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ABSTRACT 

Building a Minimum Spanning Tree (MST) of a weighted undirected graph is an 

important step in various applications, including circuit design, and it is desirable to build 

the MST quickly. However, current well-known approaches for building MSTs are not 

highly parallel. In this thesis, I propose a new algorithm to build MSTs in parallel. My 

new algorithm can be divided into two main steps: adding the ‘obvious edges’ of the 

MST and connecting the components produced by the first step. I parallelized both steps 

using various atomic operations. Two serial and two parallel MST implementations were 

used for performance comparisons. Based on the geometric mean over 14 graphs, my 

MST implementation is faster than the Edge Pruning MST approach but slower than 

Boost. Moreover, when run in parallel with 16 threads, my code is slower than both 

Galois and the Problem Based Benchmark Suite implementation. 
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1. INTRODUCTION 

The Minimum Spanning Tree (MST) of a weighted graph, as seen in Figure 1.1, 

is a set of edges that does not form a cycle, has all the vertices connected and has the 

minimum total weight. 

 
Figure 1.1: Minimum Spanning Tree of a graph 

1.1 MST Usage 

Finding a Minimum Spanning Tree (MST) of a weighted undirected graph is an 

important computation used in many domains. The most obvious usage will be network 

designs, such as designing roads and circuit construction [6]. The purpose of utilizing the 

MST for roads would be to reach every house within the city but using minimum 

construction in order to cut the cost. It is also used to approximate algorithms with NP-

Hard problems, like the traveling salesperson problem and Steiner tree [6]. Interestingly, 

it is even used in cancer research to describe the arrangement of nuclei in the epithelium. 

In many cases, it is desirable to build the MST in a time-efficient manner [6]. 

1.2 Problem  

Building the MST in a time-efficient manner can be achieved by parallelizing the 

algorithm. The most well-known serial MST algorithms are Prim's, Boruvka's, and 
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Kruskal's [1][4][7]. However, these algorithms only exhibit a limited amount of 

parallelism for much of their computation and one of the main reasons is because they are 

greedy algorithms [6]. In the case of Kruskal's Algorithm, it adds the least weighted edge 

and discards the edge if it creates a cycle with already added edges. This computation is 

hard to achieve in parallel because checking for cycles need the edges to be added 

sequentially. There have been many attempts to parallelize those popular algorithms, but 

parallelism in the code was limited [3]. For example, in an attempt to parallelize 

Boruvka's algorithm, the parallelization, in the beginning, is high due because edge-

contraction can be performed independently. However, as the graph got denser, the 

parallelism decreases exponentially [4]. Therefore, a more effective method is required to 

parallelize MST algorithms. 

1.3 MyMST Algorithm 

 For my thesis, I propose a new way of calculating the MST. I wanted to approach 

the graph in a new way so that the algorithm is easier to parallelize. It consists of two 

main steps: adding the edges that are obvious members of the MST, which are the least 

weighted outgoing edges of each vertex. Also, as an enhancement, the algorithm adds the 

edges of any neighbors with a degree of one as well as "linked-list-like" chains started by 

these vertices. This is because MST needs to connect all the vertices of the graph which 

means the only outgoing edge of a vertex needs to be part of the MST. At the end of the 

calculation, the vertices will not be all connected, which means the graph will have 

multiple connected components that need to be connected in order to make the MST. To 

do this, the algorithm connects the connected components with the least weighted edges 

to make a complete graph. 
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1.4 Contribution 

These are the steps I took to develop and test my algorithm. 

1. Develop the algorithm with high parallelization in mind. 

2. Parallelize the algorithm using OpenMP. 

3. Run my code using a different number of threads. 

4. Compared the results with both existing serial and parallel codes such as Boost, 

Galois, and PBBS benchmark.  

5. Analyzed my algorithm further for future improvements. 

1.5 Outline 

In the following sections, I will discuss the following: in Sections 2 and 3, I will 

discuss the classical MST algorithms and attempt to parallelize them. In Section 3, I will 

introduce my MST algorithm and my attempts to parallelize it, following Section 4 will 

explain the evaluation methods, Section 6 will show the test results, and finally, Section 7 

will conclude with a summary and plans for future work. 
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2. BACKGROUND 

The Minimum Spanning Tree (MST) of a weighted graph has some unique 

characteristics and several classic algorithms compute it [5]. 

