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MULTIPLICITY OF SOLUTIONS FOR A QUASILINEAR
PROBLEM WITH SUPERCRITICAL GROWTH

GIOVANY M. FIGUEIREDO

Abstract. The multiplicity and concentration of positive solutions are estab-

lished for the equation

−εp∆pu + V (z)|u|p−2u = |u|q−2u + λ|u|s−2u in RN ,

where 1 < p < N , ε > 0, p < q < p∗ ≤ s, p∗ = Np
N−p

, λ ≥ 0 and V is a positive

continuous function.

1. Introduction

This article concerns the multiplicity and concentration of positive solutions for
the problem

−εp∆pu + V (z)|u|p−2u = |u|q−2u + λ|u|s−2u in RN

u ∈ W 1,p(RN ) with 1 < p < N

u(z) > 0, for z ∈ RN ,

(1.1)

ε > 0, p < q < p∗ ≤ s, p∗ = Np
N−p , λ ≥ 0 and ∆pu is the p-Laplacian operator; that

is,

∆pu =
N∑

i=1

∂

∂xi

(
|∇u|p−2 ∂u

∂xi

)
.

We assume that V is a continuous function satisfying

V (x) ≥ V0 = inf
x∈RN

V (x) > 0 for x ∈ RN ; (1.2)

Also assume that there exists an open and bounded domain Ω ⊂ RN such that

V0 < min
∂Ω

V. (1.3)

In recent years, much attention has been paid to the existence and multiplicity
of solutions for both subcritical and critical cases and to the concentration behavior
of solutions for problem

−ε2∆u + V (z)u = f(u) in RN , (1.4)
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when ε is small. Interesting results may be found, for example, in [3, 5, 6, 8, 10,
14, 17] and their references.

Cingolani & Lazzo [9], using Lusternik-Schnirelman category and involving the
sets

M = {x ∈ Ω : V (x) = V0},
Mδ = {x ∈ RN : dist(x, M) ≤ δ}, δ > 0,

showed a result of multiplicity of positive solutions for (1.4), where Ω = RN , f(u) =
|u|q−2u with q ∈ (2, 2∗), and

V∞ = lim inf
|x|→∞

V (x) > V0 = inf
RN

V (x) > 0. (1.5)

Recall that for a closed subset Y of a topological space X, the Lusternik-Schnirelman
category, denoted by catX Y , is the least number of closed and contractible sets in
X which cover Y .

Alves & Souto [4] showed an existence and concentration result for (1.4) with
f(u) = uq−1 + u2∗−1 assuming that condition (1.5) holds.

Alves & Figueiredo [1] (see also [12]) proved a multiplicity result for

−εp∆pu + V (z)|u|p−2u = f(u) in RN (1.6)

using again Lusternik-Schinirelman category and assuming that condition (1.5)
holds, 2 ≤ p < N and f belongs to a large class which includes the model f(u) =
|u|q−2u with q ∈ (p, p∗). Moreover, the authors showed that each solution of (P∗∗)
has a phenomenon of concentration near a point of minimum of the potential V .
The case with critical growth was proved in [13].

del Pino & Felmer [11] proved that if the conditions (1.2) and (1.3) hold, problem
(1.4) has a positive solution for small ε, which has a phenomenon of concentration
near of one minimum point of potential V .

Alves & Figueiredo [2], using the penalization method and Lusternik-Schnirelman
category theory, showed again a multiplicity and concentration result for (1.6), us-
ing now the conditions (1.2) and (1.3) with 1 < p < N .

In this work, motivated by [2] and by some ideas developed [16], [15] and [7],
we prove the multiplicity and concentration of positive solutions to (1.1) using
Lusternik-Schnirelman category. For λ = 0 and p = 2, we have the result obtained
in [9]. Hence the results of this paper complete those [9] in three senses: because
we deal with 1 < p < N instead of p = 2, because we do restrict the behavior of V
at infinity, and because we have f(u) = |u|q−2u + λ|u|s−2u with s ≥ p∗. Moreover,
in the present paper, we continue the study of [2] and [13], because we consider
supercritical nonlinearities. To our knowledge there is no results on existence of
solutions to problem (Pλ) via the penalization method, and multiplicity results with
supercritical growth via the Lusternik-Schnirelman category theory.

