀ε ∈ R∗+,

for every ε > 0:(
f

(n)
(t, u(n)(t− T

n
))− f

(m)
(t, u(m)(t− T

m
)), u(n)(t)− u(m)(t)

)
B1

2

≤ ‖f (n)
(t, u(n)(t− T

n
))− f

(m)
(t, u(m)(t− T

m
))‖B1

2
‖u(n)(t)− u(m)(t)‖B1

2

≤ ε

2
‖f (n)

(t, u(n)(t− T

n
))− f

(m)
(t, u(m)(t− T

m
))‖2B1

2

+
1
2ε
‖u(n)(t)− u(m)(t)‖2B1

2
, ∀t ∈ I.

(5.7)

Now, let t be arbitrary but fixed in (0, T ]. Then there exist two integers k and i
corresponding to the subdivision of I into n and m subintervals respectively, such
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that t ∈ (tk−1, tk] ∩ (ti−1, ti]. Hence thanks to the assumed Lipschitz continuity of
f ,

‖f (n)(
t, u(n)(t− T

n
)
)
− f

(m)(
t, u(m)(t− T

m
)
)
‖2B1

2

= ‖f
(
tk, u(n)(t− T

n
)
)
− f

(
ti, u

(m)(t− T

m
)
)
‖2B1

2

≤ l2
[
|tk − ti|

{
1 + ‖u(n)(t− T

n
)‖B1

2
+ ‖u(m)(t− T

m
)‖B1

2

}
+ ‖u(n)(t− T

n
)− u(m)(t− T

m
)‖B1

2

]2

≤ l2
[
(hn + hm)(1 + ‖uk−1‖B1

2
+ ‖ui−1‖B1

2
) + ‖u(n)(t− T

n
)− u(n)(t)‖B1

2

+ ‖u(n)(t)− u(m)(t)‖B1
2

+ ‖u(m)(t)− u(m)(t− T

m
)‖B1

2

]2

.

Then follows with consideration to (4.9) and Corollary 4.2 (iv) that

‖f (n)(
t, u(n)(t− T

n
)
)
− f

(m)(
t, u(m)(t− T

m
)
)
‖2B1

2

≤ l2
[
T (

1
n

+
1
m

)(1 + 2C1) +
T

η
(2C3 + ‖U0‖)(

1
n

+
1
m

) + ‖u(n)(t)− u(m)(t)‖B1
2

]2
= l2

[
T (1 + 2C1 +

1
η
(2C3 + ‖U0‖))(

1
n

+
1
m

) + ‖u(n)(t)− u(m)(t)‖B1
2

]2
≤ l2

[
C2

6 (
1
n

+
1
m

)2 + 2C6(
1
n

+
1
m

)(‖u(n)(t)‖B1
2

+ ‖u(m)(t)‖B1
2
)

+ ‖u(n)(t)− u(m)(t)‖2B1
2

]
≤ (lC6)2(

1
n

+
1
m

)2 + 4l2C6C1(
1
n

+
1
m

) + l2‖u(n)(t)− u(m)(t)‖2B1
2
, ∀t ∈ I,

with C6 := T
(
1 + 2C1 + 1

η (2C3 + ‖U0‖)
)
. Thus, setting C7 := (lC6)2 and C8 :=

4l2C6C1, we write

‖f (n)
(t, u(n)(t− T

n
))− f

(m)
(t, u(m)(t− T

m
))‖2B1

2

≤ C7(
1
n

+
1
m

)2 + C8(
1
n

+
1
m

) + l2‖u(n)(t)− u(m)(t)‖2B1
2
, ∀t ∈ I;

(5.8)

therefore, going back to (5.7), we have(
f

(n)
(t, u(n)(t− T

n
))− f

(m)
(t, u(m)(t− T

m
)), u(n)(t)− u(m)(t)

)
B1

2

≤ ε

2
C7(

1
n

+
1
m

)2 +
ε

2
C8(

1
n

+
1
m

) +
ε

2
l2‖u(n)(t)− u(m)(t)‖2B1

2

+
1
2ε
‖u(n)(t)− u(m)(t)‖2B1

2
, ∀t ∈ I.

