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VARYING DOMAINS IN A GENERAL CLASS OF SUBLINEAR
ELLIPTIC PROBLEMS

SANTIAGO CANO-CASANOVA & JULIÁN LÓPEZ-GÓMEZ

Abstract. In this paper we use the linear theory developed in [8] and [9] to

show the continuous dependence of the positive solutions of a general class
of sublinear elliptic boundary value problems of mixed type with respect to

the underlying domain. Our main theorem completes the results of Dan-

ers and Dancer [12] –and the references there in–, where the classical Robin
problem was dealt with. Besides the fact that we are working with mixed

non-classical boundary conditions, it must be mentioned that this paper is

considering problems where bifurcation from infinity occurs; now a days, ana-
lyzing these general problems, where the coefficients are allowed to vary and

eventually vanishing or changing sign, is focusing a great deal of attention –as
they give rise to metasolutions (e.g.,[20])–.

1. Introduction

In this paper we analyze the continuous dependence with respect to the domain
Ω of the positive solutions of the following sublinear weighted elliptic boundary
value problem of mixed type

Lu = λW (x)u− a(x)f(x, u)u in Ω ,

B(b)u = 0 on ∂Ω ,
(1.1)

where a ∈ L∞(Ω) belongs to a certain large class of nonnegative potentials, to be
introduced later, and W ∈ L∞(Ω).

Throughout this paper we make the following assumptions:
(a) The domain Ω is bounded in RN , N ≥ 1, and of class C2, i.e., Ω̄ is an N -
dimensional compact connected submanifold of RN with boundary ∂Ω of class C2.
(b) λ ∈ R, W ∈ L∞(Ω) and the differential operator

L := −
N∑

i,j=1

αij(x)
∂2

∂xi∂xj
+

N∑
i=1

αi(x)
∂

∂xi
+ α0(x) (1.2)

is uniformly strongly elliptic of second order in Ω with

αij = αji ∈ C1(Ω̄) , αi ∈ C(Ω̄) , α0 ∈ L∞(Ω) , 1 ≤ i , j ≤ N . (1.3)
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Subsequently, we denote by µ > 0 the ellipticity constant of L in Ω. Then, for any
ξ ∈ RN \ {0} and x ∈ Ω̄ we have that

N∑
i,j=1

αij(x) ξi ξj ≥ µ |ξ|2 .

(c) The boundary operator is

B(b)u :=

{
u on Γ0 ,

∂νu + bu on Γ1 ,
(1.4)

where Γ0 and Γ1 are two disjoint open and closed subsets of ∂Ω with Γ0∪Γ1 = ∂Ω,
b ∈ C(Γ1), and

ν = (ν1, . . . , νN ) ∈ C1(Γ1; RN )

is an outward pointing nowhere tangent vector field. Necessarily, Γ0 and Γ1 possess
finitely many components. Note that B(b) is the Dirichlet boundary operator on
Γ0, denoted in the sequel by D, and the Neumann or a first order regular oblique
derivative boundary operator on Γ1. It should be pointed out that either Γ0 or Γ1

might be empty.
(d) The function f : Ω̄× [0,∞) → R satisfies

f ∈ C1(Ω̄× [0,∞); R) , lim
u↗∞

f(·, u) = +∞ uniformly in Ω̄ , (1.5)

∂uf(·, u) > 0 for all u ≥ 0 . (1.6)

Thanks to (1.5), for each M > 0 there exists CM > 0 such that

f(x, ξ) > M for each (x, ξ) ∈ Ω̄× [CM ,∞) . (1.7)

In the sequel, given M > 0, we denote by CM any fixed positive constant satisfying
(1.7). It should be noted that f(·, 0) ∈ C1(Ω̄; R) and that there is no sign restriction
on f(·, 0) in Ω. Moreover, (1.6) implies

f(·, 0) = inf
ξ>0

f(·, ξ) .

In the sequel, for each λ ∈ R, we denote

L(λ) := L − λW , Lf := L+ af(·, 0) , Lf (λ) := Lf − λW . (1.8)

These operators are uniformly strongly elliptic in Ω with the same ellipticity con-
stant µ > 0 as L.

As far as to the weight function a ∈ L∞(Ω) concerns, we assume that a ∈ A(Ω)
where A(Ω) is the class of nonnegative bounded measurable real weight functions
a in Ω for which there exist an open subset Ω0

a of Ω and a compact subset K = Ka

of Ω̄ with Lebesgue measure zero such that

K ∩ (Ω̄0
a ∪ Γ1) = ∅ , (1.9)

Ω+
a := {x ∈ Ω : a(x) > 0} = Ω \ (Ω̄0

a ∪K) , (1.10)

and each of the following four conditions is satisfied:
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(A1) Ω0
a possesses a finite number of components of class C2, say Ω0,j

a , 1 ≤ j ≤ m,
such that Ω̄0,i

a ∩ Ω̄0,j
a = ∅ if i 6= j, and

dist(Γ1, ∂Ω0
a ∩ Ω) > 0 . (1.11)

Thus, if we denote by Γi
1, 1 ≤ i ≤ n1, the components of Γ1, then for each

1 ≤ i ≤ n1 either Γi
1 ⊂ ∂Ω0

a or else Γi
1 ∩ ∂Ω0

a = ∅. Moreover, if Γi
1 ⊂ ∂Ω0

a,
then Γi

1 must be a component of ∂Ω0
a. Indeed, if Γi

1 ∩ ∂Ω0
a 6= ∅ but Γi

1 is
not a component of ∂Ω0

a, then

dist(Γi
1, ∂Ω0

a ∩ Ω) = 0

and, hence, (1.11) fails.
(A2) Let {i1, . . . , ip} denote the subset of {1, . . . , n1} for which

Γj
1 ∩ ∂Ω0

a = ∅ ⇐⇒ j ∈ {i1, . . . , ip} .

Then, a is bounded away from zero on any compact subset of

Ω+
a ∪

p⋃
j=1

Γij

1 .

Note that if Γ1 ⊂ ∂Ω0
a, then we are only imposing that a is bounded away

from zero on any compact subset of Ω+
a .

(A3) Let Γi
0, 1 ≤ i ≤ n0, denote the components of Γ0, and let {i1, . . . , iq} be

the subset of {1, . . . , n0} for which

(∂Ω0
a ∪K) ∩ Γj

0 6= ∅ ⇐⇒ j ∈ {i1, . . . , iq} .

Then, a is bounded away from zero on any compact subset of

Ω+
a ∪ [

q⋃
j=1

Γij

0 \ (∂Ω0
a ∪K)] .

Note that if (∂Ω0
a ∪ K) ∩ Γ0 = ∅, then we are only imposing that a is

bounded away from zero on any compact subset of Ω+
a .

(A4) For any η > 0 there exist a natural number `(η) ≥ 1 and `(η) open subsets
of RN , Gη

j , 1 ≤ j ≤ `(η), with |Gη
j | < η, 1 ≤ j ≤ `(η), such that

Ḡη
i ∩ Ḡη

j = ∅ if i 6= j , K ⊂
`(η)⋃
j=1

Gη
j ,

and for each 1 ≤ j ≤ `(η) the open set Gη
j ∩Ω is connected and of class C2.

More precisely, under the previous assumptions it will be said that a ∈ AΓ0,Γ1(Ω).
In this case, the abstract theory developed by the authors in [8] and [7] can be
applied to deal with (1.1).

Subsequently, we also consider the class of weight functions A+
Γ0,Γ1

(Ω) consisting
of the elements a ∈ AΓ0,Γ1(Ω) for which Ω0

a = ∅. Note that if a ∈ A+
Γ0,Γ1

(Ω) then
(1.9) and (1.10) become to

K ∩ Γ1 = ∅ , Ω+
a := {x ∈ Ω : a(x) > 0 } = Ω \K .

Moreover, if we denote by Γi
0, 1 ≤ i ≤ n0, the components of Γ0 and by {i1, . . . , iq}

the subset of {1, . . . , n0} for which K ∩ Γj
0 6= ∅ if and only if j ∈ {i1, . . . , iq}, then
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a is bounded away from zero on any compact subset of

Ω+
a ∪ Γ1 ∪ (

q⋃
j=1

Γij

0 \K) .

When, in addition, we assume that K ∩Γ0 = ∅, then we are only imposing that a is
bounded away from zero on any compact subset of Ω+

a ∪ Γ1. Also, (A4) is satisfied
if a ∈ A+

Γ0,Γ1
(Ω).

In Figure 1 we have represented a typical configuration for which a ∈ AΓ0,Γ1(Ω).
In this case,

Γ1 = Γ1
1 ∪ Γ2

1 , Γ0 = Γ1
0 ∪ Γ2

0 ,

and Ω+
a –dark area–, as well as Ω0

a –white area–, consists of two components; the
compact set K consisting of a compact arc of curve.

a=0

a=0

a>0

a>0K

Γ

Γ

Γ

Γ

1

1

1

1

2

0

0

2

Figure 1. An admissible configuration

For the special configuration shown in Figure 1, conditions (A1) and (A4) are
trivially satisfied. Moreover, condition (A2) is satisfied if, and only if, a is bounded
away from zero in any compact subset of Ω+

a ∪Γ1
1, and condition (A3) holds if, and

only if, a is bounded away from zero in any compact subset of Ω+
a ∪ (Γ2

0 \∂Ω0
a). We

point out that a can vanish on the component Γ1
0.

The main result of this paper shows that the positive solutions of (1.1) vary
continuously with the domain Ω when Ω is perturbed through some of the com-
ponents of Γ0, keeping fixed, simultaneously, all the components of Γ1. We point
out that the coefficient b(x) arising in the formulation of the boundary operator
can vanish and change of sign. Thus, as a result of the theory developed by Hale
and his associates (cf., e.g., Hale and Vegas [17] and Arrieta et al. [5]), the positive
solutions of (1.1) do not vary continuously with Ω when Γ1 6= ∅ and b = 0 on some
of the components of Γ1 –in general–; from this point of view, the theory developed
in this paper is optimal. It must be mentioned that Dancer and Daners [12] treated
the same problem that we are dealing with here, but for a more restrictive family
of nonlinear elliptic boundary value problems. Also, their theory requires the co-
efficient b(x) to be positive and bounded away from zero and, hence, it cannot be
applied straight away to treat (1.1).
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The problem of the continuous variation of the positive solutions of a linear,
or semilinear, boundary value problem with respect to the perturbations of the
underlying domain has a very long and fruitful tradition since –at least– the memoir
of J. Hadamard [16] sew the light and the results obtained by R. Courant were
disseminated through his joint books with D. Hilbert [10], but this paper is far from
being the best place for discussing the history of the theory. Otherwise, one should
considerably enlarge the list of closely related references and discussing about the
many ramifications of the abstract theory (cf., e.g., [3], [6], [11], [14], [18], [22], [24],
[26], [28], and the references there in), so substantially enlarging this rather long
and, necessarily, technical paper.

It must be mentioned that, however being truly classical the general problem
tackled in it, this paper is certainly pioneer in two directions. Namely, because it
treats a nonlinear problem subject to a very general class of boundary operators
of mixed type where the coefficient b(x) is allowed to vanish and change of sign
–this allows applying our theory, e.g., to deal with problems subject to nonlinear
boundary operators–, and because, for the class of potentials a(x) considered in
this paper, (1.1) exhibits bifurcation from infinity if Ω0

a 6= ∅. Actually, if we regard
fixed the domain Ω, the characterization of the existence and the uniqueness of the
positive solutions for (1.1) is a very recent result by one of the authors, [7], who sub-
stantially extended the theory developed by Fraile et al. in [13]; the corresponding
linear analysis will be published in [8] – it has been already summarized in [9]–.

Being so classical as the problem under study is, one of the reasons why it has not
been solved yet is because of the lack of adequate comparison techniques to treat it
adequately. Besides a very sharp analysis of the equation itself is imperative in order
to get uniform Lp-estimates with respect to the underlying domain support and its
admissible perturbations, the main ingredients in obtaining our result consist of
the generalization of the strong maximum principle found by Amann in [2] and its
characterization in terms of the existence of positive strict supersolutions coming
from [21] and [4]. Such characterization has shown to be a very fruitful and powerful
tool in dealing with these and other related problems.

To prove the continuous dependence of the positive solution of (1.1) with respect
to the domain Ω, we first show the exterior continuous dependence. Then, we prove
the interior continuous dependence and, finally, we conclude the absolute continu-
ous dependence of the positive solutions with respect to any regular perturbation
through the Dirichlet boundary of the domain. A crucial trouble to be overcome
in this analysis comes from the problem of ascertaining whether or not being in
the class of potentials AΓ0,Γ1(Ω) is an hereditary property from Ω to some ade-
quate class of subdomains of Ω. Section 3 carries out this analysis. Although the
corresponding proofs are far from difficult they run rather lengthily and, actually,
are quite tedious. Consequently, the reader may choose not to delve into all the
technical details of Section 3, but merely give it at first glance a cursory reading to
get its general flavor before reading the remaining sections of the paper.

The precise distribution of this paper is the following. Section 2 collects some
known results, crucial to carry out our mathematical analysis. Section 3 shows that
being in the class AΓ0,Γ1(Ω) is an hereditary property. Section 4 shows the contin-
uous dependence of the positive solutions of (1.1) with respect to any admissible
exterior perturbation of the domain and Section 5 shows the continuous dependence
from the interior. Finally, Section 6 shows the global continuous dependence.
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2. Preliminaries, notation and previous results

In this section we fix some notation and collect some of the main results of [2],
[8] and [7] that are going to be used throughout the rest of this paper. For each
p > 1 we consider

W 2
p,B(b)(Ω) := {u ∈ W 2

p (Ω) : B(b)u = 0 } ,

W 2
B(b)(Ω) :=

⋂
p>1

W 2
p,B(b)(Ω) ⊂ H2(Ω) ,

and use the natural product order in Lp(Ω)× Lp(∂Ω),

(f1, g1) ≥ (f2, g2) ⇐⇒ f1 ≥ f2 ∧ g1 ≥ g2 .

It will be said that (f1, g1) > (f2, g2) if (f1, g1) ≥ (f2, g2) and (f1, g1) 6= (f2, g2).
Since b ∈ C(Γ1), it follows from the theory of [23] that, for each p > 1,

B(b) ∈ L(W 2
p (Ω);W

2− 1
p

p (Γ0)×W
1− 1

p
p (Γ1)) .