2.1 Characteristics of MST 

Several characteristics define the MST. First, the MST has n-1 edges where n is 

the number of vertices in a graph. Secondly, if the weight of all the edges in the graph is 

unique, the MST will be unique as well. However, if there are multiple edges with the 

same weight, a graph can have multiple MSTs with the same weight, as seen in Figure 

2.1. Finally, if an edge e is a unique, least weighted edge in the graph, it has to be part of 

the MST [6].   

 

Figure 2.1: Multiple MSTs for a single graph 

2.2 Classic MST Algorithms  

There are three main classical MST algorithms, which are all greedy algorithms. 

It means that they pick the best answer and this has to be done sequentially. In the case of 

calculating the MST, these algorithms need to consider all the edges one by one. The 

algorithms are Kruskal's, Boruvka's, and Prim's Algorithm [1][4][7].  

First, Kruskal's algorithm is an algorithm that looks for an edge with the least 

possible weight, which means the algorithm orders all the edges according to their 

weight. Before adding the least weighted edge from the ordered list to the MST, the 
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algorithm checks for any cycles with the formed spanning tree so far. If it does not form a 

cycle, the edge is added to the MST, otherwise, the edge is discarded and will not be a 

part of the MST. The algorithm runs until there are n – 1 edges in the MST where n is the 

number of vertices in the graph. The time complexity of this algorithm is O(E log V) 

where E represents the number of edges and V represents the number of vertices [3]. 

Second, is Boruvka's Algorithm which is published in 1926 [1]. This algorithm 

looks at each vertex. Initially, the MST is empty and there is a list of the graph's vertices. 

The algorithm looks at the first vertex and finds the least weighted edge that connects it 

to some other vertex. The cheapest edge and the connected vertex are added. The 

algorithm moves on to the newly added vertex and carries on adding the least weighted 

edge from the current vertex until all the vertices are in the MST. Boruvka's Algorithm 

also has a time complexity of O(E log V). However, the algorithm can have linear 

complexity if all the edges are removed except the least weighted edges between vertices 

after each iteration [1]. 

Lastly, Prim's Algorithm, similar to Boruvka's, looks at each vertex. It first starts 

by creating a set that keeps track of which vertices are part of the MST and it assigns the 

value of infinity to all the vertices except the starting vertex x, which will be assigned a 

value of 0. To start the algorithm, pick the vertex that has the least value and includes it 

in the set that keeps track of which vertices are in the MST. Then, it checks any adjacent 

vertices and compares their value and the weight of the edge connecting two vertices. If 

the value is less, the value of the adjacent vertex is updated and the least weighted edge is 

added as part of the MST. These steps run in a loop until all the vertices are part of the 

MST. The complexity of Prim's Algorithm depends on what data structure is used to store 
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the least weighted edge. Using adjacency matrix gives the time complexity of O(V2), 

binary heap gives complexity of O(E log V), and Fibonacci heap gives O(E + V log V) 

[7]. 
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3. RELATED WORK 

  In the previous section, I introduced the three most well-known MST algorithms. 

In this section, I will introduce some MST algorithms that were developed based on the 

three classic algorithms. I will also introduce various researches that have attempted to 

parallelize MST algorithms.  

3.1 Serial MSTs 

  One of the algorithms based on Boruvka's is developed by Cheriton and Tarjan 

[8]. The algorithm initially treats each vertex like a connected component and each 

connected component maintains a normal queue for vertices and a priority queue for the 

edges. In each iteration, one vertex is popped from the queue and the least weighted 

edge is retrieved from the priority queue. The algorithm keeps retrieving the least 

weighted edge until it finds an edge that connects the vertex in the current connected 

component to another. When it is found, the edge is recorded as part of the MST and the 

two connected components' queues are merged. The steps are repeated until there is one 

connected component.  

   Some researchers tried to improve Kruskal's Algorithm by including demand 

sorting [9]. Because Kruskal's Algorithm has sorting of the edges, it makes the 

algorithm not as efficient. Instead, the authors use a priority queue to sort the edges.

 In my experiments, I compared my algorithm to Boost Graph library, based on 

Prim’s Algorithm, and Edge Pruned Minimum Spanning Tree (EPMST) proposed by 

Maum and Abdullah-Al [10][11]. EPMST is an algorithm based on both Kruskal’s and 

Prim’s Algorithm.  
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3.2 Parallel MSTs 

In addition to developing serial algorithms, many researchers parallelized classic 

algorithms. 

