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ASYMPTOTIC BEHAVIOR OF PULLBACK ATTRACTORS FOR
NON-AUTONOMOUS MICROPOLAR FLUID FLOWS IN 2D

UNBOUNDED DOMAINS
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Abstract. In this article, we investigate the pullback asymptotic behavior

of solutions for a non-autonomous micropolar fluid flows in 2D unbounded

channel-like domains. First, applying the technique of truncation functions,
decomposition of spatial domain, and the energy method, we show the ex-

istence of the pullback attractor in the space bH(Ω) (has L2-regularity). In

fact, we can deduce the existence of pullback attractor in space bV (Ω) (has

H1-regularity). Also the tempered behavior of the pullback attractor is ver-
ified. Moreover, when the spatial domain varies from Ωm({Ωm}∞m=1 be an

expanding sequence of simply connected, bounded and smooth subdomains of
Ω such that ∪∞m=1Ωm = Ω) to Ω, the upper semicontinuity of the pullback

attractor is discussed.

1. Introduction

The micropolar fluid model is firstly derived by Eringen [9] in 1966, which is used
to describe fluids consisting of randomly oriented particles suspended in a viscous
medium. The model has the form:

∂u

∂t
− (ν + νθ)∆u− 2νθ rotω + (u · ∇)u+∇p = f,

∇ · u = 0,
∂ω

∂t
− (ca + cd)∆ω + 4νθω + (u · ∇)ω

− (c0 + cd − ca)∇ divω − 2νθ rotu = f̃ ,

(1.1)

where u = (u1, u2, u3) is velocity, ω = (ω1, ω2, ω3) represents the angular veloc-
ity field of rotation of particles, f = (f1, f2, f3) and f̃ = (f̃1, f̃2, f̃3) stand for the
external force and moments, respectively. p is pressure. The positive parameters
ν, νθ, c0, ca and cd are viscosity coefficients. Indeed, ν is the usual Newtonian vis-
cosity and νθ is called microrotation viscosity. Note that when the gyration is
neglected, the micropolar fluid equations are reduce to the classical Navier-Stokes
equations.
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Micropolar fluid model plays important role in the fields of applied and compu-
tational mathematics, there are lots of literatures on the mathematical theory of
micropolar fluid model (1.1). The existence and uniqueness of solutions for the mi-
cropolar fluids has been investigated in [8, 12, 13]. At the same time, lots of works
are devoted to the long time behavior of solutions for the micropolar fluids. More
precisely, Chen, Chen and Dong proved the existence of H2-compact global attrac-
tors in a bounded domain in [4] and verified the existence of uniform attractors in
non-smooth domains in [5]. Chen[6] showed the existence of L2-pullback attractor
for the micropolar fluid flows in a Lipschitz bounded domain with non-homogeneous
boundary conditions.  Lukaszewicz[13] verified the estimates of Hausdorff and frac-
tal dimension of the L2-global attractor. Later,  Lukaszewicz and Tarasińska[18]
proved the existence of H1-pullback attractor for non-autonomous micropolar fluid
equation in a bounded domain. As for the long time behavior of solutions for the
micropolar fluid flows on unbounded domain, Dong and Chen [7] investigated the
existence and regularity of the global attractors in 2D unbounded domains. Later,
Zhao, Zhou and Lian [25] established the existence of H1-uniform attractor and
further proved the L2-uniform attractor belongs to the H1-uniform attractor in
2D unbounded domains. Nowakowski [21] investigated the existence of H1-uniform
attractor and long time behavior of solutions in 3D cylindrical domains. So far,
to our knowledge, there is no results about pullback attractors of the micropolar
fluid model in 2D unbounded domains. Here, we will give a positive answer for this
problem.

Since we investigate the pullback asymptotic behavior of solutions for the microp-
olar fluid model in 2D unbounded domains, we assume that the velocity component
u3 in the x3 direction is zero and the axes of rotation of particles are parallel to
the x3 axis. Then, the form of u, ω, f, f̃ are that u = (u1, u2, 0), ω = (0, 0, ω3),
f = (f1, f2, 0), f̃ = (0, 0, f̃3). Further, the equations (1.1) can be reduced to the
following 2D non-autonomous dynamical system:

∂u

∂t
− (ν + νθ)∆u− 2νθ∇× ω + (u · ∇)u+∇p = f(t, x),

∂ω

∂t
− α∆ω + 4νθω − 2νθ∇× u+ (u · ∇)ω = f̃(t, x),

∇ · u = 0, in (τ, T )× Ω,

(1.2)

where Ω := R× (−L,L) for some L > 0, α := ca + cd, and x := (x1, x2) ∈ Ω ⊆ R2,
u := (u1, u2), f := (f1, f2). ω and f̃ are scalar functions,

∇× u :=
∂u2

∂x1
− ∂u1

∂x2
and ∇× ω := (

∂ω

∂x2
,− ∂ω

∂x1
).

To complete the formulation of the initial boundary value problem to the system
(1.2), We give the following initial data and boundary conditions:

w(τ, x) = (u(τ, x), ω(τ, x)) = (u0(x), ω0(x)), x ∈ Ω, τ ∈ R, (1.3)

u = 0, ω = 0, on (τ, T )× ∂Ω. (1.4)

In fact, there have been some papers in the literature on the pullback asymptotic
behaviors of solutions for the Navier-Stokes equations and the non-Newtonian fluid
in some unbounded domains. For example, Caraballo,  Lukaszewicz and Real [2]
established the existence of a pullback attractor for a non-autonomous Navier-
Stokes. Langa,  Lukaszewicz and Real [16] proved the existence of pullback attractor
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for the non-autonomous Navier-Stokes equations in 2D unbounded domains. In
particular, they gave sufficient conditions for their pullback attractor to have finite
fractal dimension. Wang and Li [23] studied the existence of a pullback attractor
for a non-autonomous 2D Navier-Stokes equation with linear dampness. Zhao [27]
showed the existence of pullback attractor and their upper semicontinuity for the
non-autonomous non-Newtonian fluid in 2D unbounded domain. Here, borrowing
the ideas and argument in [27], we discuss the existence of pullback attractor and
their tempered behavior and upper semicontinuity in 2D unbounded channel-like
domains.

For the sake of convenience, we introduce the following useful operators:

〈Aw, φ〉 := (ν + νθ)(∇u,∇Φ) + α(∇ω,∇φ3),

∀w = (u, ω), ϕ = (Φ, φ3) ∈ V̂ ,

〈B(u,w), φ〉 := ((u · ∇)w, φ), ∀u ∈ V, w = (u, ω) ∈ V̂ , ∀φ ∈ V̂ ,

N(w) := (−2νθ∇× ω,−2νθ∇× u+ 4νθω), ∀w = (u, ω) ∈ V̂ .