(5.9)

Now, combining (5.3), (5.6), (5.9) and (2.3), we get

d

dt

(
‖u(n)(t)− u(m)(t)‖2B1

2
+ η‖u(n)(t)− u(m)(t)‖2

)
+ 2‖u(n)(t)− u(m)(t)‖2

≤ εC7(
1
n

+
1
m

)2 + (εC8 + 2C5)(
1
n

+
1
m

) +
εl2

2
‖u(n)(t)− u(m)(t)‖2
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+
1
2ε
‖u(n)(t)− u(m)(t)‖2, ∀t ∈ I.

Hence

η
d

dt
‖u(n)(t)− u(m)(t)‖2 + (2− εl2

2
)‖u(n)(t)− u(m)(t)‖2

≤ εC7(
1
n

+
1
m

)2 + (εC8 + 2C5)(
1
n

+
1
m

) +
1
2ε
‖u(n)(t)− u(m)(t)‖2.

Choosing ε > 0 so that 2 − εl2

2 = 0, i.e. ε = 4
l2 and integrating the just obtained

inequality between 0 and t taking into account the fact that u(n)(0) = u(m)(0) = U0,
we get for all t ∈ I:

‖u(n)(t)− u(m)(t)‖2

≤ 4C7T

ηl2
(
1
n

+
1
m

)2 +
2T

η
(
2C8

l2
+ C5)(

1
n

+
1
m

) +
l2

8η

∫ t

0

‖u(n)(τ)− u(m)(τ)‖2dτ.

Then, by Gronwall’s Lemma,

‖u(n)(t)− u(m)(t)‖2 ≤
[
C9(

1
n

+
1
m

)2 + C10(
1
n

+
1
m

)
]
e

l2
8η t ∀t ∈ I,

with C9 := 4C7T
ηl2 and C10 := 2T

η ( 2C8
l2 + C5). Accordingly

‖u(n)(t)− u(m)(t)‖ ≤
[
C9(

1
n

+
1
m

)2 + C10(
1
n

+
1
m

)
]1/2

e
l2T
16η , ∀t ∈ I.

Then, taking the upper bound with respect to t in the left-hand side of this in-
equality,

‖u(n) − u(m)‖C(I,V ) ≤
[
C9(

1
n

+
1
m

)2 + C10(
1
n

+
1
m

)
]1/2

e
l2T
16η , (5.10)

which shows that {u(n)}n>n0 is a Cauchy sequence in C(I, V ). This implies the
existence of a function u ∈ C(I, V ) such that u(n) → u in this space. Moreover, let-

ting m →∞ in (5.10) we obtain the error estimate (5.2) with C =
√

C9 + C10e
l2T
16η ,

what completes the proof. �

We write down some results for the limit-function u.

Corollary 5.2. The function u possesses the following properties:

(i) u ∈ C0,1(I, V );
(ii) u is strongly differentiable a.e. in I and du

dt ∈ L∞(I, L2(0, 1));
(iii) u(n)(t) → u(t) in V for all t ∈ I;
(iv) du(n)

dt ⇀ du
dt in L2(I, L2(0, 1)).

Proof. On the basis of Corollary 4.2 (i) and (ii), uniform convergence statement
from Theorem 5.1 and the continuous embedding V ↪→ Y := L2(0, 1), [9, Lemma
1.3.15] is valid for our special situation yielding assertions (i), (ii) and (iv) of the
present Corollary. The remaining assertion (iii) is an immediate consequence of the
combination of Corollary 4.2 (iii) with the convergence result stated in Theorem
5.1. �

Collecting all the obtained results, we can state our existence theorem.
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Theorem 5.3. The limit function u from Theorem 5.1 is the unique weak solu-
tion to problem (1.5)-(1.8) in the sense of Definition 2.2. Moreover, u depends
continuously upon data f and U0, namely the inequality

max
0≤s≤t

‖u∗(s)− u∗∗(s)‖ ≤ C
(
‖U∗0 −U∗∗0 ‖+

∫ t

0

‖f∗(s, u∗(s))− f∗∗(s, u∗∗(s))‖B1
2
ds

)
,

(5.11)
holds for all t ∈ I, with some positive constant C depending only on η.

