

PARALLEL IMPLEMENTATION OF A

MINIMUM SPANNING TREE

ALGORITHM

by

Jarim Seo, B.A., M.A.

A thesis submitted to the Graduate Council of

Texas State University in partial fulfillment

of the requirements for the degree of

Master of Science

with a Major in Computer Science

December 2020

Committee Members:

 Martin Burtscher, Chair

 Apan Qasem

 Byron Gao

COPYRIGHT

by

Jarim Seo

2020

FAIR USE AND AUTHOR’S PERMISSION STATEMENT

Fair Use

This work is protected by the Copyright Laws of the United States (Public Law 94-553,

section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations

from this material are allowed with proper acknowledgement. Use of this material for

financial gain without the author’s express written permission is not allowed.

Duplication Permission

As the copyright holder of this work I, Jarim Seo, authorize duplication of this work, in

whole or in part, for educational or scholarly purposes only.

iv

ACKNOWLEDGEMENTS

 The reason I decided to join the Computer Science department at Texas State

University was to learn my major in more depth. I was able to not only learn from all the

wonderful professors but also improve my skill as a researcher. I had a wonderful time

during my two years at Texas State University. I would like to take this opportunity to

thank many people who made this possible.

First, I would like to thank my advisor Martin Burtscher. He is a wonderful

advisor as well as a teacher. He thought me so much about research and his passion

always inspires me to work harder. I would also like to thank my thesis committee

members: Apan Qasem and Byron Gao. Additionally, I would like to thank my family.

Especially, my parents and my husband for always supporting me.

v

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

ABSTRACT .. ix

CHAPTER

1. INTRODUCTION ...1

1.1 MST Usage ..1

1.2 Problem ..1

1.3 MyMST Algorithm ..2

1.4 Contribution ...3

1.5 Outline..3

2. BACKGROUND ...4

2.1 Characteristics of MST ...4

2.2 Classic MST Algorithms..4

3. RELATED WORK ..7

3.1 Serial MSTs ..7

3.2 Parallel MSTs...8

4. APPROACH ..11

4.1 MyMST Algorithm ...11

4.2 Parallelization ..14

5. METHODOLOGY ..17

vi

6. RESULTS ..19

6.1 Serial Runtime and Throughput ..19

6.2 Parallel Runtime and Throughput ..21

6.3 Analysis of MyMST ..25

7. SUMMARY ...29

7.1 Future Work ..30

REFERENCES ..31

vii

LIST OF TABLES

Table Page

5.1 Evaluated codes ..17

5.2 List of evaluated graphs ...18

6.1 Serial analysis of MyMST ...27

6.2 Parallel analysis of MyMST with 16 threads ...28

viii

LIST OF FIGURES

Figure Page

1.1 Minimum Spanning Tree of a graph ..1

2.1 Multiple MSTs for a single graph ..4

3.1 Edge contraction ..8

3.2 Cut-Property ...9

4.1 Adding the least weighted edge ...11

4.2 Adding the edges of neighbor nodes with a degree of one ..12

4.3 Combining two connected components ...13

4.4 Discarding one of the least weighted edges ...14

6.1 Serial runtime ...19

6.2 Serial throughput ..20

6.3 Parallel runtime ..22

6.4 Parallel throughput ...24

6.5 Scalability of MyMST ...26

ix

ABSTRACT

Building a Minimum Spanning Tree (MST) of a weighted undirected graph is an

important step in various applications, including circuit design, and it is desirable to build

the MST quickly. However, current well-known approaches for building MSTs are not

highly parallel. In this thesis, I propose a new algorithm to build MSTs in parallel. My

new algorithm can be divided into two main steps: adding the ‘obvious edges’ of the

MST and connecting the components produced by the first step. I parallelized both steps

using various atomic operations. Two serial and two parallel MST implementations were

used for performance comparisons. Based on the geometric mean over 14 graphs, my

MST implementation is faster than the Edge Pruning MST approach but slower than

Boost. Moreover, when run in parallel with 16 threads, my code is slower than both

Galois and the Problem Based Benchmark Suite implementation.

1

1. INTRODUCTION

The Minimum Spanning Tree (MST) of a weighted graph, as seen in Figure 1.1,

is a set of edges that does not form a cycle, has all the vertices connected and has the

minimum total weight.

