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MULTIPLICITY OF SOLUTIONS FOR A QUASILINEAR
PROBLEM WITH SUPERCRITICAL GROWTH

GIOVANY M. FIGUEIREDO

ABSTRACT. The multiplicity and concentration of positive solutions are estab-
lished for the equation

—ePApu 4 V(2)|uP~2u = |ul?"2u + A|u[*"2u  in RV,

where 1 <p< N,e>0,p<q<p* Ss,p*=NN—f;7,)\20andVisapositive
continuous function.

1. INTRODUCTION

This article concerns the multiplicity and concentration of positive solutions for
the problem

—e?Apu+ V(2)|[uP2u = u|f?u + Au[*?u  in RY
ue WHPRYN) withl<p< N (1.1)
u(z) >0, for z € RV,

e>0,p<qg<p*<s,pt= NN—f;, A >0 and Apu is the p-Laplacian operator; that
is,

AR 0
Apu = Z oz (|Vu|p72a—5i).

i=1
We assume that V' is a continuous function satisfying
V(z) > Vo= inf V(z)>0 forzecR"Y; (1.2)
RN

Also assume that there exists an open and bounded domain ©Q € RY such that

Vo < Ingl)nV. (1.3)

In recent years, much attention has been paid to the existence and multiplicity
of solutions for both subcritical and critical cases and to the concentration behavior
of solutions for problem

—EAu+V(2)u= f(u) inRY, (1.4)
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when ¢ is small. Interesting results may be found, for example, in [3, Bl [6] [8, L0
14, [17] and their references.

Cingolani & Lazzo [9], using Lusternik-Schnirelman category and involving the
sets

M={zeQ:V(x)="V},
Ms = {z € RN : dist(z, M) <6}, §>0,

showed a result of multiplicity of positive solutions for , where Q = RY | f(u) =
|u|9=2u with ¢ € (2,2*), and
Voo = liminf V(z) > Vp = inf V(z) > 0. (1.5)
|z]—o00 RN

Recall that for a closed subset Y of a topological space X, the Lusternik-Schnirelman
category, denoted by catx Y, is the least number of closed and contractible sets in
X which cover Y.

Alves & Souto [4] showed an existence and concentration result for with
f(u) = u?" + u?* ~! assuming that condition holds.

Alves & Figueiredo [I] (see also [12]) proved a multiplicity result for

—ePApu+ V(2)|uf2u = f(u) in RY (1.6)

using again Lusternik-Schinirelman category and assuming that condition
holds, 2 < p < N and f belongs to a large class which includes the model f(u) =
|u|9=2u with ¢ € (p,p*). Moreover, the authors showed that each solution of (Pi.)
has a phenomenon of concentration near a point of minimum of the potential V.
The case with critical growth was proved in [13].

del Pino & Felmer [11] proved that if the conditions and hold, problem
has a positive solution for small ¢, which has a phenomenon of concentration
near of one minimum point of potential V.

Alves & Figueiredo [2], using the penalization method and Lusternik-Schnirelman
category theory, showed again a multiplicity and concentration result for , us-
ing now the conditions and with 1 <p < N.

In this work, motivated by [2] and by some ideas developed [16], [I5] and [7],
we prove the multiplicity and concentration of positive solutions to using
Lusternik-Schnirelman category. For A = 0 and p = 2, we have the result obtained
in [9]. Hence the results of this paper complete those [9] in three senses: because
we deal with 1 < p < N instead of p = 2, because we do restrict the behavior of V'
at infinity, and because we have f(u) = |u|?"?u + Au|*~2u with s > p*. Moreover,
in the present paper, we continue the study of [2] and [I3], because we consider
supercritical nonlinearities. To our knowledge there is no results on existence of
solutions to problem (Py) via the penalization method, and multiplicity results with
supercritical growth via the Lusternik-Schnirelman category theory.

Our main result for problem is the following.