Proof. Existence. It suffices to check all the points (i)-(iv) of Definition 2.2.
Obviously, in light of Corollary 5.2, the first two points of Definition 2.2 are already
fulfilled. Moreover, since u(n) → u in C(I, V ) as n → ∞ and, by definition,
u(n)(0) = U0, it follows that u(0) = U0 holds in V so the initial condition (1.6) is
also fulfilled, that is point (iii) of Definition 2.2 takes place. To show that u obeys
the integral equation (2.4), we investigate the behaviour as n →∞ of the integral
relation (

u(n)(t)− U0, φ
)
B1

2
+

∫ t

0

(
u(n)(τ), φ

)
dτ + η

(
u(n)(t)− U0, φ

)
=

∫ t

0

(
f

(n)(
τ, u(n)(τ − T

n
)
)
, φ

)
B1

2

dτ, ∀φ ∈ V, ∀t ∈ I,

(5.12)

which results from (5.1) by integration over (0, t) ⊂ I noting that u(n)(0) = U0.
This requires some additional convergence statements.

Firstly, since u(n) → u in C(I, V ) and since for all fixed φ ∈ V , the linear
functional v 7→ (v, φ)B1

2
is continuous on V , we deduce that(

u(n)(t), φ
)
−→

n→∞

(
u(t), φ

)
, ∀φ ∈ V, ∀t ∈ I, (5.13)(

u(n)(t), φ
)
B1

2
−→

n→∞

(
u(t), φ

)
B1

2
, ∀φ ∈ V, ∀t ∈ I. (5.14)

Secondly, by virtue of (5.5) the Lebesgue Theorem of dominated convergence may
be applied to the convergence statement (iii) from Corollary 5.2 giving∫ t

0

(
u(n)(τ), φ

)
dτ −→

n→∞

∫ t

0

(
u(τ), φ

)
dτ, ∀φ ∈ V, ∀t ∈ I. (5.15)

Thirdly, in view of Assumption (H1), we have

‖f (n)(
τ, u(n)(τ − T

n
)
)
− f(τ, u(τ))‖B1

2

= ‖f
(
tj , u

(n)(τ − T

n
)
)
− f(τ, u(τ))‖B1

2

≤ l
[
|tj − τ |(1 + ‖uj−1‖B1

2
+ ‖u(τ)‖B1

2
) + ‖u(n)(τ − T

n
)− u(τ)‖B1

2

]
,

for all τ ∈ (tj−1, tj ], 1 ≤ j ≤ n; therefore

‖f (n)(
τ, u(n)(τ − T

n
)
)
− f(τ, u(τ))‖B1

2
≤ C

n
+ l‖u(n)(τ − T

n
)− u(τ)‖B1

2
,

for all τ ∈ I, where C := lT (1 + C1 + ‖u‖C(I,V )). However, with consideration to
estimates (iii)-(iv) from Corollary 4.2 and inequality (5.2), we can write

‖u(n)(τ − T

n
)− u(τ)‖B1

2
≤ ‖u(n)(τ − T

n
)− u(n)(τ)‖
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+ ‖u(n)(τ)− u(n)(τ)‖+ ‖u(n)(τ)− u(τ)‖

≤ C(
1
n

+
1

n1/2
), ∀τ ∈ I,

whence
‖f (n)(

τ, u(n)(τ − T

n
)
)
− f(τ, u(τ))‖B1

2
≤ C

n1/2
, ∀τ ∈ I,

and then

f
(n)(

τ, u(n)(τ − T

n
)
)
−→

n→∞
f(τ, u(τ)) in B1

2(0, 1), ∀τ ∈ I. (5.16)

Now, due to (5.4) the function |(f (n)(
τ, u(n)(τ − T

n )
)
, φ)B1

2
| is uniformly bounded

with respect to both τ and n. So the Lebesgue Theorem of dominated convergence
may be applied again to (5.16) yielding∫ t