(1.5)

Then, equations (1.2)-(1.4) can be represented into the abstract form

∂w

∂t
+Aw +B(u,w) +N(w) = F (t, x), in (τ,+∞)× Ω,

∇ · u = 0, in (τ,+∞)× Ω,

w = (u, ω) = 0, on (τ,+∞)× ∂Ω,

w(τ, x) = (u(τ, x), ω(τ, x)) = wτ (x), x ∈ Ω, τ ∈ R,

(1.6)

where F (t, x) = (f(t, x), f̃(t, x)).
Before stating our results, we first give some notation. We denote by Lp(Ω)

and Wm,p(Ω) the usual Lebesgue space and Sobolev space (see [1]) endowed with
norms ‖ · ‖p and ‖ · ‖m,p, respectively. For example, ‖ϕ‖Lp = (

∫
Ω
|ϕ|pdx)1/p and

‖ϕ‖m,p := (
∑
|β|6m

∫
Ω
|Dβϕ|pdx)1/p. Especially, we denote Hm(Ω) := Wm,2(Ω)

and H1
0 (Ω) the closure of {ϕ ∈ C∞0 (Ω)} with respect to H1(Ω) norm. Then, we

introduce the following function spaces:
• V := {ϕ ∈ C∞0 (Ω)
• C∞0 (Ω)|ϕ = (ϕ1, ϕ2),∇ · ϕ = 0},
• H is the closure of V in L2(Ω)×L2(Ω) with the norm ‖ · ‖H and dual space
H∗,

• V is the closure of V in H1(Ω)×H1(Ω) with the norm ‖·‖V and dual space
V ∗,

• Ĥ := H × L2(Ω) with the norm ‖ · ‖ bH and dual space Ĥ∗,
• V̂ := V ×H1

0 (Ω) with the norm ‖ · ‖bV and dual space V̂ ∗,
• Oσ(B) := {w ∈ V̂ : infv∈B ‖w − v‖bV < σ}.

Using the above notation, we further denote
• Lp(I;X) is the space of strongly measurable functions on the closed interval
I, with values in a Banach space X, endowed with norm

‖ϕ‖Lp(I;X) := (
∫
I

‖ϕ‖pXdt)1/p, for 1 6 p <∞;

• C(I;X) is the space of continuous functions on the interval I, with values
in the Banach space X, endowed with the usual norm;
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• L2
loc(I;X) is the space of locally square integrable functions on the interval

I, with values in the Banach space X, endowed with the usual norm;
• L2

b(I;X) is the set of functions F ∈ L2
loc(I;X) satisfying

‖F‖L2
b(I;X) = sup

τ∈R

∫ τ+1

τ

‖F (ζ)‖2dζ < +∞.

Here

‖(u, v)‖H := (‖u‖22 + ‖v‖22)1/2, ‖(u, v)‖V := (‖u‖2H1 + ‖v‖2H1)1/2,

‖(u, v, w)‖ bH := (‖(u, v)‖2H + ‖w‖22)1/2, ‖(u, v, w)‖bV := (‖(u, v)‖2V + ‖w‖2H1)1/2.

Subsequently, we simplify ‖ · ‖2, ‖ · ‖H and ‖ · ‖ bH by the same notation ‖ · ‖ if there
is no confusion. In addition, we denote by (·, ·) the inner product in L2(Ω), H or Ĥ,
and 〈·, ·〉 the dual pairing between V and V ∗ or between V̂ and V̂ ∗. We also denote
the compact embedding between spaces by ↪→↪→, and use distM(X,Y) to represent
the Hausdorff semidistance between X ⊆ M and Y ⊆ M with distM(X,Y) =
supx∈X infy∈Y distM(x, y).

Now, we state the first results of this paper in the following theorem.

Theorem 1.1. Assume F (t, x) ∈ L2
b(R; Ĥ),

∫ t
−∞ e

δ1
2 s‖F (s)‖2ds <∞, for all t ∈ R

and

lim
r→+∞

∫ t

−∞

∫
|x|>r

e
δ1
2 s|F (s, x)|2dxds = 0.

Then system (1.6) possesses a unique pullback D-attractor A bH(t) in Ĥ.

Remark 1.2. In fact, we point out that the pullback D-attractorAbV (t) in V̂ can be
obtained by using similar proof as that in Ĥ. Specifically, based on Lemma 2.4(2),
there exists a continuous process {U(t, τ)}t>τ in V̂ . Applying energy method, we
can prove the existence of pullback D-absorbing set for the process {U(t, τ)}t>τ
in V̂ . Then, the technique of truncation functions and decomposition of spatial
domain enable us to obtain the uniform a priori estimates for the far-field values
of solutions. Further, we can show the pullback asymptotic compactness of the
process in V̂ . Finally, we can obtain the existence of pullback D-attractor AbV (t)
in V̂ .

Based on Theorem 1.1, we further verify the tempered behavior and upper semi-
continuity of the pullback attractor obtained in Theorem 1.1. That is the following
two theorems.

Theorem 1.3. Under the conditions of Theorem 1.1, it holds that

lim
t→−∞

(
e
δ1
2 t sup

w∈AcH(t)

‖w‖2
)

= 0, (1.7)

lim
t→−∞

(
e
δ1
2 t sup

w∈AcH(t)

‖w‖2bV (Ω)

)
= 0. (1.8)

Theorem 1.4. Assume the conditions of Theorem 1.1 hold. Then for any t ∈ R,
we have

lim
m→∞

dist bH(Ω)(A bH(Ωm)(t),A bH(Ω)(t)) = 0, (1.9)
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where A bH(Ω)(t) and A bH(Ωm)(t) are the pullback attractors of system (1.6) and sys-
tem (4.1), respectively.

Remark 1.5. In [25], the authors proved the existence of H1-uniform attractor
and pointed out that the L2-uniform attractor belongs to the H1-uniform attractor,
under the proper conditions of F = (f, f̃). Here, we established the existence of pull-
back attractor in Ĥ(Ω) (has L2-regularity), similarly, in V̂ (Ω) (has H1-regularity).
Further, we investigated the tempered behavior and upper semicontinuity (in the
sense of (1.9)) of the pullback attractors. About the differences and more details
between pullback attractor and uniform attractor, we can refer to [17] and some
references therein.

The outline of proofs for Theorem 1.1–1.4 is as follows. First, we construct
the continuous process {U(t, τ)}t>τ by solution maps in the space Ĥ(Ω), then
show the asymptotic compactness of the process {U(t, τ)}t>τ in space Ĥ(Ω). The
main difficulty comes from two aspects. The first one is that the usual Sobolev
embedding is no longer compact in unbounded domain Ω. The other is from the
angular velocity field ω of the micropolar particles in the micropolar fluid flows,
which leads to a different nonlinear term B(u,w) and an additional term N(u)
in the abstract equation (see (1.5)). To overcome the first difficulty, borrowing
the arguments and ideas in [27], we show the existence of the pullback absorbing
set by establishing some a priori estimates of the solutions. Further, we use the
technique of truncation function and the decomposition of spatial domain, to prove
the asymptotic compactness of the process {U(t, τ)}t>τ in space Ĥ(Ω). To deal
with the second difficulty, more delicate estimates and analysis for the solutions are
required in our study. Next, using the arguments in [11, 15, 26, 27], we can show
the tempered behavior and upper semicontinuity of the pullback attractor A bH(Ω).
The tempered behavior of the pullback attractor A bH(Ω) is relatively easy to obtain.
To prove the upper semicontinuity of the attractor, we first let {Ωm}∞m=1 be an
expanding sequence of simply connected, bounded and smooth subdomains of Ω
such that ∪∞m=1Ωm = Ω. Then we consider the Cauchy problem (1.2)-(1.4) in Ωm.
We will conclude that there exists a pullback attractor A bH(Ωm) for the problem
(1.2)-(1.4) in each Ωm. Finally, we establish the upper semicontinuity by showing
limm→∞ dist bH(Ω)(A bH(Ωm)(t),A bH(Ω)(t)) = 0, ∀ t ∈ R.