Figure 1.1: Minimum Spanning Tree of a graph

1.1 MST Usage

Finding a Minimum Spanning Tree (MST) of a weighted undirected graph is an

important computation used in many domains. The most obvious usage will be network

designs, such as designing roads and circuit construction [6]. The purpose of utilizing the

MST for roads would be to reach every house within the city but using minimum

construction in order to cut the cost. It is also used to approximate algorithms with NP-

Hard problems, like the traveling salesperson problem and Steiner tree [6]. Interestingly,

it is even used in cancer research to describe the arrangement of nuclei in the epithelium.

In many cases, it is desirable to build the MST in a time-efficient manner [6].

1.2 Problem

Building the MST in a time-efficient manner can be achieved by parallelizing the

algorithm. The most well-known serial MST algorithms are Prim's, Boruvka's, and

2

Kruskal's [1][4][7]. However, these algorithms only exhibit a limited amount of

parallelism for much of their computation and one of the main reasons is because they are

greedy algorithms [6]. In the case of Kruskal's Algorithm, it adds the least weighted edge

and discards the edge if it creates a cycle with already added edges. This computation is

hard to achieve in parallel because checking for cycles need the edges to be added

sequentially. There have been many attempts to parallelize those popular algorithms, but

parallelism in the code was limited [3]. For example, in an attempt to parallelize

Boruvka's algorithm, the parallelization, in the beginning, is high due because edge-

contraction can be performed independently. However, as the graph got denser, the

parallelism decreases exponentially [4]. Therefore, a more effective method is required to

parallelize MST algorithms.

1.3 MyMST Algorithm

 For my thesis, I propose a new way of calculating the MST. I wanted to approach

the graph in a new way so that the algorithm is easier to parallelize. It consists of two

main steps: adding the edges that are obvious members of the MST, which are the least

weighted outgoing edges of each vertex. Also, as an enhancement, the algorithm adds the

edges of any neighbors with a degree of one as well as "linked-list-like" chains started by

these vertices. This is because MST needs to connect all the vertices of the graph which

means the only outgoing edge of a vertex needs to be part of the MST. At the end of the

calculation, the vertices will not be all connected, which means the graph will have

multiple connected components that need to be connected in order to make the MST. To

do this, the algorithm connects the connected components with the least weighted edges

to make a complete graph.

3

1.4 Contribution

These are the steps I took to develop and test my algorithm.

1. Develop the algorithm with high parallelization in mind.

2. Parallelize the algorithm using OpenMP.

3. Run my code using a different number of threads.

4. Compared the results with both existing serial and parallel codes such as Boost,

Galois, and PBBS benchmark.

5. Analyzed my algorithm further for future improvements.

1.5 Outline

In the following sections, I will discuss the following: in Sections 2 and 3, I will

discuss the classical MST algorithms and attempt to parallelize them. In Section 3, I will

introduce my MST algorithm and my attempts to parallelize it, following Section 4 will

explain the evaluation methods, Section 6 will show the test results, and finally, Section 7

will conclude with a summary and plans for future work.

4

2. BACKGROUND

The Minimum Spanning Tree (MST) of a weighted graph has some unique

characteristics and several classic algorithms compute it [5].

2.1 Characteristics of MST

Several characteristics define the MST. First, the MST has n-1 edges where n is

the number of vertices in a graph. Secondly, if the weight of all the edges in the graph is

unique, the MST will be unique as well. However, if there are multiple edges with the

same weight, a graph can have multiple MSTs with the same weight, as seen in Figure

2.1. Finally, if an edge e is a unique, least weighted edge in the graph, it has to be part of

the MST [6].

Figure 2.1: Multiple MSTs for a single graph

2.2 Classic MST Algorithms

There are three main classical MST algorithms, which are all greedy algorithms.

It means that they pick the best answer and this has to be done sequentially. In the case of

calculating the MST, these algorithms need to consider all the edges one by one. The

algorithms are Kruskal's, Boruvka's, and Prim's Algorithm [1][4][7].

First, Kruskal's algorithm is an algorithm that looks for an edge with the least

possible weight, which means the algorithm orders all the edges according to their

weight. Before adding the least weighted edge from the ordered list to the MST, the

5

algorithm checks for any cycles with the formed spanning tree so far. If it does not form a

cycle, the edge is added to the MST, otherwise, the edge is discarded and will not be a

part of the MST. The algorithm runs until there are n – 1 edges in the MST where n is the

number of vertices in the graph. The time complexity of this algorithm is O(E log V)

where E represents the number of edges and V represents the number of vertices [3].

Second, is Boruvka's Algorithm which is published in 1926 [1]. This algorithm

looks at each vertex. Initially, the MST is empty and there is a list of the graph's vertices.