Moreover, for any V ∈ L∞(Ω) the linear eigenvalue problem

(L+ V )ϕ = λϕ in Ω ,

B(b)ϕ = 0 on ∂Ω ,
(2.1)

possesses a least real eigenvalue, denoted in the sequel by σ[L+V,B(b),Ω] and called
the principal eigenvalue of (L+ V,B(b),Ω). The principal eigenvalue is simple and
associated with it there is a positive eigenfunction, unique up to multiplicative con-
stants. This eigenfunction is called the principal eigenfunction of (L+ V,B(b),Ω).
Thanks to Theorem 12.1 of [2], the principal eigenfunction, subsequently denoted
by ϕ, satisfies

ϕ ∈ W 2
B(b)(Ω) ⊂ H2(Ω)

and it is strongly positive in Ω in the sense that ϕ(x) > 0 for each x ∈ Ω ∪ Γ1 and
∂νϕ(x) < 0 if x ∈ Γ0. Moreover, σ[L+ V,B(b),Ω] is the unique eigenvalue of (2.1)
with a positive eigenfunction and it is dominant, i.e.,

Re λ > σ[L+ V,B(b),Ω]

for any other eigenvalue λ of (2.1). Furthermore, setting

(L+ V )p := (L+ V )|W 2
p,B(b)(Ω) ,

we have that for each ω > −σ[L+ V,B(b),Ω] and p > N the operator

[ω + (L+ V )p]−1 ∈ L(Lp(Ω))

is positive, compact and irreducible (cf. [25, V.7.7]).
Throughout this paper, given any proper subdomain Ω0 of Ω of class C2 with

dist(Γ1, ∂Ω0 ∩ Ω) > 0 (2.2)

we shall denote by B(b, Ω0) the boundary operator defined from B(b) through

B(b, Ω0)ϕ :=

{
ϕ on ∂Ω0 ∩ Ω ,

B(b)ϕ on ∂Ω0 ∩ ∂Ω .
(2.3)

Also, we set B(b, Ω) := B(b). It should be noted that if Ω̄0 ⊂ Ω, then ∂Ω0 ⊂ Ω and,
hence,

B(b, Ω0)u = u ,
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by definition. Thus, in this case B(b, Ω0) becomes the Dirichlet boundary operator,
subsequently denoted by D. Also, σ[L+V,B(b, Ω0),Ω0] will stand for the principal
eigenvalue of the linear boundary value problem

(L+ V )ϕ = λϕ in Ω0 ,

B(b, Ω0)ϕ = 0 on ∂Ω0 .
(2.4)

We now recall the concept of principal eigenvalue for a domain with several com-
ponents.

Definition 2.1. Suppose Ω0 is an open subset of Ω with a finite number of com-
ponents of class C2, say Ωj

0, 1 ≤ j ≤ m, such that Ω̄i
0 ∩ Ω̄j

0 = ∅ if i 6= j, and

dist(Γ1, ∂Ω0 ∩ Ω) > 0 . (2.5)
Then, the principal eigenvalue of (L+ V,B(b, Ω0),Ω0) is defined through

σ[L+ V,B(b, Ω0),Ω0] := min
1≤j≤m

σ[L+ V,B(b, Ωj
0),Ω

j
0] . (2.6)

Remark 2.2. Since Ω0 is of class C2, it follows from (2.5) that each of the principal
eigenvalues σ[L + V,B(b, Ωj

0),Ω
j
0], 1 ≤ j ≤ m, is well defined, which shows the

consistency of Definition 2.1.

Suppose p > N and V ∈ L∞(Ω). Then, a function ū ∈ W 2
p (Ω) is said to be a

positive strict supersolution of (L+ V,B(b),Ω) if ū ≥ 0 and ((L+ V )ū,B(b)ū) > 0.
A function u ∈ W 2

p (Ω) is said to be strongly positive if u(x) > 0 for each x ∈ Ω∪Γ1

and ∂βu(x) < 0 for each x ∈ Γ0 where u(x) = 0 and any outward pointing nowhere
tangent vector field β ∈ C1(Γ0; RN ). Finally, (L+ V,B(b),Ω) is said to satisfy the
strong maximum principle if p > N , u ∈ W 2

p (Ω), and ((L+ V )u,B(b)u) > 0 imply
that u is strongly positive. It should be recalled that for any p > N

W 2
p (Ω) ↪→ C2−N

p (Ω̄) (2.7)

and that any function u ∈ W 2
p (Ω) is a.e. in Ω twice differentiable (cf. [27, Theorem

VIII.1]).
The following characterization of the strong maximum principle provides us with

one of the main technical tools to make most of the comparisons of this paper. It
goes back to [21] and [19], thought the version given here comes from [4].

Theorem 2.3. For any V ∈ L∞(Ω), the following assertions are equivalent:
• σ[L+ V,B(b),Ω] > 0;
• (L+ V,B(b),Ω) possesses a positive strict supersolution;
• (L+ V,B(b),Ω) satisfies the strong maximum principle.

Now, we collect some of the main properties of σ[L+ V,B(b),Ω]; they are taken
from [8] (cf. Propositions 3.2 and 3.3 therein).

Proposition 2.4. Let Ω0 be a proper subdomain of Ω of class C2 satisfying (2.2).
Then,

σ[L+ V,B(b),Ω] < σ[L+ V,B(b, Ω0),Ω0] ,
where B(b, Ω0) is the boundary operator defined by (2.3).

Proposition 2.5. Let V1, V2 ∈ L∞(Ω) such that V1 ≤ V2 and V1 < V2 in a set of
positive Lebesgue measure. Then,

σ[L+ V1,B(b),Ω] < σ[L+ V2,B(b),Ω] .
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A fundamental result which will be crucial for the mathematical analysis carried
out in the next sections is the continuous dependence of the principal eigenvalue
σ[L+V,B(b),Ω] with respect to the perturbations of the domain around its Dirichlet
boundary. To state it we need introducing the following concept.

Definition 2.6. Let Ω0 be a bounded domain of RN with boundary ∂Ω0 = Γ0
0∪Γ1

such that Γ0
0∩Γ1 = ∅, where Γ0

0 satisfies the same requirements as Γ0, and consider
a sequence Ωn, n ≥ 1, of bounded domains of RN with boundaries ∂Ωn = Γn

0 ∪ Γ1

of class C2 such that
Γn

0 ∩ Γ1 = ∅ , n ≥ 1 ,

and Γn
0 , n ≥ 1, satisfies the same requirements as Γ0. Then:

(a) It is said that Ωn converges to Ω0 from the exterior if for each n ≥ 1

Ω0 ⊂ Ωn+1 ⊂ Ωn and
∞⋂

n=1

Ω̄n = Ω̄0 .

(b) It is said that Ωn converges to Ω0 from the interior if for each n ≥ 1

Ωn ⊂ Ωn+1 ⊂ Ω0 and
∞⋃

n=1

Ωn = Ω0 .

(c) It is said that Ωn converges to Ω0 is there exist two sequences of domains,
ΩI

n and ΩE
n , n ≥ 1, whose boundaries satisfy the same requirements as those

of Ωn, and such that ΩI
n converges to Ω0 from the interior, ΩE

n converges
to Ω0 from the exterior and

ΩI
n ⊂ Ω0 ∩ Ωn ⊂ Ω0 ∪ Ωn ⊂ ΩE

n , n ≥ 1 .

Subsequently, we denote by H1
Γ0

(Ω) the closure of C∞c (Ω∪Γ1) in H1(Ω); C∞c (Ω∪Γ1)
stands for the space of functions of class C∞ with compact support in Ω∪ Γ1. The
following result is a very sharp version of Theorem 3.7 in [29] going back to [8].

Theorem 2.7. Let Ω be a bounded domain of RN of class C1 with boundary

∂Ω = Γ0 ∪ Γ1 , Γ0 ∩ Γ1 = ∅ ,

and consider any proper subdomain Ω0 ⊂ Ω of class C1 with boundary

∂Ω0 = Γ0
0 ∪ Γ1 , Γ0

0 ∩ Γ1 = ∅ ,

where Γ0
0 satisfies the same requirements as Γ0. Then,

H1
Γ0

0
(Ω0) = {u ∈ H1(Ω) : supp u ⊂ Ω̄0 } .

For the rest of this paper, ν = (ν1, . . . , νN ) is said to be the conormal vector
field if

νi :=
N∑

j=1

αijnj , 1 ≤ i ≤ N , (2.8)

where n = (n1, . . . , nN ) is the outward unit normal to Ω on Γ1. In this case ∂ν will
be called the conormal derivative. Let µ > 0 denote the ellipticity constant of L
and assume (2.8). Then,

〈ν, n〉 =
N∑

i,j=1

αijnjni ≥ µ |n|2 = µ > 0
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and, therefore, ν is an outward pointing nowhere tangent vector field. Note that
ν ∈ C1(Γ1; RN ), since αij ∈ C1(Ω̄), 1 ≤ i, j ≤ N , and Γ1 is of class C2.

Now, we can state the continuous dependence of the principal eigenvalues with
respect to the perturbations of the domains along their Dirichlet boundaries. The
following results are Theorems 7.1, 7.3 of [8], respectively.

Theorem 2.8 (Exterior continuous dependence). Suppose (2.8) and V ∈ L∞(Ω).
Let Ω0 be a proper subdomain of Ω with boundary of class C2 such that

∂Ω0 = Γ0
0 ∪ Γ1 , Γ0

0 ∩ Γ1 = ∅ ,

where Γ0
0 is assumed to satisfy the same requirements as Γ0, and consider a sequence

Ωn, n ≥ 1, of bounded domains of RN of class C2 converging to Ω0 from the exterior
such that Ωn ⊂ Ω, n ≥ 1. For each n ≥ 0, let Bn(b) denote the boundary operator
defined through

Bn(b)u :=

{
u on Γn

0

∂νu + bu on Γ1

(2.9)

where Γn
0 := ∂Ωn \ Γ1, n ≥ 0, and denote by (σ[L+ V,Bn(b),Ωn], ϕn) the principal

eigen-pair of (L+ V,Bn(b),Ωn), where ϕn is assumed to be normalized so that

‖ϕn‖H1(Ωn) = 1 , n ≥ 0 .

Then, ϕ0 ∈ W 2
B0(b)

(Ω0) and

lim
n→∞

σ[L+ V,Bn(b),Ωn] = σ[L+ V,B0(b),Ω0] , lim
n→∞

‖ϕn|Ω0 − ϕ0‖H1(Ω0) = 0 .

Theorem 2.9 (Interior continuous dependence). Suppose (2.8) and V ∈ L∞(Ω).
Let Ω0 be a proper subdomain of Ω with boundary of class C2 such that

∂Ω0 = Γ0
0 ∪ Γ1 , Γ0

0 ∩ Γ1 = ∅ ,

where Γ0
0 is assumed to satisfy the same requirements as Γ0, and let Ωn, n ≥ 1,

be a sequence of bounded domains of RN of class C2 converging to Ω0 from the
interior. For each n ≥ 0, let Bn(b) denote the boundary operator defined by (2.9)
where Γn

0 := ∂Ωn \ Γ1, n ≥ 0, and denote by (σ[L+ V,Bn(b),Ωn], ϕn) the principal
eigen-pair of (L+ V,Bn(b),Ωn), where ϕn is assumed to be normalized so that

‖ϕn‖H1(Ωn) = 1 , n ≥ 0 .

Then, ϕ0 ∈ W 2
B0(b)

(Ω0) and

lim
n→∞

σ[L+ V,Bn(b),Ωn] = σ[L+ V,B0(b),Ω0] , lim
n→∞

‖ϕ̃n − ϕ0‖H1(Ω0) = 0 ,

where, for each n ≥ 0,

ϕ̃n :=

{
ϕn in Ωn

0 in Ω0 \ Ωn

Combining the previous results it readily follows the next theorem; it is Theorem
7.4 of [8].

Theorem 2.10 (Continuous dependence). Suppose (2.8) and V ∈ L∞(Ω). Let Ω0

be a proper subdomain of Ω with boundary of class C2 such that

∂Ω0 = Γ0
0 ∪ Γ1 , Γ0

0 ∩ Γ1 = ∅ ,

where Γ0
0 is assumed to satisfy the same requirements as Γ0, and let Ωn, n ≥ 1, be a

sequence of bounded domains of RN of class C2 converging to Ω0. For each n ≥ 0,
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let Bn(b) denote the boundary operator defined by (2.9) where Γn
0 := ∂Ωn \ Γ1,

n ≥ 0. Then,
lim

n→∞
σ[L+ V,Bn(b),Ωn] = σ[L+ V,B0(b),Ω0] .

The following result entails that (L + V,Ω,B(b)) satisfies the strong maximum
principle if b is sufficiently large and |Ω| is sufficiently small. It goes back to
Theorems 9.1, 10.1 of [8]. Hereafter, | · | will stand for the Lebesgue measure
of RN .

Theorem 2.11. Suppose Γ1 6= ∅, V ∈ L∞(Ω), and consider a sequence bn ∈ C(Γ1),
n ≥ 1, such that

lim
n→∞

min
Γ1

bn = ∞ .

For each n ≥ 1 let ϕn denote the principal eigenfunction associated with σ[L +
V,B(bn),Ω], normalized so that ‖ϕn‖H1(Ω) = 1. Then,

lim
n→∞

σ[L+ V,B(bn),Ω] = σ[L+ V,D,Ω] , lim
n→∞

‖ϕn − ϕ‖H1(Ω) = 0 ,

where (σ[L + V,D,Ω], ϕ) is the principal eigen-pair associated with the Dirichlet
problem in Ω. Moreover,

lim inf
|Ω|↘0

σ[L+ V,D,Ω] |Ω| 2
N ≥ µΣ1|B1|

2
N ,

where B1 := {x ∈ RN : |x| < 1}, Σ1 := σ[−∆,D, B1], and µ > 0 is the ellipticity
constant of L.

Now, we state the concept of solution for problem (1.1) and collect the results of
[7] characterizing the existence of positive solutions for (1.1). For the remaining of
this section, it suffices impossing

αij = αji ∈ C(Ω̄) ∩W 1
∞(Ω) , 1 ≤ i, j ≤ N ,

instead of αij = αji ∈ C1(Ω̄).
A function u ∈ H1

Γ0
(Ω) is said to be a weak solution of (1.1) if, for each ξ ∈

C∞c (Ω ∪ Γ1),
N∑

i,j=1

∫
Ω

αij
∂u

∂xi

∂ξ

∂xj
+

N∑
i=1

∫
Ω

α̃iξ
∂u

∂xi
+

∫
Ω

α0ξu =
∫

Ω

(λW − af(·, u))ξu−
∫

Γ1

buξ

where have denoted

α̃i := αi +
N∑

j=1

∂αij

∂xj
∈ C(Ω̄) , 1 ≤ i ≤ N . (2.10)

A function u is said to be a strong solution of (1.1) if u ∈ W 2
p (Ω) for some p > N

and it satisfies (1.1). A function u is said to be a positive solution of (1.1) if it is a
strong solution and u > 0 in Ω. The solutions of (1.1) will be regarded as solution
couples (λ, u). Thus, it will be said that a couple (λ0, u0) is a solution of (1.1) if
u0 is a solution of (1.1) for λ = λ0.

Lemma 2.12. Suppose (λ0, u0) is a strong positive solution of (1.1). Then, u0 is
strongly positive in Ω and u0 ∈ W 2

B(b)(Ω). Moreover,

σ[L − λ0W + af(·, u0),B(b),Ω] = 0 . (2.11)

In particular, u0 ∈ C1,γ(Ω̄) for each γ ∈ (0, 1) and u0 is a.e. in Ω twice continuously
differentiable.
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Proof. By definition, p > N exists such that u0 ∈ W 2
p (Ω). Thus, thanks to Morrey’s

theorem, u0 ∈ L∞(Ω) and, hence, af(·, u0) ∈ L∞(Ω). Moreover,

(L − λ0W + af(·, u0))u0 = 0 in Ω

B(b)u0 = 0 on ∂Ω .

Thus, u0 is the principal eigenfunction associated with

σ[L − λ0W + af(·, u0),B(b),Ω] = 0 .

Therefore, u0 ∈ W 2
B(b)(Ω) and it is strongly positive in Ω (cf. [2, Theorem 12.1]).

The remaining assertions follow from (2.7) and [27, Th.VIII.1]. �

The following result characterizes the existence of positive solutions for (1.1).

