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Abstract: - This work is an extensive study of the backpropagation network based on a new visual tool, 
Equal Opportunity for Recognition (EOR) for all inputs to be recalled, which is used to evaluate the 
overall network performance, in particular, its generalization capabilities. The new procedure, EOR, is 
used as a means to assess the effect of other system parameters. 
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1 Introduction 
A Backpropagation Network is a multiplayer, 
associative, and feed forward neural network 
that features supervised learning using gradient 
descent training procedure. Back Propagation is 
widely used in applications involving pattern 
recognition because of its powerful capability of 
generalization.  

While its system structure and learning 
algorithm are well documented, there exist no 
mathematical criteria to assess the performance, 
particularly the generalization capabilities, of the 
network with respect to such network 
parameters as number of PEs on the hidden 
layer, the mean squared error, learning rates, 
initialization of weights and thresholds.  

Searching for a measure of system 
performance, we proposed a visual method, the 
EOR plot, which can be used as an indicator of 
the overall system performance. With the aid of 
EOR plotting, we further studied the various 
parameters of the system as they relate to the 
overall system behavior, including MSE, hidden 
layer size, learning rates, weight and threshold 
initialization, and threshold updating. 

 
 

2 Description of Experiments 
To study the various properties of a 
backpropagation network, we started with 26 
capital letters of the English alphabet, each of 

which is represented on a 24 by 24 grid as 
follows. Each grid was converted to a binary 
vector of 576 elements.  

 
Fig. 1: Input patterns 

Each binary vector is associated with a 8-bit 
ASCII code corresponding to the English letter. 

Since one hidden layer is generally sufficient 
for most applications [4], we have designed a 
backpropagation network of three layers, an 
input layer with 576 PEs, an output layer with 8 
PEs, and a hidden layer with a varying number 
of PEs. 

In the light of the EOR (Equal Opportunity 
for Recognition) plot as presented below, we 
studied all parameters of a backpropagation 
network based on our implementation of the 
network on Mathematica 4. 

 
 

3 EOR 
Backpropagation is a simple and powerful 
algorithm, yielding satisfactory results if 
properly implemented.   Mathematical criteria, 
however, are still to be found that can be 
employed to evaluate system performance with 
respect to such a network parameters as the 
MSE, hidden layer size, initial weights, and 
learning rates. Many rules for choosing hidden 
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layer size have been proposed, however none of 
them seem to be superior and all are result of 
some empirical conjure. To guarantee the 
applicability of a network, however, some 
measures have to be taken to assess system 
performance. To avoid overtraining, for 
example, constant monitoring on system 
performance is necessary, including the 
incorporation of test data in the process of 
training  

Given a specific application, such as the 
recognition of the 26 capital English letters, 
noise reduction and generalization capabilities in 
the presence of random noise are among 
essential requirements of the network. In other 
words, we need to prove the probabilistic 
performance of a network so that, first, all input 
patterns can be recovered successfully with an 
equal opportunity, and second, the probability 
that an individual input can be recovered should 
meet the requirements of the application.  Both 
factors are related to all the parameters of a 
network. 

In the absence of a mathematical 
description, we propose the EOR plot (Equal 
Opportunity for Recognition) as a visual, 
probabilistic method to evaluate system 
performance.  Given a set of system 
parameters, including MSE, initial weights, 
thresholds, learning rates, and hidden layer 
size, we train the network and estimate the 
probability of each individual input pattern 
correctly recognized at a specified rate of 
random noise. The latter could be done by 
repeating the recall process on a sufficiently 
large number of randomly corrupted inputs and 
monitoring the behavior of the network. After 
all individual inputs have been processed, the 
performance of the network can be analyzed 
using EOR plots. 

Using 9 hidden layer neurons with a range 
of –0.001 to +0.001 for weight and threshold 
random initialization, a learning rate of 0.1, an 
MSE of 0.005, and random noise rates of 10% 
and 5%, respectively, we obtain the following 
EOR plots as an estimation of the network 
performance. 
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     Fig. 2: EOR plots for 10% & 5% noise respectively 
According to the two EOR plots, with 10% 
random noise, each input pattern can be 
correctly recognized with a probability of over 
90% in spite of the slight variations; with 5% 
random noise, all patterns can be recognized. 
Fig 3 depicts sample letters with 10% random 
noise. 