The rest of this paper is organized as follows. In section 2, we make some
preliminaries. That is, we introduce several important definitions and recall some
known results of non-autonomous micropolar fluid flows. Section 3 is committed
to the proof of Theorem 1.1, that is to prove the existence of pullback attractors in
Ĥ(Ω). Further, the tempered behavior and upper semicontinuity of the pullback
attractors, i.e. Theorem 1.3 and Theorem 1.3, will be verified in section 4.

2. Preliminaries

In this section, we first make some necessary preliminaries. That is, we first give
some useful properties and estimates about those operators (1.5). Then, we give
some definitions and recall some key results for the non-autonomous micropolar
fluid model. To begin with, we have

Lemma 2.1. The operator A is a linear continuous operator both from V to V ∗

and from D(A) := V ∩
(
H2(Ω)

)3 to H. Indeed, A = −P∆, where P is the Leray
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projector from L2(Ω) to H. The operator B(·, ·) is continuous from V × V to V ∗.
Moreover, for any u ∈ V,w ∈ V , it holds

〈B(u,w), ϕ〉 = −〈B(u, ϕ), w〉. (2.1)

Proof. The linearity and continuity of the operator A can be deduced directly from
its definition. Similarly, the continuity of the operator B(·, ·) can be obtained easily
from its definition. We only need to verify (2.1). In fact, for any u ∈ V,w ∈ V̂ , we
have

〈B(u,w), w〉 = ((u · ∇)w,w)

=
∫

Ω

(u1
∂

∂x1
+ u2

∂

∂x2
(w1, w2, w3)(w1, w2, w3)dx

=
3∑
j=1

2∑
i=1

∫
Ω

ui
∂wj
∂xi

wjdx

=
3∑
j=1

2∑
i=1

1
2

∫
Ω

ui
∂w2

j

∂xi
dx

=
1
2

3∑
j=1

2∑
i=1

(uiw2
j |∂Ω −

∫
Ω

w2
jDiuidx)

= −1
2

3∑
j=1

2∑
i=1

∫
Ω

w2
jDiuidx

= −1
2

3∑
j=1

∫
Ω

w2
j (∇ · u)dx = 0.

(2.2)

Hence, (2.1) is valid as a consequence of (2.2). The proof is complete. �

About the operators A(w) and N(w), we have the following result.

Lemma 2.2 (see [13, 25, 29]). (1) There are two positive constants c1 and c2 such
that

c1〈Aw,w〉 6 ‖w‖2bV 6 c2〈Aw,w〉, ∀w ∈ V̂ . (2.3)

(2) There exists a positive constant c(νθ) such that

‖N(w)‖ 6 c(νθ)‖w‖bV , ∀w ∈ V̂ , (2.4)

〈Aw,w〉+ 〈N(w), w〉 > δ1‖w‖2bV , ∀w ∈ V̂ , (2.5)

where δ1 := min{ν, α}.

Next, we give the definition and existence result of weak solutions for (1.6).

Definition 2.3. For each T > τ, τ ∈ R, function w is called a weak solution of
(1.6) if, w = (u, ω) ∈ L2(τ, T ; V̂ ) ∩ L∞(τ, T ; Ĥ) such that for t ∈ (τ, T ) and any
ϕ ∈ V̂ ,

d
dt

(w(t), ϕ) + 〈Aw(t), ϕ〉+ 〈B(u(t), w(t)), ϕ〉+ 〈N(w(t)), ϕ〉 = 〈F (t, x), ϕ〉,

w
∣∣
t=τ

= wτ = (uτ , ωτ ) = w0

(2.6)

holds in the sense of D′(τ, T ).
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Using decomposition of spatial domain and the Galerkin method, we immediately
have the following well-posedness of solutions to (1.6) on unbounded domain Ω.

Lemma 2.4. Assume F (t, x) = (f(t, x), f̃(t, x)) ∈ L2
b(R; Ĥ(Ω)).

(1) If wτ ∈ Ĥ, then system (1.6) has a unique solution w = (u, ω) satisfying

w ∈ L∞(τ,+∞; Ĥ) ∩ C([τ,+∞); Ĥ) ∩ L2
loc(τ,+∞; V̂ ), w′ ∈ L2

loc(τ,+∞; V̂ ∗).

(2) If wτ ∈ V̂ , then problem (1.6) has a unique solution w = (u, ω) satisfying

w ∈ L∞(τ,+∞; V̂ ) ∩ C([τ,+∞); V̂ ) ∩ L2
loc(τ,+∞;D(A)), w′ ∈ L2

loc(τ,+∞; Ĥ).

Since the proof is standard, we omit it. The interesting readers are referred to
[14].

On the basis of Lemma 2.4, the biparametric map defined by

U(t, τ) : wτ 7→ U(t, τ)wτ = w(t), t > τ, wτ ∈ Ĥ(Ω) or wτ ∈ V̂ (Ω), (2.7)

generates a continuous process {U(t, τ)}t>τ in Ĥ(Ω) or V̂ (Ω), which satisfies the
following properties:

(i) U(τ, τ)wτ = wτ ,
(ii) U(t, s)U(s, τ)wτ = U(t, τ)wτ = w(t).

Finally, we introduce some definitions related to the pullback attractor (see [10,
22, 19, 28]). For convenience, we denote by X the space Ĥ or V̂ and by P(X) the
family of all nonempty subsets of X. A universe D(X) in P(X) represents the class
of families parameterized in time B̂(X) = {B(t)

∣∣t ∈ R} ⊆ P(X).

Definition 2.5. A family of sets B̂0 = {B0(t) : t ∈ R} ⊆ P(X) is called pullback
D-absorbing for the process {U(t, τ)}t>τ in X if for any t ∈ R and any B̂ = {B(t) :
t ∈ R} ∈ D, there exists a τ0(t, B̂) 6 t such that U(t, τ)B(τ) ⊆ B0(t) for all
τ 6 τ0(t, B̂).

Definition 2.6. The process {U(t, τ)}t>τ is said to be pullback B̂0-asymptotically
compact in X if for any t ∈ R, any sequences {τn} ⊆ (−∞, t] and {xn} ⊆ X satis-
fying τn → −∞ as n→∞ and xn ∈ B0(τn) for all n, the sequence {U(t, τn;xn)} is
relatively compact in X. {U(t, τ)}t>τ is called pullback D-asymptotically compact
in X if it is pullback B̂-asymptotically compact for any B̂ ∈ D.

Definition 2.7. A family of setsAX = {AX(t) : t ∈ R} ⊆ P(X) is called a pullback
D-attractor for the process {U(t, τ)}t>τ on X if it has the following properties:

• Compactness: for any t ∈ R,AX(t) is a nonempty compact subset of X;
• Invariance: U(t, τ)AX(τ) = AX(t), ∀ t > τ ;
• Pullback attracting: AX is pullback D-attracting in the following sense:

lim
τ→−∞

distX (U(t, τ)B(τ),AX(t)) = 0, ∀B̂ = {B(s)| s ∈ R} ∈ D, t ∈ R;

• Minimality: the family of sets AX is the minimal in the sense that if Ô =
{O(t) : t ∈ R} ⊆ P(X) is another family of closed sets such that

lim
τ→−∞

distX(U(t, τ)B(τ), O(t)) = 0, for any B̂ = {B(t)| t ∈ R} ∈ D,

then AX(t) ⊆ O(t) for t ∈ R.
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3. Existence of the pullback D-attractor in Ĥ

In this section, we are devoted to proving the existence of the pullback attractor
in Ĥ, i.e. Theorem 1.1. Throughout this section, we simply denote w(t; τ, wτ ) by
w(t) if there is no confusion. First, we have

