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ABSTRACT 

DISPARITIES OF COLORECTAL CANCER SURVIVAL IN TEXAS 

by 

Neng Wan, B.S., M.S. 

Texas State University-San Marcos 

August 2011 

SUPERVISING PROFESSOR: F. BENJAMIN ZHAN 

Disparities in colorectal cancer (CRC) outcomes in terms of race/ethnicity, 

socioeconomic status (SES), and geographic location have been widely documented in 

the United States. However, the mechanism of how different factors influence the 

disparities remains poorly understood. Previous studies of CRC disparity are limited 

because (1) they seldom evaluated the joint influence of multiple factors on CRC 

outcomes, (2) few US studies have investigated the association between potential spatial 

access to CRC services and CRC outcomes, and (3) the effects of spatial autocorrelation, 

the small number problem, and the ecological fallacy on analysis results were not fully 

accounted for. These limitations prevent researchers and health professionals from more 

accurately understanding the causes of disparities and effectively designing intervention 

programs. Taking advantage of Geographic Information Science and statistical methods, 

this dissertation investigates disparities of CRC stage at diagnosis and CRC-specific 
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survival in Texas during the period from 1995 to 2003. Specifically, it proposes a relative 

spatial access assessment approach to estimate potential spatial access to CRC prevention 

and treatment services in Texas (Chapter 4), adopts the generalized equation estimating 

logistic regression and the adaptive spatial filtering method to evaluate the collective 

influence of race/ethnicity, SES, geographic location, and potential spatial access to CRC 

prevention services on CRC stage at diagnosis (Chapter 5), and employs the Kaplan-

Meier estimator, the Cox proportional hazard regression, and the spatial scan statistic to 

uncover the complex  disparities of CRC survival (Chapter 6). It is shown that the 

proposed spatial access approach could effectively overcome the uncertainty problem of 

gravity-based spatial access models. There were obvious differences in potential spatial 

access to CRC services by socio-demographic and geographic factors. The investigations 

into the continuum of CRC reveal systematic disparities in CRC stage at diagnosis and 

CRC-specific survival by race/ethnicity, SES, and geographic location, with 

disproportionately unfavorable burdens on non-Hispanic blacks, Hispanics, people from 

low SES areas, and individuals from specific geographic areas. Potential spatial access to 

CRC services was found to be associated with CRC stage at diagnosis across the whole 

state and with CRC-specific survival for non-urban areas. However, the impact of the 

potential spatial access was minor compared to those of race/ethnicity and SES. This 

dissertation provides new insights about how CRC disparities accumulate from the 

diagnosis to mortality in a large and diverse population. The results are useful for CRC 

disparity elimination and cancer resource allocation in Texas. In addition, this 

dissertation demonstrates the usefulness of a comprehensive framework of utilizing 

spatial analysis techniques to complement social epidemiological studies of health 

disparity. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Cancer represents a serious threat to the health of the US population. It has claimed 

many lives and brought about huge economic loss to society. There would be 1,529,560 

new cancer cases and 569,490 new cancer-specific deaths in this country in 2010 

(American Cancer Society (ACS) 2010). As estimated by the National Institutes of 

Health (NIH) (2008), in 2008, cancer-related costs totaled $228.2 billion for the United 

States. 

Cancer disparity represents an uneven and unfair distribution of cancer burden 

among population groups in society. For decades, disparities of cancer incidence, survival, 

and mortality have been widely documented (Albano et al. 2007; Brawley 2002; Clegg et 

al. 2002; Correa 2003; El-Serag 2002; Espey et al. 2007; Horner et al. 2009; Singh et al. 

2003; Ward et al. 2004). Social groups such as Hispanics, African Americans, and 

individuals with deprived socioeconomic status (SES) have been systematically 

experiencing higher cancer risks than others. Cancer incidence and mortality also vary 

across geographic regions in the United States (Hsu et al. 2007; Lai et al. 2006; Pickens 

and Orringer 2003; Singh et al. 2003; Sonneveld et al. 1999). These disparities 
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indicate that there is inequality between disadvantaged groups and other groups in society 

(Whitehead 1992). Brawley and Freeman (1999) even claimed that this ―unacceptable 

reality‖ raises ―deep ethical and moral questions.‖ Thus, to lessen and to ultimately 

eliminate cancer disparities have become an important goal of public health 

administrators and researchers and have been identified by ACS as an overarching theme 

of its goals (Byers et al. 1999). 

Among all types of cancer, colorectal cancer (CRC) deserves special attention. CRC 

is the type of cancer that originates from the colon or rectum. CRC ranks third in cancer 

incidence and second in cancer-specific mortality for the US population (ACS 2010). It 

was estimated that, in 2010, CRC incidence and CRC-specific deaths in the United States 

would total 142,570 and 51,370, respectively (ACS 2010). In Texas, CRC ranks fourth in 

cancer occurrence and second in cancer-specific mortality, accounting for about 9,011 

new cancer cases and 3,254 cancer-specific deaths each year (ACS, High Plains Division 

2008). CRC survival in Texas is below the U.S. average.  

CRC survival varies among social groups. Disparities of CRC survival have been 

widely documented by US researchers over the past two decades. Generally, 

disadvantaged groups such as some racial/ethnic minorities and individuals with low SES 

were more probable to experience shorter CRC survival than advantaged groups, even if 

one controls for stage at diagnosis (Clegg et al. 2002; Elhefni 2006; Govindarajan 2003; 

Henry et al. 2009a; Kanna et al. 2009; Kirsner et al. 2006; Mayberry et al. 1995; 

Roetzheim et al. 2000). 
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1.2 Gaps in Previous Studies 

Several limitations of previous studies prevent people from more accurately 

understanding cancer disparities and designing intervention programs. First, although the 

influence of multiple factors is important information for cancer disparity elimination, 

few researchers have investigated the joint impact of SES, race/ethnicity, and geographic 

location on cancer disparity. Second, although poor access to CRC screening and 

treatment services has long been suspected associated with low CRC survival rates, few 

US studies have examined the relation between potential spatial access to medical 

services and CRC outcomes. Third, there has been little interest in minimizing 

uncertainties introduced by area-level socioeconomic indicators, spatial dependence, and 

the small-number problem when analyzing cancer disparities. These limitations will be 

explicitly explained in Chapter 2. 

1.3 Objectives and Research Questions 

Utilizing geographic information systems (GISs), spatial analysis methods, and 

traditional statistical methods, this dissertation aims to comprehensively investigate 

disparities of CRC survival in Texas. Specifically, it examines disparities of CRC stage at 

diagnosis and CRC-specific survival from various aspects such as race/ethnicity, SES, 

geographic location, and potential spatial access to CRC services. This dissertation also 

seeks to analyze the characteristics of potential spatial access to CRC services in Texas 

using an improved spatial access model. 

The two aims are divided into the following five research questions:  

1. Does potential spatial access to CRC-related services differ by race/ethnicity, SES, 

and geographic location in Texas? 
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2. Are there any disparities of CRC stage at diagnosis from the aspects of 

race/ethnicity, SES, geographic location, and potential spatial access to CRC 

prevention services in Texas? 

3. How do race/ethnicity, SES, and potential spatial access to CRC screening 

services jointly influence CRC stage at diagnosis in Texas?  

4. Are there any disparities of CRC-specific survival by race/ethnicity, SES, 

geographic location, and potential spatial access to CRC treatment service in 

Texas? 

5. How do race/ethnicity, SES, and potential spatial access to CRC treatment 

services jointly influence CRC-specific survival in Texas? 

To answer the research questions, five hypotheses are proposed: 

Hypothesis 1: Social groups in Texas have uneven potential spatial accesses to CRC 

services. 

Hypothesis 2: Disparities in CRC stage at diagnosis are statistically significant from 

the aspects of race/ethnicity, SES, geographic location, and potential 

spatial access to CRC prevention services in Texas. 

Hypothesis 3: SES and race/ethnicity are the major factors influencing disparities in 

CRC stage at diagnosis in Texas. 

Hypothesis 4: Disparities in CRC-specific survival are statistically significant from 

the aspects of race/ethnicity, SES, geographic location, and potential 

spatial access to CRC treatment services in Texas. 

Hypothesis 5: SES and race/ethnicity are the major factors influencing disparities in 

CRC-specific survival in Texas. 
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1.4 Organization of the Dissertation 

This dissertation is composed of seven chapters. The first chapter identifies the 

purposes of this research, outlines the questions that will direct the research, and defines 

this study‘s hypotheses. Chapter 2 gives a literature review on cancer disparities and 

relevant topics such as explanatory factors for cancer disparities, measures of disparities, 

measures of potential spatial access to medical services, and methods of spatial cluster 

analysis. The third chapter describes the datasets and methodology used in the entire 

study. Chapter 4 proposes a relative spatial access assessment approach to estimate 

potential spatial accesses to CRC services in Texas. Chapter 5 investigates individual as 

well as joint impacts of race/ethnicity, SES, geographic location, and potential spatial 

access to CRC prevention services on CRC stage at diagnosis. Chapter 6 analyzes the 

impacts of various factors on CRC-specific survival. Chapter 7 summarizes the results of 

the analyses, discusses the contributions and shortcomings of this dissertation, and gives 

some future research directions.
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews previously published works on cancer disparities and some 

relevant topics. The chapter is composed of five sections. The second section reviews the 

definition of health disparity. The third section summarizes previous findings about 

cancer disparities by socio-demographic and geographic factors. This section also 

reviews explanatory factors for cancer disparities and previous works of cancer disparity 

elimination. The fourth section describes methodologies of cancer disparity studies. The 

last section summarizes this chapter and identifies the shortcomings of existing studies. 

2.2 Definitions of Health Disparity 

Health disparity (also called ―health inequality‖ by some researchers) is an ever-

developing concept through which health practitioners, policy makers, and researchers 

define unjust differences in health among social groups. In its early years during the early 

1990s, health disparity was defined as health differences that ―are not only unnecessary 

and avoidable but, in addition, are considered unfair and unjust‖, based on the assumption 

that ―ideally everyone should have a fair opportunity to attain their full health potential 

and, more pragmatically, that no one should be disadvantaged from achieving this 

potential, if it can be avoided‖ (Whitehead 1992). This definition, initially used in
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European countries, referred specifically to health disparities among socioeconomic 

groups. The definition has been proved effective for researchers to communicate with 

health administrators and the public in a variety of circumstances (Braveman 2006). In 

the late 1990s, however, the scope of health disparity research was extended (Anand 

2002; Szwarcwald 2002). US researchers began to incorporate other factors (e.g., 

race/ethnicity, geographic location) in addition to SES to evaluate health disparities. A 

variety of new definitions (Table 2.1) have been proposed by US health departments and 

health researchers and these definitions have been systematically reviewed (Braveman 

2006; Krieger 2005). 

Table 2.1 Definitions of health disparity by US health departments 

Source Definition 

National Institute of 

Health (NIH) (2009) 

Health disparities are ―differences in the incidence, prevalence, 

mortality, and burden of disease and other adverse health conditions 

that exist among specific population groups in the United States.‖  

NIH National Center on 

Minority Health and 

Health Disparities (2009) 

 

―A population is a health disparity population if there is a significant 

disparity in the overall rate of disease incidence, prevalence, 

morbidity, mortality or survival rates in the population as compared to 

the health status of the general population.‖ 

US Department of 

Health and Human 

Services, Healthy 

People 2010 (2000) 

 

 ―…… to eliminate health disparities among segments of the 

population, including differences that occur by gender, race or 

ethnicity, education or income, disability, geographic location, or 

sexual orientation. ‖ 

 

National Cancer Institute 

(NIH), National Center to 

Reduce Cancer 

Health Disparities (2005) 

―Disparities–or inequalities–occur when members of certain 

population groups do not enjoy the same health status as other groups. 

Disparities are most often identified along racial and ethnic lines–

showing that African Americans, Hispanics, Native Americans, Asian 

Americans, Alaska Natives and whites have different disease rates and 

survival rates. But disparities also extend beyond race and 

ethnicity. . .‖ and ―can be noted on the basis of income and education‖ 

 

This study defines health disparity as an inequality in which disadvantaged people 

systematically suffer worse health and less access to health care than advantaged people 

(Braveman 2006). Disadvantaged social groups can be characterized by race/ethnicity, 

SES (e.g., income, education, poverty status), geographic location, age, disability, and 
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sexual orientation. This definition not only stresses the health differences between social 

groups but also emphasizes the unfair and the preventable nature of these differences 

(Braveman 2006; Krieger 2005). This characteristic effectively distinguishes health 

disparity from differences in health. For example, that men can get prostate cancer but 

women can not only can be classified as a type of ―health difference‖ rather than ―health 

disparity‖ because the biological differences are neither unfair nor preventable. 

2.3 Cancer Disparity 

Cancer disparity can therefore be defined as an inequality in which disadvantaged 

social groups systematically experience higher risks of cancer incidence, survival, and 

mortality than advantaged social groups. Prostate cancer, CRC, and lung cancer account 

for 47% of cancer incidence and 48.4% of cancer mortality for American men (ACS 

2010). Cancers of the breast, lungs, colon-rectum, and ovary account for 52.1% of cancer 

incidence and 55.6% of cancer mortality among American women (ACS 2010). Current 

cancer disparity studies are therefore primarily focusing on the incidence, survival, or 

mortality of the cancers of prostate, female breast, ovarian, colon-rectum, and lung. A 

small number of studies also investigated the disparities of other cancers sites such as 

cervix, stomach, and liver (Correa 2003; Espey et al. 2007).  

Generally, most US studies of cancer disparity are focusing on race/ethnicity 

(racial/ethnic minorities versus whites) and SES (low SES versus high SES). A small 

number of studies are also examining the impact of geographic location (high-risk areas 

versus low-risk areas) on cancer occurrence, survival, and mortality. A list of previous 

cancer disparity studies can be found in Table 2.2. 
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Table 2.2 Facts of cancer disparities in the United States 

Source Purpose Cancer Site(s) and 

Outcomes, Study 

Period 

Geographic 

Location 

and Scale 

Factors Conclusion 

Albano 

et al. 

2007 

To examine 

the influence 

of  race and 

education on 

cancer 

mortality 

Mortality by 

cancers of the 

female breast, lung, 

prostate, and colon, 

2001 

United 

States, 

National 

level 

Race and 

SES 

Cancer mortality 

varies substantially by 

education level. 

Bradley 

et al. 

2001 

To disentangle 

the influence 

of race and 

SES on breast 

cancer 

disparities 

The incidence and 

survival for the 

cancers of female 

breast, cervix, lung, 

prostate, and colon, 

1996-1998 

The state of 

Michigan, 

state level 

Race and 

SES 

Disparities in cancer 

outcomes may be 

greater than expected. 

 

Chu et 

al. 2007 

To examine 

cancer 

mortality risks 

by 

race/ethnicity, 

SES, and time  

The mortality of 

carcinomas of 

female breast, 

colorectal, cervix, 

lung, and prostate, 

1990-2000 

United 

States, 

County level 

Race and 

SES 

Increases of the 

racial/ethnic disparity 

in SES groups vary by 

cancer sites.  

Field et 

al. 2005 

To investigate 

disparities of 

breast cancer 

survival within 

an insured 

population  

The survival of 

breast cancer, 

1993-1998 

United 

States. 

National 

level 

Race and 

SES 

Good access to 

medical services did 

not reduce the survival 

disparity among 

women diagnosed with 

invasive breast cancer. 

 

Grann 

et al. 

2005 

To examine 

the influence 

of various 

factors on 

breast cancer 

survival  

The survival of 

breast cancer, 

1990-2001 

11 

geographic 

areas. 

National 

level. 

Race, SES, 

and 

Geographic 

location 

Breast cancer 

mortality varies by 

SES, race, and 

geographic region.  

Haas et 

al. 2008 

To assess how 

residential 

segregation 

mediate 

racial/ethnic 

disparities of 

breast cancer  

The mortality of 

breast cancer, 

1992-2002 

United 

States, 

National 

level 

Race/ethnic

ity 

For seniors, 

segregation accounts 

for part of the racial 

disparity of breast 

cancer care. However, 

it did not mediate  

racial disparities of 

breast cancer 

mortality.  

Hershm

an et al. 

2005 

To evaluate 

how treatment 

mediate the 

racial disparity 

of breast 

cancer survival  

The survival of 

breast cancer, 

1996-2001 

Detroit, MI, 

city level 

Race Many women 

diagnosed with early 

stage discontinued the 

chemotherapy. This 

behavior was more 

common in black 

women and women 

from poor areas. 

Hsu et 

al. 2004 

To evaluate the 

geographic 

Breast cancer 

mortality, 1990-

Texas, 

County level 

Race, 

Geographic 

There was no 

significant hot-spots 
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variation of 

breast cancer 

mortality for 

different racial 

groups in 

Texas 

2001 location nor spatial-temporal 

patterns of breast 

cancer mortality.  

Hsu et 

al. 2006 

To examine 

CRC mortality 

among 

different Texas 

demographic 

groups  

Colorectal cancer 

mortality, 1990-

2001 

Texas, 

County level 

Race/ethnic

ity, 

geographic 

location 

There were significant 

disparities of CRC 

mortality among 

demographic 

subpopulations in 

Texas. Counties with 

consistently higher 

CRC mortality risks 

were also detected. 

Jemal et 

al. 2002 

To determine 

clusters of 

prostate cancer 

mortality and 

their 

association 

with selected 

regional 

characteristics 

Prostate cancer 

mortality, 1970-

1994 

United 

States, 

County level 

Race/ethnic

ity, SES, 

and 

geographic 

location 

The clusters were not 

associated with any of 

the selected 

characteristics. 

Krieger 

et al. 

1997 

To 

simultaneously 

examine 

cancer 

incidence in 

relation to 

social class 

and 

race/ethnicity 

The incidence of 

the cancers of lung, 

prostate, colon, 

breast, and cervix, 

1988-1992 

San 

Francisco 

Bay Area, 

CA, census 

block group 

level 

Race/ethnic

ity, SES 

There is no easy 

generalization for the 

racial and 

socioeconomic 

disparities of cancer. 

 

Krieger 

et al. 

2006 

To test if the 

socioeconomic 

gradients of 

breast cancer 

incidence is 

narrowing, and 

how the 

decline varies 

among 

racial/ethnic 

groups 

Breast cancer 

incidence, 1978-

2002 

Los Angeles 

County and 

the San 

Francisco 

Bay Area, 

CA and 

Massachuset

ts 

Race/ethnic

ity, SES 

The socioeconomic 

disparities of breast 

cancer incidence 

changed but the 

changes vary by 

race/ethnicity. 

Liu et 

al. 2001 

To examine 

socioeconomic 

disparities of 

prostate cancer 

incidence 

Incidence of 

prostate cancer, 

1972-1997 

Los Angeles 

CA, city 

level 

SES The change of the 

socioeconomic 

disparities of prostate 

cancer incidence might 

be partly related with 

the prevalence of PSA 

screening in high SES 

social groups. 

McDavi

d et al. 

2003 

To examine 

cancer survival 

disparity based 

on individual 

Survival from the 

four major cancers, 

1995-1998 

Lexington, 

KY, city 

level 

SES Health insurance status 

is related with 

disparities in cancer 

survival. 

Table 2.2-Continued 
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health 

insurance 

information 

Merkin 

et al. 

2002 

To examine 

the relation 

between race, 

SES, and 

breast cancer 

diagnosis stage 

in New York 

City 

Incidence of breast 

cancer, 1986-1995 

New York 

City, zip 

code level 

Race and 

SES 

Race and SES were 

the independent 

factors for the 

disparities. 

Roetzhe

im et al. 

2000 

To examine if 

insurance 

status and race 

is related with 

breast cancer 

outcomes 

Mortality from 

breast cancer, 1997 

Florida, 

Individual 

level 

Race and 

SES 

Breast cancer patients 

with limited insurance 

had higher risk of 

mortality.  

Schwart

z et al. 

2003 

To explore if 

racial 

disparities of 

cancer stage at 

diagnosis is 

related with 

differences in 

SES 

Incidence of the 

five major cancers, 

1988-1992 

Detroit, MI. 

Block group 

level 

Race and 

SES 

SES is the major factor 

influencing cancer 

stage, although 

biological factors 

partly account for the 

racial disparities. 

Singh et 

al. 2002 

To examine 

socioeconomic 

disparities of  

all-cancer 

mortality for 

men in the 

United States 

The mortality of all 

cancers among 

men, 1950-1998 

United 

States, 

County level 

SES Socioeconomic 

disparities of cancer 

mortality among US 

men have reversed 

during the study 

period. 

 

Singh et 

al. 2002 

To examine 

socioeconomic 

disparities of 

mortality in 

lung and 

colorectal 

cancer 

Mortality from 

lung and colorectal 

cancer, 1950-1998 

United 

States, 

County level 

SES Socioeconomic 

disparities of CRC 

mortality have 

narrowed during the 

study period. 

Singh et 

al. 2003 

To analyze 

disparities 

across the 

whole cancer 

continuum 

Incidence, stage at 

diagnosis, survival, 

mortality, and 

treatment for all 

cancer sites and for 

the lungs, colon, 

breast, cervix, 

prostate, and 

melanoma, 1975-

1999 

United 

States, 

county and 

census tract 

level 

SES Socioeconomic 

disparities of the 

incidence and 

mortality of cancers 

differ greatly by 

gender, race/ethnicity, 

and study time. 

Singh et 

al. 2004 

To analyze 

socio-temporal  

inequalities in 

cervical cancer 

outcomes in 

the United 

Cervical cancer 

incidence, stage at 

diagnosis, survival, 

and  mortality, 

1975-2000 

United 

States, 

County and 

Census Tract 

level 

SES Socioeconomic 

disparities of cervical 

cancer exist in the US. 

Table 2.2-Continued 



12 

 

 
 

States 

Ward et 

al. 2004 

To investigate 

cancer 

disparities 

from 

race/ethnicity 

and SES  

Incidence, stage at 

diagnosis, survival, 

mortality, and 

treatment of 

cancer, 1975-2000 

United 

States. 

National 

level 

Race and 

SES 

There were 

racial/ethnic and 

socioeconomic 

gradients for all 

cancers combined in 

the United States.  

Yood et 

al. 1999 

To examine if 

access to 

health care 

mediates racial 

disparities in 

breast cancer 

survival  

Breast cancer 

survival, 1986-

1996 

Detroit, 

individual 

level     

Racial and 

SES 

Among women with 

comparable access to 

healthcare, racial 

disparities in breast 

cancer diagnosis state 

still exist.  