Theorem 1.1. Suppose that the function V satisfies -. Then, for any
0 > 0, there exists € = €(6) > 0 and Ao > 0 such that (1.1)) has at least catp, M
positive solutions for all € € (0,€) and for all A € [0,Ao]. Moreover, if u. is a
positive solution of and n. € RN a global mazimum point of u., then

hH(l) V(ne) = V.
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To solve problem (L.1]), we first consider a truncated problem which involves only
a subcritical Sobolev exponent. We show that any positive solution of truncated
problem is a positive solution of .

Hereafter, we will work with the following problem equivalent to , which is
obtained under change of variable z = ex

—Apu+ V(ex)|ulP~?u = |u|7%u 4+ Au|*"2u  in RY
uwe WHP(RY) with1l<p< N (1.7)
u(z) >0, VoecRY.

2. TRUNCATED PROBLEM

First of all, we have to note that because f has supercritical growth we cannot
use directly variational techniques because of the lack of compactness of the Sobolev
immersions.

So we construct a suitable truncation of f in order to use variational methods
or more precisely, the Mountain Pass Theorem. This truncation was used in [16]
(see also [7] and [12]).

Let K > 0, be a constant to be determined later, and fK : R — R given by

0 ift<0
Fr(t) =t 4 x5! ifo<t< K
(1+ MKt ift > K.

Consider a,y € R such that a < 1 < v and n € C'([aK,vK]) with « and ~
independent of K and n satisfying

n(t) < fix(t) for all t € [k, vK],
n(aK) = fr(aK), n(vK)= fx(vK),
7 (aK) = fie(aK), n'(vK) = fi(vK),

)

t
t— Z(—_l is increasing for all ¢ € [a K, yK].

Now using the functions n and fK, we define
Frlt) = {nA(t) if £ € [ak, K],
fr(t) iftéaK,vK]
and the truncated problem
—Apu+ V(ex)|ulP2u = fr(u)
uwe W (R), u>0 inRY.
It is easy to check that fx € C'(R), and that
fx()=0, forallt<O,
fr) < (14+AK*"9)t1"1 for all t >0,

Fr(t) < 1(1+AK5 Nt forallt >0, Fr(t /fK )dé,

(=
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there exists # € R such that p < 6 and

0 <OFk(t) < fk(t)t forallt>0, (2.2)
the function

t— J;Ip{_(? is increasing for all ¢ > 0, (2.3)

FieOF = (0 = Dfx ()t > (g - p)te. (24)

Remark 2.1. Note that if u,  is a positive solution of ([2.1)) such that there exists
Ky > 0, where for each K > K, there exists A\o(K) > 0 such that |uc | @y) <
aK for all € € (0,€) and for all A € [0, Ag], then u,  is a positive solution of (L.7)

3. MULTIPLICITY AND CONCENTRATION OF POSITIVE SOLUTIONS FOR
TRUNCATED PROBLEM

The result below is related to the multiplicity and concentration of solutions for
(2.1) and its proof can be found in [2, Theorem 1.1] or [12].

Theorem 3.1. Suppose that V verify . Then, for any 6 > 0, there exists
€ = €(0,\, K) > 0 such that (Tx) has at least catps, M positive solutions for all
€ € (0,€) and for each A > 0. Moreover, if uc x is a positive solution of and
ne € RN a global mazimum point of ue x, then

hH(l) V(ne) = TW.