First, as mentioned before, Kruskal's Algorithm initially sorts the edges and picks 

the least weighted edge one step at a time. The initial attempt was to parallelize this 

algorithm was just parallelizing the sorting and sequentially add those sorted edges. A 

similar but more complex attempt was called Filter-Kruskal [7]. This is partitioning the 

edges similar to quicksort and filtering out the 'obvious' edges that are not part of MST. 

This was more suited for parallelization because the partitioned edges can be distributed 

among threads. An approach by Katsigiannis and Anastasios introduces "helper threads" 

[3]. The authors took the idea that if an edge that will be examined in the future might 

create a cycle within the current MST, that edge can be exempt from future examination. 

So, in their new algorithm, they run the regular Kruskal's algorithm and have several 

helper threads examine if edges with higher weights create cycles in the current MST. 

Whenever cycles are detected, those edges are marked and discarded. One problem with 

this approach is that it potentially performs a lot of work that is not used as the main 

thread usually does not need to visit all edges. 

 

Figure 3.1: Edge contraction 
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Next, Boruvka's algorithm is parallelized by introducing edge-contraction by ISS 

Group at the University of Texas [4]. This operation is where an edge is chosen, and a 

new vertex is formed by carrying out a union of the connectivity among the two end 

vertices of the chosen edge, which can be seen in Figure 3.1. Vertex 2 and vertex 5 are 

contracted together and the contracted vertices are pushed into a worklist to be contracted 

again. However, there are two problems with this parallel version. First is that the edge-

contraction operation is costly to implement. Second is that, while there is high 

parallelism in the beginning because edge-contraction can be performed independently, 

the parallelism decreases exponentially as the graph becomes denser. 

 

Figure 3.2: Cut-Property 

Lastly, to parallelize Prim's algorithm, the cut-property is used. Cut-property is if 

a graph is cut into subgraphs the least weighted edge that connects those two subgraphs 

has to be part of the MST, which can be seen in Figure 3.2 [6]. Cut C and Cut Z are 

connected by three different edges and the edge with the least weight that connects these 

two cuts has to be part of the MST. The algorithm uses this property in order to split up 

the work among the cuts and find the minimum edge to connect these cuts which will 
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result in the MST [7]. It assigns each thread a portion and waits for all the other threads 

to finish their work. Like in the other attempts, only a relatively small part of the 

algorithm is parallelized, and the parallelism is initially very small. 

For my experiment, I compared my parallel algorithm with Lonestar and Problem 

Based Benchmark Suite (PBBS) [5][12]. Lonestar is built on Galois runtime and the MST 

algorithm is based on Boruvka's Algorithm. PBBS includes a parallelized MST algorithm 

based on Filtered Kruskal Algorithm. 
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4. APPROACH 

 Because the classic MST algorithms are difficult to parallelize, I want to develop 

a new algorithm that could be easily parallelized. In this section, I will explain my new 

MST algorithm and how it is parallelized using OpenMP.  

4.1 MyMST Algorithm 

My algorithm consists of two main separate loops: adding the edges that are 

obvious members of the MST and connecting connected components that were produced 

from the first part of the algorithm. 

 
Figure 4.1: Adding the least weighted edge  

 The first loop is adding the edges that are obvious members of MST, which are 

two types of edges. The members consist of the least weighted edge of each node and the 

edges of nodes that have degree one. Before starting the computation, the algorithm 

assumes that all the nodes from the graph are independent components. In the loop, the 

algorithm iterates over all the nodes looks at all the outgoing edges the node has to find 

the least weighted edge and makes it part of the MST. This is because the least weighted 

edges of each node must be a member of the MST as seen in Figure 4.1. 
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Figure 4.2: Adding the edges of neighbor nodes with a degree of one 

Then, in the same loop, the algorithm iterates over the neighboring node and 

calculates the degree of the node. If the node has a degree of one, that one edge must be 

part of the MST. The loop continues to iterate over the neighbor nodes of the previous 

node that had a degree of one. If the subsequent neighbor has a degree of two, the edge is 

added to the MST and the loop continues until it reaches a node that has a degree higher 

than two as seen in Figure 4.2. Because vertex 7 has a degree of 3, only vertices 3 and 5 

which have a degree of 2 are added to the MST. Because the second loop of the algorithm 

is where most of the execution time is, adding these edges will help to speed up the 

algorithm. 
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Figure 4.3: Combining two connected components 