Yost et 

al. 2001 

To evaluate 

socioeconomic 

disparities of 

breast cancer 

incidence for 

race/ethnic 

groups 

Breast cancer 

incidence, 1988-

1999 

California, 

State level 

Race/ethnic

ity 

SES is significantly 

related with breast 

cancer incidence, and 

this association is 

stronger for Asians 

and Hispanics than for 

other racial groups. 

 

2.3.1 Race/ethnicity 

Race/ethnicity is an important factor for cancer disparity studies. Cancer disparities 

between racial/ethnic minorities and white people have been widely documented.  

Most US studies have focused on cancer disparities between African Americans (or 

blacks) and Caucasians (or whites). African Americans are the largest racial minority of 

this country, comprising more than 12% of the population (US Census Bureau 2000). 

National studies revealed that African Americans bear the highest cancer risks among all 

racial/ethnic groups (ACS 2010; Horner et al. 2009; Ward et al. 2004). Compared to 

white people, African Americans have higher risks of being diagnosed with and dying 

from the carcinomas of colon-rectum, liver, prostate, and uterine cervix (Ward et al. 

2004). The burden of breast cancer mortality is heavier for African American women 

than for white women. After being diagnosed with prostate cancer, African American 

men are less likely to attain five-year survival than white men (Clegg et al. 2002).  

Table 2.2-Continued 
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Cancer disparities between other minority groups and whites are not as serious and 

long-standing as those between African Americans and whites. However, these 

disparities still deserve attention because the populations of some minorities are rapidly 

increasing. Studies revealed that, although Hispanics and Asian Americans have an 

overall lower incidence rate of cancer, they bear higher incidence rates of liver and 

stomach cancers than other racial/ethnic groups (El-Serag 2002; Ward et al. 2004). For 

example, the incidence rate of stomach cancer is 75% higher for Hispanic people than for 

non-Hispanic white people. Hispanic women are 40% more probable to die from cervical 

cancer than non-Hispanic white women. In addition, the probability of surviving from 

female breast cancer is lower for Native Americans than for any other racial/ethnic group 

(Bach et al. 2002; Chu et al. 2003; Clegg et al. 2002).  

Racial/ethnic disparities of cancer have changed over time. For example, age-

adjusted mortality rates of female breast cancer were almost equal between black and 

white women during the period from 1970 to 1985. However, black women began to 

suffer higher mortality rates of breast cancer since 1985. National data indicate that, 

although there was diminishing prostate cancer mortality, the rate was decreasing twice 

as rapidly for whites and Asians than for other racial/ethnic groups (ACS 2008). These 

findings further demonstrate that cancer disparities are changeable and preventable.  

Racial/ethnic disparities of cancer vary when racial/ethnic groups are categorized by 

sex, age, or immigration status. For example, American women experience a higher lung 

cancer survival rate than men (Cerfolio et al. 2006). Although black women younger than 

forty are more likely to develop breast cancer than white women, black women who are 

forty-nine or older have a lower probability of getting breast cancer than their white 
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counterparts (Bigby and Holmes 2005). Among the Asian American population, the 

incidence rate of invasive cervical cancer is four times higher for Vietnamese women 

than for the rest (ACS 2009). These facts defy a simple and generalized model of 

racial/ethnic disparities in cancer. A more complicated explanation of how specific 

factors influence racial/ethnic disparities of cancer is needed.    

It has been believed that biological factors are important causes for racial/ethnic 

disparities of cancer. Some researchers claimed that differences in cancer outcomes stem 

from genetic differences rather than other factors (Brown 1999; Freeman 1998). However, 

some other studies indicate that the genetic influence is of negligible importance when 

analyzing racial/ethnic disparities of cancer (Brawley 2002). In fact, African American 

women and white women exhibited no obvious differences in the mortality rate of breast 

cancer before 1980 (Brawley 2002). Clinical trials and institute-specific treatments 

demonstrate that cancer outcomes are similar for patients in equal medical conditions, 

regardless of race/ethnicity (Dignam 2000; Yood et al. 1999). These findings have 

inspired researchers to focus less on genetic issues and more on social factors (e.g., 

affluence, education, health insurance coverage, and residential area) that may influence 

cancer (Goel et al. 2003). 

2.3.2 Socioeconomic status  

SES is the socioeconomic position of a person or a neighborhood in a specific region. 

SES can be measured from various aspects, including education, occupation, income, 

wealth, health insurance status, and home ownership (Krieger et al. 1997; Singh et al. 

2003). Composite indicators such as the principal component and the Townsend Index 

have also been proposed to represent SES (Krieger et al. 2002; Krieger et al. 2003; Singh 
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et al. 2002). Generally, these composite indicators are calculated from multiple single 

indicators according to a specific algorithm. Associations between SES indicators and 

cancer outcomes have been observed for different types of cancer. 

Affluence  

Income, poverty, and employment status have been widely used to represent the 

affluence of an individual or a social group (Brawley 2002; Horner et al. 2009; Ward et al. 

2004). Previous studies have revealed significant associations between these variables 

and cancer outcomes (Haynes and Smedley 1999; Horner et al. 2009). People from poor 

areas have been suffering higher risks of late stage diagnosis, lower rates of five-year 

survival, and higher mortality rates for most cancer sites than people from affluent areas 

(Brawley et al. 2002; Schwartz et al. 2003; Singh et al. 2003; Ward et al. 2004). The 

association between affluence and cancer varies according to the specific cancer site, the 

study region, and race/ethnicity.  

Education  

Educational attainment represents another important dimension of SES. Education 

level is also associated with cancer outcomes, although with a much weaker association 

compared to those between affluence indicators and cancer (Krieger et al. 1999). Lower 

educational achievement is related with higher mortality rates of lung cancer, breast 

cancer, and prostate cancer (Albano et al. 2007; Liu et al. 1998; Steenland et al. 2002). 

Since 1985, the US government has been recording educational attainment in death 

records. The availability of individual educational information has made education level a 

popular SES indicator for cancer disparity studies, especially those related with cancer 

mortality disparity (Albano et al. 2007; Singh et al. 2002).   
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Health insurance 

Health insurance status is often used to approximate SES in cancer disparity studies. 

Health insurance status has been reported associated with cancer outcomes. Generally, 

uninsured individuals and people covered by Medicaid have higher probabilities of being 

diagnosed with a late stage cancer and dying from cancer than those with commercial 

insurances (ACS 2010; Bradley et al. 2001; Lee-Feldstein et al. 2000; McDavid et al. 

2003; Roetzheim et al. 2000).  

Using health insurance coverage to represent SES has two primary advantages: the 

accuracy of the results and the usefulness for cancer disparity elimination. By linking 

cancer registry cases or death certificates to an insurance enrollment database, one can 

derive the health insurance information for individual patients. Individual data can yield 

more accurate results of cancer disparity than community-level data (Grann et al. 2005). 

In addition, the relation between cancer and health insurance coverage is very useful 

information for health professionals. Based on this information, health professionals 

could easily target the vulnerable population and make corresponding policies to benefit 

uninsured individuals. However, a disadvantage of using health insurance to represent 

SES is that not all health insurance databases are publicly available. Public databases are 

only available for Medicaid, Medicare, and a limited number of private insurance 

providers. As a result, studies based on these datasets are only applicable to specific 

social groups (i.e., poor people and old people) and cannot be extended to all populations.  

2.3.3 Geographic location 

Geographic variation represents another critical aspect of cancer disparity. It is clear 

that cancer risk is not evenly distributed across the space. Studies have revealed 
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significant geographic disparities of cancer outcomes at various geographic scales (Hsu et 

al. 2007; Lai et al. 2006; Pickens and Orringer 2003; Singh et al. 2003; Sonneveld et al. 

1999). 

Knowledge about the geographic distribution of cancer is important because it not 

only provides a straightforward way for examining cancer disparities but also illuminates 

factors through which further interventions are possible. Social groups with obvious 

geographic characteristics (e.g. residential areas) can be more easily targeted than social 

groups with socioeconomic (e.g. low income) or racial/ethnic (e.g. African Americans or 

Hispanics) characteristics. After identifying areas with abnormally high cancer risks, 

researchers can examine the influence of possible factors (racial/ethnic, socioeconomic, 

environmental, etc.) for the elevated cancer risk in these areas. Furthermore, health 

administrators can use this information to design strategies for cancer prevention and 

medical resource allocation (Bradley et al. 2002; Woods et al. 2006). 

2.3.4 Cancer disparities by multiple factors 

It is well established that cancer disparities are not caused by a single factor. Rather, 

the incidence, treatment, survival, and mortality of cancers are influenced by interactions 

among multiple factors (Figure 2.1) (Grann et al. 2005; Ward et al. 2004). This 

interaction makes it difficult to discern the true reason(s) for disparities. For example, the 

disadvantageous situation of blacks in cancer outcomes may result from the lower SES of 

blacks or from the fact that blacks tend to live in areas with high concentrations of 

carcinogens. Instead of examining cancer disparities from a single factor, more and more 

researchers are beginning to evaluate the impacts of multiple factors on cancer (Bradley 

et al. 2002; Brawley 2002; Chu et al. 2007).  
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Cancer disparity studies with the focus on multi-factor interactions primarily 

investigate the interactive influence of race/ethnicity and SES. Generally, such studies 

disentangle the effect of SES and race/ethnicity by testing the effect of one factor while 

controlling for the other (Bradley et al. 2001; Bradley et al. 2002; Brawley 2002; Chu et 

al. 2007; Dignam 2000; Ward et al. 2004). For example, in an analysis of the disparity of 

breast cancer survival, Bradley et al. (2002) limited their subjects to black and white 

women who had similar health insurance status. These studies showed that SES could 

explain a large part of the racial/ethnic disparity, although race/ethnicity has independent 

influence on cancer (Brawley 2002; Chu et al. 2007; Grann et al. 2005; Ward et al. 2004).  

Despite the prevalence of studies examining the interactions of SES and 

race/ethnicity, few studies have analyzed how SES, race/ethnicity, geographic location, 

Demography 
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Figure 2.1 Factors that influence the continuum of cancer 

(Adapted from Ward et al. (2004)) 
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and other factors jointly influence cancer outcomes. Jemal et al. (2002) analyzed the 

national distribution of prostate cancer mortality from 1970-1989 to determine if high 

mortality rates were related with SES and race/ethnicity. Their results showed that none 

of the factors could explain the spatial clusters for whites and blacks. This conclusion 

was weak, however, because their analysis was carried out at a coarse geographic scale 

(i.e., county-level) and the accuracy of their result could be tainted by ecological fallacy 

and the modifiable area unit problem. Roche (2002) used a GIS to detect spatial clusters 

of distant stage breast cancer at a finer scale (census tract) and linked the clusters to local 

demographic indicators. This study found that areas with higher-than-expected risks of 

invasive breast cancer were characterized by elevated proportions of minority women and 

households with language barriers. Henry et al. (2009) examined the geographic 

disparities of CRC diagnosis stage and CRC survival in New Jersey and found that spatial 

clusters of CRC late stage diagnosis and CRC survival primarily reflect the geographic 

distribution of SES and racial/ethnic groups. 

Generally, cancer disparity studies of the joint impact of race/ethnicity, SES, and 

geographic location follow a two-step procedure (Jemal et al. 2002; Roche 2002). The 

first step determines areas with significantly different cancer risks using cluster detection 

approaches. This step involves the detection of both areas with higher-than-expected risks 

and areas with lower-than-expected risks. The second step compares non-spatial factors 

(e.g., SES, demographic structure, environmental exposure) between the two categories 

of areas to look for possible explanations for the cancer risk differences. Approaches for 

cluster detection and for the examination of non-spatial factors may vary with the goal of 

the researcher, the geographic scale of data observation, and some other issues. 
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2.3.5 Explanatory factors for cancer disparities 

Researchers analyze cancer disparities from race/ethnicity, SES, and geographic 

location because these factors allow easy categorization of the population and effective 

communication of the results to the public. Race/ethnicity, SES, and geographic location 

are not the direct causes for cancer outcomes, but, they influence cancer through some 

intermediate factors. 

Explanatory factors for disparities of cancer incidence 

Despite the rapid advancement of medical and biological sciences and technologies 

today, why some people get cancer and others do not is still unclear. It was hypothesized 

that cancer incidence could be influenced by behavioral and environmental factors, both 

of which vary by SES, race/ethnicity, and geographic location (Goy et al. 2007; Ward et 

al. 2004). Behavioral factors include cigarette smoking, dietary patterns, reproductive and 

sexual histories, physical inactivity, and mental stress (Krieger et al. 1999). Racial/ethnic 

minorities and people from low SES areas are more easily impacted by the negative side 

of these factors than others. For instance, the high rates of lung cancer incidence of some 

low-SES neighborhoods could be associated with the smoking habits, which are 

somewhat linked to the marketing strategies of tobacco companies in these 

neighborhoods (Ward et al. 2004). Over-consumption of animal fat and inadequate 

physical activity, which could increase the risk of getting certain cancers, are also more 

common among some racial/ethnic groups than among whites (Ward et al. 2004).  

Environmental factors include exposure to carcinogens and radiation. Communities 

with low SES or high proportions of racial/ethnic minorities are more likely to be in close 

proximity to environmentally degraded areas such as landfill sites, industrial areas, 
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highway-affected areas, or other locations where harmful substances (e.g., some volatile 

organic compounds (VOCs)) are highly concentrated (Apelberg et al. 2005). Long-term 

exposure to harmful substances will likely lead to health problems.  

Explanatory factors for disparities of cancer survival  

Stage at diagnosis and treatment delivery are the two major factors impacting cancer 

survival (Siminoff and Ross 2005; Wardle et al. 2005). Cancer patients diagnosed at early 

stages tend to live longer than those diagnosed at late stages, because early-stage cancers 

are relatively more controllable than advanced ones (Wardle et al. 2005). High-quality 

and in-time treatment can also help extend a patient‘s life and lower the chance of dying 

from cancer (Siminoff and Ross 2005).  

Stage at diagnosis and medical treatment could be influenced by access to medical 

services (Baldwin et al. 2005; Chandra and Skinner 2003; Ciccone et al. 2000). Access to 

medical services refers to a person‘s ease of obtaining health-care services that can bring 

about the best possible health outcome (Cockerham 1998; US Department of Health and 

Human Services 2000). Joseph and Philips (1984) classified access to health services into 

potential access and realized access (or utilization). Potential access to health service 

refers to a population group or individual‘s ease of accessing the service based on 

existing conditions but does not ensure use of the service (Joseph and Phillips 1984). 

Realized access, based on potential access, reveals how people actually use the service. 

One can further classify both types of access into spatial and non-spatial access based on 

how health-care accessibility is influenced by spatial factors (for example, spatial 

location and travel distance) and non-spatial factors (for example, SES, health insurance 

status, and cultural background) (Aday and Andersen 1974). 
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Access to medical services may affect cancer stage at diagnosis and treatment in two 

aspects. On one hand, adequate access to cancer screening services can increase the 

frequency of screening among vulnerable populations, thus increasing the probability of 

early-stage diagnosis of cancer (Lee-Feldstein et al. 2000; McDavid et al. 2003). On the 

other hand, access to cancer treatment services can determine the type, quality, and 

duration of cancer treatment, thus influencing the treatment outcome.  

Access to cancer services can be influenced by structural and personal factors. 

Structural factors, such as the spatial locations of medical facilities, are determined by the 

medical system and health-care providers (Shavers et al. 2002). Personal factors include 

patients‘ capability to pay for medical treatment, transportation, cultural background, and 

English proficiency (Shavers et al. 2002; Siminoff and Ross 2005).  

Prior studies revealed substantial differences in potential and realized access to 

cancer services by SES, race/ethnicity, and geographic location in the United States 

(Baldwin et al. 2005; Chandra and Skinner 2003; Ciccone et al. 2000; Onega et al. 2008; 

Wang et al. 2008). For example, Onega et al. (2008) found significant regional 

differences in potential spatial accesses to cancer services among US regions. Ciccone et 

al. (2000) found that Hispanics, blacks, and people from poor areas were less likely to 

undergo screening tests than advantaged groups (e.g., whites, people with high SES). 

Disadvantaged groups also tend not to receive timely and appropriate treatment for their 

illnesses (Shavers and Brown 2002).  

The associations between potential spatial access to cancer-related services and 

cancer survival have also been analyzed (Dejardin et al. 2005; Dejardin et al. 2008; 

Huang et al. 2009; Jones et al. 2008; Wang et al. 2008). However, most researchers were 



23 

 

 
 

focusing on cancer stage at diagnosis rather than the actual survival from cancer. For 

example, Jones et al. (2008) analyzed the relation between travel time to medical service 

locations and cancer diagnosis stage in Northern England and found a positive correlation 

between the two. Wang et al. (2008) also observed a significant relation between 

potential spatial access to primary health care and breast cancer diagnosis stage in some 

areas of Illinois. Huang et al. (2009) found that increasing distance to mammography 

facilities could raise the probability of being diagnosed with late stage breast cancer in 

rural Kentucky. These studies indicated a complicated relation between potential spatial 

access to medical services and cancer survival. This relation is influenced by multiple 

factors such as the measure of accessibility (e.g., travel time, travel distance, or gravity-

based measure), the type of medical service (e.g., general practitioner, primary care, or 

screening facilities), the type of cancer, and characteristics of the study area (e.g., urban 

or rural).  

2.3.6 Studies of cancer disparity elimination 

Efforts to eliminate cancer disparities have increased over the past decades. 

Generally, such efforts try to enhance the use of cancer screening services and 

appropriate treatment for disadvantaged social groups and patients. Models, such as the 

Markov model (Schleinitz et al. 2005) and the behavioral model for vulnerable 

populations (Bazargan et al. 2004; Jandorf et al. 2005), have been proposed to predict the 

use of cancer-related services using social, economic, geographic, and cultural variables. 

Community intervention programs such as the Patient Navigator (Lisovicz et al. 2006) 

have also been developed to address cancer survival disparities. Most programs have 

been implemented in small areas to eliminate personal and clinical barriers rather than 
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more extensive structural barriers. To overcome the structural problems, however, 

national- or state-level interventions are needed. 

Compared to efforts to eliminate cancer survival disparities, efforts to address cancer 

incidence disparities are rare. One reason for this situation is that the relation between 

various factors (e.g., biological, behavioral, emotional, environmental) and cancer is still 

poorly understood. Projects to address disparities in cancer incidence are limited to 

cancer-awareness education and vaccination programs among high-risk populations 

(Bigby et al. 2003; Gilewski et al. 2000; Lisovicz et al. 2006; Ma et al. 2006). 

2.3.7 Disparities of colorectal cancer survival 

Most studies of CRC survival disparity examined the disparity from either SES or 

race/ethnicity, but not both. Few studies have tried to assess the relative importance of 

race and SES on CRC survival (Du et al. 2007; Gomez 2007). A study of a large cohort 

of senior CRC patients revealed that differences in SES accounted for a large part of 

racial disparities of CRC survival (Du et al. 2007). Medical experiments on CRC cancer 

treatment supported this by demonstrating that equal treatment lead to equal outcomes in 

CRC (Dignam et al. 2000; Hassan 2009). 

While most studies focus on race/ethnicity and SES, few have examined the 

geographic disparities of CRC survival. Only two US studies have examined the 

geographic patterns of CRC survival (Henry et al. 2009a; Huang et al. 2007). The first 

study was conducted in California (Huang et al. 2007) and the next was conducted in 

New Jersey (Henry et al. 2009a). Both of them found disproportionate distribution of 

CRC survival in the study regions.  
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2.4 Methodologies for Cancer Disparity Research 

2.4.1 Measuring racial/ethnic and socioeconomic disparities of cancer 

How can one accurately measure the disparity? Methods (Table 2.3) have been 

proposed to calculate health disparities based on different assumptions of the disparity. 

Generally, measuring health disparity involves comparing a health indicator (e.g. 

incidence rate) between a disadvantaged group and a reference group. The reference 

group can be represented by the most-advantaged group such as the racial/ethnic majority 

and people with the highest SES.  

Table 2.3 Health disparity measures used by past studies 

Disparity 

Measure 

Definition 

Rate Ratio         , where    and    are the health indicators for the least and the most 

advantaged groups, respectively. 

Index of Disparity IDisp=  
         

 
            , where    and      are the health indicators of 

the i
th

 group and the reference group, respectively 

Relative 

Concentration 

Index 

RCI= 
 

 
             , where   represents the mean indicator of health for the 

study population,    represents the share of population group i,    denotes the 

health indicator of group i, and Xi is the rank of group i. 

Theil Index (TI) 

and Mean 

Deviation (MD) 

TI=          and MD=           where    is the share of population group i and 

   is the ratio of group i‘s health indicator relative to the population average 

indicator.  

Rate Difference         , where    and    are the health indicators of the least advantaged 

and the most advantaged groups, respectively. 

Between-Group 

Variance 

BGV=          , where   represents the mean indicator of health for the study 

population,    denotes the share of population group i, and    represents the health 

indicator of group i. 

Absolute 

Concentration 

Index 

ACI=    , where   represents the mean indicator of health for the study 

population and RCI denotes the relative concentration index. 

Individual Mean 

Difference (IMD) 
IMD      

       
 

   
, where    denotes the health indicator of group i,    

represents the mean indicator of health for the study population, and         

denote the significance parameters. 

Inter-Individual 

Difference (IID) 
IID(   )=

         
 

     
, where    and    denote the health indicators of groups i and j, 

respectively,   represents the mean indicator of health for the study population, 

and         denote the significance parameters. 
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Rate ratio and rate difference are two common measures for quantifying the disparity 

between two groups. However, both measures are limited in that they only reflect the 

disparity between two groups and cannot be expanded to more than two groups. Complex 

methods have therefore been proposed to measure the health disparity among multiple 

groups (Mackenbach and Kunst 1997; Wagstaff et al. 1991).  

Health disparities revealed by different measures are inconsistent. Previous studies 

have found substantial disagreement among different measures in the magnitude and 

direction of health gradients (Harper et al. 2008; Mackenbach and Kunst 1997; Wagstaff 

et al. 1991). This disagreement might stem from the varying assumptions of the disparity 

among different measures. It is vital to know the advantages and shortcomings of each 

measure before adopting one for health disparity analysis. However, few studies have 

comprehensively compared the performances of all health disparity measures.  