The algorithm looks at the first vertex and finds the least weighted edge that connects it

to some other vertex. The cheapest edge and the connected vertex are added. The

algorithm moves on to the newly added vertex and carries on adding the least weighted

edge from the current vertex until all the vertices are in the MST. Boruvka's Algorithm

also has a time complexity of O(E log V). However, the algorithm can have linear

complexity if all the edges are removed except the least weighted edges between vertices

after each iteration [1].

Lastly, Prim's Algorithm, similar to Boruvka's, looks at each vertex. It first starts

by creating a set that keeps track of which vertices are part of the MST and it assigns the

value of infinity to all the vertices except the starting vertex x, which will be assigned a

value of 0. To start the algorithm, pick the vertex that has the least value and includes it

in the set that keeps track of which vertices are in the MST. Then, it checks any adjacent

vertices and compares their value and the weight of the edge connecting two vertices. If

the value is less, the value of the adjacent vertex is updated and the least weighted edge is

added as part of the MST. These steps run in a loop until all the vertices are part of the

MST. The complexity of Prim's Algorithm depends on what data structure is used to store

6

the least weighted edge. Using adjacency matrix gives the time complexity of O(V2),

binary heap gives complexity of O(E log V), and Fibonacci heap gives O(E + V log V)

[7].

7

3. RELATED WORK

 In the previous section, I introduced the three most well-known MST algorithms.

In this section, I will introduce some MST algorithms that were developed based on the

three classic algorithms. I will also introduce various researches that have attempted to

parallelize MST algorithms.

3.1 Serial MSTs

 One of the algorithms based on Boruvka's is developed by Cheriton and Tarjan

[8]. The algorithm initially treats each vertex like a connected component and each

connected component maintains a normal queue for vertices and a priority queue for the

edges. In each iteration, one vertex is popped from the queue and the least weighted

edge is retrieved from the priority queue. The algorithm keeps retrieving the least

weighted edge until it finds an edge that connects the vertex in the current connected

component to another. When it is found, the edge is recorded as part of the MST and the

two connected components' queues are merged. The steps are repeated until there is one

connected component.

 Some researchers tried to improve Kruskal's Algorithm by including demand

sorting [9]. Because Kruskal's Algorithm has sorting of the edges, it makes the

algorithm not as efficient. Instead, the authors use a priority queue to sort the edges.

 In my experiments, I compared my algorithm to Boost Graph library, based on

Prim’s Algorithm, and Edge Pruned Minimum Spanning Tree (EPMST) proposed by

Maum and Abdullah-Al [10][11]. EPMST is an algorithm based on both Kruskal’s and

Prim’s Algorithm.

8

3.2 Parallel MSTs

In addition to developing serial algorithms, many researchers parallelized classic

algorithms.

First, as mentioned before, Kruskal's Algorithm initially sorts the edges and picks

the least weighted edge one step at a time. The initial attempt was to parallelize this

algorithm was just parallelizing the sorting and sequentially add those sorted edges. A

similar but more complex attempt was called Filter-Kruskal [7]. This is partitioning the

edges similar to quicksort and filtering out the 'obvious' edges that are not part of MST.

This was more suited for parallelization because the partitioned edges can be distributed

among threads. An approach by Katsigiannis and Anastasios introduces "helper threads"

[3]. The authors took the idea that if an edge that will be examined in the future might

create a cycle within the current MST, that edge can be exempt from future examination.

So, in their new algorithm, they run the regular Kruskal's algorithm and have several

helper threads examine if edges with higher weights create cycles in the current MST.

Whenever cycles are detected, those edges are marked and discarded. One problem with

this approach is that it potentially performs a lot of work that is not used as the main

thread usually does not need to visit all edges.

Figure 3.1: Edge contraction

9

Next, Boruvka's algorithm is parallelized by introducing edge-contraction by ISS

Group at the University of Texas [4]. This operation is where an edge is chosen, and a

new vertex is formed by carrying out a union of the connectivity among the two end

vertices of the chosen edge, which can be seen in Figure 3.1. Vertex 2 and vertex 5 are

contracted together and the contracted vertices are pushed into a worklist to be contracted

again. However, there are two problems with this parallel version. First is that the edge-

contraction operation is costly to implement. Second is that, while there is high

parallelism in the beginning because edge-contraction can be performed independently,

the parallelism decreases exponentially as the graph becomes denser.