Lemma 3.1. Assume F (t, x) ∈ L2
b(R; Ĥ), then for any wτ = (uτ , ωτ ) ∈ Ĥ, it

holds that

‖w(t; τ, wτ )‖2 6 e
δ1
2 (τ−t)‖wτ‖2 +

e−
δ1
2 t

δ1

∫ t

τ

e
δ1
2 s‖F (s)‖2ds, (3.1)∫ t

τ

e
δ1
2 s‖w(s)‖2bV ds 6

2
δ1
e
δ1
2 τ‖wτ‖2 +

2
δ2
1

∫ t

τ

e
δ1
2 s‖F (s)‖2ds. (3.2)

Proof. Multiplying (1.6)1 by w(t), we obtain from (2.2) and (2.5) that
1
2

d
dt
‖w(t)‖2 + δ1‖w(t)‖2bV 6 (F (t, x), w(t)) 6

1
2δ1
‖F (t)‖2 +

δ1
2
‖w(t)‖2bV ,

which implies
d
dt
‖w(t)‖2 + δ1‖w(t)‖2 6 d

dt
‖w(t)‖2 + δ1‖w(t)‖2bV 6 1

δ1
‖F (t)‖2. (3.3)

Further, we have
d
dt

(e
δ1t
2 ‖w(t)‖2) 6

e
δ1t
2

δ1
‖F (t, x)‖2.

Changing the time variable t by s and integrating it over [τ, t], we obtain

e
δ1t
2 ‖w(t)‖2 6 e

δ1τ
2 ‖wτ‖2 +

1
δ1

∫ t

τ

e
δ1
2 s‖F (s)‖2ds,

hence

‖w(t)‖2 6 e
δ1(τ−t)

2 ‖wτ‖2 +
e−

δ1t
2

δ1

∫ t

τ

e
δ1
2 s‖F (s)‖2ds. (3.4)

From (3.3), we can also deduce that

d
dt

(e
δ1
2 t‖w(t)‖2) +

δ1e
δ1
2 t

2
‖w(t)‖2bV 6 e

δ1
2 t

δ1
‖F (t)‖2.

Further, one have

e
δ1
2 t‖w(t)‖2 +

δ1
2

∫ t

τ

e
δ1
2 s‖w(s)‖2bV ds 6

1
δ1

∫ t

τ

e
δ1
2 s‖F (s)‖2ds+ e

δ1
2 τ‖wτ‖2,

which implies∫ t

τ

e
δ1
2 s‖w(s)‖2bV ds 6

2
δ1
e
δ1
2 τ‖wτ‖2 +

2
δ2
1

∫ t

τ

e
δ1
2 s‖F (s)‖2ds.

This completes the proof. �

Set
R δ1

2
:= {ρ(s) : R→ R+ : lim

s→−∞
e
δ1
2 sρ2(s) = 0}. (3.5)

D δ1
2

(Ĥ) denotes the class of families B̂ = {B(s)
∣∣s ∈ R} ⊆ P(Ĥ) such that

B(s) ⊆ B̄(0, ρ bB(s)) for some ρ bB(s) ∈ R δ1
2
,
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where B̄(0, ρ bB(s)) is the closed ball in Ĥ with center 0 and radius ρ bB(s). Then,
based on Lemma 3.1, there exists a pullback D-absorbing set in Ĥ.

Lemma 3.2. Under the condition of Lemma 3.1. For any t ∈ R, B̂ = {B(s)
∣∣s ∈

R} ∈ D δ1
2

(Ĥ) and wτ ∈ B(τ), the family B̂ = {B(t)
∣∣t ∈ R} defined by

B(t) = {w ∈ Ĥ : ‖w‖ 6 ρ(t)} (3.6)

is pullback D-absorbing in Ĥ, where

ρ2(t) :=
2e−

δ1
2 t

δ1

∫ t

−∞
e
δ1
2 s‖F (s)‖2ds. (3.7)

In the following, we focus on proving the pullback D-asymptotical compactness
of the process {U(t, τ)}t>τ . First, we have

Lemma 3.3. Under the conditions of Theorem 1.1. For any ε > 0, t ∈ R and B̂ =
{B(s)

∣∣s ∈ R} ∈ D δ1
2

(Ĥ), there exist r0 := r0(ε, t, B̂) > 0 and τ0 := τ0(ε, t, B̂) < t

such that for any r > r0, τ 6 τ0 and wτ ∈ B(τ), it holds

‖w(t; τ, wτ )‖2L2(Ω\Ωr) 6 ε, (3.8)

where Ωr = {x ∈ Ω
∣∣|x| < r}.

Proof. First, we take a function χ(·) ∈ C2(R2), χ(x) ∈ [0, 1] for all x ∈ R2 such
that

χ(x) =

{
0, |x| 6 1,
1, |x| > 2,

and
‖∇χ(x)‖L∞(R2) 6 c0, ‖D2χ(x)‖L∞(R2) 6 c0,

where c0 is a constant. In particular, set χr(x) = χ(xr ) with r > 1, we have

‖∇χr(x)‖L∞(R2) 6
c0
r
, ‖D2χr(x)‖L∞(R2) 6

c0
r2
. (3.9)

Then, taking the inner product of (1.6)1 with χ2
rw = (χ2

ru, χ
2
rω) and considering

the term ∇p yield

1
2

d
dt
‖χrw‖2 + (ν + νθ)(∇u,∇(χ2

ru)) + α(∇ω,∇(χ2
rω)) + ((u · ∇)w,χ2

rw)

+ ((−2νθ∇× ω,−2νθ∇× u+ 4νθω), (χ2
ru, χ

2
rω)) + (∇p, χ2

ru) (3.10)

=
1
2

d
dt
‖χrw‖2 + 〈A(χrw), χrw〉 − (ν + νθ)

∫
Ω

|u∇χr|2dx− α
∫

Ω

|ω∇χr|2dx

+ ((u · ∇)w,χ2
rw) + 〈N(χrw), χrw〉+ (∇p, χ2

ru)

= (F (t, x), χ2
rw).

Let us estimate the terms in the above equality one by one. From (3.9) and Hölder
inequality, we have

(ν + νθ)
∫

Ω

|u∇χr|2dx 6 (ν + νθ)‖∇χr‖2L∞(Ω)‖u‖
2

6 c20(ν + νθ)r−2‖u‖2.
(3.11)
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Similarly, we have

α

∫
Ω

|ω∇χr|2dx 6 α‖∇χr‖2L∞(Ω)‖ω‖
2 6 c20αr

−2‖ω‖2. (3.12)

Integrating by parts and using that ∇ · u = 0, we obtain

((u · ∇)w,χ2
rw) =

2∑
i,j=1

∫
Ω

ui
∂uj
∂xi

χ2
rujdx+

2∑
i=1

∫
Ω

ui
∂ω

∂xi
χ2
rωdx

= −
2∑

i,j=1

(
∫

Ω

uiujχ
2
r

∂uj
∂xi

dx+ 2
∫

Ω

uiu
2
jχr

∂χr
∂xi

dx)

−
2∑
i=1

(
∫

Ω

uiωχ
2
r

∂ω

∂xi
dx+ 2

∫
Ω

uiω
2χr

∂χr
∂xi

dx)

= −((u · ∇)w,χ2
rw)− 2

2∑
i,j=1

∫
Ω

uiu
2
jχr

∂χr
∂xi

dx− 2
2∑
i=1

∫
Ω

uiω
2χr

∂χr
∂xi

dx,

which combine with (3.9), Hölder inequality, Gagliardo-Nirenberg inequality and
Young’s inequality yields

|((u · ∇)w,χ2
rw)| =

∣∣ 2∑
i,j=1

∫
Ω

uiu
2
jχr

∂χr
∂xi

dx+
2∑
i=1

∫
Ω

uiω
2χr

∂χr
∂xi

dx
∣∣

6‖∇χr‖L∞(Ω)‖u‖‖w‖2L4(Ω) 6 c0r
−1‖u‖‖w‖‖w‖bV 6 c0

r
(‖w‖4 + ‖w‖2bV ).