Health disparity can also be measured using statistical inference. Regression has 

been widely employed to investigate the influence of different factors on health. Using 

regression methods, one can estimate how cancer mortality and incidence (used as the 

dependent variable), for example, is related to SES (used as the independent variable). 

Compared to the numerical methods mentioned above, regression methods can provide 

information regarding the statistical significance of their results. For example, user-

defined confidential intervals (e.g., 95%) are always employed to assess the significance 

of logistic regression results. 

2.4.2 Measuring geographic disparities of cancer 

Researchers can analyze the geographic disparities of health events using two 

categories of methods: cluster-detection methods and clustering-detection methods. 
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Cluster-detection methods differ from clustering-detection methods in that the former 

tries to detect areas with unusually high likelihood of an event (i.e. disease incidence or 

mortality) (Besag and Newell 1991), whereas the latter aims to find tendencies of 

clustering across the whole study area. Since the former fits the purpose of this research, 

only cluster-detection methods are discussed here.  

A cluster-detection method can be either area-based or point-based, depending on the 

scale at which the disease event is observed. Area-based methods are preferred when 

health events are aggregated at area units. Commonly-used area-based cluster-detection 

methods include the Poisson model of the spatial scan statistic (Kulldorff 1997), local 

Moran‘s method (Anselin 1995), the Besag-York-Mollie model (Besag et al. 1991), and 

the generalized additive method (GAM) (Hastie and Tibshirani 1987). Most area-based 

methods determine the presence of clusters by statistical inference. For example, if 

conterminous areas are inferred to have significantly higher disease risk than their 

neighbors, these areas are defined as a local cluster. Area-based cluster-detection 

methods are suitable for ecological studies because clusters can be then conveniently 

linked with area-level socio-demographic information. This linkage enables analysis of 

the influence of SES, demographic factor, and spatial location on health.  

Point-based methods determine the presence of clusters based on the locations of 

individual cases and their background population. These methods identify clusters by 

addressing two issues: to measure the regional density of the event and to adjust for the 

background population which is unevenly distributed. The local density of the event can 

be measured in two ways: using kernel-based methods or distance-based methods 

(O‘Sullivan and Unwin 2003). Kernel-based methods estimate the intensity of events 
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within a predefined areal unit, or a kernel. The kernel is moved over the study region in a 

controlled way to evaluate the distribution of disease intensity across the whole region. 

Typically, three factors need to be considered when controlling for background 

population for kernel-based methods: the kernel size, the background population size, and 

the number of case events. Researchers can adjust the kernel size and test the relation 

between case number and the size of the background population (Fotheringham and Zhan 

1996; Openshaw et al. 1987; Rushton and Lolonis 1996). Distance-based methods 

determine clusters by comparing the distances between cases and controls. Examples of 

distance-based methods include the nearest neighbor model (Cuzick and Edward 1990) 

and the Bernoulli-based spatial scan statistic (Kuldorff and Nagarwalla 1995). 

2.4.3 Measuring potential spatial access to healthcare 

As discussed in Section 2.3.5, potential spatial access to cancer care services is the 

basis for cancer service utilization. Potential spatial access to medical services is 

primarily influenced by three factors: supply of medical services, population demand for 

the services, and travel costs between the demanding populations and medical sites. 

Common potential spatial access measurements include the regional availability method 

(Khan 1992), kernel density models (Guagliardo 2004; Silverman 1986), and gravity-

based models (Joseph and Bantock 1982; Luo and Qi 2009; Luo and Wang 2003a; 

Schuurman et al. 2010).  

The regional availability method  

A basic method for evaluating potential spatial access to health services is the 

regional availability method, which compares the sum of health care capacity and the 

population demand within an area. This method provides a straight-forward view of 
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spatial access and was adopted by US health departments as a critical criterion for 

identifying whether or not a social group or geographic area is medically underserved 

(Lee 1991; Ricketts et al. 2007; US General Accounting Office (GAO) 1995). The 

regional availability measure, however, has long been criticized for its two problematic 

assumptions: (1) people are restricted to one area and do not go beyond the area to seek 

health care, and (2) all individuals within an area have equal access to the service, 

regardless of how far away they live or work from healthcare sites. These assumptions 

are hardly valid in real situations (GAO 1995; Wing and Reynolds 1988). 

The kernel density model 

The kernel density model is based on a kernel density function (e.g., Gaussian 

function) which can estimate a smooth density surface for a point in the two-dimensional 

space (Silverman 1986). Generally, a kernel density model is composed of two steps. The 

first step generates a supply surface from the supply sites and a demand surface from the 

population centroids by using the kernel function. The second step divides the supply 

surface by the demand surface to derive a supply-to-demand ratio for each pixel within 

the two-dimensional space. The supply-to-demand ratio is then used to represent the 

potential spatial access.  

The kernel density model is better than the regional availability measure in 

estimating potential spatial access to medical services because it considers both the 

distance-decay effect and the cross-boundary health care seeking behaviors. However, it 

is still limited in two aspects. First, it uses the straight line distance, that is, the radius of 

circles, in the calculation of density surfaces, which is an inferior indicator of travel cost 

compared to the road network distance or road network travel time (Wang and Minor 
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2002). Second, the kernel density function is not a good model for estimating medical 

supply and demand. For example, it may mistakenly ―assign‖ medical services to non-

populated areas such as big lakes and forests (Yang et al. 2006). In addition, the kernel 

density function assumes the population density peaks at the centroid point and attenuates 

along the radius. However, the population distribution does not necessarily follow that 

way. For example, the population might be homogeneous across the whole region or the 

peak might not locate at the centroid at all. The first problem of the kernel density model 

can be solved by introducing a road network kernel density scheme which distributes the 

service over a road network instead of over the two dimensional space (Borruso 2005). 

However, the other problems remain. 

The gravity model 

The gravity model estimates potential spatial access to medical services according to 

the Law of Gravitation (Joseph and Bantock 1982). The basic gravity model can be stated 

as 

                        
   

        

         
 
   

 
                                                                     2.1 

where   
 is the gravity-based spatial access for population location i,    represents the 

medical capacity of any medical site j ,    denotes the population size of any population 

location k, and     is the travel cost from i to j. m and n represent the numbers of 

population locations and supply sites, respectively. The geographic impedance function, 

    , determines how travel distance influences the accessibility. According to Kwan 

(1998), the most common forms of      are the exponential function (         ), the 

inverse-power function (        ), and the Gaussian function (        
   ), 

where   is the impedance coefficient indicating the extent of distance-decay.   
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The basic gravity model assumes the potential spatial access to health service of a 

population location equals the sum of impedance-weighted supply-to-demand ratios of all 

nearby medical sites. This model is conceptually more complete than previous methods 

but difficult to understand (Luo and Qi 2009).  

The floating catchment area methods 

An improvement of the basic gravity model is the two-step floating catchment area 

method (2SFCA), which was initially designed by Radke and Mu (2000), subsequently 

improved by Luo and Wang (2003b), and recently enhanced by Luo and Qi (2009). The 

basic 2SFCA model works in two steps. The first step is to generate a driving time zone 

(or catchment) with a pre-defined threshold travel time (  ) for each medical service site 

j, searching all area units inside the catchment, and computing the supply-to-demand ratio, 

  , for j by  

                
  

             
                                                                                    2.2 

where     is the medical capacity of medical site j,    represents population size of area 

unit k whose centroid falls inside the catchment of j (      ), and     represents the 

traveling cost between j and k. The second step is to generate the catchment for each area 

unit i with    as the threshold travel time, searching all medical service sites inside the 

catchment, and adding up the supply-to-demand ratios of these service sites by 

                 
                                                                                                  2.3 

where   
  is the spatial access of population at area unit i,     represents the supply-to-demand 

ratio of service site l, and     represents the traveling cost between i and l.  

The 2SFCA method stems from the basic gravity model but expresses the basic 

model in a more intuitive way. It first estimates the demand for each medical site and 
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calculates the supply-to-demand ratio according to its medical capacity and local demand. 

The second step summarizes the supply-to-demand ratios of nearby medical sites for each 

population. Both steps are easy to interpret and convenient to realize using GIS. The 

2SFCA method has been employed to estimate potential spatial access to a variety of 

medical services (Albert and Butar 2005; Cervigni et al. 2008; Guagliardo 2004; 

Langford and Higgs 2006; Wang 2007; Wang et al. 2008; Yang et al. 2006). This method, 

however, is still limited because it characterizes all area units inside a same catchment 

with equal access and disregards the distance impedance within the catchment (Luo and 

Wang 2003).  

An improved version of 2SFCA (Luo and Qi 2009), the enhanced 2-step floating 

catchment area (E2SFCA) method, has been proposed to solve the limitation of the basic 

2SFCA method. Briefly, E2SFCA divides the catchments into several subzones and 

assigns a distance-based weight for each subzone to simulate the within-catchment 

distance impedance. The E2SFCA method will be described in detail in Chapter 3.  

The modified gravity model 

In a study of spatial accessibility of Primary Health Care (PHC) in Canada, 

Schuurman et al. (2010) proposed a modified gravity model in which two improvements 

were made to the basic gravity model. First, they use travel time, instead of travel 

distance, to represent the travel cost. Second, the distance impedance is captured by a 

segmented inverse-power function which can be expressed by 

          

                              

                     

                              

                                                         2.4 
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where     represents the shortest traveling time (in minutes) between population location i 

and medical service site j. The modified gravity model works in a similar way as the 

2SFCA method. The only difference is that the former uses a continuous, inverse-power 

impedance function but the latter uses discretized Gaussian weights. Compared to 

continuous weights, discretized weights are more suitable for representing the distance 

impedance in health care studies because people do not mind a few minutes‘ difference 

when driving for medical services (Luo and Qi 2009). 

The major drawback of gravity-based models, as indicated by Schuurman et al. 

(2010), is the impedance coefficient ( ). Since   reflects people‘s willingness to access a 

medical service when considering travel cost alone, it should be estimated from actual 

physician-visiting data and healthcare utilization surveys using regression methods. 

However, these data are generally not available. Instead, researchers tend to use 

arbitrarily-determined impedance coefficients when computing potential spatial access to 

medical services. This may be problematic because the values of spatial access index may 

vary substantially when different values of impedance coefficient are used (Luo and 

Wang 2003). Thus, gravity-based spatial access models may bring significant 

uncertainties to the analysis results.  

To evaluate the uncertainty of spatial access index as stated above, Luo and Wang 

(2003) tested five consecutive   values on the generic gravity model, but their 

investigation was limited to standard deviation of the potential spatial access, not the 

mean value. Luo and Qi (2009) compared analysis results of potential spatial access 

between two sets of Gaussian weights corresponding to sharp and slow distance-decay. 

But their study did not specify the   values of the weights. In real-world applications, the 
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determination of weights is fairly subjective. Therefore, it is still problematic to 

thoroughly understand the influence of impedance coefficient on the values of potential 

spatial access calculated by gravity-based models.  

2.5 Limitations of Previous Studies of Cancer Disparity 

There has been increasing interest in cancer disparity research over recent decades. 

Researchers have revealed substantial disparities in cancer outcomes by SES, 

race/ethnicity, and geographic location. Some strategies have been proposed and some 

implemented to address these disparities by health professionals. Despite progress, some 

limitations still remain. 

2.5.1 The joint impact of multiple factors on cancer disparity 

The first challenge of cancer disparity research is to accurately assess the 

independent and joint influence of SES, race/ethnicity, and geographic location. Cancer 

disparities result from complicated interactions among many factors, and no single factor 

can fully explain the disparities. Analysis based on only one or two of these factors would 

be incomplete. Instead, information about the interactions among these factors would be 

much more valuable for interpreting the disparity and designing effective interventions.  

In order to assess the independent impact of a factor on cancer disparity, one needs to 

completely control for other factors. However, this has been proven to be difficult for 

several reasons. First, the lack of relevant data prevents researchers from examining the 

independent impact of single factors (Brawley 2002). For example, when assessing the 

separate influence of SES and race on cancer incidence, most studies failed to enroll 

enough rich African Americans or impoverished whites to prove that SES is independent 
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of race in influencing cancer incidence. Conclusions based on incomplete datasets are not 

only weak but also potentially misleading. In order to gain an accurate image of how 

several factors contribute to cancer disparities, detailed information about both patients 

and their background population is needed.  

Second, researchers did not show enough interest in analyzing the impact of 

geographic location on cancer disparities. Space is important because it provides a 

context within which SES and race/ethnicity can be linked to explanatory factors (e.g., 

environmental exposures and regional behavior risks). In addition, the spatial patterns of 

cancer and potential spatial access to cancer services are important information for cancer 

prevention and treatment. The reason for the lack of ―geographic thinking‖ in current 

studies might lie in the fact that health disparity has long been considered a social 

problem rather than a geographic problem. Therefore, the methods for analyzing cancer 

disparities have been greatly influenced by social epidemiology. Being different from 

health/medical geographers who focus on the place-dependent nature of health problems, 

social epidemiologists emphasize the societal generalization of health phenomena 

(Cutchin 2007), leading them to categorize patients and at-risk population by 

race/ethnicity and SES, regardless of the places they live or work.  

2.5.2 Relation between CRC outcome and potential spatial access to CRC 

services  

Frequent screening can increase the probability of early stage CRC diagnosis and 

good-quality CRC treatment can help extend patients‘ lives. Therefore, potential spatial 

access to CRC screening and treatment services may influence CRC outcomes. The 

connection between CRC survival and potential spatial access to CRC services is valued 
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by health administrators because it has important implications for allocating CRC-related 

resources and reducing CRC disparities.  

However, despite the growing interest in CRC survival and potential spatial access to 

CRC services, few studies have analyzed the associations between them. Recent studies 

have highlighted substantial disparities in CRC diagnosis by race/ethnicity, SES, and 

geographic location; however, few of them have assessed whether these disparities could 

be explained by potential spatial access to medical services or not. Other studies have 

investigated the influence of non-spatial access factors on CRC diagnosis. For example, 

Ananthakrishnan et al. (2007) analyzed different patterns of CRC screening usage within 

a Medicare population, but they did not investigate whether the utilization of the service 

was associated with spatial factors (e.g., distance, location) or not. Henry et al. (2009) 

examined the impact of health insurance coverage on CRC diagnosis in New Jersey, but 

did not consider the locations of medical service sites. 

In the broader field of cancer epidemiology, Wang et al. (2008) investigated the 

associations between potential spatial access to breast cancer prevention services and 

breast cancer stage at diagnosis in Illinois. However, their investigation was conducted at 

the zip code level, which some have argued may be too coarse of a geographic scale for 

cancer disparity research (Krieger et al. 2002). In addition, the regression analysis did not 

consider patient age, a factor that might be closely associated with cancer stage at 

diagnosis. In another study in rural Kentucky, Huang et al. (2009) found a positive 

association between distance to mammography facilities and the probability of being 

diagnosed with late stage breast cancer. But their investigation was limited to screening 

facilities and did not consider other cancer prevention services such as primary care. 



37 

 

 
 

 Only two studies have assessed the associations between potential spatial access to 

medical service and CRC survival. Neither of them was conducted in the United States. 

For example, Jones et al. (2008) observed no significant relation between CRC survival 

and travel time to general practitioners or hospitals in Northern England. Dejardin et al. 

(2008) investigated the association between CRC survival and distance to cancer care in 

France. They found that CRC survival was influenced by road distance from the nearest 

referent care centre even when adjusting for stage at diagnosis. However, the results are 

limited because the access measure used (i.e., the distance to the nearest care center) is 

too simple and might not be able to capture the important characteristics of either local 

population or the care centers.  

2.5.3 Uncertainties caused by various factors 

Uncertainties brought about by area level SES indicators 

A variety of SES indicators (e.g., education attainment, income, poverty, occupation, 

and house ownership) have been used to assess socioeconomic disparities of cancer. 

Since individual level socioeconomic data are always unavailable, most researchers use 

area-level SES indicators which are aggregated at different geographic scales (e.g., zip 

code area, census units). Area-level SES indicators are readily available and can be 

conveniently linked to demographic indicators (e.g., racial/ethnic composition, age). In 

addition, area SES indicators can be effectively applied to all people, regardless of their 

race/ethnicity, sex, and residential area. 

However, using area SES to investigate socioeconomic disparities of cancer has two 

potential drawbacks. First, researchers have not reached a consensus on the most 

appropriate SES indicator for socioeconomic disparity analysis. Different indicators 
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represent different dimensions of SES and no single indicator can capture all 

socioeconomic characteristics related to cancer (Krieger et al. 1999; Krieger et al. 2003). 

Although composite indicators, synthesized from multiple single indicators, have been 

adopted to represent the principal aspects of SES (Krieger et al. 2006; Liu et al. 1998; 

Singh et al. 2002; Yost et al. 2001), there is no evidence that these composite indicators 

can outperform single ones in revealing socioeconomic disparities of cancer (Krieger et al. 

2006; Singh et al. 2002). A second drawback is that using area-based indicators to 

approximate the SES of individual people may lead to ―ecological fallacy‖, a common 

source of error in ecological studies. Although assessing the impact of ecological fallacy 

on health disparity is difficult, it is believed that the impact is associated with the 

geographic scale at which the study is carried out (Roux et al. 2003). Logically, the 

impact of ecological fallacy may decrease when smaller units are used because people in 

smaller units are usually assumed to be more homogeneous in SES than those in larger 

ones.  

Uncertainties brought about by spatial dependence 

In addition to area-level socioeconomic indicators, spatial dependence could also 

impact the result of cancer disparity analysis. Spatial dependence occurs when 

observations of nearby locations are similar to each other. It can be explained by the first 

law of geography which claims higher correlations among nearby things than among far 

things (Tobler 1970). The existence of spatial dependence of the phenomenon being 

analyzed violates the randomization assumption of most traditional regression methods. 

Thus, using these traditional regression methods in a spatial context may not reveal the 

real relation between variables involved in the regression. Although the impact of spatial 
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dependence has been increasingly recognized, few cancer disparity studies have managed 

to address the uncertainty problem brought about by it.  

Uncertainties caused by the small-number problem 

When analyzing cancer disparities, it is necessary to account for the effect of some 

basic factors (e.g., sex and age). A straightforward way to do this is to apply a direct age-

sex adjustment procedure by, for example, adjusting cancer rates according to the 

standard Census 2000 age-sex groups. The premise of a valid direct-age-sex adjustment 

is that there is a sufficient population in each subgroup. However, this premise is always 

difficult to fulfill in practice, especially when small areas (e.g., census tracts, zip code 

areas) or racial/ethnic minorities (e.g., Asians, African Americans) are involved in the 

analysis (Pickle and White 1995). Biases and errors will be introduced if these rates are 

used in subsequent mapping or regression analysis.  

One solution to the small-number problem is to use an indirect adjustment procedure. 

The indirect adjustment works in two steps. The first step is to apply the national or 

regional level rates of age-sex groups to the local age-sex groups to generate an expected 

number of cases for an area unit. The second step is to compute an observed-to-expected 

ratio to represent the unit. The indirect adjustment does not rely on the large-number 

assumption and has been proved to be more stable in estimating disease rates for small 

areas than the direct adjustment method (Aylin et al. 1999). Meanwhile, the results of 

indirect adjustments were very similar to those of direct adjustments, as revealed by a 

simulation study (Goldman and Brender 2000). 

Another solution to the small number problem is to aggregate adjacent units to larger 

ones to avoid small numbers (Mu and Wang 2008; Wang and O‘Brien 2005). These 
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methods, however, are at the cost of spatial resolution. Degraded spatial resolution may 

reduce the accuracy of regression analysis (Krieger et al. 2003; Roux 2000). 

Other methods have also been designed to address the small-number problem. One 

example is the empirical Bayes estimator, which has been applied and modified in 

different studies to estimate age-standardized relative risk of diseases (Clayton and 

Kaldor 1987; Marshall 1991). This method uses a Poisson distribution to characterize the 

observed events and assumes the number of observed events within an area unit to be 

conditional on the relative risk of a larger district and the expected event number of this 

area unit. Based on this assumption, a maximum likelihood estimator is used to calculate 

the posterior expectation of the relative risk according to a random-effect model. Another 

example is the spatial smoothing technique (Kafadar 1996), which smoothes neighboring 

areal units to calculate stable disease rates. In addition, the Poisson Krieger method, 

which estimates the disease risk of an area unit as a linear function of neighboring risks, 

was also introduced in health studies to overcome the small number problem (Ali et al. 

2006; Goovaerts 2005; Goovaerts 2006).  

A common characteristic of the methods mentioned in the last paragraph is that they 

use neighborhood information to obtain a smoothed map of health events, thus avoiding 

unreliable values caused by the small-number problem. However, these methods are only 

suitable for mapping purposes. It is not appropriate to use these methods to analyze 

racial/ethnic and socioeconomic disparities of cancer for two reasons. First, cancer rates 

are generally used as the dependent variable in statistical regressions. In this case, 

adjusting the dependent variable (i.e., the cancer rate) with the neighborhood data without 

adjusting the independent variables (i.e., socio-demographic indicators) in the same way 
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may lead to incorrect results of cancer disparity. Second, neighborhood-based adjustment 

may increase the extent of spatial dependence, thus bringing more uncertainties to the 

regression analysis (Kafadar 1996).
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CHAPTER 3 

DATA AND STUDY DESIGN 

3.1 Introduction 

This chapter depicts the study area, the data sources, and the study design of this 

dissertation. The chapter is made up of four sections. Section 3.2 introduces the study 

area and data sources. It also depicts how the datasets were pre-processed before 

subsequent analyses. Section 3.3 describes how the permission to perform human-subject 

research was obtained and how the rights and safety of human subjects were protected. 

Section 3.4 offers an overview of the research scheme and detailed descriptions of the 

methods. 

3.2 Study Area and Data Sources 

3.2.1 Study area 

The state of Texas was selected as the study area of this research. Texas lies at the 

southern corner of the southwestern region of the United States. It has the second largest 

area and population among all states of the country. The total population of Texas was 

20,851,820 in 2000, among which 51.4% (n=10,719,670) were non-Hispanic whites, 11.3% 

(n=2,364,255) were non-Hispanic blacks, 32.0% (n=6,669,666) were Hispanics, 0.6% 

(n=118,362) were Native Americans, and 2.7% (n=562,319) were Asians (US Census 

Bureau 2001a). Rural residents accounted for 13.9% (n=2,907,272) of the total
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population. The poverty rate was 15.4% and the median household income was $39,927 

in 2000 (US Census Bureau 2001b). 