Figure 3.2: Cut-Property

Lastly, to parallelize Prim's algorithm, the cut-property is used. Cut-property is if

a graph is cut into subgraphs the least weighted edge that connects those two subgraphs

has to be part of the MST, which can be seen in Figure 3.2 [6]. Cut C and Cut Z are

connected by three different edges and the edge with the least weight that connects these

two cuts has to be part of the MST. The algorithm uses this property in order to split up

the work among the cuts and find the minimum edge to connect these cuts which will

10

result in the MST [7]. It assigns each thread a portion and waits for all the other threads

to finish their work. Like in the other attempts, only a relatively small part of the

algorithm is parallelized, and the parallelism is initially very small.

For my experiment, I compared my parallel algorithm with Lonestar and Problem

Based Benchmark Suite (PBBS) [5][12]. Lonestar is built on Galois runtime and the MST

algorithm is based on Boruvka's Algorithm. PBBS includes a parallelized MST algorithm

based on Filtered Kruskal Algorithm.

11

4. APPROACH

 Because the classic MST algorithms are difficult to parallelize, I want to develop

a new algorithm that could be easily parallelized. In this section, I will explain my new

MST algorithm and how it is parallelized using OpenMP.

4.1 MyMST Algorithm

My algorithm consists of two main separate loops: adding the edges that are

obvious members of the MST and connecting connected components that were produced

from the first part of the algorithm.

Figure 4.1: Adding the least weighted edge

 The first loop is adding the edges that are obvious members of MST, which are

two types of edges. The members consist of the least weighted edge of each node and the

edges of nodes that have degree one. Before starting the computation, the algorithm

assumes that all the nodes from the graph are independent components. In the loop, the

algorithm iterates over all the nodes looks at all the outgoing edges the node has to find

the least weighted edge and makes it part of the MST. This is because the least weighted

edges of each node must be a member of the MST as seen in Figure 4.1.

12

Figure 4.2: Adding the edges of neighbor nodes with a degree of one

Then, in the same loop, the algorithm iterates over the neighboring node and

calculates the degree of the node. If the node has a degree of one, that one edge must be

part of the MST. The loop continues to iterate over the neighbor nodes of the previous

node that had a degree of one. If the subsequent neighbor has a degree of two, the edge is

added to the MST and the loop continues until it reaches a node that has a degree higher

than two as seen in Figure 4.2. Because vertex 7 has a degree of 3, only vertices 3 and 5

which have a degree of 2 are added to the MST. Because the second loop of the algorithm

is where most of the execution time is, adding these edges will help to speed up the

algorithm.

13

Figure 4.3: Combining two connected components

 After processing the first loop, there will be multiple connected components,

which can be seen in Figure 4.3. In the second loop, the algorithm iterates over each

connected component to find the least weighted outgoing edge that is not already part of

the MST. When looking for the least weighted edge, the algorithm checks the root of the

current vertex and the neighbor vertex to make sure two vertices are part of different

connected components. Then, the least weighted edge is included in the MST, turning

two connected components into one.

14

Figure 4.4: Discarding one of the least weighted edges

During this process, the algorithm does not blindly add the least weighted edge,

but checks to see if two components are still different as seen in Figure 4.4. Connected

component 1 and 2 are connected by an edge weighted 2 and connected component 1 and

3 are connected by an edge weighted 5. The edge weighing 5 that connects connected

component 3 and 2 can be discarded since they are already in the same component. The

algorithm repeats this step until there is only one connected component left. The result

will be the minimum spanning tree of the graph.

4.2 Parallelization

 The motivation for devising a new MST algorithm was because the classical MST

algorithms are very difficult to parallelize. In order to address this problem, I modified

the algorithm so that it can be more easily parallelized. To parallelize my algorithm, I am

using OpenMP. I have two main loops: the first loop, which is adding the least weighted

edges and edges of degree one, is parallelized altogether and in the second loop, I have

two inner loops, which are parallelized separately.

 In the first loop, I use an atomic decrement whenever the number of connected

15

components is decreasing. This is because as the threads are adding the edges, the

vertices are combined into one connected component. The number of connected

components decreases whenever an edge is added to the MST. Because keeping track of

which edge belongs to the MST is write-only, it did not need to be atomically modified.

 Before starting the second loop, I parallelize two loops to get the list of the roots

of the connected components and a list of remaining edges that were not added to MST

yet. In both of the loops, I used atomic capture to keep track of the list size. I use atomic

capture to ensure that different threads do not insert an element at the same time.