Theorem 2.13. The following assertions are true:
a) Suppose a ∈ A(Ω) \ A+(Ω), i.e., a ∈ A(Ω) and Ω0

a 6= ∅, and in addition,
(2.8) is satisfied on Γ1 ∩ ∂Ω0

a. Then, (1.1) possesses a positive solution if,
and only if,

σ[Lf (λ),B(b),Ω] < 0 < σ[L(λ),B(b, Ω0
a),Ω0

a]

(cf. (1.8)). Moreover, the positive solution is unique if it exists.
b) Suppose a ∈ A+(Ω). Then, (1.1) possesses a positive solution if, and only

if,
σ[Lf (λ),B(b),Ω] < 0 .

Moreover, it is unique if it exists.

Part (a) goes back to [7, Theorem 4.2]. Part (b) can be easily accomplished by
adapting the arguments of the proof of Part (a), and so we will omit the details
herein. Actually, the proof of Part (b) is simpler than the proof of Part (a).

Definition 2.14. Given p > N it is said that u ∈ W 2
p (Ω) is a positive supersolution

(resp. positive subsolution) of (1.1) if u > 0 and

(Lu− λWu + af(·, u)u,B(b)u) ≥ 0 ( resp. (Lu− λWu + af(·, u)u,B(b)u) ≤ 0) .

Theorem 2.15. Suppose we are under the assumptions of Theorem 2.13, (1.1)
possesses a positive solution, p > N , and u ∈ W 2

p (Ω) is a positive supersolution
(resp. subsolution) of (1.1). Then u ≥ θ (resp. u ≤ θ), where θ stands for the
unique positive solution of (1.1).

Proof. Suppose u is a positive supersolution of (1.1). If it is a solution, then, by
the uniqueness obtained as an application of Theorem 2.13, u = θ and the proof is
completed. So, suppose u is a positive strict supersolution of (1.1). Then, u 6= θ
and

(L+ ag − λW )(u− θ) ≥ 0 in Ω ,

B(u− θ) ≥ 0 on ∂Ω ,
(2.12)

where

g(x) :=


u(x)f(x, u(x))− θ(x)f(x, θ(x))

u(x)− θ(x)
if u(x) 6= θ(x)

f(x, u(x)) if u(x) = θ(x)
x ∈ Ω̄ .
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Moreover, some of the inequalities of (2.12) must be strict. By the monotonicity
of f on its second argument, it follows that g > f(·, θ) in Ω, since u 6= θ. Thus,
thanks to Proposition 2.5 and Lemma 2.12, we find that

σ[L+ ag − λW,B(b),Ω] ≥ σ[L+ af(·, θ)− λW,B(b),Ω] = 0 . (2.13)

It should be noted that it might happen g = f(·, θ) in Ω+
a . Hence, ≥ cannot be

substituted by > in (2.13) without some additional work. Suppose

σ[L+ ag − λW,B(b),Ω] = 0

and let ϕ > 0 denote the principal eigenfunction of (L+ ag − λW,B(b),Ω). Then,
it follows from (2.12) that for each κ > 0 the function

ū := u− θ + κϕ

provides us with a strict supersolution of (L+ ag − λW,B(b),Ω). Moreover, ū > 0
if κ is sufficiently large, since ϕ is strongly positive. Thus, it follows from Theorem
2.3 that

σ[L+ ag − λW,B(b),Ω] > 0 . (2.14)
Therefore, thanks to the strong maximum principle, u−θ is strongly positive. This
argument can be easily adapted to show that θ − u is strongly positive if u is a
positive strict subsolution of (1.1). �

3. Belonging to the class A(Ω) is hereditary

In this section we prove that the fact of being in A(Ω) and A+(Ω) inherits to any
open subdomain of Ω satisfying the adequate structural properties. Subsequently,
for any a ∈ A(Ω) and any open subset Ω̃ of Ω such that a ∈ A(Ω̃), we denote by
[Ω̃]0a the maximal open subset of Ω̃ where the potential a vanishes (remember the
definition of the class A(Ω̃)).

Theorem 3.1. Suppose a ∈ AΓ0,Γ1(Ω) and let Ω̃ be an open subdomain of Ω of
class C2 such that

dist(∂Ω, ∂Ω̃ ∩ Ω) > 0 . (3.1)
Then, each of the following sets

Γ̃0 := ∂Ω̃ ∩ (Γ0 ∪ Ω) , Γ̃1 := ∂Ω̃ \ Γ̃0 = ∂Ω̃ ∩ Γ1 ,

is closed and open in ∂Ω̃. Moreover, the following assertions are true:
(a) If Ω0

a ∩ Ω̃ 6= ∅ is of class C2 and

∂Ω̃ ∩ Ω ∩ ∂(Ω0
a ∩ Ω̃) = ∂Ω̃ ∩ Ω ∩ Ω̄0

a , (3.2)

then a ∈ AΓ̃0,Γ̃1
(Ω̃) and [Ω̃]0a = Ω0

a ∩ Ω̃.
(b) Suppose Ω0

a ∩ Ω̃ = ∅ and Γ ∩K 6= ∅ =⇒ Γ \K ⊂ Ω+
a for any component

Γ of ∂Ω̃ ∩ Ω. Then, a ∈ A+

Γ̃0,Γ̃1
(Ω̃). In particular,

a ∈ A+
Γ0,Γ1

(Ω) =⇒ a ∈ A+

Γ̃0,Γ̃1
(Ω̃) .

Proof. Firstly it should be noted that, thanks to (3.1), each component Γ̂ of ∂Ω
either it satisfies Γ̂ ⊂ ∂Ω̃ or

Γ̂ ∩ ∂Ω̃ = ∅ .

Moreover, Γ̂ must be a component of ∂Ω̃ if Γ̂ ⊂ ∂Ω̃. In particular, if we denote by
Γi

1, 1 ≤ i ≤ n1, the components of Γ1, then, for each 1 ≤ i ≤ n1, either Γi
1 ⊂ ∂Ω̃ or
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Γi
1 ∩ ∂Ω̃ = ∅ . Moreover, Γi

1 must be a component of ∂Ω̃ if Γi
1 ⊂ ∂Ω̃. Subsequently,

when
Γ1 ∩ ∂Ω̃ 6= ∅ ,

{i1, . . . , iñ1} denotes the subset of {1, . . . , n1} for which Γi
1 ⊂ ∂Ω̃ ⇐⇒ i ∈

{i1, . . . , iñ1}. Then, it is easy to see that

Γ̃1 =
ñ1⋃

j=1

Γij

1 ∧ Γ̃0 = ∂Ω̃ \ Γ̃1 . (3.3)

When Γ1 ∩ ∂Ω̃ = ∅, we take Γ̃1 = ∅. In any of these cases, as Γ̃1 is closed and open
in ∂Ω̃, the proof of the first claim of the theorem is completed.

We now prove (a). Suppose Ω0
a ∩ Ω̃ is non empty and of class C2. Since a ∈

AΓ0,Γ1(Ω), there exist an open subset Ω0
a of Ω and a compact subset K of Ω̄ with

Lebesgue measure zero such that

K ∩ (Ω̄0
a ∪ Γ1) = ∅ , (3.4)

Ω+
a := {x ∈ Ω : a(x) > 0} = Ω \ (Ω̄0

a ∪K) , (3.5)
and each of the four conditions (A1) − (A4) of the introduction is satisfied. In
particular,

dist (Γ1, ∂Ω0
a ∩ Ω) > 0 . (3.6)

Note that, thanks to (3.6), each of the components Γi
1, 1 ≤ i ≤ n1, of Γ1 satisfies

either
Γi

1 ⊂ ∂Ω0
a or Γi

1 ∩ ∂Ω0
a = ∅ .

Moreover, Γi
1 must be a component of ∂Ω0

a if Γi
1 ⊂ ∂Ω0

a. Setting

Ω̃0
a := Ω0

a ∩ Ω̃ , K̃ := K ∩ ¯̃Ω , Ω̃+
a := Ω̃ \ ( ¯̃Ω0

a ∪ K̃) ,

we shall show that the open set

[Ω̃]0a := Ω̃0
a

and the compact set K̃ satisfy all the requirements of the definition of the class
AΓ̃0,Γ̃1

(Ω̃).
Let Ω0,i

a , 1 ≤ i ≤ m, be the components of Ω0
a (cf. the definition of the class

AΓ0,Γ1(Ω)). Since a ∈ AΓ0,Γ1(Ω),

Ω̄0,i
a ∩ Ω̄0,j

a = ∅ if i 6= j . (3.7)

Moreover, since Ω0
a is the maximal open subset of Ω where a vanishes, Ω̃0

a is the
maximal open subset of Ω̃ where a vanishes. Furthermore, since we are assuming
Ω̃0

a to be of class C2 and

Ω̃0
a = Ω0

a ∩ Ω̃ =
m⋃

i=1

(
Ω0,i

a ∩ Ω̃
)

, (3.8)

it follows from (3.7) that, for each 1 ≤ i ≤ m, Ω0,i
a ∩ Ω̃ is of class C2. It should be

noted that some of the sets

Ω0,i
a ∩ Ω̃ , 1 ≤ i ≤ m ,

might be empty. Nevertheless, since each of them is of class C2, any of them
possesses finitely many components of class C2. Necessarily, their respective closures
are mutually disjoint. Thus, thanks to (3.7) and (3.8), Ω̃0

a possesses a finite number
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of components of class C2 –whose respective closures must be mutually disjoint–.
Also, since K is a compact subset of Ω̄ with Lebesgue measure zero, K̃ is a compact
subset of ¯̃Ω with Lebesgue measure zero, and, since

K̃ ⊂ K ∧ Ω̃0
a ⊂ Ω0

a ,

we have that
K̃ ∩ ( ¯̃Ω0

a ∪ Γ1) ⊂ K ∩ (Ω̄0
a ∪ Γ1) .

Hence, (3.4) implies K̃ ∩ ( ¯̃Ω0
a ∪ Γ1) = ∅ and, therefore,

K̃ ∩ ( ¯̃Ω0
a ∪ Γ̃1) = ∅ ,

since Γ̃1 ⊂ Γ1. Moreover, thanks to (3.5),

{x ∈ Ω̃ : a(x) > 0} = Ω̃ ∩ [Ω \ (Ω̄0
a ∪K)] = Ω̃ \ ( ¯̃Ω0

a ∪ K̃) ,

by the definition of Ω̃0
a and K̃. Therefore,

Ω̃+
a = {x ∈ Ω̃ : a(x) > 0} = Ω̃ \ ([ ¯̃Ω]0a ∪ K̃) .

To complete the proof of Part (a) it remains to show that each of the properties
(A1)-(A4) is satisfied.

Since Ω̃0
a possesses a finite number of components of class C2 whose respective

closures are mutually disjoint and Γ̃1 ⊂ Γ1, in order to prove (A1) it suffices to
show that

dist (Γ1, ∂Ω̃0
a ∩ Ω̃) > 0 . (3.9)

Indeed, the inclusion
∂Ω̃0

a = ∂(Ω0
a ∩ Ω̃) ⊂ ∂Ω0

a ∪ ∂Ω̃
implies

∂Ω̃0
a ∩ Ω̃ ⊂ (∂Ω0

a ∪ ∂Ω̃) ∩ Ω̃ = ∂Ω0
a ∩ Ω̃ ⊂ ∂Ω0

a ∩ Ω ,

since ∂Ω̃ ∩ Ω̃ = ∅. Thus, a ∈ AΓ0,Γ1(Ω) implies

dist(Γ1, ∂Ω̃0
a ∩ Ω̃) ≥ dist(Γ1, ∂Ω0

a ∩ Ω) > 0 ,

which completes the proof of (3.9). This shows property (A1) in Ω̃.
Now, note that thanks to (3.9), for each i ∈ {i1, . . . , iñ1}, the component Γi

1 of
Γ̃1 = Γ1 ∩ ∂Ω̃ (cf. the beginning of the proof) satisfies either Γi

1 ⊂ ∂Ω̃0
a or else

Γi
1∩∂Ω̃0

a = ∅. Moreover, if Γi
1 ⊂ ∂Ω̃0

a, then Γi
1 must be a component of ∂Ω̃0

a. When

Γ̃1 ⊂ ∂Ω̃0
a

property (A2) is satisfied, since we are assuming that a is bounded away from zero
on any compact subset of Ω+

a , because a ∈ AΓ0,Γ1(Ω). Thus, in order to prove
(A2) we can assume, without lost of generality, that there exists j ∈ {1, . . . , ñ1} for
which

Γij

1 ∩ ∂Ω̃0
a = ∅ .

Then, without lost of generality, we can assume that there exists a natural number
1 ≤ p̃ ≤ ñ1 such that

Γij

1 ∩ ∂Ω̃0
a = ∅ ⇐⇒ j ∈ {1, . . . , p̃} .

By construction, we have

∂Ω̃0
a ∩

p̃⋃
j=1

Γij

1 = ∅ , Γ̃1 = Γ1 ∩ ∂Ω̃ =
ñ1⋃

j=1

Γij

1 , Γ̃1 ∩ ∂Ω̃0
a =

ñ1⋃
j=p̃+1

Γij

1 ,
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if p̃ < ñ1. Using this notation, to prove (A2) we must demonstrate that a is bounded
away from zero on any compact subset of

Ω̃+
a ∪

p̃⋃
j=1

Γij

1 .

To prove this, we shall use the following identity

∂Ω0
a ∩

p̃⋃
j=1

Γij

1 = ∅ , (3.10)

whose proof follows by contradiction. Assume that there exists 1 ≤ k ≤ p̃ for which

Γik
1 ∩ ∂Ω0

a 6= ∅ .

Then, thanks to (3.6), Γik
1 ⊂ ∂Ω0

a and, hence,

Γik
1 ⊂ ∂Ω0

a ∩ ∂Ω̃ , (3.11)

since, by construction, Γik
1 ⊂ ∂Ω̃ (cf. the beginning of the proof of the theorem).

Thus, since
∂Ω0

a ∩ ∂Ω̃ ⊂ ∂(Ω0
a ∩ Ω̃) = ∂Ω̃0

a , (3.12)
it follows from (3.11) and (3.12) that

Γik
1 = Γik

1 ∩ ∂Ω0
a ∩ ∂Ω̃ ⊂ Γik

1 ∩ ∂Ω̃0
a ,

which is impossible, since, by construction,

Γik
1 ∩ ∂Ω̃0

a = ∅ .

This contradiction proves (3.10). On the other hand,

Ω̃+
a = {x ∈ Ω̃ : a(x) > 0} ⊂ {x ∈ Ω : a(x) > 0} = Ω+

a (3.13)

and, therefore, (3.10) and (3.13) imply

Ω̃+
a ∪

p̃⋃
j=1

Γij

1 ⊂ Ω+
a ∪

p̃⋃
j=1

Γij

1 ⊂ Ω+
a ∪ (Γ1 \ ∂Ω0

a) . (3.14)

Since a ∈ A(Ω), a is bounded away from zero in any compact subset of

Ω+
a ∪ (Γ1 \ ∂Ω0

a) .