  After processing the first loop, there will be multiple connected components, 

which can be seen in Figure 4.3. In the second loop, the algorithm iterates over each 

connected component to find the least weighted outgoing edge that is not already part of 

the MST. When looking for the least weighted edge, the algorithm checks the root of the 

current vertex and the neighbor vertex to make sure two vertices are part of different 

connected components. Then, the least weighted edge is included in the MST, turning 

two connected components into one.  
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Figure 4.4: Discarding one of the least weighted edges 

During this process, the algorithm does not blindly add the least weighted edge, 

but checks to see if two components are still different as seen in Figure 4.4. Connected 

component 1 and 2 are connected by an edge weighted 2 and connected component 1 and 

3 are connected by an edge weighted 5. The edge weighing 5 that connects connected 

component 3 and 2 can be discarded since they are already in the same component. The 

algorithm repeats this step until there is only one connected component left. The result 

will be the minimum spanning tree of the graph.   

4.2 Parallelization 

 The motivation for devising a new MST algorithm was because the classical MST 

algorithms are very difficult to parallelize. In order to address this problem, I modified 

the algorithm so that it can be more easily parallelized. To parallelize my algorithm, I am 

using OpenMP. I have two main loops: the first loop, which is adding the least weighted 

edges and edges of degree one, is parallelized altogether and in the second loop, I have 

two inner loops, which are parallelized separately.   

  In the first loop, I use an atomic decrement whenever the number of connected 
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components is decreasing. This is because as the threads are adding the edges, the 

vertices are combined into one connected component. The number of connected 

components decreases whenever an edge is added to the MST. Because keeping track of 

which edge belongs to the MST is write-only, it did not need to be atomically modified. 

 Before starting the second loop, I parallelize two loops to get the list of the roots 

of the connected components and a list of remaining edges that were not added to MST 

yet. In both of the loops, I used atomic capture to keep track of the list size. I use atomic 

capture to ensure that different threads do not insert an element at the same time. 

In the second loop, I parallelize the two parts separately. In the first inner loop, I 

go over all the edges that are not part of MST and find the least weighted edge of each 

connected component. To achieve parallelization, I use an atomic 'compare and 

swap'(CAS) to find the least weighted edge of each connected component. Because this 

process to find the least weighted edge can cause data races, I used an atomicMin 

operation implemented using CAS. By using CAS, it ensures that only one thread is 

comparing the value and possibly swapping the value if the edge weight is less than what 

it previously had. Also, atomic capture is used to keep track of the size of edges 

remaining. The size of edges remaining will be used in the next iteration of the outer loop 

and the use of atomic capture will make sure that only one thread is increasing the 

number of remaining edges. In the second inner loop, I iterate over each connected 

component and connect them using the least weighted edge found from the first part of 

the loop. 

To parallelize this section, I use an atomic decrement in order to keep the number 

of connected components valid and, within the same loop, keep track of the root of new 
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connected components to be used in the next iteration of the outer loop. I use atomic 

capture to atomically decrement and capture the value before the decrement. This allows 

me to know where to insert the element in the lists of roots and edges. 

In order to make the algorithm more efficient, I keep two copies of the lists: the 

list of roots of the connected components and the list of edges that are not yet part of the 

MST. As the algorithm was going through the two inner loops of the second loop, the 

second lists are being filled for the next iteration while the first lists are being drained. At 

the end of the loop, the algorithm swaps the newly filled lists with the lists that are being 

drained the calculation. This is faster because list swapping is just swapping two pointers 

whereas the alternative would require copying the contents of one list over into the other, 

which would be much slower. 
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5. METHODOLOGY 

 For my thesis, I compared my code with the serial and parallel CPU codes from 

the literature that are listed in Table 5.1. I converted the input graphs for each algorithm 

in advance and only measured the time each code took to compute the MST. I ran the 

experiment three times and report the best runtime.  