In the second loop, I parallelize the two parts separately. In the first inner loop, I

go over all the edges that are not part of MST and find the least weighted edge of each

connected component. To achieve parallelization, I use an atomic 'compare and

swap'(CAS) to find the least weighted edge of each connected component. Because this

process to find the least weighted edge can cause data races, I used an atomicMin

operation implemented using CAS. By using CAS, it ensures that only one thread is

comparing the value and possibly swapping the value if the edge weight is less than what

it previously had. Also, atomic capture is used to keep track of the size of edges

remaining. The size of edges remaining will be used in the next iteration of the outer loop

and the use of atomic capture will make sure that only one thread is increasing the

number of remaining edges. In the second inner loop, I iterate over each connected

component and connect them using the least weighted edge found from the first part of

the loop.

To parallelize this section, I use an atomic decrement in order to keep the number

of connected components valid and, within the same loop, keep track of the root of new

16

connected components to be used in the next iteration of the outer loop. I use atomic

capture to atomically decrement and capture the value before the decrement. This allows

me to know where to insert the element in the lists of roots and edges.

In order to make the algorithm more efficient, I keep two copies of the lists: the

list of roots of the connected components and the list of edges that are not yet part of the

MST. As the algorithm was going through the two inner loops of the second loop, the

second lists are being filled for the next iteration while the first lists are being drained. At

the end of the loop, the algorithm swaps the newly filled lists with the lists that are being

drained the calculation. This is faster because list swapping is just swapping two pointers

whereas the alternative would require copying the contents of one list over into the other,

which would be much slower.

17

5. METHODOLOGY

 For my thesis, I compared my code with the serial and parallel CPU codes from

the literature that are listed in Table 5.1. I converted the input graphs for each algorithm

in advance and only measured the time each code took to compute the MST. I ran the

experiment three times and report the best runtime.

Table 5.1: Evaluated codes

Name Version Source serial/parallel

My MST 1.0 my code parallel

Boost 1.74 [10] serial

EPMST 1.0 [11] serial

Galois 3.0 [5] parallel

PBBS 2020 [12] parallel

To test with the different number of threads, I tested on two systems. The first

system I use for the measurements is based on an AMD Ryzen Threadripper 2950X CPU

with 16 cores. Hyper-threading is enabled, i.e., the cores can simultaneously run 32

threads. The main memory has a capacity of 64 GB. The operating system is Fedora 29.

The second system I used is based on two Intel Xeon E-5-2687W CPU with 20 cores.

Hyper-threading is enabled, i.e., the cores can simultaneously run 40 threads. The main

memory has a capacity of 128GB. I will compile the codes with gcc/g++ 8.3.1 using the

"-O3 -march=native" optimization flags. To run MyMST using OpenMP, I used the flag

"-fopenmp".

The codes are evaluated on the 14 graphs, listed in Table 5.2, which are road-map,

random, and grid graphs. Road-map graphs have long diameters and random and grid

graphs are balanced graphs. They all have a weighted edge. They are obtained from the

Center for Discrete Mathematics and Theoretical Computer Science at the University of

Rome (Dismacs) [13] and the Galois framework [5]. The graphs are in CSR format.

1
8

Table 5.2: List of evaluated graphs

Name Type Origin vertices edges dmix dmax davg

2d-2e20.sym.egr grid Galois 1,048,576 4,190,208 2 4 3.8

r4-2e23.sym.egr random Galois 8,388,608 67,108,846 2 26 7.9

USA-road-d.BAY.egr road map Dimacs 321,270 794,830 1 7 2.4

USA-road-d.CAL.egr road map Dimacs 1,890,815 4,630,444 1 7 2.4

USA-road-d.COL.egr road map Dimacs 435,666 1,042,400 1 8 2.3

USA-road-d.CTR.egr road map Dimacs 14,081,816 33,866,826 1 8 2.4

USA-road-d.E.egr road map Dimacs 3,598,623 8,708,058 1 9 2.4

USA-road-d.FLA.egr road map Dimacs 1,070,376 2,687,902 1 8 2.5

USA-road-d.LKS.egr road map Dimacs 2,758,119 6,794,808 1 8 2.5

USA-road-d.NE.egr road map Dimacs 1,524,453 3,868,020 1 9 2.5

USA-road-d.NW.egr road map Dimacs 1,207,945 2,820,774 1 9 2.3

USA-road-d.NY.egr road map Dimacs 264,346 730,100 1 8 2.8

USA-road-d.USA.egr road map Dimacs 23,947,347 57,708,624 1 9 2.4

USA-road-d.W.egr road map Dimacs 6,262,104 15,119,284 1 9 2.4

19

6. RESULTS

 In this section, I compared MyMST with two serial implementations, Boost based

on Prim and Edge Pruning MST [10][11]. As for parallel comparison, I used Galois based

on Bourvka and the Problem Based Benchmark Suite based on Filter Kruskal [5][12].