Thus, thanks to (3.14), a is bounded away from zero in any compact subset of

Ω̃+
a ∪

p̃⋃
j=1

Γij

1

and, therefore, (A2) is satisfied in Ω̃.
In order to show (A3) recall that, thanks to (3.1), each component Γ̂ of ∂Ω

either it satisfies Γ̂ ⊂ ∂Ω̃ or Γ̂ ∩ ∂Ω̃ = ∅. Moreover, Γ̂ must be a component of ∂Ω̃
if Γ̂ ⊂ ∂Ω̃. Therefore,

∂Ω̃ = (∂Ω̃ ∩ Γ0) ∪ (∂Ω̃ ∩ Γ1) ∪ (∂Ω̃ ∩ Ω) = Γ̃0 ∪ Γ̃1

and

dist(∂Ω̃ ∩ Γ0, ∂Ω̃ ∩ Γ1) > 0 , dist(∂Ω̃ ∩ Γi, ∂Ω̃ ∩ Ω) > 0 , i ∈ {0, 1} .
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Let Γi
0, 1 ≤ i ≤ n0, and Γi

1, 1 ≤ i ≤ n1, denote the components of Γ0 and Γ1,
respectively. Without lost of generality we can rearrange them, if necessary, so
that

∂Ω̃ ∩ Γ0 =
ñ0⋃
i=1

Γi
0 , ∂Ω̃ ∩ Γ1 =

ñ1⋃
i=1

Γi
1 , ∂Ω̃ ∩ Ω =

ñ0,I⋃
i=1

Γi
0,I ,

for some 0 ≤ ñ0 ≤ n0, 0 ≤ ñ1 ≤ n1, and ñ0,I ≥ 1. It should be noted that Ω̃ = Ω
if ∂Ω̃ ∩ Ω = ∅ and that

Γ̃0 =
ñ0⋃
i=1

Γi
0 ∪

ñ0,I⋃
i=1

Γi
0,I ∧ Γ̃1 =

ñ1⋃
i=1

Γi
1 .

The sub-index ”I” makes reference to the fact that each of Γi
0,I , 1 ≤ i ≤ ñ0,I ,

provides us with an internal component –within Ω– of the Dirichlet boundary Γ̃0 of
Ω̃.

Let {i1, . . . , iq} be the subset of {1, . . . , n0} for which

Γj
0 ∩ (∂Ω0

a ∪K) 6= ∅ ⇐⇒ j ∈ {i1, . . . , iq} .

Similarly, let {j1, . . . , jq̃} be the subset of {1, . . . , ñ0} for which

Γj
0 ∩ (∂Ω̃0

a ∪ K̃) 6= ∅ ⇐⇒ j ∈ {j1, . . . , jq̃} ,

and let {k1, . . . , kq̃0,I
} be the subset of {1, . . . , ñ0,I} for which

Γj
0,I ∩ (∂Ω̃0

a ∪ K̃) 6= ∅ ⇐⇒ j ∈ {k1, . . . , kq̃0,I
} .

We claim that
{j1, . . . , jq̃} ⊂ {i1, . . . , iq} . (3.15)

In other words, Γj
0∩(∂Ω0

a∪K) 6= ∅ if j ∈ {j1, . . . , jq̃}. Indeed, for any j ∈ {1, . . . , n0}
we have that

Γj
0 ∩ (∂Ω̃0

a ∪ K̃) ⊂ Γj
0 ∩ (Ω̄0

a ∪K) ⊂ Γj
0 ∩ (∂Ω0

a ∪K) .

Thus,
Γj

0 ∩ (∂Ω̃0
a ∪ K̃) = ∅ if Γj

0 ∩ (∂Ω0
a ∪K) = ∅

and, therefore,

j ∈ {1, . . . , n0} \ {i1, . . . , iq} =⇒ j ∈ {1, . . . , n0} \ {j1, . . . , jq̃} .

This completes the proof of (3.15).
Using these notation, to prove that a satisfies (A3) in Ω̃ we must show that a

bounded away from zero on any compact subset of

Ω̃+
a ∪

[ q̃⋃
i=1

Γji

0 \ (∂Ω̃0
a ∪ K̃)

]
∪

[ q̃0,I⋃
i=1

Γki

0,I \ (∂Ω̃0
a ∪ K̃)

]
.

By definition,
q̃0,I⋃
i=1

Γki

0,I ⊂ ∂Ω̃ ∩ Ω ,

and, hence,
q̃0,I⋃
i=1

Γki

0,I \ (∂Ω̃0
a ∪ K̃) ⊂ (∂Ω̃∩Ω) \ (∂Ω̃0

a ∪ K̃) = (∂Ω̃∩Ω) \ [∂(Ω0
a ∩ Ω̃)∪ K̃] . (3.16)
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Moreover, thanks to (3.2),

(∂Ω̃ ∩ Ω) \ [∂(Ω0
a ∩ Ω̃) ∪ K̃] = (∂Ω̃ ∩ Ω) \ [Ω̄0

a ∪ K̃] . (3.17)

Thus, since
∂Ω̃ ∩ Ω ∩ K̃ = ∂Ω̃ ∩ Ω ∩K ∩ ¯̃Ω = ∂Ω̃ ∩ Ω ∩K ,

it follows from (3.16) and (3.17) that
q̃0,I⋃
i=1

Γki

0,I \ (∂Ω̃0
a ∪ K̃) ⊂ (∂Ω̃ ∩ Ω) \ (Ω̄0

a ∪K) ⊂ Ω \ (Ω̄0
a ∪K) = Ω+

a . (3.18)

Thanks to (3.18), to complete the proof of (A3) it suffices to show that a is bounded
away from zero on any compact subset of

Ω+
a ∪

[ q̃⋃
i=1

Γji

0 \ (∂Ω̃0
a ∪ K̃)

]
,

since Ω̃+
a ⊂ Ω+

a . By construction, for each 1 ≤ i ≤ q̃, Γji

0 ⊂ ∂Ω̃ ∩ Γ0 and, hence,

Γji

0 ∩ (∂Ω̃0
a ∪ K̃) = (Γji

0 ∩ ∂Ω̃0
a) ∪ (Γji

0 ∩ K̃)

=
[
Γji

0 ∩ ∂(Ω0
a ∩ Ω̃)

]
∪ (Γji

0 ∩K ∩ ¯̃Ω)

= (Γji

0 ∩ ∂Ω0
a) ∪ (Γji

0 ∩K)

= Γji

0 ∩ (∂Ω0
a ∪K) .

Thus,
q̃⋃

i=1

Γji

0 \ (∂Ω̃0
a ∪ K̃) =

q̃⋃
i=1

Γji

0 \ (∂Ω0
a ∪K)

and, therefore, since a is bounded away from zero on any compact subset of

Ω+
a ∪

[ q̃⋃
i=1

Γji

0 \ (∂Ω0
a ∪K)

]
,

because of (3.13), (3.15) and the fact that a satisfies (A3) in Ω. The proof of (A3)
in Ω̃ is completed.

To complete the proof of Part (a) it remains to show that (A4) is satisfied in Ω̃.
Fix η > 0. Then, since a ∈ A(Ω), there exist a natural number `(η) ≥ 1 and `(η)
open subsets of RN , Gη

j , 1 ≤ j ≤ `(η), with |Gη
j | < η, 1 ≤ j ≤ `(η), such that

K ⊂
`(η)⋃
j=1

Gη
j and Ḡη

i ∩ Ḡη
j = ∅ if i 6= j . (3.19)

Moreover, for each 1 ≤ j ≤ `(η) the open set Gη
j ∩ Ω is connected and of class C2.

Without lost of generality, we can assume that Gη
j ∩ Ω̃ 6= ∅, 1 ≤ j ≤ `(η). Since

Ω̃ and Gη
j ∩ Ω are of class C2, for each 1 ≤ j ≤ `(η) the set Gη

j ∩ Ω̃ possesses a
finite number of components with mutually disjoint closures, although it might not
be of class C2. For each η > 0 and 1 ≤ j ≤ `(η), let N(η, j) denote the number of
components of Gη

j ∩ Ω̃ and let

{Gη
j,k : 1 ≤ k ≤ N(η, j)}
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be the set of such components. Now, for each ε > 0 let Bε denote the ball of radius
ε centered at the origin and consider the open neighborhoods

G̃η
j,k := Gη

j,k + Bε , 1 ≤ k ≤ N(η, j) , 1 ≤ j ≤ `(η) .

By construction, ε0 = ε0(η) > 0 exists such that for each ε ∈ (0, ε0)
¯̃Gη

j,k ∩
¯̃Gη

i,h = ∅ if (j, k) 6= (i, h) . (3.20)

Moreover, since

|Gη
j,k| ≤ |Gη

j | < η , 1 ≤ k ≤ N(η, j) , 1 ≤ j ≤ `(η) ,

ε1 ∈ (0, ε0) exists such that for each ε ∈ (0, ε1)

|G̃η
j,k| < η , 1 ≤ k ≤ N(η, j) , 1 ≤ j ≤ `(η) . (3.21)

Furthermore, we find from (3.19) that

K̃ = K ∩ ¯̃Ω ⊂
`(η)⋃
j=1

(
Gη

j ∩
¯̃Ω
)
⊂

`(η)⋃
j=1

N(η,j)⋃
k=1

G̃η
j,k . (3.22)

Also, since Gη
j,k is connected, G̃η

j,k is connected for each 1 ≤ k ≤ N(η, j) and
1 ≤ j ≤ `(η). Hence, there exists ε2 ∈ (0, ε1) such that G̃η

j,k ∩ Ω̃ is connected for
each 1 ≤ k ≤ N(η, j), 1 ≤ j ≤ `(η). Subsequently, ε ∈ (0, ε2) is fixed.

Suppose that, for each 1 ≤ k ≤ N(η, j) and 1 ≤ j ≤ `(η), G̃η
j,k ∩ Ω̃ is of class C2.

Then, thanks to (3.20), (3.21) and (3.22), there exists

1 ≤ ˜̀(η) ≤ `(η)N(η, j)

and ˜̀(η) elements of

{G̃η
j,k ∩ Ω̃ : 1 ≤ k ≤ N(η, j) , 1 ≤ j ≤ `(η)} ,

satisfying all the requirements of (A4) in Ω̃.
Now, suppose that G̃η

j,k ∩ Ω̃ 6∈ C2 for some 1 ≤ k ≤ N(η, j) and 1 ≤ j ≤ `(η).
Then, thanks to (3.22),

dist(K̃, ∂
⋃

1≤k≤N(η,j)
1≤j≤`(η)

G̃η
j,k) > 0

and, hence, there exists an open subset Ĝη
j,k of RN such that Ĝη

j,k ∩ Ω̃ is connected
and

K̃ ∩ ¯̃Gη
j,k ⊂ Ĝη

j,k ⊂
¯̂
Gη

j,k ⊂ G̃η
j,k , Ĝη

j,k ∩ Ω̃ ∈ C2 .

Substituting each of those G̃η
j,k’s by the corresponding Ĝη

j,k’s and arguing as in the
previous case the proof of Part (a) is easily completed.

The details of the proof of Part (a) can be easily adapted to prove the first claim
of Part (b). Finally, suppose a ∈ A+

Γ0,Γ1
(Ω). Then, Ω0

a = ∅ and, in particular,

Ω0
a ∩ Ω̃ = ∅ .

Moreover, Ω+
a = Ω \K and, hence,(

∂Ω̃ ∩ Ω
)
\K ⊂ Ω \K = Ω+

a .

Therefore, thanks to the first claim, a ∈ A+

Γ̃0,Γ̃1
(Ω̃). This completes the proof. �
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As an immediate consequence, from Theorem 3.1 we find the next corollary:

Corollary 3.2. Suppose a, V ∈ AΓ0,Γ1(Ω) with Ω0
V connected and

dist(Γ0, ∂Ω0
V ∩ Ω) > 0 .

Then,
Γ̃0 := ∂Ω0

V ∩ (Γ0 ∪ Ω) and Γ̃1 := ∂Ω0
V \ Γ̃0 = ∂Ω0

V ∩ Γ1

are closed and open sets of class C2, and each of the following assertions is true:
(a) If Ω0

a ∩ Ω0
V 6= ∅ is of class C2 and

∂Ω0
V ∩ Ω ∩ ∂(Ω0

a ∩ Ω0
V ) = ∂Ω0

V ∩ Ω ∩ Ω̄0
a , (3.23)

then a ∈ AΓ̃0,Γ̃1
(Ω0

V ) and [Ω0
V ]0a = Ω0

a ∩ Ω0
V .

(b) Suppose Ω0
a ∩ Ω0

V = ∅ and

Γ ∩Ka 6= ∅ =⇒ Γ \Ka ⊂ Ω+
a

for any component Γ of ∂Ω0
V ∩ Ω. Then, a ∈ A+

Γ̃0,Γ̃1
(Ω0

V ). In particular,

a ∈ A+
Γ0,Γ1

(Ω) =⇒ a ∈ A+

Γ̃0,Γ̃1
(Ω0

V ) .

4. Exterior continuous dependence

In this section we analyze the continuous dependence of the positive solutions of
(1.1) with respect to exterior perturbations of the domain Ω around its Dirichlet
boundary Γ0 in the special case when ∂ν is the conormal derivative with respect to
L. So, this section assumes (2.8).

Subsequently, we will refer to problem (1.1) as problem P [λ, Ω,B(b)]. Also, we
will denote by Λ[Ω,B(b)] the set of values of λ ∈ R for which P [λ, Ω,B(b)] possesses
a positive solution.

The following result will provide us with the exterior continuous dependence of
the positive solutions of P [λ, Ω,B(b)].

Theorem 4.1. Suppose (2.8). Let Ω0 be a proper subdomain of Ω with boundary
of class C2 such that ∂Ω0 = Γ0

0 ∪ Γ1, Γ0
0 ∩ Γ1 = ∅, where Γ0

0 satisfies the same
requirements as Γ0, and let Ωn ⊂ Ω, n ≥ 1, be a sequence of bounded domains of
RN of class C2 converging to Ω0 from the exterior. For each n ∈ N ∪ {0} let Bn(b)
denote the boundary operator defined by

Bn(b)u :=

{
u on Γn

0 ,

∂νu + bu on Γ1 ,
(4.1)

where Γn
0 := ∂Ωn \ Γ1, n ∈ N ∪ {0}. Suppose, in addition, that a ∈ A(Ω0),

λ ∈ Λ[Ω0,B0(b)] and that n0 ∈ N exists such that

a ∈
∞⋂

n=n0

A(Ωn) and λ ∈
∞⋂

n=n0

Λ[Ωn,Bn(b)] . (4.2)

For each n ≥ 0, let un denote the unique positive solution of P [λ, Ωn,Bn(b)]; it
should be noted that the uniqueness is guaranteed by Theorem 2.13. Then,

lim
n→∞

‖un|Ω0 − u0‖H1(Ω0) = 0 . (4.3)
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Proof. Suppose (4.2). Without lost of generality we can assume that n0 = 1. Then,
thanks to Theorem 2.13, the problem P [λ, Ωn,Bn(b)], n ∈ N ∪ {0}, has a unique
positive solution, denoted in the sequel by un. Moreover, thanks to Lemma 2.12,

un ∈ W 2
Bn(b)(Ωn) ⊂ H2(Ωn) , n ∈ N ∪ {0} ,

and un is strongly positive in Ωn. In the sequel for each n ∈ N ∪ {0} we set

ũn :=

{
un in Ωn ,

0 in Ω \ Ωn .

Since un ∈ H1(Ωn) and un = 0 on Γn
0 , we have that ũn ∈ H1(Ω) and

‖ũn‖H1(Ω) = ‖un‖H1(Ωn) , n ∈ N ∪ {0} . (4.4)

Moreover, since un is strongly positive in Ωn, Γ1 = ∂Ωn \ Γn
0 for each n ∈ N ∪ {0}

and
Ω0 ⊂ Ωn+1 ⊂ Ωn , n ∈ N ,

it is easily seen that

Lun = λWun − af(·, un)un in Ωn+1 n ∈ N ,

Bn+1(b)un ≥ 0 on ∂Ωn+1 n ∈ N ,

and

Lun = λWun − af(·, un)un in Ω0 n ∈ N
B0(b)un ≥ 0 on ∂Ω0 n ∈ N .