(3.13)

Since F (t, x) ∈ L2
b(R; Ĥ), it follows from Lemma 3.2 that for any t ∈ R, τ 6 τ0,

‖w(t; τ, wτ )‖2 6 ρ2(t)

6
2e−

δ1
2 t

δ1

∫ t

−∞
e
δ1
2 s‖F (s)‖2ds

=
2
δ1

(∫ t

t−1

e−
δ1
2 (t−s)‖F (s)‖2ds+

∫ t−1

t−2

e−
δ1
2 (t−s)‖F (s)‖2ds+ . . .

)
6

2
δ1

(∫ t

t−1

‖F (s)‖2ds+ e−
δ1
2

∫ t−1

t−2

‖F (s)‖2ds

+ e−
2δ1
2

∫ t−2

t−3

‖F (s)‖2ds+ . . .
)

6
2
δ1

(1 + e−
δ1
2 + e−

2δ1
2 + . . . )‖F‖2

L2
b(R; bH)

=
2

δ1(1− e−
δ1
2 )
‖F‖2

L2
b(R; bH)

6
2
δ1

(1 +
2
δ1

)‖F‖2
L2
b(R; bH)

.

(3.14)

By (1.6)3, (3.9) and the fact ∇ · u = 0, we also have

|(∇p, χ2
ru)| = |

2∑
i=1

∫
Ω

∂p

∂xi
χ2
ruidx| = |

2∑
i=1

∫
Ω

2pχr
∂χr
∂xi

uidx|

6 2‖p‖‖∇χr‖L∞(Ω)‖χru‖ 6 2c0r−1‖p‖‖χru‖.

(3.15)
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Taking (2.5) and (3.10)-(3.15) into account, we obtain

1
2

d
dt
‖χrw‖2 + δ1‖χrw‖2bV

6
1
2

d
dt
‖χrw‖2 + 〈A(χrw), χrw〉+ 〈N(χrw), χrw〉

= (ν + νθ)
∫

Ω

|u∇χr|2dx+ α

∫
Ω

|ω∇χr|2dx− ((u · ∇)w,χ2
rw)

+ (F (t, x), χ2
rw)− (∇p, χ2

ru)

6
c20(ν + νθ)

r2
‖u‖2 +

c20α

r2
‖ω‖2 +

c0
r

(‖w‖4 + ‖w‖2bV ) + ‖χrF‖‖χrw‖

+
2c0
r
‖p‖‖χru‖

6
c20 ·max{ν + νθ, α}

r2
‖w‖2 +

4c0
rδ2

1

(1 +
2
δ1

)2‖F‖4
L2
b(R; bH)

+
c0
r
‖w‖2bV

+
1
δ1
‖χrF‖2 +

4c20
δ1r2
‖p‖2 +

δ1
2
‖χrw‖2.

(3.16)

Further, by Lemma 3.2 and that ‖u‖ 6 ‖w‖ and ‖w‖ 6 ‖w‖bV , one can deduce that
there exist constants c3, c4, c5 such that

d
dt
‖χrw‖2 +

δ1
2
‖χrw‖2 +

δ1
2
‖χrw‖2bV

6
c3
r2
ρ2(t) +

c4
r
‖F‖4

L2
b(R; bH)

+
c0
r
‖w‖2bV +

1
δ1
‖χrF‖2 +

c5
r2
‖p‖2,

which yields

d
dt

(e
δ1
2 t‖χrw‖2) 6

c3
r2
e
δ1
2 tρ2(t) +

c4
r
e
δ1
2 t‖F‖4

L2
b(R; bH)

+
c0
r
e
δ1
2 t‖w‖2bV

+
c5
r2
e
δ1
2 t‖p‖2 +

1
δ1
e
δ1
2 t‖χrF‖2.

Hence,

‖χrw(t)‖2

6 e−
δ1
2 (t−τ)‖χrwτ‖2 +

c3
r2
e−

δ1
2 t

∫ t

τ

e
δ1
2 sρ2(s)ds

+
c4
r
e−

δ1
2 t

∫ t

τ

e
δ1
2 s‖F‖4

L2
b(R; bH)

ds+
c0
r
e−

δ1
2 t

∫ t

τ

e
δ1
2 s‖w‖2bV ds

+
c5
r2
e−

δ1
2 t

∫ t

τ

e
δ1
2 s‖p‖2ds+

1
δ1
e−

δ1
2 t

∫ t

τ

e
δ1
2 s‖χrF‖2ds.

(3.17)

In the following, we make a more detailed detailed estimate for each term in (3.17).
First, for any ε > 0, there exists a τ1 = τ1(ε, t, D̂) such that

e−
δ1
2 (t−τ)‖χrwτ‖2 6 e−

δ1
2 (t−τ)‖wτ‖2 <

ε

6
for all τ 6 τ1. (3.18)

Then, from the condition∫ t

−∞
e
δ1
2 s‖F (s)‖2ds <∞, ∀t ∈ R,
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it is not difficult to check that there exists a r1 = r1(ε, t, D̂) such that for any
r > r1,

c3
r2
e−

δ1
2 t

∫ t

τ

e
δ1
2 sρ2(s)ds <

ε

6
, (3.19)

c4
r
e−

δ1
2 t

∫ t

τ

e
δ1
2 s‖F‖4

L2
b(R; bH)

ds <
ε

6
, (3.20)

1
δ1
e−

δ1
2 t

∫ t

τ

e
δ1
2 s‖χrF‖2ds 6

1
δ1
e−

δ1
2 t

∫ t

−∞

∫
|x|>r

e
δ1
2 s|F (s, x)|2dxds <

ε

6
. (3.21)

Moreover, it follows from (1.2) that ∇p ∈ L2
loc(τ,+∞;H−1(Ω)), which implies

p ∈ L2
loc(τ,+∞;L2(Ω)). In addition, noting that∫ t

τ

e
δ1
2 s‖p(s)‖2ds 6 c

∫ t

τ

e
δ1
2 s‖w(s)‖2bV ds,

and using (3.2) and the condition

lim
r→+∞

∫ t

−∞

∫
|x|>r

e
δ1
2 s|F (s, x)|2dxds = 0,

we obtain that there exists r2 = r2(ε, t, D̂) such that for any r > r2, it holds that

c5
r2
e−

δ1
2 t

∫ t

τ

e
δ1
2 s‖p‖2ds 6

cc5
r2
e−

δ1
2 t

∫ t

τ

e
δ1
2 s‖w(s)‖2bV ds <

ε

6
, (3.22)

and
c0
r
e−

δ1
2 t

∫ t

τ

e
δ1
2 s‖w(s)‖2bV ds <

ε

6
. (3.23)

Substituting (3.18)-(3.23) into (3.17), we immediately have (3.8). This completes
the proof. �

Lemma 3.4. Assume the conditions of Theorem 1.1 hold, then for any t ∈ R and
B̂ = {B(s)|s ∈ R} ∈ D(Ĥ), there exists a τ∗(B̂, t) such that the weak solution
w(t) := w(t; τ, wτ ) of (1.6) with initial value wτ ∈ B(τ) is bounded in V̂ .