6.1 Serial Runtime and Throughput

 First, I ran the MyMST code with a single thread, Boost, and Edge Pruning MST

(EPMST).

Figure 6.1: Serial runtime

As seen in Figure 6.1, there are drastic differences in runtime. Boost had the

lowest runtime throughout all the graphs and EPMST had the slowest runtime overall. All

the codes ran fastest on USA-road-d.NY.egr due to the size of the graph. On Boost and

EPMST, they both had the highest runtime on USA-road-d.USA.egr, which was the

biggest graph in terms of the number of vertices in the graph. However, on My MST,

1

100

10000

1000000

R
u

n
ti

m
e

(m
s)

Graphs

MyMST Boost EPMST

20

r4-2e3.sym.egr has the longest runtime, because the graph had the highest degree and the

most edges out of all the graphs.

Figure 6.2: Serial throughput

 Figure 6.2 shows the throughput, which is the number of vertices divided by the

runtime. Throughput generally shows the rate at which something is processed and higher

throughput means the algorithm is more efficient. Similar to the runtime, Boost had the

best throughput and My MST had the second-best and EPMST had the worst throughput.

The geometric mean, which is the type of average usually used for growth rate, shows a

similar result. In terms of the geometric mean of throughput, MyMST compared to

EPMST could process about 7 times more edges when MyMST was running serially.

1

1000

1000000

1E+09

Th
ro

u
gh

p
u

t
(v

er
ti

ci
es

/s
ec

)

Graphs

MyMST Boost EPMST

21

6.2 Parallel Runtime and Throughput

 In order to test the parallel codes, I decided to use two different machines. One

machine had 20 cores and the other had 16 cores. In this section, I will show both of the

results and compare them.

22

(a) Parallel runtime with 16 threads on the 16-core machine

(b) Parallel runtime with 20 threads on the 20-core machine

Figure 6.3: Parallel runtime

1

10

100

1000

10000

100000

R
u

n
ti

m
e

(m
s)

Graphs

MyMST Galois PBBS

1

10

100

1000

10000

100000

R
u

n
ti

m
e

(m
s)

Graphs

MyMST Galois PBBS

23

 Overall, all the codes performed better on the machine with 16 cores and PBBS

had the best runtime, then Galois, My MST was slowest, as shown in Figure 6.3. PBBS

ran very fast even on the two biggest two graphs, r4-2e23.sym.egr and USA-road-

d.USA.egr, whereas My MST and Galois had the slowest runtimes.

24

(a) Parallel throughput with 16 threads on the 16-core machine

(b) Parallel runtime with 20 threads on the 20-core machine

Figure 6.4: Parallel throughput

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

Th
ro

u
gh

p
u

t
(v

er
ti

ci
es

/s
ec

)

Graphs

my MST Galois PBBS

1

10

100

1000

10000

100000

1000000

10000000

100000000

Th
ro

u
gh

p
u

t
(v

er
ti

ci
es

/s
ec

)

Graphs

my MST Galois PBBS

25

 Figure 6.4 shows the throughput of each run and it is calculated by dividing the

number of vertices by runtime. By looking at the geometric mean, PBBS had the best

throughout. My MST did have comparable throughput to Galois on some of the road

graphs such as USA-road-d.NW.egr. In terms of geometric mean, Galois could process

about 2 times more edges than MyMST, whereas PBBS could process about 10 times

more edges than MyMST. Even though My MST is highly parallel, it was slower than the

implementations that were based on greedy algorithms, and in the next section, I will

present some ways to possibly improve my code.

6.3 Analysis of MyMST

 MyMST consist of two main steps: adding the 'obvious edges' of the MST and

connecting the components created from the first step. Both steps were parallelized using

various atomic operations. However, the code was not as fast as I hoped, and performed

two analyses in order to find out why.

26

Figure 6.5: Scalability of MyMST

First, I measured the scalability of MyMST. I ran the code using 1 to 32

threads on the machine that has 16 cores and enabled hyperthreading. I ran it on the two

largest graphs which are USA-road-d.USA.egr and r4-2e23.sym.egr. As seen in Figure

6.5, the code is not scaling well. The runtime increased drastically when using just a few

threads. As the number of threads increased, it did show similar runtime as the single

thread. This means that the threads are slowing down the code rather than effectively

distributing the work among them.