Thus, for each n ∈ N the function un is a positive supersolution of the problems
P [λ, Ωn+1,Bn+1(b)] and P [λ, Ω0,B0(b)]. Hence, thanks to Theorem 2.15, we find
that

un|Ωn+1 ≥ un+1 > 0 , un|Ω0 ≥ u0 > 0 , n ≥ 1 .

Therefore, in Ω we have that

0 < ũ0 ≤ ũn+1 ≤ ũn ≤ ũ1 , n ∈ N . (4.5)

Now, setting M := ‖ũ1‖L∞(Ω), it follows from (4.5) that

‖ũn‖L∞(Ω) ≤ M , n ∈ N ∪ {0} , (4.6)

and, hence,
‖ũn‖L2(Ω) ≤ M |Ω|1/2 , n ∈ N ∪ {0} . (4.7)

Now, we will prove that M̂ > 0 exists such that

‖ũn‖H1(Ω) ≤ M̂ , n ∈ N ∪ {0} . (4.8)

Indeed, since Ωn ⊂ Ω for each n ≥ 0 and L is strongly uniformly elliptic in Ω̄,
integrating by parts and using un = 0 on Γn

0 , ũn = 0 on Ω \ Ωn, ũn|Ωn
= un and

un ∈ H2(Ωn), n ≥ 0, gives

µ‖∇ũn‖2
L2(Ω)

≤
N∑

i,j=1

∫
Ω

αij
∂ũn

∂xi

∂ũn

∂xj
=

N∑
i,j=1

∫
Ωn

αij
∂un

∂xi

∂un

∂xj

= −
N∑

i,j=1

∫
Ωn

∂

∂xj
(αij

∂un

∂xi
)un +

N∑
i,j=1

∫
Γ1

αij
∂un

∂xi
unnj
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= −
N∑

i,j=1

∫
Ωn

αij
∂2un

∂xi∂xj
un −

N∑
i,j=1

∫
Ωn

∂αij

∂xj

∂un

∂xi
un +

N∑
i,j=1

∫
Γ1

αij
∂un

∂xi
unnj .

From this relation, taking into account that un is a solution of P [λ, Ωn,Bn(b)] we
find that

µ‖∇ũn‖2
L2(Ω)

≤
∫

Ωn

[(λW − af(·, un)− α0)un −
N∑

i=1

α̃i
∂un

∂xi
]un +

N∑
i,j=1

∫
Γ1

αij
∂un

∂xi
unnj ,

(4.9)

where the function coefficients α̃i ∈ C(Ω̄), 1 ≤ i ≤ N , are those given by (2.10).
Thus, since ũn = 0 in Ω \Ωn and ũn ∈ H1(Ω) for each n ∈ N, it follows from (4.9)
that

µ‖∇ũn‖2
L2(Ω)

≤
∫

Ω

[λW − af(·, ũn)− α0]ũ2
n −

∫
Ω

N∑
i=1

α̃i
∂ũn

∂xi
ũn +

N∑
i,j=1,

∫
Γ1

αij
∂un

∂xi
unnj .

(4.10)
On the other hand, by construction we have that ∂νun + bun = 0 on Γ1, n ∈ N,
where ν = (ν1, . . . , νN ) satisfies

νi :=
N∑

j=1

αijnj , 1 ≤ i ≤ N ,

since we are assuming (2.8). Thus, for any natural number n ≥ 1 we have that

N∑
i,j=1

αij
∂un

∂xi
nj =

N∑
i=1

νi
∂un

∂xi
= 〈∇un, ν〉 = ∂νun = −bun

and, hence,
N∑

i,j=1

αij
∂un

∂xi
unnj = −bu2

n . (4.11)

Now, substituting (4.11) into (4.10) and using ũn|Γ1 = un|Γ1 gives

µ‖∇ũn‖2
L2(Ω) ≤

∫
Ω

[λW − af(·, ũn)− α0]ũ2
n −

∫
Ω

N∑
i=1

α̃i
∂ũn

∂xi
ũn −

∫
Γ1

bũ2
n . (4.12)

We now proceed to estimate each of the terms of the right hand side of (4.12).
Thanks to (4.6), ∣∣∣∣∫

Ω

[λW − af(·, ũn)− α0]ũ2
n

∣∣∣∣ ≤ M1M
2|Ω| , (4.13)

where

M1 := |λ|‖W‖L∞(Ω) + ‖a‖L∞(Ω)‖f‖L∞(Ω̄×[0,M ]) + ‖α0‖L∞(Ω) .

Moreover, ∣∣ ∫
Γ1

bũ2
n

∣∣ ≤ M2‖b‖L∞(Γ1)|Γ1| , (4.14)
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where |Γ1| stands for the (N−1)-dimensional Lebesgue measure of Γ1. Now, setting

M2 :=
N∑

i=1

‖α̃i‖L∞(Ω) , ε :=
( µ

M2

)1/2
, (4.15)

where µ > 0 is the ellipticity constant of L, and using Hölder inequality yields∣∣∣ ∫
Ω

N∑
i=1

α̃i
∂ũn

∂xi
ũn

∣∣∣ ≤ N∑
i=1

‖α̃i‖L∞(Ω)

∫
Ω

|ε∂ũn

∂xi
| |ε−1ũn|

≤M2
ε2

2
‖∇ũn‖2

L2(Ω) +
M2

2ε2
‖ũn‖2

L2(Ω) .

Thus, (4.15) implies∣∣∣ ∫
Ω

N∑
i=1

α̃i
∂ũn

∂xi
ũn

∣∣∣ ≤ µ

2
‖∇ũn‖2

L2(Ω) +
M2

2

2µ
‖ũn‖2

L2(Ω) . (4.16)

Hence, thanks to (4.7), (4.13), (4.14) and (4.16), we find from (4.12) that

µ‖∇ũn‖2
L2(Ω) ≤ M3 +

µ

2
‖∇ũn‖2

L2(Ω) ,

where

M3 := M2(M1|Ω|+ ‖b‖L∞(Γ1)|Γ1|) +
1
2µ

M2
2 M2|Ω| .

Thus,

‖∇ũn‖2
L2(Ω) ≤

2M3

µ
(4.17)

and, therefore, thanks to (4.7) and (4.17), we find that ‖ũn‖H1(Ω) ≤ M̂ , n ∈ N,
where

M̂ :=
(
M2|Ω|+ 2M3

µ

)1/2

.

This completes the proof of (4.8).
Now, thanks to and (4.5) and (4.8), along some subsequence, again labeled by

n, we have that
0 < L := lim

n→∞
‖ũn‖H1(Ω) . (4.18)

In the sequel we restrict ourselves to deal with functions of that subsequence. Since
H1(Ω) is compactly embedded in L2(Ω), it follows from (4.8) that ũ ∈ L2(Ω) and
a subsequence of ũn, n ≥ 1, relabeled by n, exist such that

lim
n→∞

‖ũn − ũ‖L2(Ω) = 0 . (4.19)

To complete the proof of the theorem it suffices to show that (4.18) and (4.19)
imply

lim
n→∞

‖ũn − ũ‖H1(Ω) = 0 , supp ũ ⊂ Ω̄0 , ũ|Ω0 = u0 .

since this argument can be repeated along any subsequence. In fact, it suffices
proving the validity of the first relation along some subsequence, since u0 is the
unique weak positive solution of problem P [λ, Ω0,B0(b)]. Set

ṽn :=
ũn

‖ũn‖H1(Ω)
, vn := ṽn|Ωn

=
un

‖un‖H1(Ωn)
, n ∈ N ∪ {0} .
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By construction, ṽn ∈ H1(Ω), vn ∈ H2(Ωn),

ṽn|Ω\Ωn
= 0 , ‖ṽn‖H1(Ω) = ‖vn‖H1(Ωn) = 1 , n ∈ N ∪ {0} , (4.20)

and vn is a positive solution of

Lvn = λWvn − af(·, un)vn in Ωn

Bn(b)vn = 0 on ∂Ωn ,
(4.21)

since un is a positive solution of P [λ, Ωn,Bn(b)]. Moreover, (4.5) and (4.6) imply

‖ṽn‖L∞(Ω) =
‖ũn‖L∞(Ω)

‖ũn‖H1(Ω)
≤ M

‖ũn‖L2(Ω)
≤ M

‖ũ0‖L2(Ω)
. (4.22)

Now, since H1(Ω) is compactly embedded in L2(Ω), we find from (4.20) that there
exist ṽ ∈ L2(Ω) and a subsequence of ṽn, n ≥ 1, labeled by n, such that

lim
n→∞

‖ṽn − ṽ‖L2(Ω) = 0 . (4.23)

In particular,
lim

n→∞
ṽn = ṽ almost everywhere in Ω . (4.24)

In the sequel we restrict ourselves to consider that subsequence. We claim that

supp ṽ ⊂ Ω̄0 . (4.25)

Indeed, pick

x 6∈ Ω̄0 =
∞⋂

n=1

Ω̄n .

Then, since Ω̄n, n ≥ 1, is a non-increasing sequence of compact sets, a natural
number n0 ≥ 1 exists such that x 6∈ Ω̄n for each n ≥ n0. Thus, ṽn(x) = 0 for each
n ≥ n0, and, hence,

lim
n→∞

ṽn(x) = 0 if x 6∈ Ω̄0 .

Therefore, the uniqueness of the limit in (4.24) gives ṽ = 0 in Ω \ Ω̄0. This shows
(4.25).

Note that ṽn(x) > 0 for each x ∈ Ωn ∪ Γ1 and n ∈ N ∪ {0}, since ṽn is strongly
positive in Ωn. Hence, ṽn(x) > 0 for each x ∈ Ω0 ∪ Γ1 and n ∈ N ∪ {0}, since
Ω0 ⊂ Ωn. Thus, (4.24) implies

ṽ ≥ 0 in Ω0 . (4.26)

Now, we will analyze the limiting behavior of the traces of ṽn, n ≥ 1, on Γ1. By our
regularity requirements on ∂Ω0, it follows from the trace theorem (e.g. Theorem
8.7 of [29]) that the trace operator on Γ1

γ1 : H1(Ω0) −→ W
1/2
2 (Γ1)

u 7→ γ1u := u|Γ1

(4.27)

is well defined and it is a linear continuous operator. Now, for each n ∈ N let in
denote the canonical injection

in : H1(Ωn) → H1(Ω0) ,

i.e., the restriction to Ω0 of the functions of H1(Ωn). Note that for each n ≥ 1

‖in‖L(H1(Ωn),H1(Ω0)) ≤ 1 . (4.28)
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Then, setting Tn := γ1 ◦ in, n ≥ 1, we find from (4.28) that

‖Tn‖L(H1(Ωn),W
1/2
2 (Γ1))

≤ ‖γ1‖L(H1(Ω0),W
1/2
2 (Γ1))

, n ≥ 1 .

Thus, the trace operators Tn, n ≥ 1, are uniformly bounded. Moreover, for each
n ≥ 1 we have that

vn|Γ1 = Tnvn ∈ W
1/2
2 (Γ1) .

Hence, (4.20) implies

‖ṽn|Γ1‖W
1/2
2 (Γ1)

= ‖vn|Γ1‖W
1/2
2 (Γ1)

= ‖Tnvn‖W
1/2
2 (Γ1)

≤ ‖γ1‖L(H1(Ω0),W
1/2
2 (Γ1))

,

for n ≥ 1. Since the embedding

W
1/2
2 (Γ1) ↪→ L2(Γ1)

is compact, because Γ1 is compact (e.g. Theorem 7.10 of [29]), v∗ ∈ L2(Γ1) and a
subsequence of ṽn, n ≥ 1, –again labeled by n– exist such that

lim
n→∞

‖ṽn|Γ1 − v∗‖L2(Γ1) = 0 . (4.29)

In the sequel we restrict ourselves to consider that subsequence.
Now, we will show that ṽn, n ≥ 1, is a Cauchy sequence in H1(Ω). Note that,

thanks to (4.23), this implies

lim
n→∞

‖ṽn − ṽ‖H1(Ω) = 0 . (4.30)

Indeed, let k and m be two natural numbers such that 1 ≤ k ≤ m. Then, Ωm ⊂ Ωk

and, since L is strongly uniformly elliptic in Ω, integrating by parts and using
vn = 0 on Γn

0 , ṽn = 0 in (Ω \ Ωn) ∪ Γn
0 and ṽn|Ωn

= vn, n ≥ 1, gives

µ‖∇(ṽk − ṽm)‖2
L2(Ω)

≤
N∑

i,j=1

∫
Ω

αij
∂

∂xi
(ṽk − ṽm)

∂

∂xj
(ṽk − ṽm)

=
N∑

i,j=1

[ ∫
Ωk

αij
∂vk

∂xi

∂vk

∂xj
+

∫
Ωm

αij
∂vm

∂xi

∂vm

∂xj
− 2

∫
Ωm

αij
∂vk

∂xi

∂vm

∂xj

]

= −
N∑

i,j=1

[ ∫
Ωk

vk
∂

∂xj
(αij

∂vk

∂xi
) +

∫
Ωm

vm
∂

∂xj
(αij

∂vm

∂xi
)− 2

∫
Ωm

vm
∂

∂xj
(αij

∂vk

∂xi
)
]

+
N∑

i,j=1

∫
Γ1

αij

(
vk

∂vk

∂xi
+ vm

∂vm

∂xi
− 2vm

∂vk

∂xi

)
nj .
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Thus, since vn, n ≥ 1, is a positive solution of (4.21), we find from the previous
inequality that

µ ‖∇(ṽk − ṽm)‖2
L2(Ω) ≤

∫
Ωk

[
λWvk − af(·, uk)vk −

N∑
i=1

α̃i
∂vk

∂xi
− α0vk

]
vk

+
∫

Ωm

[
λWvm − af(·, um)vm −

N∑
i=1

α̃i
∂vm

∂xi
− α0vm

]
vm

− 2
∫

Ωm

[
λWvk − af(·, uk)vk −

N∑
i=1

α̃i
∂vk

∂xi
− α0vk

]
vm

+
N∑

i,j=1

∫
Γ1

αij

(
vk

∂vk

∂xi
+ vm

∂vm

∂xi
− 2vm

∂vk

∂xi

)
nj ,

(4.31)

where the functions α̃i ∈ C(Ω̄), 1 ≤ i ≤ N , are those given by (2.10). Rearranging
terms in (4.31) gives

µ ‖∇(ṽk − ṽm)‖2
L2(Ω) ≤

∫
Ωk

(λW − α0)(vk − ṽm)vk +
∫

Ωm

(λW − α0)(vm − vk)vm

+
∫

Ωk

af(·, uk)(ṽm − vk)vk +
∫

Ωm

af(·, uk)(vk − vm)vm

+
∫

Ωm

av2
m[f(·, uk)− f(·, um)] +

N∑
i=1

∫
Ωk

α̃i(ṽm − vk)
∂vk

∂xi

+
N∑

i=1

∫
Ωm

α̃ivm
∂

∂xi
(vk − vm)

+
N∑

i,j=1

∫
Γ1

αij [(vk − vm)
∂vk

∂xi
+ vm

∂

∂xi
(vm − vk)]nj .