3.2.2 Data sources 

Three types of data were used in this research: CRC incidence data, CRC-service 

data, and socio-demographic data. 

CRC incidence data 

Individual-level CRC incidence data of Texas from 1995 to 2003 were collected 

from the Texas Cancer Registry (TCR). TCR is the most comprehensive cancer-data 

collection system in Texas and has been recording and compiling cancer incidence 

information of Texas residents since 1979.  The case ascertainment rate of TCR incidence 

data was greater than 98.3% (Risser et al. 2009). The selection codes of CRC are 153.0-

154.1 for the 9th revision of the International Classification of Diseases (ICD-9) and 

C18-C20 for the 10th Revision (ICD-10). The recorded information of each case includes 

race/ethnicity, stage at diagnosis, sex, date of diagnosis, age at diagnosis, residential 

address, survival status (by March 1, 2010), age at death, date of death (if deceased 

before March 1, 2010), cause of death (if deceased before March 1, 2010), date of last 

update (if still alive after March 1, 2010), and death certificate number (if deceased 

before March 1, 2010). According to the datasets, there were 77,667 CRC incidence 

cases in Texas during the period from 1995 to 2003.  

CRC stage at diagnosis was measured according to the classification of the 

Surveillance Epidemiology and End Result (SEER) program, which categorizes cancers 

into in-situ, localized, regional, and distant stages. This classification provides the basic 

information about the extent of cancer development according to clinical and pathologic 
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test results (Young et al. 2000). In this research, the four SEER stages were further 

combined into two groups: the early-stage group and the late-stage group, with the former 

including in-situ and localized stages and the latter including regional and distant stages. 

This pairing is reasonable because, compared to CRC patients diagnosed at regional or 

distant stages, those diagnosed at in-situ or localized stages are mostly asymptomatic. 

Therefore, people with early-stage CRC are largely identified through CRC screening 

rather than through specific symptoms (Read and Kodner 1999; Skibber et al. 2001). 

Geocoding was implemented to transfer the address information of CRC cases to 

two-dimensional points in the GIS environment. The geocoding was implemented in the 

Geocoding module of ArcGIS 9.3 (Environmental Systems Research Institute (ESRI) 

2009) with the census 2000 street file (US Census Bureau 2001c) as the reference data. 

The geocoding successfully located 69,701 CRC cases. The rest were not geocoded due 

to either the unmatched residential address or the low geocoding score (the threshold 

value was set to 60%). The ungeocoded cases would be excluded from subsequent 

analyses. The ungeocoded cases are evenly distributed across the whole study region, as 

indicated by their zip code information. As shown in Table 3.1, the ungeocoded cases and 

the geocoded cases did not differ much in distributions by sex, age, stage at diagnosis, 

and race/ethnicity. 

Table 3.1 Characteristics of geocoded and ungeocoded colorectal cancer cases 

 Study Cases % Ungeocoded Cases % 

Distribution by Sex     

     Male 35,345 50.7 4,102 51.5 

     Female 34,356 49.3 3,864 48.5 

     Total 69,701 100 7,966 100 

Distribution by Age     

     <50 7,391 10.6 804 10.1 

     50-60 12,176 17.5 1,418 17.8 

     61-70 16,836 24.2 1,952 24.5 

     71-80 19,779 28.4 2,223 27.9 

     >80 13,519 19.4 1,569 19.7 
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     Total 69,701 100 7,966 100 

Distribution by Race/Ethnicity     

     Non-Hispanic White  50,544 72.5 5,788 72.6 

     Non-Hispanic Black  8,160 11.7 948 11.9 

     Hispanic  9,592 13.8 1,051 13.2 

     Asian  857 1.2 80 1.0 

     Native American 41 0.1 6 0.1 

     Other 507 0.7 93 1.1 

     Total 69,701 100 7,966 100 

Distribution by Stage at Diagnosis     

     In-situ 3,513 5.0 391 4.9 

     Localized 21,458 30.8 2,324 29.2 

     Regional 25,044 36.0 2,918 36.6 

     Distant 10,687 15.3 1,214 15.2 

     Unknown 9,001 12.9 1,119 14.0 

     Total 69,701 100 7,966 100 

 

CRC service data 

This research focuses on potential spatial access to CRC prevention and treatment 

services in Texas in 2000. CRC prevention services were decomposed into CRC 

screening facilities and primary care physicians (PCPs). Oncologists were used to denote 

the CRC treatment service.  

The addresses of CRC screening facilities were collected from the Texas Cancer 

Prevention and Research Institute (TCPRI), which has been surveying Texas hospitals 

and clinics about CRC screening services since 2000. The feedback information from 

survey respondents include the name, the address, the website, the phone number, and the 

type of available CRC screening facility (e.g., traditional colonoscopy, virtual 

colonoscopy, flexible sigmoidoscopy, Fecal-occult Blood test, helical CT scanning, and 

double contrast barium enema) of the hospital (or clinic). By May, 2010, TCPRI had 

identified 277 hospitals and 13 freestanding cancer centers/community cancer treatment 

centers that had been equipped with at least one type of CRC screening facility.  

However, one shortcoming of the TCPRI data is that it only contains the most 

recent update time for each service site and does not retain any time information of 

Table 3.1-Continued 
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previous updates. This limitation makes it difficult for one to determine whether a 

hospital offered CRC screening service in 2000 even if it did it in 2010. To overcome this 

shortcoming, a back-tracing procedure was implemented to ascertain the availability of 

CRC screening facilities of the 290 hospitals and clinics in 2000. The procedure included 

both telephone and email surveys. The major question of the surveys was: did your 

hospital or clinic have any facilities of CRC screening in 2000? Sites with the answers of 

―yes‖ were kept in the list while sites with the answers of ―no‖ were excluded from the 

list. Three rounds of survey were implemented with each round focusing on the 

undetermined sites remained from the last round.  According to the back-tracing, among 

the 290 candidate screening sites, 111 offered CRC-screening services in 2000 and 170 

did not.  Nine respondents could not give a clear answer due to the loss of previous years‘ 

records. According to the address information, the undetermined sites were primarily 

dispersed in the eastern part of Texas.  

PCP is an important type of medical resource because it provides individuals the 

frontier of contact with the healthcare system. Access to PCPs has been proved critical 

for disease prevention and medical cost reduction (Lee 1995; Luo 2004). Previous 

research also suggests that, in some situations, potential spatial access to PCPs is more 

important for cancer prevention than potential spatial access to screening facilities (Wang 

et al. 2008). The practicing addresses of Texas PCPs in 2000 were collected from the 

Center for Health Statistics in Texas Department of State Health Services (DSHS).  PCPs 

were limited to general practice physicians, pediatrics, family physicians, obstetrician-

gynecologists, and general internists (Cooper 1994). According to the data, there were 

14,268 PCPs working in 6,372 practicing addresses in Texas in 2000.  
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The oncologist information was collected from the Center for Health Statistics in 

Texas DSHS, too. Oncologists were limited to those who have postgraduate medical 

education and have been spending the majority of their time in office or practicing in the 

hospital, in research, or in teaching. According to the data, there were 205 oncologists 

located in 121 practicing addresses in Texas in 2000. 

To determine the geographic locations of CRC screening sites, PCP sites, and 

oncologist sites, geocoding was implemented in ArcGIS 9.3 (ESRI 2009) with the US 

2000 street map used as the reference layer. About 99% (230 out of 232) of the 

oncologist sites and the back-traced CRC screening facility sites were successfully 

geocoded. About 97% (13,816 out of 14,268) of PCPs were successfully geocoded. The 

high geocoding rates of these sites might be due to the sound address information 

provided by health professionals. The ungeocoded PCPs were primarily located in eastern 

Texas, as indicated by the zip code information. 

Socio-demographic data 

The socio-demographic data include census tract level poverty rate and age-sex 

structure information for racial/ethnic groups. The poverty rate data was derived from the 

Summary File 3 (SF3) of census 2000 datasets (US Census Bureau 2001b). The age-sex 

structure information for racial/ethnic groups was obtained from the Summary File 1 

(SF1) of census 2000 datasets (US Census Bureau 2001a).  

3.3 Protection of Human Subjects 

When human subjects are involved in research, it is necessary to protect their 

safety and rights. Federal regulation and rules have been developed to guarantee the 

rights for both human subjects and researchers (International Science and Engineering 
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Fair 2006). The human subjects involved in this research were CRC patients. Although 

the research did not include any direct or indirect interactions with CRC patients, some 

steps were still necessary to protect some confidential information such as the residential 

address and some other identifiable variables of the cases.  

The use and analysis of the CRC incidence data in this research have been 

approved by Texas DSHS Institutional Review Board (IRB) after a reviewing process. 

The IRB review involved an agreement between TCR and the data users to ensure the 

confidentiality of the human subjects. According to the agreement, the following 

provisions were required during the processing and analyses of the CRC incidence data. 

a). The cancer registry data are treated as strictly confidential.  

b). During the study, a password-protected computer with up-to-date antivirus software is 

used to store and analyze the confidential data. A cabinet with access limited only to the 

data users is used to lock up the computer when not in use. 

c). The presentation and publication of results do not include specific information of 

individual cases or make any case identifiable.   

d). The confidential dataset will be destroyed one year after the research is finished.  A 

non-confidential dataset will be created and maintained. 

3.4 Study Design 

3.4.1 Methodology overview 

The general scheme of this dissertation is illustrated in Figure 3.1. Three parts 

constitute the whole research. The first part investigates potential spatial access to CRC 

services in Texas and examines if the access varied by race/ethnicity, SES, and 

geographic location. A relative spatial access approach is proposed in this part to 
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overcome the limitation of previous models. The other two parts analyze the disparities of 

CRC stage at diagnosis and CRC-specific survival in Texas by following a similar 

procedure. Specifically, the second part examines if there were any disparities of CRC 

stage at diagnosis from the aspects of SES, race/ethnicity, geographic location, and 

potential spatial access to CRC prevention services in Texas. Bivariate analyses and 

generalized estimating equation logistic regressions are employed to analyze the 

individual and joint impact of these factors on CRC stage at diagnosis. The overall spatial 

pattern and the spatial clusters of CRC stage at diagnosis are examined by an adaptive 

spatial filtering method. The third part of this research investigates if there were any 

disparities in CRC-specific survival by race/ethnicity, SES, geographic location, and 

potential spatial access to CRC treatment service in Texas. Kaplan-Meier estimators are 

used to examine characteristics of CRC-specific survival by single factors. Cox 

proportional hazard regression models are employed to examine how different factors 

jointly influence CRC-specific survival. Spatial clusters of CRC-specific survival are 

identified by the spatial scan statistic (exponential model). A further comparison of 

racial/ethnic and socioeconomic characteristics is made between high risk and low risk 

clusters.   
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Figure 3.1 The general scheme of the research 

3.4.2 A review of methods used in the research 

This section introduces the methods for analyzing potential spatial access to CRC 

services, disparities of CRC stage at diagnosis, and disparities of CRC-specific survival 

in this research. Specifically, it describes the E2SFCA method, the generalized equation 

estimation logistic regression, the Kaplan-Meier estimator, the Cox proportional hazard 
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regression model, the adaptive spatial filtering method, and the exponential spatial scan 

statistic method. 

The enhanced 2-step floating catchment area (E2SFCA) method  

The E2SFCA method is an improved version of the 2SFCA method for 

characterizing potential spatial access to medical services. Like 2SFCA, E2SFCA also 

works in two steps. The first step is to generate a 30-minutes catchment for each medical 

service site j, dividing the catchment into three sub-zones at the intervals of 10 and 20 

minutes, and calculating the supply-to-demand ratio,   , by 

     
  

               
 

  

               
                

                
                   3.1 

where    represents the medical capacity of medical site j,    denotes the population of 

area unit k inside the catchment,     is the traveling cost between j and k,    is the r
th

 

sub-zone of the catchment, and    is a predefined Gaussian-weight for   . The second 

step is to calculate the spatial access index of location i as the sum of weighted supply-to-

demand ratios of all medical sites within the catchment of i: 

    
                                                                          3.2 

where   
  is the spatial access index for area unit i,    is the supply-to-demand ratio of 

medical site l that falls inside the catchment of i, and     is the traveling cost between l 

and i.  

E2SFCA assumes that a population location‘s potential spatial access to medical 

services decreases with the increase of traveling time within the catchment. This 

assumption is more reasonable than that of the basic 2SFCA model (Luo and Qi 2009).  
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Generalized estimating equation (GEE) logistic regression 

Generalized estimation equation (GEE) is an improvement of the basic regression 

models for data with unknown correlations (Zeger et al. 1988; Zorn 2001). It was 

designed to facilitate the analysis of multi-level or temporal observations. Supposing     

is the dependent variable of the t
th

 case (or repeated measurement) within the i
th

 strata (or 

group) and     is the corresponding covariate, GEE expresses the relation between Y and 

X as 

                                                                                                     3.3 

where   represents the reverse linking function and   denotes the parameter vector. The 

variance (  ) of    is specified as  

                                                            
    

 
       

 
 

 
                                                  3.4 

where    is a diagonal matrix determined by the reverse link function,    is a working 

correlation matrix for   , and   is a scale parameter. Then, one can estimate the value of 

  by solving the ―quasi-likelihood‖ equations of   :   

                                                                 
   

            
                       3.5 

where         . One can either use a generalized weighted least-square approach or an 

iterative approach to solve the functions (Zeger et al. 1988). GEE is applicable for both 

linear and logistic regression models. A GEE logistic regression can be implemented by 

adopting the logit function as the reverse linking function.   

An attractive attribute of GEE regression is that it does not require any explicit 

definition of the origin of correlations. Using a GEE model, investigators have great 

flexibility in specifying the working correlation matrix, which could come in a variety of 

forms (Zorn 2001).  
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The Kaplan-Meier estimator 

An important characteristic of survival analysis is that it involves case censoring. 

Censored observation occurs when (1) the event of interest (e.g., cancer-specific death) 

has not occurred during the study period, (2) the case withdrew from the follow-up, or (3) 

the event occurred due to other causes. When calculating cause-specific survival rates, it 

is critical to involve both censored and uncensored cases in the computation.   

The Kaplan-Meier estimator was designed for analyzing survival data that involve 

censored cases (Kaplan and Meier 1958). Let T represent the survival time and      

represent the probability that a case from a background population will have a lifetime (or 

survival time) longer than t (             ). For a random sample of the population, 

let the observed time be                ,      can be estimated by a 

maximum likelihood approach 

                                                   
     

  
                                                          3.6 

where    and    represent the number of alive samples prior to    and the number of 

deaths at time   , respectively. When there are no censored cases,    represents the 

number of survivors prior to   . When censoring occurs,    equals the number of 

survivors minus censored cases. The statistical variance of the estimation could be 

assessed by estimators such as Greenwood‘s formula (Kaplan and Meier 1958). 

Cox proportional hazard regression 

The Kaplan-Meier estimator could only analyze the survival based on single 

factors. In order to trace the survival from multiple factors, advanced regression methods 

are needed. Cox proportional hazard regression, first proposed by Cox (1972), is the most 

widely used model for multivariate survival analysis.  
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Let       be the hazard function showing the instantaneous risk of demise for the 

i
th

 observation at time t, the Cox proportional hazard regression models       as a 

function of covariates by 

                                                 
                                                        3.7 

where       represents the baseline hazard at t,    represents the covariate vector 

corresponding to the i
th

 individual, and   is the parameter vector. For two observations k 

and k’ that differ in their covariate values, the hazard ratio can be calculated by 

                                                
     

      
 

      
   

      
 
  
  

    

 
 
  
 .                              3.8 

The parameter vector   can be estimated by a partial likelihood estimation approach 

introduced by Cox (1972). 

 The major advantage of Cox proportional hazard regression lies in that it does not 

make any assumptions of the hazard function and the baseline hazard. Using Cox 

proportional hazard regression model, investigators could focus more on the data instead 

of the specific form of hazard functions.  

The adaptive spatial filtering method 

The adaptive spatial filtering method represents an improvement of the basic 

spatial filtering method for analyzing the geographic patterns of health phenomena 

(Rushton and Lolonis 1996; Talbot et al. 2000). This method can be implemented in three 

steps. In the first step, a fine resolution (e.g., 10 miles) regular grid lattice is generated 

across the study area. The second step is to draw an adaptive distance circle, or spatial 

filter, around each grid point to achieve a constant number of observations within the 

circle. This constant number is determined by testing the relation between significance 

level and sample size using standard statistical testing procedures (Cai 2007; Talbot et al. 
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2000).  The third step is to randomly generate simulated cases from the background 

population. The simulation is run many times (for example, 999 times). For each 

simulation, the second step is repeated while replacing the observed cases with simulated 

cases. A reference distribution of disease rates can be obtained through this simulation. 

Based on the simulation result, an empirical p-value can be computed for the observed 

disease rates.  

The exponential model of spatial scan statistic  

 The exponential model of spatial scan statistic was proposed to facilitate the 

spatial analysis of survival data (Huang et al. 2007). This method can determine if there 

are any significant geographic variations of survival times. Based on the assumption that 

survival times follow an exponential model, this method compares the mean survival 

times within a geographic area (θin) with those outside the area (θout). Therefore, the null 

hypothesis is H0: θin = θout and the alternative is either Ha: θin < θout or Hb: θin > θout, 

depending on whether the researcher wants to detect low or high risk areas. A circular 

kernel whose size ranges from two cases to a half of the total cases is used to scan the 

entire study area. The Monte Carlo permutation method is employed to test the statistical 

significance of ―hot‖ or ―cold‖ spots and to adjust for multiple testing (Huang et al. 2007). 

Sometimes it is necessary to adjust the survival time for some important 

covariates to see how spatial clusters are influenced by these covariates. One can 

implement the covariate adjustment by following the suggestions of Huang et al. (2007). 

Briefly, the lifetime is modeled as an exponential linear function of covariates by 

                         
                                                                               3.9 
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where    is the lifetime of case i,    is the indicator vector associated with i,    represents 

the coefficient vector, and    is the error term which follows a density distribution 

function             
 
          .    follows a density function of        

                              which represents an exponential distribution. Based 

on this model, one can estimate the parameter vector,   , by applying all the observed 

cases in the regression. Then, the estimated survival time for the i
th

 case can be calculated 

as   
   . Finally, given a reference indicator vector k (for example,            ), the 

adjusted survival time for case i is estimated as 

                            
   

                      
 
                                             3.10 

where   
   

 is the adjusted survival time,     is the original survival time, and p is the total 

number of regression coefficients (the size of   ).
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CHAPTER 4 

A RELATIVE ASSESSMENT APPROACH FOR ANALYZING POTENTIAL 

SPATIAL ACCESS TO COLORECTAL CANCER SERVICES IN TEXAS 

4.1 Introduction 

Access to medical services is critical for CRC prevention and treatment. Poor 

access to CRC screening services may lead to low frequency of screening among at-risk 

populations and increase the risk of late stage diagnosis. Less access to CRC treatment 

services may decrease the quality of treatment and lower the chance of survival. Ensuring 

adequate and equitable access to CRC-related services for all population groups has 

become a prerequisite for CRC disparity elimination.  

As noted in Chapter 2, access to medical services is influenced by both spatial and 

non-spatial factors. Potential spatial access to medical service is critical for improving 

health and eliminating health disparities because it provides the basis for medical service 

utilization (Higgs 2004). Previous US studies have identified substantial differences of 

potential spatial accesses to a variety of medical services by race/ethnicity, SES, and 

rurality (Onega et al. 2008; Wang et al. 2008). However, few studies have thoroughly 

examined potential spatial accesses to CRC services.  
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A methodological limitation of gravity-based spatial access models is the 

uncertainty problem brought about by the arbitrarily-determined impedance coefficient. 

However, as revealed in Chapter 2, few studies have assessed how the results of gravity- 

based models vary with the impedance coefficient and how to better present the spatial 

access results.  

This chapter first implements an uncertainty assessment of the E2SFCA method, 

the most recent development of gravity models, and then proposes a relative spatial 

access approach to minimize the influence of the uncertainty problem. The proposed 

approach is then applied to investigate potential spatial accesses to CRC prevention and 

treatment services in Texas and to examine their socio-demographic and geographic 

characteristics. The remainder of this chapter is composed of four parts. A detailed 

description of the data sources and methodology is provided in the second section. The 

third section presents the results of the uncertainty assessment and potential spatial 

accesses to CRC services. The fourth section concludes the chapter with a summary and 

discussion of the results. 

4.2 Data and Methodology 

4.2.1 Data 

In this study, primary care physicians (PCPs) and CRC screening facilities were 

used to represent CRC prevention services. Oncologists were used to represent CRC 

treatment service. The datasets of PCPs, CRC screening facilities, and oncologists of 

Texas in 2000 have been collected from different sources and pre-processed by 

procedures described in Chapter 3. The geocoding successfully located 13,816 PCPs 
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(6,369 practicing sites), 110 CRC screening facility sites, and 204 oncologists (120 

practicing sites). 

Socio-demographic factors include census tract level population size, racial/ethnic 

distribution, poverty rate, and rural/urban status. Population data and racial/ethnic 

distribution data were collected from the Summary File 1 of census 2000 datasets (US 

Census Bureau 2001a). Census tract poverty rate data were compiled from the Summary 

File 3 of census 2000 datasets (US Census Bureau 2001b).  The rural/urban information 

of census tracts was derived from the Rural Urban Commuting Area (RUCA) codes (Hart 

2006), which integrates the census-defined urban/rural classifications and work 

commuting data to characterize the urban and rural status of census tracts. The RUCA 

scheme classifies census tracts into four groups: metropolitan (urban core), micropolitan 

(large rural town), small rural, and isolated rural. This classification scheme has been 

widely used in healthcare research due to its ability to better characterize rural areas at 

the sub-county level (Washington State Department of Health 2009).  

4.2.2 Methodology 

4.2.2.1 Methodology overview 

Two different methods were used to compute potential spatial accesses to 

different CRC services, with the shortest travel time for CRC screening facilities and the 

E2SFCA method for PCPs and oncologists. This differentiation is reasonable because of 

the different characteristics of screening facilities and the other two medical resources. 