0

10

20

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

R
u

n
ti

m
e

(s
)

threads

USA-road-d.USA.egr r4-2e23.sym.egr

27

Table 6.1: Serial analysis of MyMST

 First Step Second Step

Graph time iterations time iterations

2d-2e20.sym.egr 0.0314 1048576 0.4322 10

r4-2e23.sym.egr 0.5355 8388608 15.1246 8

USA-road-d.BAY.egr 0.0059 321270 0.0371 9

USA-road-d.CAL.egr 0.0398 1890815 0.2358 10

USA-road-d.COL.egr 0.0084 435666 0.0485 8

USA-road-d.CTR.egr 0.5343 14081816 2.6029 11

USA-road-d.E.egr 0.0787 3598623 0.4550 9

USA-road-d.FLA.egr 0.0204 1070376 0.1313 9

USA-road-d.LKS.egr 0.0602 2758119 0.3625 10

USA-road-d.NE.egr 0.0310 1524453 0.1994 9

USA-road-d.NW.egr 0.0280 1207945 0.1723 9

USA-road-d.NY.egr 0.0050 264346 0.0403 8

USA-road-d.USA.egr 0.6639 23947347 3.5007 11

USA-road-d.W.egr 0.1698 6262104 0.9937 10

Second, I analyzed My MST serially and in parallel. First, seen in Table 6.1, I

measured the serial runtime and how many iterations the two steps took. In this table, one

iteration for the first loop is the processing of one vertex to find the least weighted edge

and adding it to the MST and adding the edge of neighbors with a degree of 1. On the

second loop, one iteration is finding the least weighted edge that connects two different

connected components and connecting those components. The first step was where most

of the edges belonging to the MST were added and the second step did not go through

many iterations but took most of the computation time. For example, on 2d-

2e20.sym.egr, about 93.2% of the computation time was spent in the second step, but it

only went through 10 iterations whereas 6.8% of the runtime went through 1,048,576

iterations.

28

Table 6.2: Parallel analysis of MyMST with 16 threads

 First Step Second Step

Graph time iterations time iterations

2d-2e20.sym.egr 0.0146 1048576 0.4711 10

r4-2e23.sym.egr 0.1185 8388608 29.7089 8

USA-road-d.BAY.egr 0.0046 321270 0.0412 9

USA-road-d.CAL.egr 0.0209 1890815 0.3182 10

USA-road-d.COL.egr 0.0059 435666 0.0583 8

USA-road-d.CTR.egr 0.1631 14081816 3.4180 11

USA-road-d.E.egr 0.0375 3598623 0.5980 9

USA-road-d.FLA.egr 0.0124 1070376 0.1480 9

USA-road-d.LKS.egr 0.0298 2758119 0.5077 10

USA-road-d.NE.egr 0.0182 1524453 0.2875 9

USA-road-d.NW.egr 0.0146 1207945 0.1888 9

USA-road-d.NY.egr 0.0036 264346 0.0608 8

USA-road-d.USA.egr 0.2330 23947347 3.9368 11

USA-road-d.W.egr 0.0614 6262104 1.0534 10

 I also ran the same analysis in parallel with 16 threads. As seen in Table 6.2, the

overall runtime of the first loop did improve, whereas the runtime of the second loop was

significantly longer. For example, in graph r4-2e23.sym.egr, there was about 77.9%

decrease in runtime for the first loop. However, on the second loop, the runtime increased

by about 49%. This means that the first loop does scale as the number of the threads

increase, but the second loop was not parallelized very well and it made the runtime

worse.

These two analyses show two important facts about MyMST. MyMST does not

exhibit very good scalability when the number of threads increases and the operation of

connecting components is very expensive.

29

7. SUMMARY

 Computing the Minimum Spanning Tree of a graph is an important computation

because it is used in different fields such as circuit design and cancer research. It is

desirable to build the MST in a timely manner, but the three classical MST algorithms are

difficult to parallelize. In this thesis, I propose a new MST Algorithm that is highly

parallelizable.

The algorithm, MyMST, consists of two main steps. The first step is to add the

'obvious edges' of the MST. The 'obvious edges' are the least weighted edge of each

vertex and the edges of the neighbors with a degree of 1. After the first step is computed,

there are multiple connected components. The second step is to connect these

components with the least weighted edges. The second step repeats until there is only one

connected component left which will be the MST of the graph. I parallelized the two

steps separately. I parallelized the first step as a whole and the second step was divided

into two sections which are finding the least weighted edge that connects two different

components and connecting those components.