Our main result for problem (1.1) is the following.

Theorem 1.1. Suppose that the function V satisfies (1.2)-(1.3). Then, for any
δ > 0, there exists ε = ε(δ) > 0 and λ0 > 0 such that (1.1) has at least catMδ

M
positive solutions for all ε ∈ (0, ε) and for all λ ∈ [0, λ0]. Moreover, if uε is a
positive solution of (1.1) and ηε ∈ RN a global maximum point of uε, then

lim
ε→0

V (ηε) = V0.
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To solve problem (1.1), we first consider a truncated problem which involves only
a subcritical Sobolev exponent. We show that any positive solution of truncated
problem is a positive solution of (1.1).

Hereafter, we will work with the following problem equivalent to (1.1), which is
obtained under change of variable z = εx

−∆pu + V (εx)|u|p−2u = |u|q−2u + λ|u|s−2u in RN

u ∈ W 1,p(RN ) with 1 < p < N

u(x) > 0, ∀x ∈ RN .

(1.7)

2. Truncated Problem

First of all, we have to note that because f has supercritical growth we cannot
use directly variational techniques because of the lack of compactness of the Sobolev
immersions.

So we construct a suitable truncation of f in order to use variational methods
or more precisely, the Mountain Pass Theorem. This truncation was used in [16]
(see also [7] and [12]).

Let K > 0, be a constant to be determined later, and f̂K : R → R given by

f̂K(t) =


0 if t < 0
tq−1 + λts−1 if 0 ≤ t < K

(1 + λKs−q)tq−1 if t ≥ K.

Consider α, γ ∈ R such that α < 1 < γ and η ∈ C1([αK, γK]) with α and γ
independent of K and η satisfying

η(t) ≤ f̂K(t) for all t ∈ [αK, γK],

η(αK) = f̂K(αK), η(γK) = f̂K(γK),

η′(αK) = f̂ ′K(αK), η′(γK) = f̂ ′K(γK),

t 7→ η(t)
tp−1

is increasing for all t ∈ [αK, γK].

Now using the functions η and f̂K , we define

fK(t) =

{
η(t) if t ∈ [αK, γK],
f̂K(t) if t 6∈ [αK, γK]

and the truncated problem

−∆pu + V (εx)|u|p−2u = fK(u)

u ∈ W 1,p(R), u > 0 in RN .
(2.1)

It is easy to check that fK ∈ C1(R), and that

fK(t) = 0, for all t < 0,

fK(t) ≤ (1 + λKs−q)tq−1 for all t ≥ 0,

FK(t) ≤ 1
q
(1 + λKs−q)tq for all t ≥ 0, FK(t) =

∫ t

0

fK(ξ)dξ,
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there exists θ ∈ R such that p < θ and

0 < θFK(t) ≤ fK(t)t for all t > 0, (2.2)

the function

t 7→ fK(t)
tp−1

is increasing for all t > 0, (2.3)

f ′K(t)t2 − (p− 1)fK(t)t ≥ (q − p)tq. (2.4)

Remark 2.1. Note that if uε,λ is a positive solution of (2.1) such that there exists
K0 > 0, where for each K ≥ K0, there exists λ0(K) > 0 such that |uε,λ|L∞(RN ) ≤
αK for all ε ∈ (0, ε̄) and for all λ ∈ [0, λ0], then uε,λ is a positive solution of (1.7).

3. Multiplicity and Concentration of positive solutions for
Truncated Problem

The result below is related to the multiplicity and concentration of solutions for
(2.1) and its proof can be found in [2, Theorem 1.1] or [12].

Theorem 3.1. Suppose that V verify (1.2)(1.3). Then, for any δ > 0, there exists
ε = ε(δ, λ, K) > 0 such that (Tλ) has at least catMδ

M positive solutions for all
ε ∈ (0, ε) and for each λ > 0. Moreover, if uε,λ is a positive solution of (2.1) and
ηε ∈ RN a global maximum point of uε,λ, then

lim
ε→0

V (ηε) = V0.