Table 5.1: Evaluated codes 

Name Version Source serial/parallel 

My MST 1.0 my code parallel 

Boost 1.74 [10] serial 

EPMST 1.0 [11] serial 

Galois 3.0 [5] parallel 

PBBS 2020 [12] parallel 

  

To test with the different number of threads, I tested on two systems. The first 

system I use for the measurements is based on an AMD Ryzen Threadripper 2950X CPU 

with 16 cores. Hyper-threading is enabled, i.e., the cores can simultaneously run 32 

threads. The main memory has a capacity of 64 GB. The operating system is Fedora 29. 

The second system I used is based on two Intel Xeon E-5-2687W CPU with 20 cores. 

Hyper-threading is enabled, i.e., the cores can simultaneously run 40 threads. The main 

memory has a capacity of 128GB. I will compile the codes with gcc/g++ 8.3.1 using the 

"-O3 -march=native" optimization flags. To run MyMST using OpenMP, I used the flag 

"-fopenmp". 

The codes are evaluated on the 14 graphs, listed in Table 5.2, which are road-map, 

random, and grid graphs. Road-map graphs have long diameters and random and grid 

graphs are balanced graphs. They all have a weighted edge. They are obtained from the 

Center for Discrete Mathematics and Theoretical Computer Science at the University of 

Rome (Dismacs) [13] and the Galois framework [5]. The graphs are in CSR format.
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Table 5.2: List of evaluated graphs 

Name Type  Origin vertices edges dmix dmax davg 

2d-2e20.sym.egr grid Galois 1,048,576 4,190,208 2 4 3.8 

r4-2e23.sym.egr random Galois 8,388,608 67,108,846 2 26 7.9 

USA-road-d.BAY.egr road map Dimacs 321,270 794,830 1 7 2.4 

USA-road-d.CAL.egr road map Dimacs 1,890,815 4,630,444 1 7 2.4 

USA-road-d.COL.egr road map Dimacs 435,666 1,042,400 1 8 2.3 

USA-road-d.CTR.egr road map Dimacs 14,081,816 33,866,826 1 8 2.4 

USA-road-d.E.egr road map Dimacs 3,598,623 8,708,058 1 9 2.4 

USA-road-d.FLA.egr road map Dimacs 1,070,376 2,687,902 1 8 2.5 

USA-road-d.LKS.egr road map Dimacs 2,758,119 6,794,808 1 8 2.5 

USA-road-d.NE.egr road map Dimacs 1,524,453 3,868,020 1 9 2.5 

USA-road-d.NW.egr road map Dimacs 1,207,945 2,820,774 1 9 2.3 

USA-road-d.NY.egr road map Dimacs 264,346 730,100 1 8 2.8 

USA-road-d.USA.egr road map Dimacs 23,947,347 57,708,624 1 9 2.4 

USA-road-d.W.egr road map Dimacs 6,262,104 15,119,284 1 9 2.4 
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6. RESULTS 

 In this section, I compared MyMST with two serial implementations, Boost based 

on Prim and Edge Pruning MST [10][11]. As for parallel comparison, I used Galois based 

on Bourvka and the Problem Based Benchmark Suite based on Filter Kruskal [5][12]. 

6.1 Serial Runtime and Throughput 

 First, I ran the MyMST code with a single thread, Boost, and Edge Pruning MST 

(EPMST).  

 
Figure 6.1: Serial runtime 

As seen in Figure 6.1, there are drastic differences in runtime. Boost had the 

lowest runtime throughout all the graphs and EPMST had the slowest runtime overall. All 

the codes ran fastest on USA-road-d.NY.egr due to the size of the graph. On Boost and 

EPMST, they both had the highest runtime on USA-road-d.USA.egr, which was the 

biggest graph in terms of the number of vertices in the graph. However, on My MST,   
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r4-2e3.sym.egr has the longest runtime, because the graph had the highest degree and the 

most edges out of all the graphs. 

 
Figure 6.2: Serial throughput 

 Figure 6.2 shows the throughput, which is the number of vertices divided by the 

runtime. Throughput generally shows the rate at which something is processed and higher 

throughput means the algorithm is more efficient. Similar to the runtime, Boost had the 

best throughput and My MST had the second-best and EPMST had the worst throughput. 