0

(
(
f

(n)(
τ, u(n)(τ − T

n
)
)
, φ

)
B1

2

dτ −→
n→∞

∫ t

0

(f(τ, u(τ)), φ)B1
2
dτ, (5.17)

for all φ ∈ V and all t ∈ I. Then, by (5.13), (5.14) , (5.15) and (5.17), a limiting
process n →∞ in (5.12) leads to(

u(t)− U0, φ
)
B1

2
+

∫ t

0

(
u(τ), φ

)
dτ + η

(
u(t)− U0, φ

)
=

∫ t

0

(f(τ, u(τ)), φ)B1
2
dτ,

for all φ ∈ V and t ∈ I. Finally, the differentiation of this last identity with respect
to t recalling that u : I → L2(0, 1) is strongly differentiable for a.e. t ∈ I, leads to
the required identity (2.4) by the aid of the equalities d

dt (u(t), φ)B1
2

= (du
dt (t), φ)B1

2

and d
dt (u(t), φ) = (du

dt (t), φ) which hold for all t ∈ I and all φ ∈ V . Thus, u weakly
solves problem (1.5)-(1.8).
Uniqueness and continuous dependence upon data. Let u∗ and u∗∗ be two
weak solutions of problem (1.5)-(1.8) corresponding respectively to (U∗0 , f∗) and
(U∗∗0 , f∗∗) instead of (U0, f). Subtracting the identity (2.4) written for u∗∗ from
the same identity written for u∗ and inserting φ = u∗(t) − u∗∗(t) in the resulting
relation, we get by integration over (0, τ), with τ ∈ I :

1
2
‖u∗(τ)− u∗∗(τ)‖2B1

2
− 1

2
‖u∗(0)− u∗∗(0)‖2B1

2
+

∫ τ

0

‖u∗(t)− u∗∗(t)‖2dt

+
η

2
‖u∗(τ)− u∗∗(τ)‖2 − η

2
‖u∗(0)− u∗∗(0)‖2

=
∫ τ

0

(
f∗(t, u∗(t))− f∗∗(t, u∗∗(t)), u∗(t)− u∗∗(t)

)
B1

2

dt,

hence, ignoring the first and the third terms in the left hand side, we obtain

‖u∗(τ)− u∗∗(τ)‖2

≤ 1
η
‖u∗(0)− u∗∗(0)‖2B1

2
+ ‖u∗(0)− u∗∗(0)‖2

+
2
η

∫ τ

0

‖f∗(t, u∗(t))− f∗∗(t, u∗∗(t))‖B1
2
‖u∗(t)− u∗∗(t)‖B1

2
dt

≤ (
1
2η

+ 1)‖u∗(0)− u∗∗(0)‖2 +
√

2
η

max
0≤t≤τ

‖u∗(t)− u∗∗(t)‖

×
∫ τ

0

‖f∗(t, u∗(t))− f∗∗(t, u∗∗(t))‖B1
2
dt
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≤ (
1
2η

+ 1)‖U∗0 − U∗∗0 ‖ max
0≤t≤τ

‖u∗(t)− u∗∗(t)‖+
√

2
η

max
0≤t≤τ

‖u∗(t)− u∗∗(t)‖

×
∫ τ

0

‖f∗(t, u∗(t))− f∗∗(t, u∗∗(t))‖B1
2
dt

≤
[
(

1
2η

+ 1)‖U∗0 − U∗∗0 ‖+
√

2
η

∫ τ

0

‖f∗(t, u∗(t))− f∗∗(t, u∗∗(t))‖B1
2
dt

]
× max

0≤t≤τ
‖u∗(t)− u∗∗(t)‖,

where (2.3) has been used. Consequently for all s ∈ [0, τ ], we have

‖u∗(s)− u∗∗(s)‖2

≤
[
(

1
2η

+ 1)‖U∗0 − U∗∗0 ‖+
√

2
η

∫ τ

0

‖f∗(t, u∗(t))− f∗∗(t, u∗∗(t))‖B1
2
dt

]
×max 0 ≤ t ≤ τ‖u∗(t)− u∗∗(t)‖,

whence

max
0≤s≤τ

‖u∗(s)− u∗∗(s)‖2

≤
[
(

1
2η

+ 1)‖U∗0 − U∗∗0 ‖+
√

2
η

∫ τ

0

‖f∗(t, u∗(t))− f∗∗(t, u∗∗(t))‖B1
2
dt

]
× max

0≤t≤τ
‖u∗(t)− u∗∗(t)‖,

from which the estimate (5.11) follows with C := max( 1
2η + 1,

√
2

η ). This implies
the uniqueness as well as the continuous dependence of the solution of (1.5)-(1.8)
upon data. So the proof is complete. �
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