Since a cancer screening only takes a short time, the supply-to-demand ratio may not 

influence the accessibility of screening facilities much. In this case, the shortest travel 

time represents the potential spatial access better (Dejardin et al. 2006; Wang et al. 2008). 
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However, since PCPs and oncologists are human resources of the medical system, their 

accessibilities can be easily influenced by the supply of medical professionals and the 

magnitude of potential demand. For example, a long waiting-list of a physician may 

significantly decrease people‘s access to that physician. Therefore, potential spatial 

accesses to PCPs and oncologists are better characterized by gravity-based methods.  

4.2.2.2 Sensitivity assessment of the E2SFCA method 

The aim of the sensitivity assessment in this chapter is to examine how the results 

from E2SFCA would be sensitive to varying degrees of distance impedances. In addition 

to the spatial access index, the spatial access ratio was introduced to represent the relative 

spatial access as an extension of the E2SFCA method. The spatial access ratio was 

calculated as the ratio between a census tract‘s spatial access index and the mean spatial 

access index of all census tracts. Both spatial access index and spatial access ratio were 

computed and a comparison analysis was conducted to evaluate their performances.  

The assessment was implemented by measuring potential spatial access to PCPs 

in the Austin-San Antonio corridor area instead of the whole state of Texas. The corridor 

area (Figure 4.1) contains nine counties, including Williamson, Travis, Bastrop, Hays, 

Caldwell, Comal, Guadalupe, Bexar, and Wilson counties. The area is composed of both 

metropolitan areas (e.g., Austin and San Antonio metropolitan areas) with highly 

concentrated PCP sites and rural areas (e.g., Wilson and Caldwell counties) where PCP 

sites are sparse. The total population of the corridor area in 2000 was 2,842,146. To 

account for the ―edge effect,‖ a buffer zone of 60-minute travel time was extended from 

the borders of the corridor area. Both the buffer zone and the corridor area were 
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incorporated in the computation but only the results of the corridor area were used in the 

discussions. 

 

Figure 4.1 Study area of the sensitivity assessment 

The assessment was implemented at the level of census tract. To account for the 

within-tract population variation, population-weighted centroids were calculated to 

represent the population locations of census tracts (Hwang and Rollow 2000). This 
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population-weighted centroid was derived based on the spatial distributions of census 

block population by  

                       
  
      

  
                                                                                    4.1                                    

           
  
      

  
                                                                                    4.2                                

where    and    represent the weighted-centroid coordinates for census tract t,    and    

represent the coordinates of the geometric centroid of the i
th

 census block within census 

tract t,    represents the population of the i
th

 census block, and    represents the total 

number of blocks within census tract t. The population data at the block level were 

collected from the Summary File 1 of the census 2000 datasets (US Census Bureau 

2001a). 

Shortest travel times between census tracts and medical sites were computed 

using the Network Analyst Extension of ArcGIS 9.3 (ESRI 2009).  Briefly, given a set of 

origin points (i.e., census tract centroids) and a set of destination points (i.e., PCP sites), 

this function can create a matrix showing the travel time between all origin-destination 

pairs within a travel-time threshold. The computation considers the speed limit of roads 

as well as some general driving conventions. Data of the road network and the speed limit 

were derived from the US 2000 street map. 

In the sensitivity assessment, the catchment size of the E2SFCA method was 

extended to 60 minutes because, according to a preliminary assessment, using this size 

could incorporate many isolated, rural census tracts and avoid ―island‖ areas (McGrail 

and Humphreys 2009) in the computation. The extended area (i.e., 30 – 60 minutes) 

composed the fourth subzone of the catchment. The Gaussian function (        
   )   

was adopted as the distance impedance function because it has been proved superior to 
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other functions in simulating the distance impedance effect (Wang 2007). The mean 

travel time for each sub-zone (5, 15, 25, and 45 minutes for the four sub-zones, 

respectively) was used as     in the computation of Gaussian weights. Seven sets of 

Gaussian weights with different impedance coefficients (Table 4.1) were used in the 

sensitivity assessment. As suggested by Kwan (1998), 0.01 is a critical point for Gaussian 

function approaching zero. For the travel cost (i.e., 45 minutes) of the outmost sub-zone 

(  ), the   value of 440 corresponds to the Gaussian value of 0.01. Therefore, the 

minimum value of   was set to 440. The maximum of   was set to 1,040 because the 

Gaussian curve is relatively flat at this value. The other five sets of   range from 540 to 

940 with an increment of 100. The increase of   represents the decrease of the extent of 

distance impedance effect. 

Table 4.1 Gaussian weights with different distance impedances for catchment sub-zones  

Distance Impedance 

Coefficient (   
Sub-zone 1  Sub-zone 2  Sub-zone 3  Sub-zone 4  

440 0.945 0.600 0.242 0.010 

540 0.955 0.659 0.314 0.024 

640 0.962 0.704 0.377 0.042 

740 0.967 0.738 0.430 0.065 

840 0.971 0.765 0.475 0.090 

940 0.974 0.787 0.514 0.116 

1040 0.976 0.805 0.548 0.143 

 

4.2.2.3 Analyzing potential spatial access to CRC services in Texas 

Potential spatial accesses to PCPs and oncologists for Texas census tracts were 

computed by the E2SFCA method. The population-weighted centroid was calculated for 

each census tract by formulas 4.1 and 4.2. For potential spatial access to PCPs, the 

catchment size was set to 60 minutes with the breaks at 10, 20, and 30 minutes for the 
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four sub-zones. For potential spatial access to oncologists, the catchment size was set to 

180 minutes with the breaks of 30, 60, and 120 minutes. Larger catchment size was used 

for measuring spatial access to oncologists because, given the life threats of cancer, 

generally people would not mind traveling a long distance for cancer treatment services. 

The selection of the impedance coefficient (   and the presenting form (spatial access 

index or spatial access ratio) of spatial access would be based on the sensitivity analysis 

results.  

After the computation of potential spatial access to CRC services for census tracts, 

the geographic patterns of the access were examined. Also examined were the 

racial/ethnic, socioeconomic, and rural-urban characteristics of the spatial accesses. 

Specifically, the median potential spatial access with inter-quartile range (IRQ) was 

calculated by public health region, race/ethnicity, poverty rate, and rural-urban status. 

Since the analyses were implemented for the population of the whole state rather than a 

sample, statistical significances of the results were not tested. The whole analysis was 

realized using the Visual Basic for Applications (VBA) in ArcGIS 9.3 (ESRI 2009). 

4.3 Results 

4.3.1 Sensitivity assessment results 

Table 4.2 presents the mean values and the normalized standard deviations of spatial 

access indices with varying impedance coefficients. For comparison, the standard 

deviations were normalized so that the mean value of spatial access indices for each   

equals one.  
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Table 4.2 Mean and standard deviation of spatial access indices with different impedance 

parameters 

Distance Impedance Coefficient 

(   

Mean Spatial Access 

Index (     ) 

Normalized Standard Deviation of 

Spatial Access Index (     ) 

440 0. 761 0.400 

540 1.523 0.391 

640 2.286 0.384 

740 3.050 0.376 

840 3.816 0.369 

940 4.581 0.362 

1040 5.347 0.354 

 

As shown in Table 4.2, larger impedance coefficients lead to higher spatial access 

indices and smaller normalized standard deviations. Since a larger   value (or weaker 

distance impedance) indicates a less extent of distance impedance, the increased spatial 

access index is reasonable. The decrease of normalized standard deviation indicates that 

larger  s have a smoothing effect (Fotheringham et al. 2000) and yield more 

homogeneous surfaces of spatial access.  

To further assess the robustness of the two forms of spatial access presentation, 

two-sample t tests were performed between the first distance impedance coefficient 

(     ) and other impedance coefficients for both spatial access index and spatial 

access ratio. The null hypotheses were stated as H0A: A Spatial Access Index, β1  = A Spatial Access 

Index, βi , and H0B: A Spatial Access Ratio, β1  = A Spatial Access Ratio, βi where βi  represents the i-th 

(i [2,7]) impedance coefficient. As expected, the tests rejected H0A and preserved H0B 

(Table 4.3).  
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Table 4.3 Two-sample t test results of spatial access index and spatial access ratio 

  pairs Spatial Access Index Spatial Access Ratio 

t-score p-value t-score p-value 

1-2 -62.198 1.000 0.000 0.000 

1-3 -63.432 1.000 0.000 0.000 

1-4 -64.727 1.000 0.000 0.000 

1-5 -66.073 1.000 0.000 0.000 

1-6 -67.453 1.000 0.000 0.000 

1-7 -69.250 1.000 0.000 0.000 

 

The geographic patterns of spatial access indices and spatial access ratios 

computed by the E2SFCA method are shown in Figures 4.2 and 4.3, respectively. For 

spatial access index, census tracts were categorized into six groups with 0.00029, 0.00049, 

0.00069, 0.00089, and 0.001 as the boundary values of intervals. For spatial access ratio, 

census tracts were categorized into six groups with boundary values (0.38, 0.64, 0.91, 

1.17, and 1.31) that correspond to the spatial access index intervals of the first impedance 

coefficient (     ).  

As shown in Figures 4.2 and 4.3, the geographic pattern of spatial access index 

varies greatly among the seven groups of Gaussian weights, with larger impedance 

coefficients yielding more homogeneous geographic distributions. On the other hand, the 

geographic distribution of spatial access ratio does not change much and remains 

relatively stable to the change of β.  These results indicate that the relative measure (i.e., 

spatial access ratio) is less sensitive to the distance impedance coefficient than the 

absolute measure (i.e., spatial access index) in characterizing potential spatial access to 

medical services. 
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4.3.2 Geographic patterns of potential spatial access to CRC services in Texas 

Based on the results of the sensitivity assessment, spatial access ratio was adopted 

to present potential spatial accesses to PCPs and oncologists. Since spatial access ratio is 

stable to the variation of distance impedance, the impedance coefficient was set to 440 

for PCPs and 4,890 (i.e., the value which corresponds to the Gaussian value of 0.01 for 

the outmost subzone) for oncologists.  

Figure 4.4 shows the geographic patterns of potential spatial access to the three 

CRC services in Texas. Generally, urban areas where PCPs and CRC screening facilities 

were highly clustered had the highest potential spatial access to CRC prevention services. 

Potential spatial access to oncologists was very low (< 0.40) across the whole state except 

for a limited number of metropolitan areas, among which the Houston metropolitan area 

had the best access. To further examine the regional differences of the potential spatial 

access, median spatial access ratios and interquartile ranges (IQRs) of the 11 public 

health regions (PHRs) (also shown in Figure 4.4) of Texas were compared (Table 4.4).  

As shown in Table 4.4, residents of the westernmost tip (PHR 10) and the 

southernmost tip (PHR 11) of Texas have the lowest potential spatial access to PCPs. 

These two areas are also among the PHRs that have the least potential spatial access to 

oncologists.  Residents of some northern parts (PHRs 2 and 4) and the easternmost part 

(PHR 5) have the longest travel time to CRC screening facilities.  PHRs 2, 9, 10 and 11 

are the most disadvantaged regions in potential spatial access to oncologists. PHRs 1, 3, 6, 

7, and 8 have the best overall access to all three CRC services among all the 11 regions.



 

 

 
 

 

 

Figure 4.2 Geographic patterns of spatial access indices determined by the E2SFCA method (Note:   is the 

distance impedance coefficient of the impedance function.)  
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Figure 4.3 Geographic patterns of spatial access ratios determined by the E2SFCA method (Note:  is the distance 

impedance coefficient of the impedance function.) 
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Figure 4.4 Geographic patterns of potential spatial access to colorectal cancer services in 

Texas (2000) (Note: PHR refers to public health regions.) 



71 
 

 
 

 

 

 Potential spatial Access to 

Primary Care Physicians 

(Spatial Access Ratio) 

Potential Spatial 

Access to CRC 

Screening Facilities 

(Minutes) 

Potential Spatial Access 

to Oncologists (Spatial 

Access Ratio) 

By race/ethnicity 

Non-Hispanic white 0.95 (0.51, 1.29) 14.2 (7.9, 31.4) 0.86 (0.55, 1.04) 

Non-Hispanic black 1.19 (0.89, 1.42) 11.0 (7.1, 17.9) 0.98 (0.77, 2.49) 

Hispanic 1.07 (0.72, 1.38) 10.0 (6.1, 20.5) 0.84 (0.42, 1.03) 

Asian 1.17 (0.94, 1.41)   8.8 (5.9, 13.3) 1.03 (0.93, 2.49) 

Native American 1.01 (0.60, 1.35) 11.9 (6.9, 26.9) 0.85 (0.48, 1.02) 

By SES 

Q1 (High SES) 1.20 (0.78, 1.47)   9.3 (5.4, 23.3) 0.97 (0.81, 1.70) 

Q2  1.05 (0.55, 1.38) 12.1 (6.8, 36.1) 0.82 (0.52, 1.04) 

Q3 0.95 (0.51, 1.29) 14.4 (8.2, 32.2) 0.79 (0.40, 1.04) 

Q4 (Low SES) 0.97 (0.65, 1.25) 12.1 (7.8, 18.2) 0.77 (0.37, 1.03) 

By Rurality 

Metropolitan 1.11 (0.75, 1.38) 10.5 (6.5, 17.3) 1.11 (0.69, 1.48) 

Micropolitan 0.72 (0.45, 1.01) 35.9 (21.1, 58.7) 0.42 (0.20, 0.69) 

Small Rural 0.54 (0.32, 0.85) 50.4 (34.7, 65.9) 0.35 (0.18, 0.57) 

Isolated Rural 0.29 (0.38, 0.54) 56.9 (37.8, 73.5) 0.30 (0.13, 0.51) 

By Public Health Region (PHR) 

PHR1 1.17 (0.65, 1.47) 10.2 (6.0, 50.0) 0.98 (0.40, 1.16) 

PHR2 0.96 (0.59, 1.30) 34.1 (19.1, 53.9) 0.19 (0.11, 0.78) 

PHR3 1.09 (0.71, 1.34) 11.4 (7.8, 17.1) 0.95 (0.77, 0.97) 

PHR4 0.90 (0.45, 1.46) 24.4 (9.4, 37.8) 0.55 (0.42, 0.66) 

PHR5 0.92 (0.42, 1.32) 65.7 (50.1, 79.1) 0.74 (0.19, 1.05) 

PHR6 1.07 (0.66, 1.43)   9.4 (6.3, 14.0) 2.53 (1.85, 2.59) 

PHR7 1.01 (0.50, 1.41) 14.8 (7.1, 29.3) 0.74 (0.40, 1.03) 

PHR8 1.10 (0.70, 1.36) 12.5 (6.8, 31.0) 0.89 (0.61, 0.89) 

PHR9 1.03 (0.59, 1.15) 21.8 (5.3, 96.7) 0.39 (0.25, 0.40) 

PHR10 0.73 (0.60, 0.84)   9.1 (5.7, 15.3) 0.48 (0.37, 0.52) 

PHR11 0.88 (0.59, 1.14) 15.1 (7.2, 40.8) 0.37 (0.32, 0.48) 

 

4.3.3 Socio-demographic characteristics of potential spatial access to CRC 

services in Texas 

Table 4.4 also shows potential spatial access to CRC services in Texas by 

race/ethnicity, SES, and rural/urban status. For PCPs, Asians (median spatial access ratio 

of 1.17; interquartile range (IQR), 0.94-1.41) and non-Hispanic blacks (median spatial 

Table 4.4 Median potential spatial access (and the Inter-Quartile Range in parenthesis) to 

colorectal cancer services in Texas by race/ethnicity, socioeconomic status, rurality, and 

public health region (Note: a larger spatial access ratio represents higher spatial access 

whereas longer travel time means lower spatial access.) 
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access ratio of 1.19; IQR, 0.89-1.42) had the highest potential spatial access whereas non-

Hispanic whites (median spatial access ratio of 0.95; IQR, 0.51-1.29) had the lowest 

spatial access. Hispanics (median spatial access ratio of 1.07; IQR, 0.72-1.38) and Native 

Americans (median spatial access ratio of 1.01; IQR, 0.60-1.35) were comparable to each 

other. For CRC screening services, Asians had the shortest travel times (median of 8.8 

minutes; IQR, 5.9-13.3 minutes) to screening facilities whereas non-Hispanic whites had 

the longest travel time (median of 14.2 minutes; IQR, 7.9-31.4 minutes). The other three 

groups were in the middle level. For potential spatial access to oncologists, Asians 

(median spatial access ratio of 1.03; IQR, 0.93-2.49) and non-Hispanic blacks (median 

spatial access ratio of 0.98; IQR, 0.77-2.49) were still the most advantageous groups. The 

other three groups were in comparable levels, with the median spatial access ratio ranging 

from 0.84 to 0.86.  

Potential spatial access to CRC services was also different for population groups 

with different socioeconomic status and lived in different areas. As shown in Table 4.4, 

the richest group (Q1) had the best potential spatial access to all three CRC services and 

the poorer people (Q3 and Q4) had relatively lower potential spatial access. Increased 

rurality corresponded to decreased potential spatial access to the services. Potential 

spatial accesses to PCPs and oncologists were more than three times higher for 

metropolitan dwellers than for isolated-rural residents. Median travel time to CRC 

screening facilities was 56.9 minutes (IQR: 37.8-73.5 minutes) for isolated-rural residents 

compared to 10.5 minutes (IQR: 6.5-17.3 minutes) for people who live in metropolitan 

areas. Compared to socioeconomic and racial/ethnic differences of potential spatial 

access to CRC services, differences by rural/urban status were more obvious. 
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4.4 Discussions and Conclusions 

Potential spatial access to medical services is a critical factor for identifying 

medically underserved areas and populations. Knowledge about social groups‘ 

differences in potential spatial access to cancer services can also facilitate the 

interpretation of cancer disparities. This chapter proposed a relative spatial access 

assessment approach to compensate uncertainties associated with different values of 

impedance coefficient in the E2SFCA method. The approach was then used to investigate 

the potential spatial access to CRC-related services in Texas based on data in 2000.  

While the results indicate that spatial access index, the absolute presentation of 

spatial access, could be greatly influenced by the extent of distance impedance; spatial 

access ratio, the relative spatial access assessment approach, is stable to the variation of 

the distance impedance. Therefore, spatial access ratio is a better alternative to spatial 

access index in expressing the results of the E2SFCA method in the absence of an 

appropriate value of impedance coefficient. Spatial access ratio can be extended to 

represent the results of other gravity-based spatial access models. 

The analysis results about the difference of potential spatial access for people 

living in rural and urban areas suggest that rural residents of Texas had the lowest 

potential spatial access to all of the three types of CRC services. This result corroborates 

previous findings about the unfavorable geographical conditions of non-urban dwellers in 

accessing health care services (Chan et al. 2006; Onega et al. 2008; Wang et al. 2008). In 

addition, potential spatial access to CRC services also varied among different 

racial/ethnic and socioeconomic groups but the differences were relatively minor 

comparing to the rural/urban variation. 



74 
 

 
 

  Differences in potential spatial access to CRC services by race/ethnicity and 

geographic regions might chiefly reflect the rural-urban characteristics of racial/ethnic 

groups and PHR regions. For example, Asians had the best spatial access to all three 

types of CRC services, with the 25
th

 percentile‘s accesses to PCPs and oncologists being 

only slightly lower than 1 and the 75
th

 percentile‘s median travel time to CRC screening 

facilities being slimly higher than 13 minutes. This may be explained by that fewer than 4% 

of Asians are non-urban dwellers in Texas (US Census Bureau 2001a). Non-Hispanic 

blacks‘ advantage in the potential spatial accesses is also closely related with their urban-

living habits. In addition, PHRs with the best potential spatial accesses to CRC services 

also encompass the metropolitan centers (for example, Houston, Dallas, San Antonio, and 

Austin) of Texas. These facts suggest that rurality might be the major reason for the 

unequal distribution of potential spatial access to CRC services in Texas. Government 

interventions aiming at alleviating the inequality of potential spatial access should target 

at isolated rural and small town rural areas. 

Meanwhile, there are several points need to be considered when interpreting the 

results of this chapter. First, although the travel time breaks for potential spatial access to 

PCPs were based on empirical studies (Lee 1991) and geographical characteristics of 

Texas, the determination of travel time breaks (i.e. 30, 60 and 120 minutes) for 

oncologists were relatively arbitrary. Currently, there is limited information about how 

cancer patients tradeoff between travel cost and oncologists or treatment sites. Three 

hours‘ traveling time, which is estimated as an half of a one day roundtrip traveling time 

(i.e., six hours), might be conservative in defining the catchment size for oncologists in 

this study. Patient surveys and cancer center attendance data are needed to determine the 
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traveling threshold(s) tolerated by patients and the appropriate time breaks for cancer 

service utilization in the future. 

Second, the E2SFCA method, like other gravity-based models, does not differentiate 

individuals with and without vehicles. Individuals without personal automobiles, who are 

not uncommon in major metropolitan areas, would have to rely on public transportation 

to access medical services. In this case, their potential spatial access could be greatly 

compromised. This effect might be more evident for blacks, who have the lowest car-

ownership rates among all racial/ethnic groups (US Census Bureau 2001b). In other 

words, black people‘s potential spatial access to CRC services might be overly estimated 

in this study. A potential solution to this problem is to introduce car-ownership 

information into the spatial access model. For example, one can incorporate the 

percentage of households with at least one vehicle, which is available from the census 

2000 data, as a personal mobility weight in the E2SFCA method to account for this 

problem. In addition, gravity-based models assume ideal travel conditions (e.g., roads 

without any traffic congestions) for all individuals. This would lead to some biases in 

travel time estimation because, in reality, traffic conditions differ across different areas 

(For example, urban areas are more congested than low traffic micropolitan areas). 

Third, this study did not differentiate the effectiveness and costs of CRC screening 

facilities, which may exert significant influence on the utilization of these facilities. For 

example, high-tech facilities such as colonoscopy have higher accuracy in diagnosing 

CRC but are expensive. Patients are also required to visit a hospital or clinic before being 

examined by these facilities. FOBT, on the other hand, is more economically affordable 

and can be conveniently offered by nurses or health professionals without an office visit 
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(Center for Disease Control and Prevention (CDC) 2010). The results would be more 

reasonable if these differences are taken into account when calculating potential spatial 

access to CRC screening facilities.  

Despite the limitations, this chapter proposes an important improvement for 

gravity-based spatial access models. The spatial access ratio, albeit mathematically 

simple, is more stable to the impedance coefficient than spatial access index when used 

along with the E2SFCA method. This chapter also for the first time examined potential 

spatial access to cancer services at a relatively fine geographic scale in the United States. 