Proof. To complete the proof, we need a higher regularity of the solutions. Hence,
we consider the Galerkin approximate solutions. For each integer n > 1, we denote
by

wn(t) = wn(t; τ, wτ ) :=
n∑
i=1

ξni(t)ei, (3.24)

the Galerkin approximation of the solution w(t) of system (1.6), where ξni(t) is the
solution of the following Cauchy problem of ODEs:

d
dt

(wn(t), ei) + 〈Awn(t) +B(un(t), wn(t)) +N(wn(t)), ei〉 = (F (t), ei),

(wn(τ), ei) = (wτ , ei), i = 1, 2, . . . , n,
(3.25)

here {ei : i > 1} ⊆ D(A), which forms a Hilbert basis of V̂ and is orthonormal in
Ĥ. Multiplying equation (3.25) by Aξni(t) and summing them for i = 1 to n, we
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obtain
1
2

d
dt
〈Awn(t), wn(t)〉+ ‖Awn(t)‖2 + 〈B(un(t), wn(t)), Awn(t)〉

+ 〈N(wn(t)), Awn(t)〉
= (F (t), Awn(t)).

(3.26)

Now, we give a further estimate for the above equation. According to the definition
of B(·, ·) and the facts

‖un‖2 6 ‖wn‖2, ‖∇un‖2 6 ‖wn‖2bV ,
and using the Hölder inequality, Gagliardo-Nirenberg inequality and Young inequal-
ity, we conclude that there exists a constant c6 such that

−〈B(un, wn), Awn〉 6 |〈B(un, wn), Awn〉|

6 c6‖un‖1/2‖∇un‖1/2‖∇wn‖1/2‖Awn‖3/2

6
1
4
‖Awn‖2 + c46‖wn‖2‖wn‖4bV ,

which together with (2.4) and (3.26) implies that

1
2

d
dt
〈Awn, wn〉

= −‖Awn‖2 + 〈F (t), Awn〉 − 〈B(un, wn), Awn〉 − 〈N(wn), Awn〉

6 −‖Awn‖2 +
1
4
‖Awn‖2 + ‖F (t)‖2 +

1
4
‖Awn‖2 + c46‖wn‖2‖wn‖4bV

+
c2(νθ)

2
‖wn‖2bV +

1
2
‖Awn‖2

= ‖F (t)‖2 + ‖wn‖2bV
(
c46‖wn‖2‖wn‖2bV +

c2(νθ)
2

)
.

Further, from (2.3) and the above inequality, we have

d
dt
〈Awn(t), wn(t)〉

6 2‖F (t)‖2 + 〈Awn(t), wn(t)〉
(

2c2c46‖wn(t)‖2‖wn(t)‖2bV + c2c
2(νθ)

)
.

(3.27)

Let us set

Hn(θ) := 〈Awn(θ), wn(θ)〉, I(θ) := 2‖F (θ)‖2,
Kn(θ) := 2c2c46‖wn(θ)‖2‖wn(θ)‖2bV + c2c

2(νθ).

Replacing the variable t with θ in (3.27), we obtain

d
dθ
Hn(θ) 6 Kn(θ)Hn(θ) + I(θ). (3.28)

Using Gronwall inequality to (3.28), for all τ 6 t− 1 6 s 6 t, we have

Hn(t) 6
(
Hn(s) +

∫ t

t−1

I(θ)dθ
)

exp
{∫ t

t−1

Kn(θ)dθ
}
. (3.29)

Integrating (3.29) from s = t− 1 to s = t, we obtain

Hn(t) 6
(∫ t

t−1

Hn(s)ds+
∫ t

t−1

I(θ)dθ
)

exp
{∫ t

t−1

Kn(θ)dθ
}
. (3.30)
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In addition, it follows from (2.3) and (3.2) that∫ t

t−1

Hn(s)ds+
∫ t

t−1

I(θ)dθ =
∫ t

t−1

〈Awn(s), wn(s)〉ds+
∫ t

t−1

2‖F (θ)‖2dθ

6 c1
−1

∫ t

t−1

‖wn(s)‖2bV ds+ 2
∫ t

t−1

‖F (θ)‖2dθ

6 c7
(
‖wn(t− 1)‖2 +

∫ t

t−1

‖F (θ)‖2dθ
)
,

where c7 := max{2c−1
1 δ−1

1 , 2 + 2c−1
1 δ−2

1 e
δ1
2 }. From (3.1), it holds∫ t

t−1

Kn(θ)dθ

=
∫ t

t−1

(
2c2c46‖wn(θ)‖2‖wn(θ)‖2bV + c2c

2(νθ)
)
dθ

6 2c2c46
(
e−

δ1
2 ‖wn(t− 1)‖2 +

1
δ1

∫ t

t−1

‖F (θ)‖2dθ
) ∫ t

t−1

‖wn(θ)‖2bV dθ + c2c
2(νθ)

6 2c2c46
(
e−

δ1
2 ‖wn(t− 1)‖2 +

1
δ1

∫ t

t−1

‖F (θ)‖2dθ
)

×
(2‖wn(t− 1)‖2

δ1
+ 2δ1−2e

δ1
2

∫ t

t−1

‖F (θ)‖2dθ
)

+ c2c
2(νθ)

6 c8
[(
‖wn(t− 1)‖2 +

∫ t

t−1

‖F (θ)‖2dθ
)2 + 1

]
,

where

c8 := max
{

2c2c46 max
{
e−

δ1
2 , δ−1

1

}
max

{
2δ−1

1 , 2δ−2
1 e

δ1
2
}
, c2c

2(νθ)
}
.

With the aid of (2.3), substituting the above two inequalities into (3.30), yields

‖wn(t)‖2bV 6 c2Hn(t)

6 c2c7
(
‖wn(t− 1)‖2 +

∫ t

t−1

‖F (θ)‖2dθ
)

× exp
{
c8
[(
‖wn(t− 1)‖2 +

∫ t

t−1

‖F (θ)‖2dθ
)2 + 1

]}
.

(3.31)

Observe that wn(t; τ, wτ ) ∈ L∞(τ, t; V̂ ) ∩ C([τ, t]; V̂ ) and w(t; τ, wτ ) ∈ C([τ, t]; Ĥ),
by the lower semicontinuity of the norm, we can pass to the limit in (3.31) and
obtain that

‖w(t)‖2bV 6 c2c7(‖w(t− 1)‖2 +
∫ t

t−1

‖F (θ)‖2dθ
)

× exp
{
c8
[(
‖w(t− 1)‖2 +

∫ t

t−1

‖F (θ)‖2dθ
)2 + 1

]}
,

(3.32)

which together with Lemma 3.2 implies the result of Lemma 3.4. This completes
the proof. �

On the basis of the above results, we can prove the pullback asymptotical com-
pactness of the process {U(t, τ)}t>τ , that is the following Lemma.
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Lemma 3.5. Under the conditions of Theorem 1.1, the process {U(t, τ)}t>τ gen-
erated by (2.7) is pullback D-asymptotically compact in Ĥ.