The geometric mean, which is the type of average usually used for growth rate, shows a 

similar result. In terms of the geometric mean of throughput, MyMST compared to 

EPMST could process about 7 times more edges when MyMST was running serially. 
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6.2 Parallel Runtime and Throughput 

 In order to test the parallel codes, I decided to use two different machines. One 

machine had 20 cores and the other had 16 cores. In this section, I will show both of the 

results and compare them.  
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(a) Parallel runtime with 16 threads on the 16-core machine 

 

 
(b) Parallel runtime with 20 threads on the 20-core machine 

Figure 6.3: Parallel runtime 

1

10

100

1000

10000

100000

R
u

n
ti

m
e 

(m
s)

Graphs

MyMST Galois PBBS

1

10

100

1000

10000

100000

R
u

n
ti

m
e 

(m
s)

Graphs

MyMST Galois PBBS



 

23 

 Overall, all the codes performed better on the machine with 16 cores and PBBS 

had the best runtime, then Galois, My MST was slowest, as shown in Figure 6.3. PBBS 

ran very fast even on the two biggest two graphs, r4-2e23.sym.egr and USA-road-

d.USA.egr, whereas My MST and Galois had the slowest runtimes.  
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(a) Parallel throughput with 16 threads on the 16-core machine 

 

 
(b) Parallel runtime with 20 threads on the 20-core machine 

Figure 6.4: Parallel throughput 
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 Figure 6.4 shows the throughput of each run and it is calculated by dividing the 

number of vertices by runtime. By looking at the geometric mean, PBBS had the best 

throughout. My MST did have comparable throughput to Galois on some of the road 

graphs such as USA-road-d.NW.egr. In terms of geometric mean, Galois could process 

about 2 times more edges than MyMST, whereas PBBS could process about 10 times 

more edges than MyMST. Even though My MST is highly parallel, it was slower than the 

implementations that were based on greedy algorithms, and in the next section, I will 

present some ways to possibly improve my code.  

6.3 Analysis of MyMST 

 MyMST consist of two main steps: adding the 'obvious edges' of the MST and 

connecting the components created from the first step. Both steps were parallelized using 

various atomic operations. However, the code was not as fast as I hoped, and performed 

two analyses in order to find out why. 
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Figure 6.5: Scalability of MyMST 

First, I measured the scalability of MyMST. I ran the code using 1 to 32  

threads on the machine that has 16 cores and enabled hyperthreading. I ran it on the two 

largest graphs which are USA-road-d.USA.egr and r4-2e23.sym.egr. As seen in Figure 

6.5, the code is not scaling well. The runtime increased drastically when using just a few 

threads. As the number of threads increased, it did show similar runtime as the single 

thread. This means that the threads are slowing down the code rather than effectively 

distributing the work among them. 
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Table 6.1: Serial analysis of MyMST  

 First Step Second Step 

Graph time iterations time iterations 

2d-2e20.sym.egr 0.0314 1048576 0.4322 10 

r4-2e23.sym.egr 0.5355 8388608 15.1246 8 

USA-road-d.BAY.egr 0.0059 321270 0.0371 9 

USA-road-d.CAL.egr 0.0398 1890815 0.2358 10 

USA-road-d.COL.egr 0.0084 435666 0.0485 8 

USA-road-d.CTR.egr 0.5343 14081816 2.6029 11 

USA-road-d.E.egr 0.0787 3598623 0.4550 9 

USA-road-d.FLA.egr 0.0204 1070376 0.1313 9 

USA-road-d.LKS.egr 0.0602 2758119 0.3625 10 

USA-road-d.NE.egr 0.0310 1524453 0.1994 9 

USA-road-d.NW.egr 0.0280 1207945 0.1723 9 

USA-road-d.NY.egr 0.0050 264346 0.0403 8 

USA-road-d.USA.egr 0.6639 23947347 3.5007 11 

USA-road-d.W.egr 0.1698 6262104 0.9937 10 

 

Second, I analyzed My MST serially and in parallel. First, seen in Table 6.1, I 

measured the serial runtime and how many iterations the two steps took. In this table, one 

iteration for the first loop is the processing of one vertex to find the least weighted edge 

and adding it to the MST and adding the edge of neighbors with a degree of 1. On the 

second loop, one iteration is finding the least weighted edge that connects two different 

connected components and connecting those components. The first step was where most 

of the edges belonging to the MST were added and the second step did not go through 

many iterations but took most of the computation time. For example, on 2d-

2e20.sym.egr, about 93.2% of the computation time was spent in the second step, but it 

only went through 10 iterations whereas 6.8% of the runtime went through 1,048,576 

iterations.  
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Table 6.2: Parallel analysis of MyMST with 16 threads  