(4.32)

Now, we shall estimate each of the terms in the right hand side of (4.32). Note
that (4.20) implies

‖ṽn‖L2(Ω) ≤ 1 , ‖∇ṽn‖L2(Ω) ≤ 1 , n ∈ N ∪ {0} . (4.33)

Thus, thanks to Hölder’s inequality, we find from (4.6) and (4.33) that∣∣∣ ∫
Ωk

(λW − α0)(vk − ṽm)vk

∣∣∣ ≤ ‖λW − α0‖L∞(Ω) ‖ṽk − ṽm‖L2(Ω) , (4.34)∣∣∣ ∫
Ωm

(λW − α0)(vm − vk)vm

∣∣∣ ≤ ‖λW − α0‖L∞(Ω) ‖ṽk − ṽm‖L2(Ω) , (4.35)∣∣∣ ∫
Ωk

af(·, uk)(ṽm − vk)vk

∣∣∣ ≤ ‖a‖L∞(Ω)‖f‖L∞(Ω×[0,M ])‖ṽk − ṽm‖L2(Ω) , (4.36)∣∣∣ ∫
Ωm

af(·, uk)(vk − vm)vm

∣∣∣ ≤ ‖a‖L∞(Ω)‖f‖L∞(Ω×[0,M ])‖‖ṽk − ṽm‖L2(Ω) , (4.37)
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∣∣∣ N∑
i=1

∫
Ωk

α̃i(ṽm − vk)
∂vk

∂xi

∣∣∣ ≤ ‖ṽm − ṽk‖L2(Ω)

N∑
i=1

‖α̃i‖L∞(Ω) . (4.38)

Moreover, thanks to (4.6) and (1.5), it is easily seen that

|f(·, uk)− f(·, um)| ≤ ‖∂uf(·, ·)‖L∞(Ω×[0,M ])|uk − um|

and, hence,∣∣∣ ∫
Ωm

av2
m[f(·, uk)− f(·, um)]

∣∣∣ ≤ C ‖ṽm‖L∞(Ω)

∫
Ωm

|vm(uk − um)| ,

where
C := ‖a‖L∞(Ω)‖∂uf‖L∞(Ω×[0,M ]) .

Thus, using Hölder’s inequality we find from (4.22) and (4.33) that∣∣∣ ∫
Ωm

av2
m[f(·, uk)− f(·, um)]

∣∣∣ ≤ CM

‖ũ0‖L2(Ω)
‖ũk − ũm‖L2(Ω) . (4.39)

To estimate the integrals over Γ1 one should remember that ∂νvn + b vn = 0 on Γ1,
n ∈ N, since vn is a positive solution of (4.21). Then, it follows from assumption
(2.8) that for any n ∈ N

N∑
i,j=1

αij
∂vn

∂xi
nj =

N∑
i=1

νi
∂vn

∂xi
= 〈∇vn, ν〉 = ∂νvn = −b vn

and, hence,
N∑

i,j=1

αij
∂

∂xi
(vm − vk)nj = −b (vm − vk) .

Therefore,∣∣∣ N∑
i,j=1

∫
Γ1

αij(vk − vm)
∂vk

∂xi
nj

∣∣∣ =
∣∣∣ ∫

Γ1

b vk (vm − vk)
∣∣∣

≤ ‖b‖L∞(Γ1)‖vk|Γ1‖L2(Γ1)‖(vk − vm)|Γ1‖L2(Γ1)

(4.40)

and∣∣∣ N∑
i,j=1

∫
Γ1

αijvm
∂

∂xi
(vm − vk)nj

∣∣∣ =
∣∣∣ ∫

Γ1

b vm (vk − vm)
∣∣∣

≤ ‖b‖L∞(Γ1)‖vm|Γ1‖L2(Γ1)‖(vk − vm)|Γ1‖L2(Γ1) .

(4.41)

To complete the proof of the claim above, it only remains estimating the term

Imk :=
N∑

i=1

∫
Ωm

α̃ivm
∂

∂xi
(vk − vm) . (4.42)

Since α̃i ∈ C(Ω̄), 1 ≤ i ≤ N , in order to perform an integration by parts in (4.42)
we must approach each of these coefficients by a sequence of smooth functions, say
αn

i , n ≥ 1, 1 ≤ i ≤ N . Fix δ > 0 and consider the δ-neighborhood of Ω

Ωδ := Ω̄ + Bδ(0) .
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For each 1 ≤ i ≤ N , let α̂i be a continuous extension of α̃i to RN such that

α̂i ∈ Cc(Ωδ) , ‖α̂i‖L∞(RN ) = ‖α̃i‖L∞(Ω) . (4.43)

Now, consider the function

ρ(x) :=

{
exp

(
1

|x|2−1

)
if |x| < 1 ,

0 if |x| ≥ 1 ,

and the associated approximation of the identity

ρn :=
( ∫

RN

ρ
)−1

nNρ(n ·) , n ∈ N .

Note that for each n ≥ 1 the function ρn satisfies

ρn ∈ C∞c (RN ) , supp ρn ⊂ B 1
n
(0) , ρn ≥ 0 , ‖ρn‖L1(RN ) = 1 .

Then, for each 1 ≤ i ≤ N the new sequence αn
i := ρn∗ α̂i, n ≥ 1, is of class C∞c (RN )

and it converges to α̂i uniformly on any compact subset of RN (e.g. Theorem 8.1.3
of [15]). In particular,

lim
n→∞

‖αn
i |Ω − α̃i‖L∞(Ω) = 0 , 1 ≤ i ≤ N , (4.44)

since α̂i|Ω = α̃i. Moreover, thanks to (4.43), it follows from Young’s inequality that
for each n ≥ 1

‖αn
i ‖L∞(RN ) ≤ ‖ρn‖L1(RN )‖α̂i‖L∞(RN ) = ‖α̃i‖L∞(Ω) , 1 ≤ i ≤ N , (4.45)

and

‖∂αn
i

∂xi
‖L∞(RN ) ≤ ‖∂ρn

∂xi
‖L1(RN )‖α̃i‖L∞(Ω) , 1 ≤ i ≤ N , (4.46)

since
∂αn

i

∂xi
=

∂ρn

∂xi
∗ α̂i , 1 ≤ i ≤ N , n ≥ 1 .

Furthermore, since for each 1 ≤ i ≤ N and n ≥ 1

‖∂ρn

∂xi
‖L1(RN ) =

( ∫
RN

ρ
)−1

n ‖ ∂ρ

∂xi
‖L1(RN ) ,

(4.46) implies

‖∂αn
i

∂xi
‖L∞(RN ) ≤

( ∫
RN

ρ
)−1

n ‖ ∂ρ

∂xi
‖L1(RN )‖α̃i‖L∞(Ω) , 1 ≤ i ≤ N , (4.47)

for each n ≥ 1. Now, going back to (4.42) we find that for each n ≥ 1

Imk :=
N∑

i=1

∫
Ωm

(α̃i − αn
i )vm

∂

∂xi
(vk − vm) +

N∑
i=1

∫
Ωm

αn
i vm

∂

∂xi
(vk − vm) . (4.48)

We now estimate each of the terms in the right hand side of (4.48). Applying
Hölder inequality and using (4.33) it is easily seen that∣∣∣ N∑

i=1

∫
Ωm

(α̃i − αn
i )vm

∂(vk − vm)
∂xi

∣∣∣
≤

( N∑
i=1

‖α̃i − αn
i ‖L∞(Ω)

)
‖ṽm‖L2(Ω)‖∇(ṽk − ṽm)‖L2(Ω)
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≤ 2
N∑

i=1

‖α̃i − αn
i ‖L∞(Ω) .

Moreover, integrating by parts gives
N∑

i=1

∫
Ωm

αn
i vm

∂

∂xi
(vk − vm)

= −
N∑

i=1

∫
Ωm

(vk − vm)
∂

∂xi
(αn

i vm) +
N∑

i=1

∫
Γ1

αn
i vm(vk − vm)ni

and, hence, ∣∣∣ N∑
i=1

∫
Ωm

αn
i vm

∂

∂xi
(vk − vm)

∣∣∣
≤

( N∑
i=1

‖αn
i ‖L∞(RN )

)
‖∇ṽm‖L2(Ω)‖ṽk − ṽm‖L2(Ω)

+
( N∑

i=1

‖∂αn
i

∂xi
‖L∞(RN )

)
‖ṽm‖L2(Ω)‖ṽk − ṽm‖L2(Ω)

+
( N∑

i=1

‖αn
i ‖L∞(RN )

)
‖vm|Γ1‖L2(Γ1)‖(vk − vm)|Γ1‖L2(Γ1) .

Thus, substituting these estimates into (4.48) and using (4.33), (4.45) and (4.47)
we find that

|Imk| ≤
N∑

i=1

(
2‖α̃i − αn

i ‖L∞(Ω) + ‖α̃i‖L∞(Ω)‖vm|Γ1‖L2(Γ1)‖(vk − vm)|Γ1‖L2(Γ1)

)
+

N∑
i=1

(
1 + (

∫
RN

ρ)−1n ‖ ∂ρ

∂xi
‖L1(RN )

)
‖α̃i‖L∞(Ω)‖ṽk − ṽm‖L2(Ω)

for any n ≥ 1. Now, fix ε > 0. Thanks to (4.44), there exists n ≥ 1 such that

2
N∑

i=1

‖α̃i − αn
i ‖L∞(Ω) ≤

ε

4
.

Hence, thanks to (4.23) and (4.29), there exists n0 ≥ 1 such that for any n0 ≤ k ≤ m

|Imk| ≤
ε

2
. (4.49)

Therefore, substituting (4.34)-4.41 and (4.49) into (4.32) and using (4.19), (4.23)
and (4.29), it is easily seen that there exists k0 ≥ n0 such that for any k0 ≤ k ≤ m

µ ‖∇(ṽk − ṽm)‖2
L2(Ω) ≤ ε .

This shows that ṽ ∈ H1(Ω) and completes the proof of (4.30). Note that, thanks
to (4.20),

‖ṽ‖H1(Ω) = lim
n→∞

‖ṽn‖H1(Ω) = 1 . (4.50)

Moreover, if γ1 stands for the trace operator of H1(Ω) on Γ1, then

‖ṽn|Γ1 − ṽ|Γ1‖L2(Γ1) = ‖γ1(ṽn − ṽ)‖L2(Γ1) ≤ ‖γ1‖L(H1(Ω),L2(Γ1))‖ṽn − ṽ‖H1(Ω)
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and hence, (4.30) implies

lim
n→∞

‖ṽn|Γ1 − ṽ|Γ1‖L2(Γ1) = 0 .

Thus, thanks to (4.29), we find that

ṽ|Γ1 = v∗ . (4.51)

Now, set
v := ṽ|Ω0 . (4.52)

Since by construction vn|Ω0 = ṽn|Ω0 , it follows from (4.30) that v ∈ H1(Ω0) and

lim
n→∞

‖vn|Ω0 − v‖H1(Ω0) = 0 . (4.53)

Moreover, thanks to (4.25) and (4.50),

‖v‖H1(Ω0) = ‖ṽ‖H1(Ω) = 1 . (4.54)

On the other hand,∥∥∥ṽn −
ũ

L

∥∥∥
L2(Ω)

=
∥∥∥ ũn

‖ũn‖H1(Ω)
− ũ

L

∥∥∥
L2(Ω)

≤
‖ũn − ũ‖L2(Ω)

‖ũn‖H1(Ω)
+

∣∣ 1
‖ũn‖H1(Ω)

− 1
L

∣∣‖ũ‖L2(Ω) ,

where L is the constant defined through (4.18). Thus, it follows from (4.18) and
(4.19) that

lim
n→∞

∥∥ṽn −
ũ

L

∥∥
L2(Ω)

= 0 .

Consequently, thanks to (4.19) and (4.30), we find that

ũ = Lṽ in L2(Ω) . (4.55)

Moreover, thanks to (4.25), (4.26), (4.53) and (4.55) we have that

ũ ∈ H1(Ω0) , supp ũ ⊂ Ω̄0 , ũ > 0 . (4.56)

Now, set u := ũ|Ω0 . Thanks to (4.53) and (4.55), we have that

u = Lv and lim
n→∞

∥∥∥vn|Ω0 −
u

L

∥∥∥
H1(Ω0)

= 0 . (4.57)

In the sequel we will show that u is a weak solution of P [λ, Ω0,B0(b)]. Indeed, since
ṽ ∈ H1(Ω) and supp ṽ ⊂ Ω̄0, it follows from Theorem 2.7 that ṽ ∈ H1

Γ0
0
(Ω0). Thus,

v ∈ H1
Γ0

0
(Ω0) and hence u = Lv ∈ H1

Γ0
0
(Ω0). Now, pick

ξ ∈ C∞c (Ω0 ∪ Γ1) .

Then, multiplying the differential equations

Lvn = λWvn − af(·, un)vn , n ≥ 1 ,

by ξ, integrating in Ωn, applying the formula of integration by parts and taking
into account that supp ξ ⊂ Ω0 ∪ Γ1 gives

N∑
i,j=1

∫
Ω0

αij
∂vn

∂xi

∂ξ

∂xj
+

N∑
i=1

∫
Ω0

α̃i
∂vn

∂xi
ξ +

∫
Ω0

α0vnξ

=
∫

Ω0

(λW − af(·, un))vnξ +
N∑

i,j=1

∫
Γ1

αij
∂vn

∂xi
ξ nj ,
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for each n ≥ 1, where the coefficients α̃i, 1 ≤ i ≤ N , are given by (2.10). Moreover,
using ∂νvn + b vn = 0 on Γ1, n ≥ 1, yields

N∑
i,j=1

αij
∂vn

∂xi
ξ nj =

N∑
i=1

νi
∂vn

∂xi
ξ = 〈∇vn, ν〉ξ = ∂νvnξ = −b vn ξ ,

and, hence, for each n ≥ 1 we find that
N∑

i,j=1

∫
Ω0

αij
∂vn

∂xi

∂ξ

∂xj
+

N∑
i=1

∫
Ω0

α̃i
∂vn

∂xi
ξ +

∫
Ω0

α0vnξ

=
∫

Ω0

(λW − af(·, un))vnξ −
∫

Γ1

b vn ξ .

(4.58)

Thus, using (4.6), ṽ|Γ1 = v|Γ1 and

lim
n→∞

‖un − u‖L2(Ω) = 0 , lim
n→∞

‖vn|Ω0 − v‖H1(Ω0) = 0 ,

lim
n→∞

‖vn|Γ1 − v|Γ1‖L2(Γ1) = 0 ,

and passing to the limit as n →∞ in (4.58), the theorem of dominated convergence
implies

N∑
i,j=1

∫
Ω0

αij
∂v

∂xi

∂ξ

∂xj
+

N∑
i=1

∫
Ω0

α̃i
∂v

∂xi
ξ +

∫
Ω0

α0vξ

=
∫

Ω0

(λW − af(·, u))vξ −
∫

Γ1

b v ξ .