Proof. For any fixed t ∈ R, any family B̂ = {B(s)|s ∈ R} ∈ D δ1
2

(Ĥ), any sequences
{τn} ⊆ (−∞, t] satisfying τn → −∞ as n → +∞ and {wτn} ∈ D(τn), it suffice to
show the sequence {wn(t)}n>1 defined by

wn(·) := wn(·; τn, wτn) = U(·, τn;wτn)

is relatively compact in Ĥ.
In fact, by Lemma 3.2, there exists a time τ0(B̂, t) < t such that the sequence

{wn(t)|τn 6 τ0(B̂, t)} is uniformly bounded in Ĥ. Since Ĥ is a reflect Banach
space, it follows from the diagonal procedure that there exists a function w(t) such
that (by extracting a subsequence if necessary)

wn(t) ⇀ w(t) weakly in Ĥ as n→∞.

Moreover, from Lemma 3.3, for any ε > 0, there exist τ2 := τ2(ε, t, B̂), r3 :=
r3(ε, t, B̂) > 0 such that

‖wn(t; τn, wτn)‖L2(Ω\Ωr) 6
ε

3
, ∀τn 6 τ2, r > r3. (3.33)

Observe that, for any fixed t ∈ R, w(t) ∈ Ĥ is fixed. Hence for the above ε > 0,
there exists a r4 > 0 such that

‖w(t)‖L2(Ω\Ωr) 6
ε

3
, ∀r > r4. (3.34)

Now, we define respectively the restrictions of wn and w in Ωr by

wn(t)|Ωr = wn(t; τn, wτn)|Ωr :=

{
wn(t), x ∈ Ωr,
0, x ∈ Ω \ Ωr,

w(t)|Ωr :=

{
w(t), x ∈ Ωr,
0, x ∈ Ω \ Ωr.

From Lemma 3.4, it follows that, for any r > 0, the sequence {wn(t)|Ωr}n>1 is
bounded in V̂ (Ωr). Since the embedding V̂ (Ωr) ↪→ Ĥ(Ωr) is compact, there exists
a subsequence (denoting by the same symbol) {wn(t)|Ωr}n>1 satisfying

‖wn(t)− w(t)‖ bH(Ωr) → 0 as n→∞, (3.35)

which together with (3.33)-(3.34) implies that there exists a N0 ∈ N such that for
any n > N0,

‖wn(t)− w(t)‖ bH = ‖wn(t)− w(t)‖ bH(Ωr) + ‖wn(t)− w(t)‖L2(Ω\Ωr)

6 ‖wn(t)− w(t)‖ bH(Ωr) + ‖wn(t)‖L2(Ω\Ωr)

+ ‖w(t)‖L2(Ω\Ωr) 6 ε.

(3.36)

Therefore, the sequence {wn(t)}n>1 is relatively compact in Ĥ. This completes the
proof. �

Proof of Theorem 1.1. According to definitions 2.5-2.7, the family B̂ = {B(t)|t ∈
R} is pullback D-absorbing which can be obtained directly from Lemma 3.2. Fur-
ther, it follows from Lemma 3.5 that the continuous process {U(t, τ)}t>τ is pullback
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D-asymptotically compact in Ĥ. Then, using [3, Theorem 7], we can show the exis-
tence and uniqueness of the pullback D-attractor A bH(t) for {U(t, τ)}t>τ in Ĥ. �

4. Tempered behavior and upper semicontinuity of the pullback
attractor

In this section, we will show the tempered behavior and upper semicontinuity of
the pullback attractor A bH(t), which is obtained in section 3.

Proof of Theorem 1.3. According to Theorem 1.1, we know that A bH(t) ∈ D δ1
2

(Ĥ).

Therefore, (1.7) holds. Since F (t, x) ∈ L2
b(R; Ĥ), (1.8) is a consequence of (1.7)

and (3.32). This completes the proof. �

The rest of this section is devoted to verifying the upper semicontinuity of the
pullback attractors with respect to the spatial domain, that is, we give the proof
of Theorem 1.4. Followed the arguments in [27], let {Ωm}∞m=1 be an expanding
sequence of simply connected, bounded and smooth subdomains of Ω such that
∪∞m=1Ωm = Ω. We will prove the upper semicontinuity of the pullback attractor
A bH in Ω from the pullback attractor A bH(Ωm) in Ωm.

First, we consider equations (1.2)-(1.4) in each Ωm and define the operators
A,B(·, ·) and N(·) as before with the spatial domain Ω replaced by Ωm. Then we
can rewrite (1.2)-(1.4) in the abstract form

∂wm
∂t

+Awm +B(um, wm) +N(wm) = F (t, x), in (τ,+∞)× Ωm,

∇ · um = 0, in (τ,+∞)× Ωm,

wm = (um, ωm) = 0, on (τ,+∞)× ∂Ωm,

wm(τ, x) = (um(τ, x), ωm(τ, x)) = wmτ (x), x ∈ Ωm, τ ∈ R.

(4.1)

For each bounded domain Ωm, the global existence and uniqueness of the weak
solutions of system (4.1) hold. That is,

Lemma 4.1. [[13]] Assume the conditions of Theorem 1.4 hold and wτ ∈ Ĥ(Ωm),
then system (4.1) has a unique solution wm satisfying

wm ∈ L∞(τ,+∞; Ĥ(Ωm)) ∩ C([τ,+∞); Ĥ(Ωm)) ∩ L2
loc(τ,+∞; V̂ (Ωm)),

w′m ∈ L2
loc(τ,+∞; V̂ ∗(Ωm)).

Moreover, the solution wm depends continuously on the initial value wτ with respect
to the Ĥ(Ωm) norm.

According to Lemma 4.1, the maps of solution operators defined by

Um(t, τ) : wmτ 7→ Um(t, τ ;wmτ ) = wm(t), t > τ (4.2)

generates a continuous process {Um(t, τ)}t>τ in Ĥ(Ωm). Moreover, on any smooth
bounded domain Ωm, we have the following result.

Lemma 4.2. Under the conditions of Theorem 1.4.
(1) For any t ∈ R, B̂ bH(Ωm) = {B bH(Ωm)(s)|s ∈ R} ∈ D δ1

2
(Ĥ(Ωm)) and wmτ ∈

B
bH(Ωm)(τ), the family B̂ bH(Ωm) = {B bH(Ωm)(t)

∣∣t ∈ R} given by

B bH(Ωm)(t) = {wm ∈ Ĥ(Ωm)
∣∣‖wm‖ bH(Ωm) 6 ρ(t)}
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is pullback D bH(Ωm)-absorbing in Ĥ(Ωm), where ρ(t) is defined by (3.8).
(2) For any ε > 0, t ∈ R, B̂ bH(Ωm) = {B bH(Ωm)(s)|s ∈ R} ∈ D δ1

2
(Ĥ(Ωm)) and

wmτ ∈ B
bH(Ωm)(τ), there exists r0m = r0m(ε, t, B̂ bH(Ωm)) > 0 and a time τ0m =

τ0m(ε, t, B̂ bH(Ωm)) < t such that for any r ∈ [r0m,m] and τ 6 τ0m, it holds

‖wm(t; τ, wmτ )‖L2(Ωm\Ωr) 6 ε.

(3) The process {Um(t, τ)}t>τ is pullback D bH(Ωm)-asymptotically compact in
Ĥ(Ωm).

Since the proof is similar to those of Lemma 3.2, Lemma 3.3 and Lemma 3.5, we
can omit it here. As a consequence of Lemma 4.2, we have the following result.

Proposition 4.3. Assume the conditions of Theorem 1.4 hold, then system (4.1)
has a unique pullback D bH(Ωm)-attractor A bH(Ωm) = {A bH(Ωm)(t)}t∈R in Ĥ(Ωm).