 
Fig. 3: Specimen with 10% random noise 

All corrupted patterns can be correctly recovered 
with a probability of more than 90%. As shown 
by our experiments, EOR plots can be used as an 
objective description of system performance. 
EOR plots can be utilized in analyzing other 
network parameters. 

 
4 Results and Analysis 
4.1 Mean Squared Error (MSE) 
MSE is generally used as an indicator of 
network convergence. However, MSE is not a 
sufficient factor and other network 
characteristics need to be considered. 

First, we will show that MSE is not always a 
sufficient descriptor of system performance.  
Using 8 hidden layer PEs and an MSE of 0.005 
with a different range for random initialization 
of weights and thresholds, we obtained the 
following 5% random noise EOR plots. In figure 
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4(a), the range of weight and threshold 
initialization is -1.0 to +1.0; in figure 4(b), the 
range of weights and threshold initialization is -
0.05 to +0.05. 
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ig. 4: EOR plot for different we
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cond, given a specific topology of a network, 
a small MSE does not always yield better system 
performance. As shown by our experiment, after 
a certain point, the EOR plot remains virtually 
the same without evidence of over-fitting. The 
following results are obtained using 8 hidden 
layer nodes, a learning rate of 0.1, and a range of 
–0.05 to +0.05 for weight and threshold random 
initialization, at an MSE of 0.5, 0.05, and 0.001.  
  

 
Fig. 5(a): MSE of 0.5  

          
 
                     

 
Fig.  5(b): MSE of 0.05                      

  

 
      Figure 5(c): M  of  
  Fig 5: EOR plots for ffer  MS val s 

The ctor of a 
bac nt for 

eight Initialization 
 a three-layer network, there are two weight 

weights should be 

to +1 

Fig. 6(b)  to +0.5 

    

                    SE
ent

 0.001
E  di ue

arefore, while MSE is an important f
kpropagation network, it is not sufficie

drawing conclusions about system performance. 
Other factors, including weight initialization and 
size of the hidden layer also play an important 
role. 
 
4.2 W
In
sets. As a general rule, the 
randomly initialized to small values to avoid 
system oscillation and as justified by the 
derivative of the activation function. We started 
with a range of –1.0 to +1.0 and gradually 
reduced the range. We observed that smaller 
random initialization yields a better 
performance. For the following graphs, a 
network with 8 hidden layer nodes used, 
together with an MSE of 0.05, learning rate of 
0.1 and different ranges for weight and threshold 
initialization. 

 
Fig. 6(a) weight and threshold initialization –1 
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 weight and threshold initialization –0.1Fig. 6(c)  to +0.1 
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Fig.  6: EOR plots using various ranges for weight an
threshold random initialization –1 to +1, -0.5 to +0.5, -
0.1 to +0.1, -0.001 to +0.001, and -0.00001 to +0.00001, 
respectively. 
lthough the weights could all be initialized to 

zero, this would result in a highly symmetrical 
network and is thus created therefore; it is not a 
good choice for network design. This 
emphasizes the statement made by Ramelhart et 
al.[6] “Initial weights of exactly 0 cannot be 
used, since symmetries in the environment are 
not sufficient to break symmetries in initial 
weights”. 

 

To study the effect of the number of PEs in th
hidden layer on system performance, we 
performed a series of experiments where all 
weights and thresholds were randomly 
initialized between –0.05 and +0.05, with a fixed 
MSE of 0.005 and a learning rate of 0.1. When 
the weights are initialized to very small values, 

the same MSE yields similar system 
performance regardless of the range of 
initialization, and thus can be used to compare 
the effect of number of PEs on the hidden layer.  
With a small number of PEs on the hidden layer, 
compared to the input and output layers the 
learning curve exhibits a great deal of 
fluctuations and does not converge to the 
specified MSE. This implies the network does 
not have enough learning capacity i.e. memory 
with 3 hidden layer PEs, we observed the 
following results:    
 

 
           Fig. 7(a) Learning curve 
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              Fig. 8(b) EOR plot for 7 hidden layer PEs 

 
Fig. 8(c) EOR plot for 24 hidden layer PEs   

 

  
  Fig. 8(d) EOR plot for 48 hidden layer PEs   

 

 
Fig. 8(e) EOR plot for 100 hidden layer PEs 

Fig.  8: EOR plot for a network with 5, 7, 24, 48, 
100 PEs on hidden layer, respectively. 