4. MULTIPLICITY OF POSITIVE SOLUTIONS FOR (|1.7)

We recall that the weak solutions of (2.1) are the critical points of the functional
1

1
I a(u) = 7/ |[VulP + 7/ V(ex)|ul? f/ Fr(u),
P JrN P JrN RN

which is well defined for u € W, where

W, ={uecW'rR"Y): /RN V(ex)|ulP < oo}

endowed with the norm

iz = [ v+ [ vl
RN RN
Let us also denote by FEy; » the energy functional associated to the problem
—Apu+ VolulP?u = fi(u) (4.1)
u€ WHP(R), wu>0inRY, .

that is,
! p 1 P
Evpa(u)=— [ |[VulP +— [ Volu’ = [ Fi(u),
P JrN P JryN RN
Here we will establish a preliminary estimative for |Juc ||
Lemma 4.1. For any solution u. of ([2-1), there exists C > 0, such that
[uenlle < C,

for e > 0 sufficiently small and uniformly in X.
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Proof. By [2, Theorem 1.1] (see [12] too), we have that all solutions u.  from
verify the inequality

I x(uen) < ey n + ha(e),
where cy; » is the level Mountain Pass related of functional Ey; » and hy(e) — 0
as € — 0 for each A > 0. In this case, we may suppose that

T a(uen) <eypn +1,
for all € € (0,€(K, A)). Since ¢y, x < ¢y, 0, We have
Iea(uen) < cvpo+ 1, (4.2)
for all € € (0,&(K, A)) and for all A > 0. Moreover,
1
Ie,)\(ue,)\) = e,k(ue,)\) - 51;)\(’&5,))’11,67)\
1 1 1
= (= = 2)lJueall? +/ [ Fic (ue )t n — Fic(ue )]
p 9 RN 0

By (2:2),

1 1
Ie,/\(uea)\) > (5 - E)Hus,)\Hg
Therefore, by ([£.2)), ||uc |l < C, for € € (0,€(K,\)) and for all A > 0, where
~ Op (qi/p
C: I:(CV070+1)(rp):| .

O

Now, we use the Moser iteration technique [I5] (see also [7]) to prove that each

solution found of (2.1]) is a solution of ([1.7))
Proof of Theorem[I.1. We use the notation u, ) := u. For each L > 0, we define

u ifu<L,
uy, =
L ifu>L,

p(B—1)

-1
zp = up, u and wL:uuﬁ

with 8 > 1 to be determined later. Taking z; as a test function, we obtain

/ Y| Vult = —p(5 1) / up " |Vl T Vu
RN RN

+ fK(u)uui(ﬁfl) —/ V(ex)\u|pu1£(ﬁ71).
RN RN
By (2),
[ 0wl < o [ i, (43)
RN RN

where C) g = (1+AK?*~?). From Sobolev imbedding, Holder inequalities and (4.3)),
lwelpe < ClﬁpCA,K(/ up*)(%p)/p* </ wip*/[P**(qu)])[p**(qu)]/p*’
RN RN

where p < #ﬁ;p) < p*. Recalling that |lu. |l < C, we have

Z* < CQBPCA’K@(qu)/p* lwr, Iﬁ*

lwr,
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where o* = ﬁ;p). Note that if v® € L (RY), using the definition of wy, and
the fact that u; < u, we obtain

« \P/P" L\ p/a”
(/ |uuf [P ) < C3ﬂpCA,K(/ uhe ) < +o0.
RN RN

By Fatou’s Lemma on the variable L, we get

Julgp < (CaCi i) "/?8Y 7 |ul o (4.4)
The assertion is obtained by iteration of estimative (4.4). Namely, let x = 571; ie.,
p* = xa*. Then

m

[ul i a < Co(CaC k)= 55 X2 XTC.
Passing to the limit as m — oo, we have
[ulpee @y < C5(CaCr k)7 X2 C,

—i

where o1 =Y 2 XT and oo = Y .o ix~". To choose \g, we consider the inequality

Ca(l + AKH)F 72050 < oK.

We conclude that

K
(14 AK9)m < OBC6
C’41XUQC

We choose )\ verifying the inequality

1
KCg)er 1
AOS[(O[@C?) —1] -
Cyx =1 C/on Ko
and fixing K such that
KCg)l/o
[LefG) ] >,
Cax=1 CYen
we have |uy | po@y) < aK for all € € (0,€(K,\)) and all A € [0, Ag]. The result
follows from Remark 211 O
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