Next, let us consider the convergence of solutions for (4.1) with m. That is,
we show that the sequence {wm}m>1 of solutions to system (4.1) converges to the
solution of system (1.6) as m→∞.

For wm ∈ Ĥ(Ωm), we extend its domain from Ωm to Ω by setting

w̃m =

{
wm, x ∈ Ωm,
0, x ∈ Ω \ Ωm,

then
‖wm‖ bH(Ω) = ‖w̃m‖ bH(Ω) = ‖w̃m‖ bH(Ωm) = ‖wm‖ bH(Ωm).

By Lemma 3.2 and Lemma 4.2 (1), there exists a τ(t, B̂ bH(Ω)) (independent of m)
such that

U(t, τ)B(τ) ⊆ B(t), ∀τ 6 τ(t, B̂ bH(Ω)),

Um(t, τ)B bH(Ωm)(τ) ⊆ B bH(Ωm)(t), ∀τ 6 τ(t, B̂ bH(Ω)).
(4.3)

The following result can be obtained by using the same proof as that of [14, Lemma
8.1].

Lemma 4.4. Under the conditions of Theorem 1.4, let {wmτ}m>1 be a sequence
in Ĥ(Ωm) satisfying

wmτ ⇀ wτ weakly in Ĥ(Ω) as m→∞,

then
wm(t; τ, wmτ ) ⇀ w(t; τ, wτ ) weakly in Ĥ(Ω), ∀t > τ,

and
wm(·; τ, wmτ ) ⇀ w(·; τ, wτ ) weakly inL2(τ, T ; V̂ (Ω)), ∀T > τ. (4.4)

Lemma 4.5. Assume the conditions of Lemma 4.4 hold, then for any t ∈ R and
any sequence {wm}m>1 with wm(τ) ∈ A bH(Ωm)(τ), m = 1, 2, . . . , there exists w(t) ∈
A bH(Ω)(t) such that

wm(·)→ w(·) strongly in Ĥ(Ω) as m→∞. (4.5)
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Proof. First, it follows from (4.3) and the invariant of the pullback attractor that
the sequence {wm(τ)}m>1 is bounded in Ĥ(Ω). Hence, one can deduce that there
exists a wτ ∈ A bH(Ω)(τ) and a subsequence {wm(τ)}m>1 (denoted by the same)
such that

wm(τ) ⇀ wτ weakly in Ĥ(Ω) as m→∞. (4.6)
By Lemma 4.4 and the invariant of the pullback attractor, we see that for any
t ∈ R and wm(t; τ, wm(τ)) ∈ A bH(Ωm)(t) with wm(τ) ∈ A bH(Ωm)(τ), there exists a
w(t; τ, wτ ) ∈ A bH(Ω)(t) with wτ ∈ A bH(Ω)(τ) such that

wm(t) ⇀ w(t) weakly in Ĥ(Ω) as m→∞,

which together with the lower semicontinuity of the norm implies

‖w(t)‖ 6 lim inf
m→∞

‖wm(t)‖. (4.7)

Next, we shall prove

‖w(t)‖2 > lim sup
m→∞

‖wm(t)‖2. (4.8)

In fact, multiplying (4.1)1 by wm(t) and integrating the resultant equality over Ω,
we obtain with the aid of (2.2) that

d
dt
‖wm(t)‖2 + 2〈Awm(t), wm(t)〉+ 2〈N(wm(t)), wm(t)〉 = 2(F (t), wm(t)). (4.9)

Then, from (2.3), (2.4) and (2.5), we see that

(c−1
1 + c(νθ))‖w‖2bV (Ω)

>� w,w �

= 〈Aw,w〉+ 〈N(w), w〉 − δ1
4
‖w‖2

> δ1‖w‖2bV (Ω)
− δ1‖w‖2

4
>

3δ1
4
‖w‖2bV (Ω)

,

(4.10)

where the bilinear mapping � ·, · � is defined by

� ϕ, φ�= 〈Aϕ, φ〉+ 〈N(ϕ), φ〉 − δ1(ϕ, φ)
4

, ∀ϕ, φ ∈ V̂ (Ω).

By (4.9) and (4.10), we have

d
dt
‖wm(t)‖2 +

δ1
2
‖wm(t)‖2 = 2(F (t), wm(t))− 2� wm(t), wm(t)�,

which yields

‖wm(t)‖2 = e−
δ1
2 (t−τ)‖wm(τ)‖2

+ 2
∫ t

τ

e−
δ1
2 (t−s)[(F (s), wm(s))− � wm(s), wm(s)�

]
ds,

(4.11)

for all t > τ .
Next, we estimate the terms on the right-half side of (4.11) one by one. First,

since wm(τ) ∈ A bH(Ωm)(τ), it follows from (3.7) and (4.3) that

e−
δ1
2 (t−τ)‖wm(τ)‖2 6 e−

δ1
2 (t−τ)ρ2(τ)

=
2
δ1
e−

δ1
2 t

∫ τ

−∞
e
δ1
2 s‖F (s)‖2ds→ 0 as τ → −∞.

(4.12)
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Next, from (4.4) and (4.6), we have

lim
m→∞

∫ t

τ

e−
δ1
2 (t−s)(F (s), wm(s))ds =

∫ t

τ

e−
δ1
2 (t−s)(F (s), w(s))ds. (4.13)

Finally, we see from (4.10) that� w,w � is equivalent to ‖w‖2bV (Ω)
, which combines

with (4.4) and (4.6) implies

� wm(s), wm(s)�⇀� w(s), w(s)� weakly in L2(τ, t; V̂ (Ω)), ∀t > τ.

It follows from the lower semicontinuity of the norm that∫ t

τ

� w(s), w(s)� ds 6 lim inf
m→∞

∫ t

τ

� wm(s), wm(s)� ds. (4.14)

Inserting (4.13)-(4.14) into (4.11) leads to

lim sup
m→∞

‖wm(t)‖2 6 e−
δ1
2 (t−τ)‖wm(τ)‖2 + 2

∫ t

τ

e−
δ1
2 (t−s)(F (s), w(s))ds

− 2
∫ t

τ

e−
δ1
2 (t−s) � w(s), w(s)� ds.

(4.15)

Similar to (4.11), the following energy equality for w(t) hold:

‖w(t)‖2 = e−
δ1
2 (t−τ)‖w(t)‖2 + 2

∫ t

τ

e−
δ1
2 (t−s)(F (s), w(s))ds

− 2
∫ t

τ

e−
δ1
2 (t−s) � w(s), w(s)� ds.

(4.16)

From the above two inequalities, we obtain

lim sup
m→∞

‖wm(t)‖2 6 e−
δ1
2 (t−τ)‖wm(τ)‖2 + ‖w(t)‖2,

which together with (4.12) implies (4.8) when τ is small enough. This completes
the proof. �

Proof of Theorem 1.4. Suppose that (1.9) is false, then there exist t0 ∈ R, ε0 > 0
and wm ∈ A bH(Ωm)(t0), m = 1, 2, . . . , such that

dist bH(Ω)(wm,A bH(Ω)(t0)) > ε0 > 0, m = 1, 2, . . . . (4.17)

However, by Lemma 4.5, we see that there exists a subsequence {wmk}k>1 ⊆
{wm}m>1 such that

lim
k→∞

dist bH(Ω)(wmk ,A bH(Ω)(t0)) = 0,

which leads to a contradiction with (4.17). Therefore, (1.9) follows. This completes
the proof. �
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