In addition, the state of Texas, which has a racially/ethnically diverse population residing 

in areas with heterogeneous rural/urban characteristics, represents an excellent study area 

for examining inequalities in potential spatial access to medical services. 
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CHAPTER 5 

DISPARITIES OF COLORECTAL CANCER STAGE AT DIAGNOSIS IN TEXAS 

5.1 Introduction 

Cancer stage at diagnosis is a critical factor influencing cancer outcomes (Dimou 

et al. 2009; Govindarajan et al. 2003; McDavid et al. 2003). This influence is especially 

pronounced for colorectal cancer (CRC), for which the five-year survival rate is 90% for 

patients diagnosed at local stages but only 10% for those who present distant or more 

advanced stages at diagnosis (ACS 2005). 

Poor access to CRC prevention services has long been suspected responsible for 

the high risk of late stage CRC diagnosis among some social groups. However, few US 

studies have investigated the impact of potential spatial access to CRC services in 

conjunction with non-spatial factors on CRC diagnosis stage. Recent studies have 

observed socioeconomic, racial/ethnic, and geographic disparities of CRC stage at 

diagnosis (Clegg et al. 2009; Dimou et al. 2009; Govindarajan et al. 2003; Henry et al. 

2009; Schwartz et al. 2003; Singh et al. 2005; Singh et al. 2006) but few of them have 

investigated whether these disparities were associated with potential spatial access to 

prevention services or not. 

This chapter systematically examines disparities of CRC stage at diagnosis in 

Texas by SES, race/ethnicity, and geographic location, and assesses the association
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between these disparities and potential spatial access to CRC prevention services. The 

remaining of this chapter is composed of three sections. A detailed description of the data 

sources and methodology is given in section 5.2. Section 5.3 describes the results of 

disparities and the impacts of potential spatial access to CRC services on the disparities. 

Section 5.4 discusses the findings and concludes this chapter. 

5.2 Data and Methodology 

5.2.1 Data  

The analyses of this chapter involved three datasets including CRC incidence data, 

socio-demographic data, and data about potential spatial access to CRC prevention 

services. CRC incidence data of Texas from 1995 to 2003 have been obtained from the 

Texas Cancer Registry and geocoded in Chapter 3. As this research involved individual 

level information such as age, race, Hispanic ethnicity, and stage at diagnosis, cases with 

missing or unclear information of these factors were excluded from the analyses 

(n=9,403). Paired t-tests did not reveal any significant differences by sex (p=0.89), age 

(p=0.99), race/ethnicity (p=0.42), area socioeconomic status (p=0.99), urban/rural 

designation (p=0.99), and potential spatial access to CRC prevention services (p=0.92) 

between the excluded cases and the retained cases. 

Census tract level poverty rate was adopted to represent area SES in this study. 

Census tracts‘ potential spatial accesses to CRC screening facilities and PCPs have been 

computed by the methods presented in Chapter 4.  

5.2.2 Methodology 

Analyzing basic characteristics of CRC late stage diagnosis in Texas  
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Summary statistics were generated to describe the overall study population. 

Census tracts were categorized into quartiles according to poverty rate, potential spatial 

access to PCPs, and potential spatial access to CRC screening facilities, respectively. 

Rurality categories include metropolitan, micropolitan, small town rural, and isolated 

rural census tracts (Hart 2006). Racial/ethnic groups were limited to non-Hispanic whites, 

non-Hispanic blacks, Hispanics, Asians, and Native Americans. Associations between 

case characteristics and stage at diagnosis were investigated by Chi-square tests. Tests for 

trending were implemented for poverty rate, rurality, and potential spatial access to CRC 

prevention services by entering these indicators as ordinal variables in the regression 

analyses. Factors that showed no significant associations with late stage CRC diagnosis 

would be excluded from subsequent analyses. 

Analyzing the influence of spatial access to CRC services on racial/ethnic and 

socioeconomic disparities of CRC stage at diagnosis 

Age- and sex- adjusted odds ratios of late stage CRC diagnosis by race/ethnicity, 

SES, and potential spatial access to CRC prevention services were estimated using the 

generalized estimating equation (GEE) logistic regression. GEE regressions can model 

the relation between the average response of a population and relevant covariates without 

considering the correlation of covariates across the high levels (Roux 2002; Zeger et al. 

1988). Since this study includes both census tract level covariates (i.e., poverty rate, 

potential spatial access to CRC prevention services) and individual level characteristics 

(i.e., age, race/ethnicity), GEE logistic regression is more suitable than the traditional 

logistic regression for the analyses. 
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Five GEE models were implemented in this study, with three of them for 

assessing the individual influence of race/ethnicity, SES, and potential spatial access to 

CRC prevention services and two for analyzing the joint effects of these factors. The first 

multi-factor model (Model I) included sex, age, poverty rate, and race/ethnicity as 

independent variables. The second multi-factor model (Model II) included all variables of 

model I plus potential spatial access to CRC services as independent variables. 

Analyzing the influences of potential spatial access to CRC services on geographic 

disparities of CRC stage at diagnosis 

The geographic variations of CRC stage at diagnosis was measured using the 

adaptive spatial filtering method (Rushton and Lolonis 1996; Talbot et al. 2000). When 

implementing this method, the background population was defined as all CRC incidence 

cases, and the case events were defined as cases diagnosed with late stage CRC. The grid 

size of was set to be fifteen miles. The threshold case number was set to be twenty two. 

To minimize the influence of the small-number problem, an indirect age-sex 

standardization method was used to compute the Standard Mortality Rate (SMR) (note: 

the term ―Standard Mortality Rate‖ does not necessarily refer to mortality). Monte Carlo 

simulations (999 times) were implemented to generate the reference distribution. The 

adaptive spatial filtering method is available in the Disease Mapping and Analysis 

Program (DMAP) software, version IV (Cai 2007). 

5.3 Results 

Characteristics of CRC stage at diagnosis in Texas  

Selected characteristics of CRC stage at diagnosis in Texas are shown in Table 

5.1. The overall rate of late stage CRC diagnosis is 59.0% for the 60,298 study cases. 

Approximately 73.2% of the cases were non-Hispanic whites. Asian and Native 
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American patients only accounted for 1.3% of the total patients. The mean age at 

diagnosis was 68.9 for non-Hispanic whites, 64.8 for non-Hispanic blacks, 64.0 for 

Hispanics, 62.5 for Native Americans, and 61.7 for Asians. Almost 78% of the cases 

were living in metropolitan areas. For census tract level poverty rate, rurality, and 

potential spatial access to primary care, the fewest CRC cases were found in the most 

disadvantaged quartiles.  

Table 5.1 Selected characteristics of colorectal cancer late stage diagnosis in Texas, 

1995-2003 

Variable Cases  (%) % Late Stage 

Diagnosis 

Age (p<0.01)    

    Group 1 (<50) 6,528 10.8 65.1 

    Group 2 (50-60) 9,644 16.0 61.0 

    Group 3 (61-70) 1,4401 23.9 58.4 

    Group 4 (70-80) 1,7607 29.2 57.4 

    Group 5 (>80) 1,2118 20.1 57.0 

Sex     

    Male 30,765 51.0 58.7 

    Female 29,533 49.0 59.2 

Race/Ethnicity (p<0.001)    

    Non-Hispanic White  44,136 73.2 57.5 

    Non-Hispanic Black  69,30 11.5 63.5 

    Hispanic  8,457 14.0 62.5 

    Asian 740 1.2 59.1 

    Native American 35 0.1 68.6 

Area SES (p<0.001)    

    Q1 (High SES) 15,370 25.5 56.5 

    Q2 16,845 27.9 59.0 

    Q3 15,458 25.6                                                                            59.2 

    Q4 (Low SES) 12,625 20.9 61.5 

Rurality    

    Metropolitan 46,767 77.5 59.1 

    Micropolitan 6,263 10.4 58.3 

    Small Town 3,862 6.4 58.8 

    Isolated Rural 3,412 5.7 57.9 

Potential Spatial Access to PCPs (p<0.05)   

    Q1 (High Access) 15,120 25.1 57.6 

    Q2 15,730 26.1 59.1 

    Q3 14,743 24.5 59.1 

    Q4 (Low Access) 14,705 24.4 60.1 

Potential Spatial Access to CRC Screening Facilities  

    Q1 (High Access) 15,781 26.2 57.9 

    Q2 14,925 24.8 59.6 

    Q3 14,786 24.5 59.3 

    Q4 (Low Access) 14,806 24.6 59.2 
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The univariate analyses revealed significant differences in late stage CRC 

diagnosis by age, race/ethnicity (limited to non-Hispanic whites, non-Hispanic blacks, 

and Hispanics here), area SES, and potential spatial access to primary care (Table 5.1). 

Groups with high proportions of late stage CRC cases were people younger than 50 years 

of age (65.1%), non-Hispanic blacks (63.5%), and Hispanics (62.5%). Native Americans 

had the highest rate of late stage CRC diagnosis (68.6%) among all racial/ethnic groups, 

but the differences were not significant (p=0.19). As census tract poverty rate increased, 

the rate of late stage CRC diagnoses increased (p<0.01). The enhancement of potential 

spatial access to PCPs lowered the risk of late stage CRC diagnosis (p<0.05). The 

analyses did not reveal any significant relationship between late stage CRC diagnosis and 

sex, rurality, or potential spatial access to CRC screening facilities.  

Influence of potential spatial access to PCPs on racial/ethnic and socioeconomic 

disparities of CRC stage at diagnosis 

The results of multivariate analyses are shown in Table 5.2. Asian and Native 

American patients were excluded from this step because of their small proportion of the 

study population. Age- and sex-adjusted regressions revealed significant disparities in 

CRC stage at diagnosis by SES, race/ethnicity, and potential spatial access to PCPs. Non-

Hispanic black (OR: 1.25, 95% CI: 1.19 to 1.32) and Hispanic (OR: 1.20, 95% CI: 1.14 

to 1.26) CRC patients had higher risk of late stage diagnosis than non-Hispanic white 

CRC patients. Worsening SES corresponded to increasing likelihood of presenting with a 

late stage CRC at the time of diagnosis (p < 0.01). Less potential spatial access to PCPs 

also led to higher likelihood of late stage CRC diagnosis (p < 0.05). 
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Table 5.2 Odds ratios of late stage colorectal cancer diagnosis by race/ethnicity, area 

socioeconomic status (SES), and potential spatial access to primary care 

 Age- and sex- adjusted 

OR (95% CI) 

OR of Model I 

(95% CI)
 1
 

OR of Model II 

(95% CI)
 2
 

Race/Ethnicity
**

     

    Non-Hispanic White  1 1 1 

    Non-Hispanic Black  1.25 (1.19, 1.32) 1.21 (1.14, 1.27) 1.21 (1.15, 1.28) 

    Hispanic  1.20 (1.14, 1.26) 1.15 (1.09, 1.21) 1.15 (1.09, 1.22) 

    

SES
**

    

   Q1 (High SES) 1 1 1 

   Q2 1.12 (1.07, 1.17) 1.11 (1.06, 1.16) 1.11 (1.06, 1.16) 

   Q3 1.14 (1.09, 1.19) 1.11 (1.06, 1.16) 1.11 (1.06, 1.16) 

   Q4 (Low SES) 1.25 (1.19, 1.31) 1.15 (1.09, 1.21) 1.16 (1.10, 1.22) 

    

Potential spatial access to PCPs
*
  

   Q1 (High access) 1  1 

   Q2 1.06 (1.01, 1.11)  1.05 (1.00, 1.10) 

   Q3 1.06 (1.00, 1.10)  1.05 (1.00, 1.11) 

   Q4 (Low access) 1.09 (1.00, 1.12)  1.06 (1.01, 1.11) 

    
*
p<0.005; 

**
p<0.001 

1
Model I includes sex, age, poverty rate, and race/ethnicity as independent variables. 

2
Model II includes all variables from model I plus potential spatial access to health services as independent 

variables. 

The result of Model I indicates that, after the incorporation of SES, racial/ethnic 

disparities still remained significant despite a slight reduction in the odd ratios for non-

Hispanic blacks and Hispanics. The interactions between SES and race/ethnicity also led 

to minor reductions of the risk of being diagnosed with late stage CRC for patients from 

low SES areas.  

The addition of potential spatial access to PCPs in the analysis (Model II) did not 

exert significant influence on the racial/ethnic and socioeconomic disparities. Odds of 

late stage CRC diagnosis for disadvantaged racial/ethnic groups (i.e., Hispanics and non-

Hispanic blacks) and low SES groups (Q3 and Q4) fluctuated slightly between Model I 

and Model II. For CRC patients with the lowest potential spatial access to PCPs (Q4), the 

risk of late stage diagnosis dropped slightly but still remained significant. 
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The geographic patterns of CRC late stage diagnosis 

The overall spatial pattern of CRC late stage diagnosis is shown in Figure 5.1. 

The map reveals a heterogeneous spatial distribution of late stage CRC diagnosis after 

adjusting for age and sex. Generally, the northernmost panhandle, the western tip, and the 

southern part of Texas had elevated risk of late stage CRC diagnoses (relative risk (RR)> 

1.19) relative to the state mean. Geographic areas with low risks of late stage CRC 

diagnosis (RR< 1) were primarily dispersed in the central-eastern part of Texas. 

The adaptive spatial filtering method also identified six geographic areas as 

having significantly different risks of late stage CRC diagnosis compared to the statewide 

level (Figure 5.2).  Among them, Areas 1, 2, 3, and 4 were high-risk areas with the 

relative risks of 1.49, 1.43, 1.50, and 1.43, respectively. Areas 5 and 6 were low risk 

areas with the relative risks of 0.57 and 1.42, respectively. The geographic distributions 

of these areas are consistent with the geographic pattern across the whole state. For 

example, the higher-risk areas were located at the northern panhandle (Area 1), the 

middle-western part (Area 2), the southernmost tip (Area 3), and the northern shoulder 

area (Area 4) of Texas. The low risk areas were located at the southwestern (Area 5) and 

the northeastern corners (Area 6) of the state. A comparison of these areas indicated that 

areas with lower-than-expected risks of late stage CRC diagnosis had higher proportions 

of non-Hispanic white residents, lower proportions of Hispanic residents, lower poverty 

rate, and higher spatial access to PCPs than areas with higher-than-expected risks (Table 

5.3). 
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Figure 5.1 Geographic pattern of late stage colorectal cancer diagnosis in Texas (1995-

2003) 
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Figure 5.2 Spatial clusters of late stage colorectal cancer diagnosis in Texas (1995-2003) 
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Table 5.3 Characteristics of census tracts with significantly different risks of colorectal 

cancer late stage diagnosis in Texas 

 Low risk areas High risk areas Statewide 

Percentage of late stage cases 46.1 73.0 59.01 

Total cases 605 642 60,298 

Observed late stage cases 279 470 35,546  

Expected late stage cases 553 327 35,546 

Observed/Expected 0.50 1.44 1 

p-value <0.01 <0.01  

    

Percentage of non-Hispanic whites
 

58.9 46.0 49.28 

Percentage of non-Hispanic blacks 5.5 1.4 10.87 

Percentage of Hispanics 34.0 51.1 30.66 

    

Poverty rate 18.5 21.3 14.9 

    

Mean spatial access ratio to PCPs
 

0.65 0.54 0.98 

 

5.4 Discussions and Conclusions 

This chapter analyzed disparities of CRC stage at diagnosis from various factors, 

including race/ethnicity, SES, geographic location, and potential spatial access to CRC 

prevention services. The results revealed significant disparities of CRC stage at diagnosis 

from most of these factors. Non-Hispanic black and Hispanic CRC patients had 

significantly higher risks of being diagnosed at late stages than non-Hispanic white 

patients. Lower area SES corresponds to increased likelihood of late stage CRC diagnosis. 

Decreased potential spatial access to primary care also leads to elevated risk of late stage 

CRC diagnosis. There was an uneven geographic distribution of the risk of late stage 

CRC diagnosis across the whole state of Texas. 

The results regarding the racial/ethnic and socioeconomic disparities of CRC 

stage at diagnosis in this chapter corroborate most of previous studies (Clegg et al. 2009; 

Schwartz et al. 2003; Wu et al. 2006), which revealed unfavorable risks of late stage CRC 
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diagnosis for racial/ethnic minorities and low socioeconomic groups. However, other 

researchers also reported different findings. In a study of CRC stage at diagnosis in 

Maine, Parsons and Askland (2007) found no significant associations between CRC stage 

and socioeconomic variables. A study in New Jersey suggested that race/ethnicity has no 

significant influence on CRC stage at diagnosis (Henry et al. 2009). These facts, along 

with the findings of this chapter, imply that racial/ethnic and socioeconomic disparities 

may be related with some local characteristics such as demographic structure, rurality, 

and some local health promotion programs (Parson and Askland 2007). A thorough 

investigation of these factors may reveal some socio-political (e.g. access to 

Medicare/Medicaid) or medical factors that could effectively prevent late stage CRC 

diagnosis among vulnerable population groups. 

Prior studies on the interactive influence of race/ethnicity and SES on CRC 

indicate that SES may explain a large portion of racial/ethnic disparities in late stage 

CRC diagnosis (Dimou et al. 2009; Schwartz et al. 2003). However, this study indicated 

that non-Hispanic blacks‘ and Hispanics‘ unfavorable situation in CRC late stage 

diagnosis underwent little change before and after adjusting for area SES, suggesting that 

there might be some other factors contributing to the racial/ethnic disparities of CRC 

diagnosis in Texas. Cultural background, immigration status, and religious belief, in 

addition to SES, may provide potential reasons for the unexplained racial/ethnic 

disparities in this study. Surveys on how these factors (even within the same racial/ethnic 

group) influence individuals‘ life style as well as attitude on CRC screening are 

necessitated to account for the racial/ethnic disparities in future studies. 
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Inadequate access to CRC prevention services has been implied as the primary 

reason for the high risks of late stage CRC diagnosis among some racial/ethnic minorities 

and low SES groups (James et al. 2006; Matthews et al. 2005). However, this study 

suggests that potential spatial access to CRC prevention services, the basis for the service 

utilization, has limited influence on CRC diagnosis. Potential spatial access to primary 

care was related with the risk of late stage CRC diagnosis, but the relationship was much 

weaker than those with SES or race/ethnicity. The incorporation of potential spatial 

access to primary care into the regression did not attenuate the risks of late stage 

diagnosis for Hispanics, non-Hispanic blacks, and individuals from the poorest areas. 

These findings suggest that non-spatial factors such as the financial capability of potential 

patients might play a more important role in influencing the utilization of these services 

than spatial factors. Prior studies also indicated that language barriers and low literacy 

rates could effectively prevent one from navigating the healthcare system and 

communicating with health professionals (James et al. 2006; Matthews et al. 2005). 

Wang and Luo (2005) have proposed a systematical scheme for integrating spatial and 

non-spatial factors to characterize people‘s overall access to medical services. Their 

framework provides a potential way to extend the exploration of disparities beyond our 

study. 

This study also found that potential spatial access to PCPs has a stronger 

association with the risk of late stage CRC diagnosis than do potential spatial access to 

CRC screening facilities. This finding, along with a previous study (Wang et al. 2008), 

highlights the importance of medical professionals who introduce patients to the cancer 

screening procedure. However, the geographic pattern indicates that residents of some 



90 
 

 
 

parts of Texas had limited potential spatial access to primary care, suggesting the 

necessity of promoting a more balanced supply of PCPs across the whole state.  

The insignificant association between potential spatial access to CRC screening 

facilities and CRC stage at diagnosis might be explained by the fact that Texas residents 

had adequate potential spatial access to CRC screening services. For the majority of 

Texans, the shortest travel time to CRC screening facilities is less than 30 minutes, which 

has been suggested as a threshold for people‘s tolerance travel time for accessing medical 

service (Lee 1995). In other words, most residents of Texas can easily access screening 

facilities. In this case, differences in the shortest travel time to CRC screening facilities 

might not influence CRC stage at diagnosis much.  

The geographic analyses revealed an uneven spatial distribution of CRC stage at 

diagnosis in Texas. Some areas had significantly different risks of late stage CRC 

diagnosis than others. Areas with elevated likelihood of late stage CRC diagnosis were 

characterized by low percentages of non-Hispanic whites, high proportions of Hispanic 

residents, and high poverty rate. Meanwhile, areas with a significant deficit of late stage 

CRC diagnosis had higher proportions of non-Hispanic whites, lower percentage of 

Hispanics, and lower poverty rates compared to the state level. This contradiction 

provides further evidence for the aforementioned comments on socioeconomic and 

racial/ethnic disparities.   

This chapter includes several advancements relative to prior studies on disparities 

of CRC diagnosis. For the first time, the relative importance of potential spatial access to 

medical services on disparities of CRC stage at diagnosis in the United States has been 

assessed. Information about whether and how the spatial dimension of people‘s access to 
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medical services influences CRC incidence has important implications for health resource 

allocation and CRC disparity reduction in Texas. Second, this chapter adopted different 

spatial access measures for different CRC prevention services. The E2SFCA method and 

the shortest travel time method were employed to estimate potential spatial access to 

PCPs and CRC screening facilities, respectively. This differentiation is based on varying 

utilization rates of the two medical resources by individuals. Prior studies have used the 

shortest travel time to represent potential spatial access to all CRC prevention services, 

including primary care (Parson and Askland 2007). This method is problematic because it 

ignores the supply-to-demand ratios of PCPs – an important factor for primary care 

accessibility. In addition, the E2SFCA method is more intuitive and explicit in revealing 

potential spatial access to medical services than previous models (Luo and Qi 2009).  

In conclusion, this chapter represents a comprehensive examination of disparities 

in CRC stage at diagnosis. It revealed significant disparities by race/ethnicity, area SES, 

and geographic location. It also confirmed a significantly negative association between 

potential spatial access to medical services and the risk of CRC late stage diagnosis. 