(4.59)

Finally, multiplying (4.59) by L and taking into account that u = Lv gives
N∑

i,j=1

∫
Ω0

αij
∂u

∂xi

∂ξ

∂xj
+

N∑
i=1

∫
Ω0

α̃i
∂u

∂xi
ξ +

∫
Ω0

α0uξ

=
∫

Ω0

(λW − af(·, u))uξ

−
∫

Γ1

b u ξ

for each ξ ∈ C∞c (Ω0 ∪ Γ1). Therefore, u ∈ H1
Γ0

0
(Ω0), u > 0, is a weak positive

solution of P [λ, Ω0,B0(b)]. Since u0 is the unique positive solution of P [λ, Ω0,B0(b)],
necessarily

u0 = u = Lv . (4.60)
Now, thanks to (4.53), it follows from (4.60) that

lim
n→∞

‖vn|Ω0 −
u0

L
‖H1(Ω0) = 0 . (4.61)

Moreover, since

un|Ω0 − u0 = ‖ũn‖H1(Ω)

[(
vn|Ω0 −

u0

L

)
+

( 1
L
− 1
‖ũn‖H1(Ω)

)
u0

]
,

it follows from (4.8) that

‖un|Ω0 − u0‖H1(Ω0) ≤ M̂
[
‖vn|Ω0 −

u0

L
‖H1(Ω0) +

∣∣ 1
L
− 1
‖ũn‖H1(Ω)

∣∣‖u0‖H1(Ω0)

]
.
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Therefore, thanks to (4.18) and (4.61), we conclude that

lim
n→∞

‖un|Ω0 − u0‖H1(Ω0) = 0 .

This shows the validity of (4.3) along the subsequence we have been dealing with.
As the previous argument works out along any subsequence, the proof is completed.

�

The following result provides us with some sufficient conditions ensuring that
condition (4.2) is satisfied. Therefore, under these conditions the conclusion of
Theorem 4.1 is satisfied.

Theorem 4.2. Let Ω0 be a proper subdomain of Ω with boundary of class C2 such
that

∂Ω0 = Γ0
0 ∪ Γ1 , Γ0

0 ∩ Γ1 = ∅ ,

where Γ0
0 satisfies the same requirements as Γ0, and let Ωn ⊂ Ω, n ≥ 1, be a

sequence of bounded domains of RN of class C2 converging to Ω0 from the exterior
such that

dist(∂Ω, ∂Ωn ∩ Ω) > 0 , n ≥ 0 . (4.62)
For each natural number n ≥ 0 let Bn(b) be the boundary operator defined by (4.1).
Then, the following assertions are true:

(a) Suppose (2.8) on Γ1 ∩ ∂Ω0
a and ∅ 6= Ω0

a ⊂ Ω0. Then, for each n ≥ 0,

a ∈
∞⋂

n=0

AΓn
0 ,Γ1(Ωn) and [Ωn]0a = Ω0

a , (4.63)

where Γn
0 := ∂Ωn \ Γ1 and [Ωn]0a is the corresponding open set of the

definition of the class AΓn
0 ,Γ1(Ωn), n ≥ 0. Suppose, in addition, that

λ ∈ Λ[Ω0,B0(b)]. Then,

λ ∈
∞⋂

n=0

Λ[Ωn,Bn(b)] . (4.64)

(b) Suppose Ω̄0 ∩ Ω̄0
a = ∅. Then, a ∈ A+

Γ0
0,Γ1

(Ω0). Moreover, n0 ∈ N exists for
which

a ∈
∞⋂

n=n0

A+
Γn

0 ,Γ1
(Ωn) . (4.65)

Furthermore,

λ ∈
∞⋂

n=n0

Λ[Ωn,Bn(b)] (4.66)

if λ ∈ Λ[Ω0,B0(b)] .
(c) Suppose Ω̄0

a ∩ Ω̄0 6= ∅, Ω0 ∩Ω0
a = ∅, and n0 ∈ N exists for which Ωn ∩Ω0

a is
of class C2 and

∂Ωn ∩ Ω ∩ ∂(Ω0
a ∩ Ωn) = ∂Ωn ∩ Ω ∩ Ω̄0

a , n ≥ n0 . (4.67)

Suppose, in addition, that Γ∩Ka 6= ∅ implies Γ \Ka ⊂ Ω+
a for any compo-

nent Γ of Γ0
0. Then, a ∈ A+

Γ0
0,Γ1

(Ω0) and

a ∈
∞⋂

n=n0

AΓn
0 ,Γ1(Ωn) , [Ωn]0a = Ω0

a ∩ Ωn , n ≥ n0 . (4.68)



32 S. CANO-CASANOVA & J. LÓPEZ-GÓMEZ EJDE-2004/74

Suppose, in addition, that λ ∈ Λ[Ω0,B0(b)]. Then, m0 ∈ N, m0 ≥ n0, exists
for which

λ ∈
∞⋂

n=m0

Λ[Ωn,Bn(b)] . (4.69)

(d) Suppose (2.8) on Γ1 ∩ ∂[Ω0]0a and
1. Ω0

a ∩ Ω0 6= ∅ is of class C2,
2. Ω0

a ∩ (Ω \ Ω0) 6= ∅,
3. n0 ∈ N exists such that Ω0

a ∩ Ωn is a proper subdomain of Ω of class
C2 if n ≥ n0,

4. (3.2) is satisfied for any Ω̃ ∈ {Ω0,Ωn0+j : j ≥ 0}.
Then, a ∈ AΓ0

0,Γ1
(Ω0) and m0 ≥ n0 exists for which

a ∈
∞⋂

n=m0

AΓn
0 ,Γ1(Ωn) ∧ [Ωn]0a = Ωn ∩ Ω0

a if n ∈ {0,m0+j : j ≥ 0 } . (4.70)

Moreover, if, in addition, λ ∈ Λ[Ω0,B0(b)], then, for some `0 ≥ m0,

λ ∈
∞⋂

n=`0

Λ[Ωn,Bn(b)] . (4.71)

(e) Suppose a ∈ A+(Ω), i.e. Ω0
a = ∅. Then,

a ∈
∞⋂

n=0

A+
Γn

0 ,Γ1
(Ωn) , (4.72)

i.e., a ∈ AΓn
0 ,Γ1(Ωn) and [Ωn]0a = ∅ for each n ≥ 0. Moreover,

λ ∈ Λ[Ω0,B0(b)] =⇒ λ ∈
∞⋂

n=0

Λ[Ωn,Bn(b)] . (4.73)

Furthermore, in any of the five previous cases, if (2.8) is satisfied on Γ1, λ ∈
Λ[Ω0,B0(b)] and un stands for the unique positive solution of P [λ, Ωn,Bn(b)] –
whose existence is guaranteed for n sufficiently large–, then, thanks to Theorem
4.1,

lim
n→∞

‖un|Ω0 − u0‖H1(Ω0) = 0 , (4.74)

where u0 is the unique positive solution of P [λ, Ω0,B0(b)].

In most of the applications, in order to have the results of the theorem it suffices
assuming that

dist(∂Ω, ∂Ω0 ∩ Ω) > 0 ,

instead of (4.62), since this condition implies (4.62) to hold for n = 0 and n suffi-
ciently large.

Proof. Without lost of generality we can assume that Ωn+1 is a proper subset of
Ωn for each n ≥ 1. Then, Ω0 is a proper subset of Ωn for any n ≥ 1 and, for each
n ≥ 1,

dist(Γ1, ∂Ω0 ∩ Ωn) > 0 ,

since ∂Ω0 ∩ Ωn ⊂ Γ0
0 and Ωn converges from the exterior to Ω0 as n → ∞. Thus,

thanks to Proposition 2.4,

σ[Lf (λ),Bn(b),Ωn] < σ[Lf (λ),B0(b),Ω0] , n ≥ 1 . (4.75)
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Now, we will proceed to prove each of the assertions of the theorem separately:
(a) Suppose ∅ 6= Ω0

a ⊂ Ω0. Then, for each n ≥ 0, Ω0
a ∩Ωn = Ω0

a 6= ∅ is of class C2,
since Ω0

a ⊂ Ω0 ⊂ Ωn. Moreover, for each n ≥ 0,

∂Ωn ∩ Ω ∩ ∂(Ω0
a ∩ Ωn) = ∂Ωn ∩ Ω ∩ Ω̄0

a , n ≥ 0 ,

since Ω0
a ∩ Ωn = Ω0

a and ∂Ωn ∩ Ω ⊂ Γn
0 . Therefore, thanks to (4.62), it readily

follows from Theorem 3.1(a) that (4.63) is satisfied. Note that

σ[L(λ),B(b, [Ωn]0a), [Ωn]0a] = σ[L(λ),B(b, Ω0
a),Ω0

a] , n ≥ 0 . (4.76)

Now, suppose λ ∈ Λ[Ω0,B0(b)]. Then, thanks to Theorem 2.13(a),

σ[Lf (λ),B0(b),Ω0] < 0 < σ[L(λ),B(b, Ω0
a),Ω0

a] . (4.77)

Therefore, thanks to (4.75) and (4.77), we find that, for each n ≥ 0,

σ[Lf (λ),Bn(b),Ωn] < 0 < σ[L(λ),B(b, Ω0
a),Ω0

a] .

Consequently, (4.64) follows from Theorem 2.13(a).
(b) Let Γ be any component of Γ0

0 satisfying Γ ∩K 6= ∅. Then, it follows from

Γ \K ⊂ Γ0
0 ⊂ ∂Ω0 ∧ Ω̄0 ∩ Ω̄0

a = ∅ ,

that
(Γ \K) ∩ Ω̄0

a = ∅ ∧ (Γ \K) ∩K = ∅ .

Thus, (Γ \K) ∩ (Ω̄0
a ∪K) = ∅ and, hence, (1.10) implies Γ \K ⊂ Ω+

a . Therefore,
thanks to (4.62), we find from Theorem 3.1(b) that

a ∈ A+
Γ0

0,Γ1
(Ω0) .

On the other hand, since

Ω̄0
a ∩ Ω̄0 = ∅ ∧

∞⋂
n=1

Ω̄n = Ω̄0 ,

n0 ∈ N exists for which
Ω̄0

a ∩ Ω̄n = ∅ , n ≥ n0 . (4.78)
Pick n ≥ n0 and let Γ be any component of Γn

0 satisfying Γ ∩ K 6= ∅. Then, it
follows from

Γ \K ⊂ Γn
0 ⊂ ∂Ωn ∧ Ω̄n ∩ Ω̄0

a = ∅ ,

that
(Γ \K) ∩ Ω̄0

a = ∅ ∧ (Γ \K) ∩K = ∅ .

Thus, (Γ \K) ∩ (Ω̄0
a ∪K) = ∅ and, hence, (1.10) implies Γ \K ⊂ Ω+

a . Therefore,
thanks to (4.62), Theorem 3.1(b) implies (4.65).

Now, suppose λ ∈ Λ[Ω0,B0(b)]. Then, thanks to Theorem 2.13(b),

σ[Lf (λ),B0(b),Ω0] < 0 .

Thus, thanks to (4.75), for each n ≥ n0, we have that

σ[Lf (λ),Bn(b),Ωn] < σ[Lf (λ),B0(b),Ω0] < 0 , n ≥ n0 ,

and, therefore, thanks again to Theorem 2.13(b), condition (4.66) holds.
(c) Since any component of ∂Ω0 ∩Ω must be a component of Γ0

0, thanks to (4.62),
it follows from Theorem 3.1(b) that a ∈ A+

Γ0
0,Γ1

(Ω0). Similarly, thanks to Theorem
3.1(a),

a ∈ AΓn
0 ,Γ1(Ωn) , [Ωn]0a = Ωn ∩ Ω0

a , n ≥ n0 . (4.79)
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In particular,
lim

n→∞
|[Ωn]0a| = lim

n→∞
|Ω0

a ∩ Ωn| = 0 ,

since Ωn → Ω0 from the exterior, as n →∞, and Ω0
a ∩Ω0 = ∅. Here | · | stands for

the N -dimensional Lebesgue measure. Therefore, thanks to Theorem 2.11, there
exists m0 ≥ n0 such that

σ[L(λ),D, [Ωn]0a] > 0 , n ≥ m0 . (4.80)

Now, we shall show that, for each n ≥ m0,

Γ1 ∩ ∂[Ωn]0a = ∅ (4.81)

and that, consequently,
B(b, [Ωn]0a) = D

is the Dirichlet boundary operator. On the contrary assume that Γ1 ∩ ∂[Ωn]0a 6= ∅
for some n ≥ m0 and let Γ∗1 be a component of Γ1 such that

Γ∗1 ∩ ∂[Ωn]0a 6= ∅ .

Then, Γ∗1 ⊂ ∂[Ωn]0a, since a ∈ AΓn
0 ,Γ1(Ωn), and, hence, a = 0 in a neighborhood

of Γ∗1 in Ωn. Thus, Γ∗1 ⊂ ∂Ω0
a and, therefore, Γ∗1 cannot be a component of ∂Ω0,

because Ω0
a ∩Ω0 = ∅. This contradiction shows (4.81). Consequently, (4.80) can be

written in the form

0 < σ[L(λ),B(b, [Ωn]0a), [Ωn]0a] , n ≥ m0 . (4.82)

Now, suppose λ ∈ Λ[Ω0,B0(b)]. Then, thanks to Theorem 2.13(b) and (4.75), we
find that

σ[Lf (λ),Bn(b),Ωn] < σ[Lf (λ),B0(b),Ω0] < 0 , n ≥ 1 ,

and, hence, (4.82) gives

σ[Lf (λ),Bn(b),Ωn] < 0 < σ[L(λ),B(b, [Ωn]0a), [Ωn]0a] , n ≥ m0 .

Therefore, thanks to Theorem 2.13(b), (4.69) is satisfied. This completes the proof
of Part (c).
(d) Since Ω0

a ∩ Ω0 6= ∅ is of class C2 and

∂Ω0 ∩ Ω ∩ ∂(Ω0
a ∩ Ω0) = ∂Ω0 ∩ Ω ∩ Ω̄0

a ,

it follows from Theorem 3.1(a) that

a ∈ AΓ0
0,Γ1

(Ω0) , [Ω0]0a = Ω0
a ∩ Ω0 .

Moreover, since Ω0
a ∩Ωn is a proper subdomain of Ω of class C2 and Ωn → Ω0 from

the exterior, as n →∞, it is easy to see that

lim
n→∞

Ω0
a ∩ Ωn = Ω0

a ∩ Ω0 (4.83)

from the exterior. Furthermore, since Ω0
a ∩Ω0 6= ∅, there exists m0 ≥ n0 such that

Ω0
a ∩ Ωn 6= ∅ for each n ≥ m0. Therefore, thanks again to Theorem 3.1(a),

a ∈ AΓn
0 ,Γ1(Ωn) , [Ωn]0a = Ω0

a ∩ Ωn , n ≥ m0 .

This completes the proof of (4.70).
Now, suppose λ ∈ Λ[Ω0,B0(b)]. Then, thanks to Theorem 2.13(a),

σ[Lf (λ),B0(b),Ω0] < 0 < σ[L(λ),B(b, [Ω0]0a), [Ω0]0a] . (4.84)
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Thus, thanks to (4.75), (4.70) and (4.84), for each n ≥ m0 we have that

σ[Lf (λ),Bn(b),Ωn] < 0 < σ[L(λ),B(b, [Ω0]0a), [Ω0]0a] .

Moreover, thanks to (4.83), it follows from Theorem 2.10 that

lim
n→∞

σ[L(λ),B(b, [Ωn]0a), [Ωn]0a] = σ[L(λ),B(b, [Ω0]0a), [Ω0]0a] .