 To test MyMST, I found two serial and two parallel implementations. The two

serial implementations are Boost, based on Prim's Algorithm, and Edge Pruning MST.

The two parallel implementations are Galois, based on Bourvka's Algorithm, and the

Problem Based Benchmark Suite, based on Filter Kruskal. I used 14 graphs to test my

code and they consist of three types of graphs: random, grid, and road map. The biggest

graph was r4-2e23.sym.egr with 67,108,846 edges. For the serial comparison, I ran my

code with a single thread. Based on the geometric mean over the graphs, MyMST was

faster than the Edge Pruning MST approach but slower than Boost. Moreover, when run

30

in parallel with 16 threads, my code is slower than both Galois and the Problem Based

Benchmark Suite (PBBS) implementation. I measured throughputs of each, which were

vertices divided by runtime. Galois could process about 2.1 times more vertices

compared to MyMST and PBBS could process about 10 times more edges than MyMST.

To better understand why MyMST was slower than the two parallel

implementations even though it is highly parallelizable, I ran two additional analyses. I

observed that MyMST was not scalable in terms of the number of threads and the second

part of the code took more than 90% of the computation time. Also, with an increase of

threads, the first loop did have runtime improvement whereas the second loop resulted in

a slower runtime.

7.1 Future Work

 I believe with modifications to MyMST, it could run comparable to the two

parallel implementations I compared with. First, I will optimize the second step of the

code. This will help with not only the parallelization but also will improve the serial

runtime. Second, I want to use different parallelization methods to improve the scalability

of the code. Lastly, I want to implement the GPU version of MyMST.

31

REFERENCES

[1] “Boruvka’s Algorithm: Greedy Algo-9.” GeeksforGeeks, 14 Aug. 2018,

www.geeksforgeeks.org/boruvkas-algorithm-greedy-algo-9/.

[2] “Connected Components in an Undirected Graph.” GeeksforGeeks, 2 July 2020,

www.geeksforgeeks.org/connected-components-in-an-undirected-graph/.

[3] Katsigiannis, Anastasios, et al. “An Approach to Parallelize Kruskal’s Algorithm

Using Helper Threads.” 2012 IEEE 26th International Parallel and Distributed

Processing Symposium Workshops & PhD Forum, 2012,

doi:10.1109/ipdpsw.2012.201.

[4] “Kruskal’s Algorithm.” Wikipedia, Wikimedia Foundation, 8 Oct. 2019,

en.wikipedia.org/wiki/Kruskal%27s_algorithm.

[5] “Minimum Weight Spanning Tree.” ISS Group at the University of Texas,

iss.oden.utexas.edu/?p=projects%2Fgalois%2Fbenchmarks%2Fmst.

[6] “Minimum Spanning Tree.” Wikipedia, Wikimedia Foundation, 8 Sept. 2020,

en.wikipedia.org/wiki/Minimum_spanning_tree.

[7] “Prim’s Minimum Spanning Tree (MST): Greedy Algo-5.” GeeksforGeeks, 7 Aug.

2019, www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/.

[8] D. Cheriton and R. E. Tarjan, “Finding minimum spanning trees,” SIAM Journal on

Computing, vol. 5, no. 4, pp. 724–742, 1976.

[9] B. M. Moret and H. D. Shapiro, “An empirical analysis of algorithms for constructing

a minimum spanning tree,” in Workshop on Algorithms and Data Structures. Springer,

1991, pp. 400–411.

[10] Mamun, Abdullah-Al, and Sanguthevar Rajasekaran. “An Efficient Minimum

Spanning Tree Algorithm.” 2016 IEEE Symposium on Computers and Communication

(ISCC), 2016, doi:10.1109/iscc.2016.7543874.

[11] Siek, Jeremy. “prim_minimum_spanning_tree.” Boost C++ Libraries, 2001,

www.boost.org/doc/libs/1_55_0/libs/graph/doc/prim_minimum_spanning_tree.html.

[12] “Problem Based Benchmark Suite (2020).” Problem Based Benchmark Suite, 2020,

www.cs.cmu.edu/~pbbs/.

[13] DIMACS (2010). Center for discrete mathematics and theoretical computer science.

http: //www.dis.uniroma1.it/challenge9/download.shtml. Accessed: 4/30/2020.