We observed that using a fixed MSE, the 
number of iterations is related to the number of 
PEs on the hidden layer by the following curve. 

 
 and Fig. 9: Relationship between hidden layer size

number of training iterations 

 
Hidden layer PE’s are the feature extractors. As 
the hidden layer size increases, for a fixed error, 
the number of iterations to train the network 
converges to a value and will not oscillate. This 
tells us after certain limit the hidden layer size 
does not have any effect on the number of 
iterations. 
Although the increasing the hidden layer size 
brings down the number of iterations there may 
not be much improvement in the total training 
time. 

 
4.4 Learning Rates: 
While learning rates are generally taken to be 
small numbers between 0 and 1, there is no 
criterion governing the selection of a learning 
rate. If it is too small, the error correction is 
trivial and the network does not learn well, with 
little chance of getting out of a local minimum; 
if it is too large, the learning process is one of 
oscillation, with little chance of convergence to 
the necessary MSE. The training of a network is 
aimed at its generalization performance, which 
is achieved by system convergence, the speed of 
which is adjusted by the learning rates. To 
appreciate the effects of large learning rates, 
consider the learning curve of a network with 9 
hidden layer PEs, a weight and threshold 
initialization range of –0.05 to +0.05, and a 
learning rate of 5, as depicted in fig.10. 
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Fig. 10: Learning curve at a high learning rate (5). 

To assess the effect of learning rate on system 
performance, we used a network with 16 hidden 
layer PEs, a range of –0.05 to +0.05 for weight 
and threshold initialization, an MSE of 0.005, 
and various learning rates. With a learning rate 
of 0.001 and 10% random noise, the EOR plots 
are as follows, corresponding to the learning rate 
of 0.01, 0.2, 0.8, and 2.  Network did not 
converge with a Learning rate of .001. 
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Fig. 11(a) EOR plot at learning rate of 0.01 

  

  
Fig. 11(b) EOR plot at learning rate of 0.8 

  

  
Fig. 11(d) EOR plot at learning rate of  2 

Fig. 11: EOR plots at the learning rates of 0.01, 0.8, 
and 2, respectively. 
4.5 Thresholds 
Thresholds, or bias, can be used on both the 
hidden layer and the output layer PEs, to 
fine-tune the system convergence. Each PE 
on the hidden and output layer can a 
threshold value, which is updated directly 
based on the delta value computed for that 
PE. The threshold updating not only speeds 
up system convergence, but also it is 
potentially helpful in smoothing out system 
fluctuations that might be hard to deal with 
using weight updating alone.  

n

)(
1

k
i

ikik wafo θ−= ∑
=

,                (1) 

Where Ok is the output of the kth node on the 
hidden or output layer and θk is the 
corresponding threshold and f is the sigmoid 
function. If δk  is the delta value for the node, 
θk should be updated as follows: 

kkk tt εδθθ −−= )1()(                   (2) 

where ε is the threshold learning rate, kδ  is 
the delta value, and θk is the threshold value. 

 
 
5 Conclusions 
As there are no formulas that can be readily 
used to evaluate the performance of a 
backpropagation network, the Equal 
Opportunity for Recognition (EOR) plots 
represent a practical tool for system 
assessment with respect to the application 
conditions. As a probabilistic method, not 
only can it be used to describe system 
performance, it can also be incorporated into 
the recall process for demanding pattern 
recognitions. The EOR, has shown a great 
promise in finding the optimal initial 
conditions for our Neural Network. The 
future work can be in the direction of 
finding general principles, to design a 
backpropagation network with near optimal 
initial conditions, using EOR. 
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