Therefore, `0 ≥ m0 exists for which

σ[Lf (λ),Bn(b),Ωn] < 0 < σ[L(λ),B(b, [Ω0]0a), [Ω0]0a] , n ≥ `0 ,

and, hence, thanks to Theorem 2.13(a), (4.71) holds.
(e) Suppose a ∈ A+(Ω). Then, Ω0

a = ∅ and, thanks to (4.62), condition (4.72) can
be easily obtained from the definition of A+(Ωn), n ≥ 0. Suppose, in addition, that
λ ∈ Λ[Ω0,B0(b)]. Then, thanks to (4.75), Theorem 2.13 implies

σ[Lf (λ),Bn(b),Ωn] < σ[Lf (λ),B0(b),Ω0] < 0 , n ≥ 0 .

Therefore, thanks again to Theorem 2.13, (4.73) is satisfied. This completes the
proof of the theorem. �

5. Interior continuous dependence

In this section we analyze the continuous dependence of the positive solutions
of (1.1) respect to interior perturbations of the domain Ω around its Dirichlet
boundary Γ0 in the special case when ∂ν is the conormal derivative with respect to
L. So, for the remaining of this section we assume (2.8). As in Section 4, we will
refer to (1.1) as problem P [λ, Ω,B(b)]. Also, we will denote by Λ[Ω,B(b)] the set
of values of λ ∈ R for which P [λ, Ω,B(b)] possesses a positive solution.

The following result will provide us with the interior continuous dependence of
the positive solutions of P [λ, Ω,B(b)].

Theorem 5.1. Suppose (2.8). Let Ω0 be a proper subdomain of Ω with boundary
of class C2 such that

∂Ω0 = Γ0
0 ∪ Γ1 , Γ0

0 ∩ Γ1 = ∅ ,

where Γ0
0 satisfies the same requirements as Γ0, and let Ωn ⊂ Ω, n ≥ 1, be a

sequence of bounded domains of RN of class C2 converging to Ω0 from its interior.
For each n ∈ N ∪ {0}, let Bn(b) denote the boundary operator defined by

Bn(b)u :=

{
u on Γn

0

∂νu + bu on Γ1

(5.1)

where Γn
0 := ∂Ωn \ Γ1, n ∈ N ∪ {0}. Suppose in addition that

a ∈ A(Ω0) , λ ∈ Λ[Ω0,B0(b)]

and that n0 ∈ N exists for which

a ∈
∞⋂

n=n0

A(Ωn) , λ ∈
∞⋂

n=n0

Λ[Ωn,Bn(b)] . (5.2)

For each n ≥ 0, let un denote the unique positive solution of P [λ, Ωn,Bn(b)]; it
should be noted that the uniqueness is guaranteed by Theorem 2.13. Then,

lim
n→∞

‖ũn − u0‖H1(Ω0) = 0 (5.3)
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where

ũn :=

{
un in Ωn

0 in Ω0 \ Ωn

n ≥ 1 . (5.4)

Proof. Suppose (5.2). Then, thanks to Theorem 2.13, the problem P [λ, Ωn,Bn(b)],
n ≥ n0, has a unique positive solution, denoted in the sequel by un. Moreover,
thanks to Lemma 2.12,

un ∈ W 2
Bn(b)(Ωn) ⊂ H2(Ωn) , n ≥ n0 ,

and un is strongly positive in Ωn. Since un ∈ H1(Ωn) and un = 0 on Γn
0 , we have

that ũn ∈ H1(Ω0) and

‖ũn‖H1(Ω0) = ‖un‖H1(Ωn) , n ≥ n0 . (5.5)

Moreover, since un is strongly positive in Ωn, Γ1 = ∂Ωn \ Γn
0 for each n ≥ 0 and

Ωn ⊂ Ωn+1 ⊂ Ω0, n ∈ N, it is easily seen that for n ≥ n0,

Lun+1 = λWun+1 − af(·, un+1)un+1 in Ωn

Bn(b)un+1 ≥ 0 on ∂Ωn

and

Lu0 = λWu0 − af(·, u0)u0 in Ωn

Bn(b)u0 ≥ 0 on ∂Ωn .

Thus, for each n ≥ n0 the function un+1 is a positive supersolution of the problems
P [λ, Ωn,Bn(b)] and u0 is a positive supersolution of P [λ, Ωn,Bn(b)]. Hence, thanks
to Theorem 2.15, we find that

un+1|Ωn
≥ un > 0 , u0|Ωn

≥ un > 0 , n ≥ n0 .

Therefore, in Ω0 we have that

0 < ũn0 ≤ ũn ≤ ũn+1 ≤ u0 , n ≥ n0 . (5.6)

Now, setting M := ‖u0‖L∞(Ω0), it follows from (5.6) that

‖ũn‖L∞(Ω0) ≤ M , n ≥ n0 . (5.7)

Now, changing Ω by Ω0, the proof of Theorem 4.1 can be easily adapted to show
that there exist u ∈ H1(Ω0) and a subsequence of ũn, n ≥ n0, labeled again by n,
such that

lim
n→∞

‖ũn − u‖H1(Ω0) = 0 .

Since ũn ∈ H1
Γ0

0
(Ω0), n ≥ n0, Theorem 2.7 implies u ∈ H1

Γ0
0
(Ω0). Moreover, it

is easily seen that u provides us with a weak positive solution of P [λ, Ω0,B0(b)].
Since u can be regarded as a principal eigenfunction for a second order elliptic
operator, u provides us with a positive solution of P [λ, Ω0,B0(b)]. Thus, thanks
to the uniqueness of u0, u = u0. As the previous argument works out along any
subsequence of ũn, n ≥ n0, the proof of the theorem is completed. �

The following result provides us with some sufficient conditions ensuring that
condition (5.2) is satisfied. Therefore, under these conditions the conclusion of
Theorem 5.1 is satisfied.
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Theorem 5.2. Suppose (2.8). Let Ω0 a proper subdomain of Ω with boundary of
class C2 such that

∂Ω0 = Γ0
0 ∪ Γ1 , Γ0

0 ∩ Γ1 = ∅ ,

where Γ0
0 satisfies the same requirements as Γ0, and let Ωn, n ≥ 1 be a sequence of

bounded domains of RN of class C2 converging to Ω0 from its interior and satisfying
(4.62). For each n ≥ 0 let Bn(b) denote the boundary operator defined by (5.1).
Then, the following assertions are true:

(a) Suppose Ω0
a∩Ω0 = ∅ and Γ∩K 6= ∅ implies Γ\K ⊂ Ω+

a for any component
Γ of Γ0

0. Then,

a ∈
∞⋂

n=0

A+
Γn

0 ,Γ1
(Ωn) . (5.8)

Moreover, if λ ∈ Λ[Ω0,B0(b)], then there exists n0 ≥ 1 such that

λ ∈
∞⋂

n=n0

Λ[Ωn,Bn(b)] . (5.9)

(b) Suppose Ω0 ∩ Ω0
a 6= ∅ is of class C2, n0 ∈ N exists such that Ω0

a ∩ Ωn is of
class C2 if n ≥ n0, and (3.2) is satisfied for any Ω̃ ∈ {Ω0,Ωn0+j : j ≥ 0}.
Then,

a ∈ AΓ0
0,Γ1

(Ω0) , [Ω0]0a = Ω0
a ∩ Ω0 , (5.10)

and m0 ≥ n0 exists for which

a ∈
∞⋂

n=m0

AΓn
0 ,Γ1(Ωn) , [Ωn]0a = Ω0

a ∩ Ωn , n ≥ m0 . (5.11)

Moreover, if, in addition, λ ∈ Λ[Ω0,B0(b)], then

λ ∈
∞⋂

n=`0

Λ[Ωn,Bn(b)] (5.12)

for some ` ≥ m0.
Thanks to Theorem 5.1, in any of these cases we have that

lim
n→∞

‖ũn − u0‖H1(Ω0) = 0 , (5.13)

where ũn is the extension to Ω0 defined by (5.4) and u0 is the unique positive
solution of the problem P [λ, Ω0,B0(b)].

Proof. Once proven parts (a) and (b), the relation (5.13) follows as a straightfor-
ward consequence from Theorem 5.1. Without lost of generality we can assume
that Ωn is a proper subset of Ωn+1 for each n ≥ 1. Then, Ωn is a proper subset of
Ω0 for any n ≥ 1. Now, we proceed to prove each part of the theorem separately.
(a)]; Thanks to Theorem 3.1(b), a ∈ A+

Γ0
0,Γ1

(Ω0). Moreover, since limn→∞Ωn = Ω0

from its interior,
Ω0

a ∩ Ωn = ∅
for each n ≥ 1. Furthermore, if Γ is a component of ∂Ωn ∩Ω for which Γ ∩K 6= ∅,
then it follows from (1.10) that

Γ \K ⊂ Ω0 \K ⊂ Ω+
a .

Therefore, Theorem 3.1(b) implies a ∈ A+
Γn

0 ,Γ1
(Ωn), n ≥ 1. This completes the

proof of (5.8).
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Now, suppose λ ∈ Λ[Ω0,B0(b)]. Then, thanks to Theorem 2.13(b),

σ[Lf (λ),B(b, Ω0),Ω0] < 0 . (5.14)

Moreover, thanks to Theorem 2.9,

lim
n→∞

σ[Lf (λ),B(b, Ωn),Ωn] = σ[Lf (λ),B(b, Ω0),Ω0] . (5.15)

Thus, thanks to (5.14) and (5.15), n0 ≥ 1 exists for which

σ[Lf (λ),B(b, Ωn),Ωn] < 0 if n ≥ n0 .

This completes the proof of (5.9).
(b) Condition (5.10) follows from Theorem 3.1(b). Moreover, since limn→∞Ωn =
Ω0 from its interior, Ωn ∩Ω0

a 6= ∅ for large enough n ≥ 1. Thus, m0 ≥ n0 exists for
which Ωn ∩ Ω0

a 6= ∅ is of class C2 for each n ≥ m0. Therefore, thanks to Theorem
3.1(b), (5.11) is satisfied. In particular, each of the principal eigenvalues

σ[L(λ),B(b, [Ωn]0a), [Ωn]0a] , n ≥ m0 ,

is well defined. Now, suppose λ ∈ Λ[Ω0,B0(b)]. Then, thanks to Theorem 2.13(a),

σ[Lf (λ),B(b, Ω0),Ω0] < 0 < σ[L(λ),B(b, [Ω0]0a), [Ω0]0a] . (5.16)

Moreover, since limn→∞Ωn = Ω0 from its interior,

lim
n→∞

[Ωn]0a = [Ω0]0a

from its interior. Hence, Theorem 2.9 implies

lim
n→∞

σ[L(λ),B(b, [Ωn]0a), [Ωn]0a] = σ[L(λ),B(b, [Ω0]0a), [Ω0]0a] . (5.17)

Thus, thanks to (5.16) and (5.17), `0 ≥ m0 exists for which

σ[Lf (λ),B(b, Ωn),Ωn] < 0 < σ[L(λ),B(b, [Ωn]0a), [Ωn]0a]

if n ≥ `0. Therefore, thanks to Theorem 2.13(a), the proof of (5.12) is completed.
As already mentioned above, (5.13) follows from Theorem 5.1. This completes

the proof. �

6. Continuous dependence

As an easy consequence from Theorems 4.1 and 5.1 the next result follows.

Theorem 6.1. Suppose (2.8). Let Ω0 be a proper subdomain of Ω with boundary
of class C2 such that

∂Ω0 = Γ0
0 ∪ Γ1 , Γ0

0 ∩ Γ1 = ∅ ,

where Γ0
0 satisfies the same requirements as Γ0, and let Ωn ⊂ Ω, n ≥ 1, be a

sequence of bounded domains of RN of class C2 converging to Ω0.
Let ΩI

n and ΩE
n , n ≥ 1, two sequences of bounded domains in Ω such that ΩI

n,
n ≥ 1, converges to Ω0 from the interior, ΩE

n , n ≥ 1, converges to Ω0 from the
exterior and

ΩI
n ⊂ Ω0 ∩ Ωn , Ω0 ∪ Ωn ⊂ ΩE

n , n ≥ 1 .

For each Ω̃ ∈ {Ω0 ,Ωn ,ΩI
n ,ΩE

n : n ≥ 1 } let B(b, Ω̃) denote the boundary operator
defined by

B(b, Ω̃)u :=

{
u on ∂Ω̃ \ Γ1 ,

∂νu + bu on Γ1 .
(6.1)
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Suppose, in addition, that

a ∈ AΓ0
0,Γ1

(Ω0) , λ ∈ Λ[Ω0,B0(b)] , (6.2)

and that there exists n0 ≥ 1 such that

a ∈
∞⋂

n=n0

[
A∂Ωn\Γ1,Γ1(Ωn) ∩ A∂ΩI

n\Γ1,Γ1(Ω
I
n) ∩ A∂ΩE

n \Γ1,Γ1(Ω
E
n )

]
(6.3)

and

λ ∈
∞⋂

n=n0

(
Λ[Ωn,B(b, Ωn)] ∩ Λ[ΩI

n,B(b, ΩI
n)] ∩ Λ[ΩE

n ,B(b, ΩE
n )]

)
. (6.4)

Let u0 denote the unique positive solution of P [λ, Ω0,B(b, Ω0)] and for each n ≥ n0

let un, uI
n, uE

n denote the unique positive solutions of

P [λ, Ωn,B(b, Ωn)] , P [λ, ΩI
n,B(b, ΩI

n)] , P [λ, ΩE
n ,B(b, ΩE

n )] ,

respectively. Now, for n ≥ 1, set

ũI
n :=

{
un in ΩI

n

0 in Ω0 \ ΩI
n,

(6.5)

ũn :=

{
un in Ωn

0 in Ω \ Ωn

n ≥ 1 . (6.6)

Then,

lim
n→∞

‖uE
n |Ω0 − u0‖H1(Ω0) = 0 , lim

n→∞
‖ũI

n − u0‖H1(Ω0) = 0 , (6.7)

ũI
n ≤ u0 ≤ uE

n |Ω0 , ũI
n ≤ ũn|Ω0 ≤ uE

n |Ω0 , in Ω0 , n ≥ n0 . (6.8)

Therefore, for each p ∈ [1,∞),

lim
n→∞

‖ũn|Ω0 − u0‖Lp(Ω0) = 0 . (6.9)

Proof. Relations (6.7) follow straight away from Theorem 4.1 and Theorem 5.1.
Relations (6.8) follow very easily combining the uniqueness of the positive solutions
with Theorem 2.15. Now, thanks to (6.7) and (6.8),

lim
n→∞

‖ũn|Ω0 − u0‖L2(Ω0) = 0 , (6.10)

and, hence,
lim

n→∞
‖ũn|Ω0 − u0‖Lp(Ω0) = 0 , 1 ≤ p ≤ 2 . (6.11)

On the other hand, arguing as in beginning of the proof of Theorem 4.1, we find
from (6.8) and Theorem 2.15 that

ũn|Ω0 ≤ uE
n |Ω0 ≤ uE

n0
|Ω0 , n ≥ n0 . (6.12)

Thus, setting M := ‖uE
n0
‖L∞(Ω0), (6.12) implies that

‖ũn‖L∞(Ω0) ≤ M , n ≥ n0 .

Finally, combining this uniform estimate with (6.10) gives

lim
n→∞

‖ũn|Ω0 − u0‖Lp(Ω0) = 0 , 2 ≤ p < ∞ .

This completes the proof of the theorem. �

Adapting the proofs of Theorem 4.2 and Theorem 5.2 one can easily obtain
rather simple conditions on a and the Ωn’s so that (6.2) imply (6.3) and (6.4).



40 S. CANO-CASANOVA & J. LÓPEZ-GÓMEZ EJDE-2004/74
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