However, this study did not reveal any mediating effect of the spatial access factor on the 

racial/ethnic, socioeconomic, and geographic disparities. This finding suggests that policy 

makers and health planners who aim at minimizing disparities of CRC stage at diagnosis 

should focus attention more on socio-cultural factors rather than facility resources for 

optimization of CRC prevention services.  
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CHAPTER 6 

DISPARITIES OF COLORECTAL CANCER SURVIVAL IN TEXAS 

6.1 Introduction 

Previous US studies have revealed substantial disparities of CRC survival in 

relation to SES, race/ethnicity, and geographic location, suggesting that racial/ethnic 

minorities, individuals with low SES, and individuals in some geographic regions had 

poorer survival than others (Clegg et al. 2002; Du et al. 2007; Henry et al. 2009; Huang et 

al. 2007; McDavid et al. 2003; Wudel et al. 2002). Factors that may explain CRC 

survival disparities include CRC stage at diagnosis, patients‘ access to treatment services, 

and some factors caused by low SES. Individuals diagnosed with a late stage CRC and 

those who did not get timely and appropriate treatment had a higher chance of dying from 

CRC than those diagnosed at early stages and those received good treatment services. 

As discussed in Chapter 2, a major limitation of prior US studies on CRC survival 

disparity is that they seldom analyzed the joint impact of SES, race/ethnicity, geographic 

location. Focusing on only a portion of these factors may lead to partial or biased 

conclusions about CRC survival disparity. In addition, the role of potential spatial access 

to cancer treatment services on CRC survival has never been examined in the United 

States. 

The primary goal of this paper is to investigate how potential spatial access to 
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cancer treatment services, along with non-spatial access factors, influences CRC survival 

at the census tract level. A factor analysis method was conducted to estimate non-spatial 

factors that influence the service utilization among patients in Texas. The study assesses 

the impacts of spatial and non-spatial factors on CRC survival in different rural/urban 

settings. The rest of this chapter is made up of three sections. The data and methods are 

described in section 6.2. The results of CRC survival disparities are given in section 6.3. 

Section 6.4 offers the discussion of the results. 

6.2 Data and Methodology 

6.2.1 Data 

CRC Survival Data 

The Texas CRC incidence data from January 1, 1995 through December 31, 2003 

were obtained from the Texas DSHS. The data have been preprocessed in Chapters 3 and 

5. The study population for the analyses in this chapter include 60,298 CRC cases with 

specific information about race (i.e., white, black, Native American, Asian, or others), 

Hispanic ethnicity, sex, age, stage at diagnosis (early stage or late stage), date of last 

contact, vital status (deceased or alive) at last contact, cause of death (if deceased), date 

of death (if deceased), and the census tract number. The TCR uses a passive follow-up 

approach to ascertain the vital status of cancer patients but also links its cancer registry 

information with the Texas vital statistics data, the National Death Index data, and the 

Social Security Death Index data. The patient follow-up period of the CRC data used in 

this study was from January 1, 1995 through March 1, 2010. 

Cancer specific survival is adopted as the measure of survival in this study. 

Cancer specific survival (or cause specific mortality) is an approach for measuring the 
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survival from a specific underlying cause of death other than other causes of death (NCI 

2010). Cancer specific survival has been proved useful for analyzing cancer disparities 

and has been adopted by NCI as a ―policy based statistic‖ (NCI 2010).    

This research specifies CRC as the cause of death. Both long-term and five-year 

CRC-specific survivals would be analyzed. For the long-term survival analysis, the 

survival time (in month) of a patient was measured from the date of CRC diagnosis and 

was censored at the date on which the case lost to the follow-up, the date the case die 

from other causes, or the last day of the follow-up (which was March 1, 2010), whichever 

occurred first.  For the five-year survival analysis, the survival time (in month) of a 

patient was measured from the date of CRC diagnosis and was censored at the date on 

which the case lost to the follow-up, the date the case die from other causes, or the last 

day of the five-year period starting from the date of diagnosis, whichever occurred first. 

Spatial Access Data 

CRC treatment services were represented by oncologists in this study. The 

oncologist data of Texas in 2000 have been collected from Texas DSHS and have been 

geocoded in Chapter 3. The geocoding successfully located 204 oncologists (in 120 

practicing sites). Potential spatial access to oncologists at the census tract level has been 

calculated in Chapter 4 using the E2SFCA method (Luo and Qi 2009) with a distance 

impedance coefficient ( ) of 4,890. The relative spatial access (spatial access ratio) was 

used to present the potential spatial access for each census tract. 

Non-spatial Access Data 

Generally, a person‘s non-spatial access to medical services can be measured 

from a range of characteristics such as socioeconomic status, environment, education 
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level, English fluency, and transportation (Khan 1992; Wang et al. 2008). Factor analysis 

(FA) and principal component analysis (PCA) were conducted on several single socio-

cultural indicators of census tracts to uncover important dimensions of non-spatial access 

in this chapter. Briefly, given a number of tract characteristics, PCA can generate the 

same number of indicators (components) with no colinearity to capture their variances; 

FA can further produce a smaller number of components to reflect the major aspects of 

the indicators. Based on previous studies (Wan et al. 2011; Wang et al. 2008), nine non-

spatial access indicators (i.e., poverty rate, unemployment rate, median household income, 

median home value, percent of persons with complete high school education, percent of 

persons with complete college education, percent of linguistic isolated households, 

percent of households with more than one persons per room, and percent of households 

without vehicles) were used in the analysis. These indicators were derived from 

Summary File 3 of the census 2000 data (US Census Bureau 2001b). 

According to the PCA, two components, which explain more than 74% of the 

original indicators, have eigen values greater than one. Therefore, these two components 

were retained for the subsequent factor analysis. Then, the varimax rotation method was 

employed to maximize the loadings of the two factors. The resulting factor loadings and 

the proportion of variance accounted by each factor are shown in Table 6.1. The two 

factors can be labeled socioeconomic factor and socio-environmental factor, respectively. 

The socio-environmental factor primarily reflects the cultural aspects such as linguistic 

isolation which may prevent some patients from effectively utilizing the healthcare 

services, while the socioeconomic factor primarily captures the economic aspects such as 

home value and household income which may influence the affordability of patients for 
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medical services. These two factors would be used as the non-spatial access factors in 

subsequent analyses. 

Table 6.1 Factor loadings and the proportion of variances explained by the principal 

components in the factor analysis 

 Factors 

Single Indicators Socio-environmental factor Socioeconomic factor 

Poverty rate 0.79 -0.40 

Unemployment rate 0.64 -0.29 

Median household income -0.37 0.84 

Median home value -0.13 0.92 

Percent of persons with complete high school 

education 

-0.75 0.49 

Percent of persons with complete college education -0.32 0.85 

Percent of linguistic isolated households 0.87 -0.07 

Percent of households with more than one persons per 

room 
0.85 -0.19 

Percent of households without vehicles 0.69 -0.29 

Proportion of total variance explained by the factor 42.1% 32.1% 

 

6.2.2 Methodology 

The analyses of this chapter were implemented in three parts. The first part 

analyzed the basic characteristics of CRC survival in Texas. Kaplan-Meier estimators 

(Kaplan and Meier 1958) were employed to calculate CRC-specific survival rates and the 

corresponding 95% confidence intervals (CI) by sex, age, race/ethnicity, and access to 

medical services. In the analyses, Texas census tracts were categorized into quartiles 

according to the spatial and non-spatial access factors. Kaplan-Meier estimators were 

used for all stages and each of the four SEER stages, respectively.  
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The second part assessed the associations between CRC survival and health care 

access using Cox proportional hazard regressions. To differentiate the influence of 

urban/rural settings, the analysis was implemented for all areas, urban areas, and non-

urban areas, respectively. The urban/non-urban status of census tracts was based on the 

Rural Urban Commuting Area (RUCA) classification (Hart 2006). More detailed rurality 

categories were not used in this chapter because of the small numbers of CRC cases in 

some categories. For each urban/rural setting, the analysis was composed of three steps. 

The first step estimated age-, sex- and stage-adjusted hazard ratios (HRs) of five-year 

CRC survival by race/ethnicity and each of the healthcare access indices (Model I). The 

second step incorporated age, sex, stage at diagnosis, race/ethnicity, and the non-spatial 

access factor into the model (Model II). The third step used all of the factors of Model II 

plus the spatial access factor into the regression (Model III). The change of the HRs was 

traced to assess the relative importance of each factor for CRC survival disparity among 

urban and rural patients. The Kaplan-Meier estimations and the Cox hazard proportional 

hazard regressions were accomplished with SPSS, version17.0 (SPSS 2008). 

The third part of the analyses focused on the spatial pattern of CRC survival. The 

spatial scan statistic (exponential model) was employed to determine whether there were 

any significant geographic variations of CRC survival in Texas. Since this study‘s 

purpose was to detect areas with significantly different survival times, both Ha (Ha: θin < 

θout) and Hb (Hb: θin > θout) of the spatial scan statistic were tested. The statistical 

significance was tested by the Monte Carlo permutation method (Huang et al. 2007). The 

spatial scan statistic analyses were implemented using SaTScan, version 9.0 (Kulldorff 

1997). 
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Four spatial scan statistic models were employed to identify areas with 

significantly longer or shorter CRC-specific survival rates, while sequentially adjusting 

for important covariates using an exponential model (Huang et al. 2007a). Specifically, 

the first model (Model a) used sex- and age-adjusted survival times. The second model 

(Model b) adjusted for sex, age, and stage at diagnosis. The covariates adjusted in the 

third model (Model c) involved all factors of the second model plus race/ethnicity. The 

fourth model (Model d) included all factors of the third model plus the non-spatial access 

factor. The covariate adjustments followed the procedures of Huang et al. (2007a) using 

MATLAB software, version 7.0 (Mathworks 2010). 

Areas with significantly longer or shorter survival times after the covariate 

adjustments were mapped using ArcGIS 9.3 (ESRI 2009). Relevant indicators such as the 

number of cases, the observed/expected ratio of CRC mortality as determined by 

SaTScan, the racial/ethnic distribution, and the population-averaged non-spatial access 

factor were reported and compared between the high- and low-risk areas. 

6.3 Results 

6.3.1 Descriptive and regression results 

Table 6.2 lists the five-year survival rates categorized by different factors. As can 

be seen in Table 6.2, the risk of five-year CRC-specific mortality is associated with stage 

at diagnosis, age, race/ethnicity, and access to healthcare services. Non-Hispanic whites 

had a significantly higher five-year survival rate than other racial/ethnic groups. Patients 

with different spatial and non-spatial access to healthcare services also differed 

significantly in the five-year survival rate. In addition, the rate of five-year survival 
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ranged from as high as 97.1% (i.e., patients younger than 50) for in-situ stage groups to 

as low as 5.1% (i.e., patients older than 80) for distant stage groups.  

Table 6.2 Five-year survival rates of early stage and late stage colorectal cancer cases by 

sex, age, race/ethnicity, and access to healthcare services in Texas, 1995-2003 

  

Five-year survival rate (%) and 95% Confidential Intervals 

 

All stages 

(n=56,734) 

In-situ stage 

(n=3,151) 

Localized stage 

(n=19,901) 

Regional stage 

(n=23,555) 

Distant stage 

(n=10,127) 

Total population 58.9 (58.4, 59.4) 93.7 (92.6, 94.6) 83.3 (82.6, 83.9) 58.4 (57.3, 58.8) 9.2 (8.6, 9.9) 

Sex      

  Male 58.8 (58.2, 59.5) 94.0 (92.5, 95.2) 83.1 (82.2, 84.0) 58.4 (57.3, 59.4) 8.7 (7.8, 9.6) 

  Female 58.9 (58.3, 59.6) 93.4 (91.7, 94.8) 83.4 (82.5, 84.3) 57.7 (56.6, 58.8) 9.8 (8.8, 10.8) 

p-value 0.14 0.44 0.96 <0.01 0.43 

Age      

   <50 50.4 (48.8, 52.0) 97.1 (92.5, 98.9) 84.1 (81.6, 86.4) 55.2 (52.6, 57.6) 12.2 (10.4, 15.2) 

   50-60 57.7 (56.5, 59.0) 96.5 (93.9, 98.0) 87.8 (86.1, 89.2) 60.1 (58.1, 62.0) 10.4 (8.9, 12.0) 

   61-70 61.3 (60.4, 62.3) 95.1 (92.9, 96.5) 85.8 (84.5, 87.0) 61.5 (60.0, 63.0) 9.6 (8.3, 11.0) 

   71-80 62.5 (61.6, 63.3) 94.9 (93.0, 96.3) 85.3 (84.2, 86.3) 59.8 (58.4, 61.1) 8.7 (7.5, 10.0) 

   >80 55.6 (54.5, 56.7) 86.1 (82.4, 89.0) 74.4 (72.8, 75.9) 51.4 (49.7, 53.1) 5.1 (3.8, 6.8) 

p-value <0.001 <0.001 <0.001 <0.001 <0.001 

Race/Ethnicity      

Non-Hispanic 

white
 

61.1 (60.6, 61.7) 94.3 (93.1, 95.3) 84.6 (83.8, 85.2) 59.5 (58.6, 60.3) 10.0 (9.3, 10.9) 

   Non-Hispanic 

black 

50.9 (49.4, 52.3) 91.5 (87.4, 94.2) 76.5 (74.1, 78.7) 53.0 (50.7, 55.2) 7.3 (5.9, 9.0) 

   Hispanic 53.2 (51.8, 54.6) 92.3 (88.1, 95.1) 79.9 (77.7, 81.9) 55.0 (52.9, 57.0) 6.9 (5.4, 8.6) 

   Asian 55.4 (50.2, 60.4) 90.0 (47.3, 98.5) 88.8 (81.4, 93.4) 53.3 (45.0, 60.8) 9.5 (4.3, 17.1) 

   Native 

American 

43.9 (21.1, 64.6) No Cases 85.7 (33.4, 97.9) 23.6 (1.3, 62.0) 14.3 (7.1, 46.5) 

p-value <0.001 0.29 <0.001 <0.001 <0.001 

Potential spatial access to oncologists   

  Q1 (High access) 59.3 (58.3, 60.2) 94.9 (92.5, 96.6) 84.2 (82.9, 85.5) 61.2 (59.6, 62.7) 9.4 (8.1, 10.8) 

  Q2 59.7 (58.8, 60.5) 93.0 (90.6, 94.9) 84.0 (82.8, 85.1) 57.2 (55.7, 58.8) 8.4 (7.2, 9.7) 

  Q3 58.0 (57.0, 59.0) 93.8 (91.6, 95.5) 83.0 (81.7, 84.3) 56.5 (55.0, 57.9) 10.3 (9.1, 11.7) 

  Q4 (Low access) 58.5 (57.5, 59.4) 93.3 (91.0, 95.0) 81.6 (80.2, 82.9) 57.7 (56.2, 59.2) 8.7 (7.4, 10.1) 

p-value <0.001 <0.001 <0.001 <0.001 <0.001 

Socioeconomic factor   

   Q1 (High status) 59.5 (58.5, 60.4) 94.9 (93.0, 96.3) 82.9 (81.7, 84.1) 57.3 (55.8, 58.7) 10.2 (8.9, 11.6) 

   Q2 59.4 (58.5, 60.3) 92.7 (90.4, 94.5) 84.4 (83.2, 85.5) 58.5 (57.0, 59.9) 9.5 (8.3, 10.7) 

   Q3 59.4 (58.4, 60.4) 93.0 (90.5, 94.8) 84.0 (82.7, 85.3) 59.2 (57.7, 60.7) 8.4 (7.2, 9.8) 

   Q4 (Low status) 56.8 (55.7, 57.8) 94.3 (91.4, 96.2) 81.1 (79.6, 82.6) 57.1 (55.4, 58.7) 8.6 (7.2, 10.1) 

p-value <0.001 <0.001 <0.001 <0.01 <0.001 

Socio-environmental factor   

   Q1 (High status) 60.2 (59.2, 61.1) 95.4 (93.1, 96.9) 85.6 (84.3, 86.7) 58.9 (57.3, 60.4) 10.8 (9.4, 12.2) 

   Q2 59.2 (58.2, 60.2) 95.3 (93.1, 96.8) 83.7 (82.4, 85.0) 59.4 (57.9, 60.9) 9.3 (8.0, 10.7) 

   Q3 58.1 (57.1, 59.0) 92.5 (90.0, 94.4) 82.0 (80.6, 83.2) 57.3 (55.8, 58.7) 8.8 (7.6, 10.1) 

   Q4 (Low status) 58.2 (57.2, 59.1) 92.2 (89.8, 94.1) 81.9 (80.6, 83.2) 56.7 (55.2, 58.2) 8.0 (6.8, 9.4) 

p-value <0.001 <0.01 <0.001 <0.01 <0.001 
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Table 6.3 shows the HRs and the 95% confident intervals (CIs) of the Cox 

proportional regressions. Asians and Native Americans were excluded from the 

regression analyses because of their relatively smaller numbers. The socio-environmental 

factor was not involved in the regression because, according to a preliminary analysis, 

they are not significantly associated with CRC survival at neither setting. Age-, sex and 

stage-adjusted regression indicates that non-Hispanic black (HR: 1.33, 95% CI: 1.28 to 

1.39) and Hispanic (HR: 1.16, 95% CI: 1.11 to 1.21) CRC patients had significantly 

higher risks of five-year CRC-specific mortality than non-Hispanic white patients. 

Patients with the lowest socioeconomic access to healthcare had slightly higher (HR: 1.09, 

95% CI: 1.04 to 1.14) risk of five-year CRC-specific mortality than those with the highest 

socioeconomic access. The incorporation of both the socioeconomic factor and 

race/ethnicity (Model II) in the regression led to slight reductions of the HRs for 

disadvantaged groups but did not attenuate the significance of disparities by the two 

factors. The regressions revealed no significant differences for five-year CRC-specific 

survival based on potential spatial access to oncologists across the state.  

Table 6.3 Hazard ratios (HRs) of colorectal cancer five-year survival by race/ethnicity 

and access to medical services  

 HR of Model I
a
 (95% 

CI) 

HR of Model II 

(95% CI) 

HR of Model III 

(95% CI) 

All areas (n=55,941)    

 Race/ Ethnicity 
      Non-Hispanic white

 
1 1 1 

      Non-Hispanic black 1.33
*
 (1.28, 1.39) 1.32

*
 (1.27, 1.38) 1.32

*
 (1.27, 1.38) 

      Hispanic 1.16
**

 (1.11, 1.21) 1.16
**

 (1.11, 1.21) 1.16
**

 (1.11, 1.21) 

Socioeconomic factor    

      Q1 (High access) 1 1 1 

      Q2 1.03 (0.99, 1.08) 1.02 (0.97, 1.06) 1.02 (0.97, 1.06) 

      Q3 1.07
**

 (1.03, 1.11) 1.05
***

 (1.00, 1.10) 1.05
***

 (1.00, 1.09) 

      Q4 (Low access) 1.09
**

 (1.04, 1.14) 1.06
**

 (1.02, 1.13) 1.06
**

 (1.02, 1.11) 

Spatial access to oncologists    

      Q1 (High access) 1  1 

      Q2 1.02 (0.97, 1.06)  1.03 (0.98, 1.07) 

      Q3 1.00 (0.96, 1.04)  1.02 (0.97, 1.06) 
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 a
 Model I adjusted for age, sex, and stage at diagnosis. Model II adjusted for all factors of Model I, 

race/ethnicity, and the non-spatial access factor. Model III adjusted for all factors of Model II plus potential 

spatial access to oncologists. 
*
 p<0.001; 

**
 p<0.01; 

***
 p<0.05 

A separate analysis of data in urban areas gives results similar to those at the state 

level, as race/ethnicity and the non-spatial access factor are associated with significant 

disparities in CRC five-year survival. However, the analysis of non-urban areas revealed 

influences of the spatial access factor, as patients with the lowest potential spatial access 

to oncologists (HR: 1.10, 95% CI: 1.01 to 1.39) had significantly higher risk of five-year 

CRC-specific mortality than those with the highest potential spatial access. This 

relationship remained stable (HR: 1.09, 95% CI: 1.00 to 1.36) after adjusting for 

      Q4 (Low access) 1.00 (0.96, 1.04)  1.01 (0.97, 1.06) 

Urban areas (n=43,242)    

 Race/ Ethnicity    

      Non-Hispanic white
 

1 1 1 

      Non-Hispanic black 1.34
*
 (1.27, 1.40) 1.32

*
 (1.27, 1.39) 1.32

*
 (1.27, 1.39) 

      Hispanic 1.17
**

 (1.12, 1.23) 1.16
**

 (1.11, 1.21) 1.16
**

 (1.11, 1.21) 

Socioeconomic factor    

      Q1 (High access) 1 1 1 

      Q2 1.04 (0.99, 1.08) 1.02 (0.98, 1.07) 1.02 (0.98, 1.07) 

      Q3 1.07
**

 (1.03, 1.12) 1.05
***

 (1.01, 1.10) 1.05
***

 (1.01, 1.10) 

      Q4 (Low access) 1.09
**

 (1.04, 1.14) 1.06
***

 (1.01, 1.10) 1.06
***

 (1.01, 1.11) 

Spatial access to oncologists    

      Q1 (High access) 1  1 

      Q2 1.02 (0.97, 1.06)  1.03 (0.98, 1.07) 

      Q3 1.00 (0.96, 1.04)  1.02 (0.97, 1.06) 

      Q4 (Low access) 1.00 (0.95, 1.04)  1.00 (0.95, 1.05) 

Non-urban areas (n=12,699)    

 Race/ Ethnicity    

      Non-Hispanic white
 

1 1 1 

      Non-Hispanic black 1.33
*
 (1.20, 1.48) 1.33

*
 (1.20, 1.49) 1.34

*
 (1.20, 1.49) 

      Hispanic 1.13
**

 (1.03, 1.25) 1.14
**

 (1.02, 1.26) 1.13
**

 (1.02, 1.26) 

Socioeconomic factor    

      Q1 (High access) 1 1 1 

      Q2 1.02 (0.98, 1.08) 1.01 (0.95, 1.08) 1.01 (0.96, 1.08) 

      Q3 1.04
***

 (1.00, 1.09) 1.03
***

 (1.00, 1.08) 1.03
***

 (1.00, 1.08) 

      Q4 (Low access) 1.07
***

 (1.01, 1.10) 1.06
***

 (1.01, 1.11) 1.06
***

 (1.00, 1.12) 

Spatial access to oncologists    

      Q1 (High access) 1  1 

      Q2 0.95 (0.89, 1.13)  0.95 (0.90, 1.13) 

      Q3 0.98 (0.83, 1.16)  0.98 (0.83, 1.16) 

      Q4 (Low access) 1.10
***

 (1.01, 1.39)  1.09
***

 (1.00, 1.36) 

Table 6.3-Continued 
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race/ethnicity and the non-spatial access factor. In addition, the non-spatial access factor 

had less influence on CRC survival in non-urban areas than in urban areas. 