 First Step Second Step 

Graph time iterations time iterations 

2d-2e20.sym.egr 0.0146 1048576 0.4711 10 

r4-2e23.sym.egr 0.1185 8388608 29.7089 8 

USA-road-d.BAY.egr 0.0046 321270 0.0412 9 

USA-road-d.CAL.egr 0.0209 1890815 0.3182 10 

USA-road-d.COL.egr 0.0059 435666 0.0583 8 

USA-road-d.CTR.egr 0.1631 14081816 3.4180 11 

USA-road-d.E.egr 0.0375 3598623 0.5980 9 

USA-road-d.FLA.egr 0.0124 1070376 0.1480 9 

USA-road-d.LKS.egr 0.0298 2758119 0.5077 10 

USA-road-d.NE.egr 0.0182 1524453 0.2875 9 

USA-road-d.NW.egr 0.0146 1207945 0.1888 9 

USA-road-d.NY.egr 0.0036 264346 0.0608 8 

USA-road-d.USA.egr 0.2330 23947347 3.9368 11 

USA-road-d.W.egr 0.0614 6262104 1.0534 10 

 

 I also ran the same analysis in parallel with 16 threads. As seen in Table 6.2, the 

overall runtime of the first loop did improve, whereas the runtime of the second loop was 

significantly longer. For example, in graph r4-2e23.sym.egr, there was about 77.9% 

decrease in runtime for the first loop. However, on the second loop, the runtime increased 

by about 49%. This means that the first loop does scale as the number of the threads 

increase, but the second loop was not parallelized very well and it made the runtime 

worse. 

These two analyses show two important facts about MyMST. MyMST does not 

exhibit very good scalability when the number of threads increases and the operation of 

connecting components is very expensive. 
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7. SUMMARY 

 Computing the Minimum Spanning Tree of a graph is an important computation 

because it is used in different fields such as circuit design and cancer research. It is 

desirable to build the MST in a timely manner, but the three classical MST algorithms are 

difficult to parallelize. In this thesis, I propose a new MST Algorithm that is highly 

parallelizable.  

The algorithm, MyMST, consists of two main steps. The first step is to add the 

'obvious edges' of the MST. The 'obvious edges' are the least weighted edge of each 

vertex and the edges of the neighbors with a degree of 1. After the first step is computed, 

there are multiple connected components. The second step is to connect these 

components with the least weighted edges. The second step repeats until there is only one 

connected component left which will be the MST of the graph. I parallelized the two 

steps separately. I parallelized the first step as a whole and the second step was divided 

into two sections which are finding the least weighted edge that connects two different 

components and connecting those components. 

 To test MyMST, I found two serial and two parallel implementations. The two 

serial implementations are Boost, based on Prim's Algorithm, and Edge Pruning MST. 

The two parallel implementations are Galois, based on Bourvka's Algorithm, and the 

Problem Based Benchmark Suite, based on Filter Kruskal. I used 14 graphs to test my 

code and they consist of three types of graphs: random, grid, and road map. The biggest 

graph was r4-2e23.sym.egr with 67,108,846 edges. For the serial comparison, I ran my 

code with a single thread. Based on the geometric mean over the graphs, MyMST was 

faster than the Edge Pruning MST approach but slower than Boost. Moreover, when run 
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in parallel with 16 threads, my code is slower than both Galois and the Problem Based 

Benchmark Suite (PBBS) implementation. I measured throughputs of each, which were 

vertices divided by runtime. Galois could process about 2.1 times more vertices 

compared to MyMST and PBBS could process about 10 times more edges than MyMST. 

To better understand why MyMST was slower than the two parallel 

implementations even though it is highly parallelizable, I ran two additional analyses. I 

observed that MyMST was not scalable in terms of the number of threads and the second 

part of the code took more than 90% of the computation time. Also, with an increase of 

threads, the first loop did have runtime improvement whereas the second loop resulted in 

a slower runtime.   

7.1 Future Work 

  I believe with modifications to MyMST, it could run comparable to the two 

parallel implementations I compared with. First, I will optimize the second step of the 

code. This will help with not only the parallelization but also will improve the serial 

runtime. Second, I want to use different parallelization methods to improve the scalability 

of the code. Lastly, I want to implement the GPU version of MyMST. 
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