6.3.2 Geographic analysis results 

Several regions of Texas appeared to experience significant differences in CRC 

survival (Figure 6.1). Relevant characteristics of these regions are listed in Table 6.4. 

Based on age- and sex-adjusted survival times (Figure 6.1.a), one area with 

longer-than-expected survival times (Area 1) and two areas with shorter-than-expected 

survival times (Areas 2 and 3) were detected. Area 1 is located between the cities of 

Austin and Houston and is characterized by a higher percentage of non-Hispanic whites 

(54.8%), a relatively advantaged socioeconomic status (-0.53) (note: the non-spatial 

access factor for multiple census tracts as a whole was calculated as the population-

weighted average of these census tracts), and a low rate of late-stage CRC diagnosis 

(57.4%). The O/E ratio of CRC-specific mortality for this area is 0.89 (p < 0.001). Area 2 

is located at the center of Dallas County and is characterized by a high proportion of non-

Hispanic blacks (64.4%), a relatively disadvantaged socioeconomic status (0.56), and a 

high rate of late-stage CRC diagnosis (69.0%). CRC patients of this area had an excessive 

risk of CRC-specific mortality (O/E = 1.53, p < 0.001). Area 3 is in Bexar County of 

central Texas and is characterized by a high proportion of Hispanic residents, a relatively 

disadvantaged socioeconomic status (0.45), and a high rate of late-stage CRC diagnosis 

(62.5%). The O/E ratio of CRC mortality is 1.52 (p < 0.01) for this area. 
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Figure 6.1 Spatial clusters of colorectal cancer survival in Texas (1995-2003) (a). 

Survival time adjusted for sex and age. (b). Survival time adjusted for sex, age, and stage 

at diagnosis. (c). Survival time adjusted for sex, age, stage at diagnosis, and race/ethnicity. 

(d). Survival time adjusted for sex, age, stage at diagnosis, race/ethnicity, and the 

socioeconomic factor.
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Table 6.4 Case characteristics for areas with significantly different risks of colorectal-

cancer-specific survival  

Survival 

time 

adjusted for:  

Clus

ter 

area 

Observed/Ex

pected ratio 

of death 

Percent of 

non-Hispanic 

whites 

Percent of 

non-Hispanic 

blacks 

Percent of 

Hispanics 

Socioec

onomic  

factor 

Late stage 

cases (%) 

a. Age and sex      

 1 0.89 54.8 12.5 24.2 -0.53 57.4 

 2 1.53 4.4 64.4 30.0 0.56 69.0 

 3 1.52 10.1 3.9 84.9 0.45 62.5 

        

b. Age, sex, and stage at diagnosis    

 1 0.90 54.8 12.5 24.2 -0.53 57.4 

 2 1.49 4.4 64.4 30.0 0.56 69.0 

 3 1.38 10.1 3.9 84.9 0.45 62.5 

        

c. Age, sex, stage at diagnosis, and race/ethnicity   

 1 0.91 54.8 12.5 24.2 -0.53 57.4 

        

d. Age, sex, stage at diagnosis, race/ethnicity, and non-spatial access to healthcare services 

 1 0.92 54.8 12.5 24.2 -0.53 57.4 

Additional adjustments for diagnosis stage, race/ethnicity, and the socioeconomic 

factor led to the attenuation of CRC mortality risks in some clusters and the elimination 

of some clusters. For example, the O/E ratio of Area 1 gradually approaches one (0.89-

>0.90->0.91->0.92) with the adjustments, indicating that the lower risk of CRC mortality 

of this area is partly related to a lower rate of late-stage CRC diagnosis, better non-spatial 

access, and a higher percentage of non-Hispanic whites. Areas 2 and 3 vanished after 

adjusting for race/ethnicity, suggesting a significantly positive correlation between the 

percentage of Hispanic and non-Hispanic black residents and CRC-specific mortality 

risks in these areas. The adjustments did not produce any new apparent clusters. Since 

there was no significant association between the spatial access factor and CRC-survival 

across the entire state, adjusting for the spatial access factor was unnecessary. 

The geographic analysis described above follows a covariate-adjustment sequence 

of ―age-and-sex->stage at diagnosis->race/ethnicity->socioeconomic factor.‖ Since the 

sequence of covariate-adjustment might influence the results, an alternative sequence (i.e., 
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―age-and-sex->stage at diagnosis-> socioeconomic factor ->race/ethnicity‖) was also 

evaluated in the analysis. The evaluation did not suggest any obvious differences between 

the results corresponding to the two sequences about the locations of spatial clusters and 

the change of HRs with the covariate adjustment. Consequently, the results of the 

alternative sequence are not shown here.  

6.4 Discussions and Conclusions 

This chapter analyzed the influence of multiple factors on CRC survival in Texas. 

The results indicated that, after adjusting for important covariates, CRC survival was 

significantly associated with the non-spatial access factor across the state of Texas and 

with the spatial access factor in non-urban areas of Texas. However, the influences of 

both spatial and non-spatial access factor were much weaker than that of race/ethnicity. 

The geographic analyses suggest that CRC survival in Texas varies by place of 

residence. The spatial scan statistic method based on covariate-adjusted survival times 

detected several areas with significantly different CRC survival likelihood. Further 

adjustments for race/ethnicity and the non-spatial access factor eliminated the areas with 

significantly shorter CRC survival periods. However, the area with the longest CRC 

survival still remained unchanged.  

CRC survival disparities by race/ethnicity, the non-spatial access factor, and 

geographic location revealed in this paper are similar to previous findings of other studies 

undertaken in the United States (Clegg et al. 2002; Du et al. 2007; Henry et al. 2009; 

Huang et al. 2007b; McDavid et al. 2003; Wudel et al. 2002). For example, Hispanics, 

blacks, and individuals with limited non-spatial access to healthcare have been 

systematically experiencing lower CRC survival rates than whites and those from affluent 
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areas (Clegg et al. 2002; Du et al. 2007). Studies in Los Angeles County, California 

(Huang et al. 2007b), and New Jersey (Henry et al. 2009) revealed that several areas had 

significantly shorter survival times after adjusting for important covariates. These areas, 

like those identified in this study, were characterized by high proportions of black and 

Hispanic residents and poor non-spatial access to healthcare services.  

The different associations between spatial access to oncologists and CRC survival 

in urban and non-urban settings may reflect the uneven distribution of oncologists of the 

two settings. As most oncologists were practicing in metropolitan areas, the spatial access 

of these areas might have reached a ‗threshold value‘ above which the influence of spatial 

access drastically diminishes. In other words, there were enough oncologists (and 

corresponding cancer treatment services) within these areas that use of the service was 

not influenced by the supply-to-demand ratio. However, rural areas were characterized by 

poor spatial access perhaps below the ‗threshold value‘ and use of the service was heavily 

influenced by both the supply-to-demand ratio and travel distance. Future studies based 

on patient survey and/or oncologist-visiting data could be used to verify this finding. 

The initial spatial pattern of age-, sex, and stage-adjusted CRC survival might 

reflect the geographic distributions of social groups who have greater or less chance of 

surviving from CRC regardless of age, sex, and stage at diagnosis. Blacks, Hispanics and 

other patients from areas with poor non-spatial access may possess greater risks of CRC-

specific mortality than whites and those who live in affluent areas (Clegg et al. 2002; Du 

et al. 2007). In this study, the area with significantly longer CRC survival was found to 

be neighborhoods (i.e., the Austin-Houston connecting area) characterized by higher than 

average percentages of non-Hispanic white, wealthy residents, whereas areas with worse 
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CRC survival were predominantly Hispanic or non-Hispanic black neighborhoods with 

low non-spatial access indices (i.e., Areas 2 and 3 in Figure 3). This result simply 

reinforces the aforementioned discussion of the influence of demographic and non-spatial 

access factors on CRC survival. 

It is unclear why CRC patients in the relatively rural region separating Austin and 

Houston had longer-than-expected survival times after factoring in race/ethnicity and the 

non-spatial access factor. One possible reason may be this area‘s closer proximity to 

cancer treatment services in both urban areas. As shown in the geocoded distribution, 114 

out of the 204 oncologists in Texas were concentrated in or near this area. The University 

of Texas MD Anderson Cancer Center, a world-class center for cancer treatment, is 

located at the edge of this area. The advanced treatment facilities and techniques of the 

MD Anderson Cancer Center might greatly influence the CRC survival of area patients. 

Other factors that might promote CRC survival in this area are health insurance coverage 

and doctor referral patterns. More investigation is needed to assess how these factors 

separately or collectively facilitate CRC survival in this area. 

The results of this chapter have important practical implications for government 

intervention strategies. The insignificant association between spatial access to healthcare 

services and CRC survival in urban areas implies that it is not necessary to increase 

oncology resources in these areas. Health programs in these areas should be encouraged 

toward improving on the non-spatial factors that influence survival, aspects such as 

health insurance coverage and language barriers. On the other hand, the significant 

association between spatial access to oncologists and CRC survival in rural areas 

suggests that promotion of spatially accessible cancer treatment services in areas distant 
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from metropolitan centers might have more significant impacts on improvement of CRC 

survival in rural areas. In addition, the areas with significantly shorter CRC survival 

times, as determined by the geographic analysis, might be good places to initiate 

programs aiming to enhance CRC prevention and treatment services as well as CRC 

awareness education.  

Some limitations of this study deserve mention when describing and interpreting 

the results. First, the results could have been influenced by the exclusion of cases and 

data as a result of incomplete information. Although this study found no significant 

differences in individual and neighborhood characteristics between the excluded cases 

(n=16,004) and the study cases, the former accounted for about 22% of the total 

population. This could dampen confidence in the results of this study. Second, the role of 

health insurance coverage was not investigated due to the lack of availability of data. As 

suggested by previous studies, the type of health insurance (e.g., commercial insurance, 

Medicaid, and Medicare) and the deductibles they carry may influence the quality of the 

treatment delivered and, consequently, the survival time of the patient (Du et al. 2007; 

McDavid et al. 2003). Previous studies that considered individual level health insurance 

information were primarily based on the national samples (e.g., the SEER data), 

Medicaid or Medicare enrollment data, or hospital treatment records. Similar information 

is not available in the Texas cancer registry datasets. Third, this chapter did not examine 

the all-cause survival of CRC, which means other competing risks of mortality were 

ignored in the analysis. This may further limit the usefulness of the results. In addition, 

SaTScan uses circles to define cluster shapes. Real clusters may not be circular in size, 
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and the circular shapes of the clusters presented in Figure 6.1 should not give the false 

impression that the clusters are circular. 

Despite these limitations, this research is the first US study to examine the 

independent roles of spatial and non-spatial accesses to medical services on CRC survival. 

Results regarding disparities in terms of race/ethnicity, geographic location, and access to 

healthcare services can help us better understand how these factors would determine CRC 

survival. These results can benefit future cancer-disparity elimination programs 
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CHAPTER 7 

CONCLUSION 

7.1 Results and Discussions 

The major objective of this research is to investigate disparities of CRC survival 

in Texas from race/ethnicity, SES, geographic location, and potential spatial access to 

medical services. It was hypothesized that race/ethnicity, area SES, geographic location, 

and potential spatial access to medical services were significantly related to CRC 

diagnosis and CRC-specific survival. It was also hypothesized that race/ethnicity and 

SES were the major factors influencing CRC survival disparities in Texas. To verify 

these hypotheses, this research employs a variety of spatial and non-spatial methods to 

investigate the disparities. 

Secondly, this research analyzes potential spatial access to medical services that 

might be associated with CRC stage at diagnosis and CRC-specific survival. This 

purpose leads to two questions: 1) how can we accurately estimate and appropriately 

present potential spatial access to medical services, and 2) did racial/ethnic, 

socioeconomic, and geographic groups in Texas have different potential spatial access to 

CRC-related services? To answer those two questions, a relative spatial access 

assessment approach was proposed to estimate potential spatial accesses to primary care 

and cancer treatment services in Texas.  
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The sensitivity assessment indicated that the proposed approach of spatial access 

presentation could effectively minimize the uncertainty problem of gravity-based spatial 

access models. The analyses of potential spatial access to CRC prevention and treatment 

services revealed that rural residents of Texas had disadvantaged potential spatial access 

to CRC services compared to residents of other areas. Potential spatial access to CRC 

services also differed among racial/ethnic and socioeconomic groups but the differences 

were less obvious than the rural/urban differences. 

The regression analyses identified significant disparities of CRC stage at 

diagnosis and CRC-specific survival in Texas from the aspects of race/ethnicity, SES, 

and geographic location. Native American, non-Hispanic black, and Hispanic CRC 

patients experienced higher risks of late stage CRC diagnosis and CRC-specific mortality 

than non-Hispanic white and Asian patients. Lower SES corresponded to higher risks of 

unfavorable CRC outcomes. Multivariate analyses indicated that SES and race/ethnicity 

are the key independent factors influencing disparities of CRC stage at diagnosis and 

CRC-specific survival. Decreased potential spatial access to PCPs was found to be 

associated with elevated risk of late stage diagnosis for CRC patients, although the 

association was much weaker than those between CRC diagnosis and SES or 

race/ethnicity. Potential spatial access to oncologists was found to be associated with 

CRC-specific survival in non-urban areas only. 

The geographic analyses detected inhomogeneous spatial patterns of CRC stage at 

diagnosis and CRC survival in Texas. Areas with significantly different risks of late stage 

CRC diagnosis and CRC survival were identified. Generally, areas with unfavorable 

CRC outcomes had higher proportions of Hispanics and blacks, lower proportions of 
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non-Hispanic whites, and lower SES than other areas. For CRC-specific survival, the 

adjustments for SES and race/ethnicity did not eliminate the area with longer-than-

expected survival times, suggesting some other reasons for better CRC-specific survival 

in this area.  

Results of this study may be useful for reducing CRC survival disparities in Texas 

in several ways. First, these results could serve as a complementary guideline for 

government intervention programs. Alleviating the high burden of cancer survival for 

disadvantaged social groups has been identified as a long-term priority by Texas health 

departments (Texas Cancer Council 2006). Some preliminary strategies and action steps 

have been proposed to serve this priority (Texas Cancer Council 2006). However, these 

strategies and plans lack a basis from which health professionals can identify whom, 

where, and how the intervention programs should be implemented. The comprehensive 

information about racial/ethnic, socioeconomic, and geographic characteristics of CRC 

survival obtained in this research could fill this gap.  

For example, since race/ethnicity and SES were the independently important 

factors for CRC stage at diagnosis and CRC five-year survival, the most vulnerable 

population should be identified as Hispanics and non-Hispanic blacks from low SES 

areas. In addition, neighborhoods with higher proportions of late stage CRC cases and 

higher risks of CRC-specific mortality provide appropriate candidate sites for future 

intervention. Health professionals could strengthen CRC prevention education, promote 

CRC screening, and ensure appropriate treatment services in these areas. Existing 

programs such as the Patient Navigation could also be implemented in these areas to help 

vulnerable population groups to access CRC screening facilities and treatment services 
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more conveniently (Freund et al. 2008; Jandorf et al. 2005). Medical-cost alleviation 

programs could target areas with significantly shorter CRC survival times to ensure that 

patients in those areas could obtain timely and appropriate treatment services. 

Second, this research revealed some omission of previous CRC prevention works. 

Current CRC prevention guidelines recommend that individuals age 50 and older should 

regularly take CRC screening examinations (ACS 2010). However, this study found that, 

although Texans under the age of 50 had a smaller CRC incidence rate than the older 

ones, they had a higher probability of presenting with a late stage CRC, if diagnosed. A 

further examination suggested that ages at diagnosis for most of these cases were 

between 40 and 50. The high risk of late stage CRC diagnosis of this age group also made 

them less likely to attain the five-year survival than other age groups. This finding 

emphasizes the necessity to enhance CRC screening among younger groups in Texas. 

Age 40 might be an appropriate starting age for regular CRC screening.  

In addition, analysis results about potential spatial access to CRC services could 

benefit the health resource allocation work of Texas. The research indicated that most 

Texans had adequate spatial access to CRC-related services. This information suggests 

that planners could avoid excessive investments in allocating human and hardware 

resources but rather focus more on addressing barriers introduced by non-spatial factors 

such as limited health insurance coverage and cultural differences.  

7.2 Contributions and Limitations 

The primary contribution of this dissertation is that it extended people‘s 

understanding about the disparities of CRC survival in Texas. Texas has different socio-

demographic and geographic characteristics compared to other states. For example, the 
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proportion of Hispanics in Texas was 32% in 2000, which is much higher than most of 

other states (US Census Bureau 2001a). Texas also had the second largest number of 

foreign-born Hispanics, who were experiencing higher burdens of unfavorable cancer 

outcomes than other Hispanics (US Census Bureau 2001a; Ward et al. 2004). In addition, 

there is a 1,000-mile US-Mexico border in Texas which winds through an extremely rural 

region with predominantly Hispanic residents. These characteristics imply that Texas 

might have different characteristics of CRC survival disparity than other states or the 

whole nation. It is necessary to conduct separate analyses on CRC survival disparities for 

Texas. However, such studies have been rare. This study for the first time 

comprehensively examined racial/ethnic, socioeconomic, and geographic disparities of 

CRC diagnosis stage and CRC-specific survival at a fine geographic scale. The results 

did reveal a distinct scenario of CRC survival disparity of Texas. 

The second major contribution of this research is that it showed how GIS and 

spatial analysis techniques could facilitate and complement traditional statistical methods 

in health disparity studies. Traditional statistical methods, which were primarily from the 

field of social epidemiology, could attain great clarity and precision in revealing how 

socio-demographic factors separately and collectively influence health outcomes. This 

information is important for detecting the disparity but insufficient for health disparity 

elimination. Identifying areas with significantly higher burden of health is a first 

important step for any meaningful intervention. However, social epidemiological 

methods could not provide such information. The spatial adaptive filtering method and 

the spatial scan statistics used in this research could effectively remedy this shortcoming. 

By comparing the health rates inside and outside a scanning window, these methods 
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could determine which areas had excessive or low risks of the health outcome and 

whether the differences were significant or not. By sequentially adjusting for important 

prognostic factors, one could also determine whether the different health risks of these 

areas are due to sex, age, SES, race/ethnicity, or other factors. The identification of these 

areas not only collaborates the results of traditional statistical areas but also provides 

information about appropriate sites for subsequent disparity-elimination work. 

In addition, this research comprehensively reviewed current spatial access models 

and proposed an approach to better express the results of gravity-based spatial access 

models. It used a series of Gaussian impedance coefficients to assess the model‘s 

sensitivity to distance impedance and proposed a relative spatial access approach to 

present spatial access results. The evaluations demonstrated that spatial access ratio is 

more stable to the variance of distance impedance than the commonly-used spatial access 

index. This approach of spatial access estimation, when used along with other socio-

demographic indicators, has a great potential in identifying areas and population groups 

with limited access to medical services.   

This study has a number of limitations. First, as discussed in Chapters 5 and 6, the 

data exclusion could lower the reliability of the results. About 22% of the original CRC 

cases were excluded due to the absence of important covariates. Although no significant 

differences in racial/ethnic, socioeconomic, and geographic distributions were observed 

between the excluded cases and the retained cases, the results of this study still could be 

slightly influenced. Second, this study did not incorporate health insurance information in 

the analyses. Compared to poverty status, health insurance coverage might have a more 

straightforward impact on CRC outcomes (Du et al. 2007). In addition, health insurance 
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status, when considered along with potential spatial access to CRC medical services, 

could more accurately delineate people‘s access to CRC services. However, the lack of 

individual level or fine scale health insurance data prevented this study from investigating 

how health insurance influences CRC stage at diagnosis and CRC-specific survival. 

Third, this study was restrained by the limitations of current spatial analysis 

methods. For example, the geographic analysis of late stage CRC diagnosis in Chapter 4 

was only adjusted for sex and age. Using indirect standardization to adjust for more 

factors such as SES, race/ethnicity, and potential spatial access to CRC services might 

lead to many small-number population groups and, consequently, unreliable estimations. 

However, a mature method for adjusting multiple covariates for such analyses has not 

been available. This limitation prevents one from further exploring the true reasons for 

the geographic disparity of CRC stage at diagnosis. Also unavailable was a method for 

characterizing the overall spatial pattern of cancer survival. This study only detected the 

spatial clusters of CRC survival, that is, areas with significantly different survival times. 

The overall spatial distribution of CRC survival for Texas would be good background 

information for interpreting these clusters. Some researchers have used cancer mortality-

to-incidence ratios (MIR) to illustrate the spatial patterns of cancer survival (Hebert et al. 

2009). However, MIR fails to consider cancer censoring information, an indispensable 

factor for cancer survival analysis. In addition, although this research has pointed out 

possible influences of area-level socioeconomic indicators and spatial dependence on the 

results, it did not provide effective solutions to these two problems. 
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7.3 Future Research 

Since this study has identified population groups and geographic areas with 

significantly divergent risks of late stage CRC diagnosis and CRC-specific survival after 

adjusting for important prognostic factors, the next focus could be on comparing the 

differences of medical care in terms of access, quality, and utilization among these 

population groups and geographic areas. For persons older than 65, such information 

could be obtained by linking the cancer registry data with the Medicare claim records 

(Schootman et al. 2009). Other determinants of CRC stage at diagnosis and CRC survival 

such as diet and physical inactivity also could be examined. Surveying cancer patients 

and cancer survivors with different socioeconomic and racial/ethnic backgrounds as well 

as individuals from areas with significantly different CRC risks may reveal some 

unreported preventive and protective efforts that can positively influence CRC. These 

effects could be replicated for other populations or areas to reduce CRC disparities. 

 Another extension of this research should consider the temporal trend of CRC 

survival disparities. The time span of this research is nine years (1995 to 2003). During 

this time period, there might be some minor fluctuations of the racial/ethnic, 

socioeconomic, or geographic characteristics of CRC survival. A thorough investigation 

of these trends would not only allow one to better understand how CRC disparities 

develop over time but also provide more precise information for CRC prevention. Some 

studies have investigated the spatial-temporal disparities of breast cancer and prostate 

cancer in Texas (Hsu et al. 2004; Hsu et al. 2007). Their methods could also be used for 

CRC survival disparities.
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