4. Multiplicity of positive solutions for (1.7)

We recall that the weak solutions of (2.1) are the critical points of the functional

Iε,λ(u) =
1
p

∫
RN

|∇u|p +
1
p

∫
RN

V (εx)|u|p −
∫

RN

FK(u),

which is well defined for u ∈ Wε, where

Wε = {u ∈ W 1,p(RN ) :
∫

RN

V (εx)|u|p < ∞}

endowed with the norm

‖u‖p
ε =

∫
RN

|∇u|p +
∫

RN

V (εx)|u|p.

Let us also denote by EV0,λ the energy functional associated to the problem

−∆pu + V0|u|p−2u = fK(u)

u ∈ W 1,p(R), u > 0 in RN ,
(4.1)

that is,

EV0,λ(u) =
1
p

∫
RN

|∇u|p +
1
p

∫
RN

V0|u|p −
∫

RN

FK(u),

Here we will establish a preliminary estimative for ‖uε,λ‖ε.

Lemma 4.1. For any solution uε,λ of (2.1), there exists C̄ > 0, such that

‖uε,λ‖ε ≤ C̄,

for ε > 0 sufficiently small and uniformly in λ.
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Proof. By [2, Theorem 1.1] (see [12] too), we have that all solutions uε,λ from (2.1)
verify the inequality

Iε,λ(uε,λ) ≤ cV0,λ + hλ(ε),
where cV0,λ is the level Mountain Pass related of functional EV0,λ and hλ(ε) → 0
as ε → 0 for each λ ≥ 0. In this case, we may suppose that

Iε,λ(uε,λ) ≤ cV0,λ + 1,

for all ε ∈ (0, ε̄(K, λ)). Since cV0,λ ≤ cV0,0, we have

Iε,λ(uε,λ) ≤ cV0,0 + 1, (4.2)

for all ε ∈ (0, ε̄(K, λ)) and for all λ ≥ 0. Moreover,

Iε,λ(uε,λ) = Iε,λ(uε,λ)− 1
θ
I ′ε,λ(uε,λ)uε,λ

=
(1
p
− 1

θ

)
‖uε,λ‖p

ε +
∫

RN

[1
θ
fK(uε,λ)uε,λ − FK(uε,λ)

]
.

By (2.2),

Iε,λ(uε, λ) ≥
(1
p
− 1

θ

)
‖uε,λ‖p

ε

Therefore, by (4.2), ‖uε,λ‖ε ≤ C̄, for ε ∈ (0, ε̄(K, λ)) and for all λ ≥ 0, where

C̄ =
[
(cV0,0 + 1)

( θp

θ − p

)]1/p

.

�

Now, we use the Moser iteration technique [15] (see also [7]) to prove that each
solution found of (2.1) is a solution of (1.7)

Proof of Theorem 1.1. We use the notation uε,λ := u. For each L > 0, we define

uL =

{
u if u ≤ L,

L if u ≥ L,

zL = u
p(β−1)
L u and wL = uuβ−1

L

with β > 1 to be determined later. Taking zL as a test function, we obtain∫
RN

u
p(β−1)
L |∇u|p = −p(β − 1)

∫
RN

upβ−p−1
L u|∇u|p−2∇u∇uL

+
∫

RN

fK(u)uu
p(β−1)
L −

∫
RN

V (εx)|u|pup(β−1)
L .

By (2), ∫
RN

u
p(β−1)
L |∇u|p ≤ Cλ,K

∫
RN

uqu
p(β−1)
L , (4.3)

where Cλ,K = (1+λKs−q). From Sobolev imbedding, Hölder inequalities and (4.3),

|wL|pp∗ ≤ C1β
pCλ,K

( ∫
RN

up∗
)(q−p)/p∗( ∫

RN

w
pp∗/[p∗−(q−p)]
L

)[p∗−(q−p)]/p∗

,

where p < pp∗

p∗−(q−p) < p∗. Recalling that ‖uε,λ‖ε ≤ C̄, we have

|wL|pp∗ ≤ C2β
pCλ,KC̄(q−p)/p∗ |wL|pα∗
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where α∗ = pp∗

p∗−(q−p) . Note that if uβ ∈ Lα∗(RN ), using the definition of wL and
the fact that uL ≤ u, we obtain( ∫

RN

| uuβ−1
L |p

∗
)p/p∗

≤ C3β
pCλ,K

( ∫
RN

uβα∗
)p/α∗

< +∞.

By Fatou’s Lemma on the variable L, we get

|u|βp∗ ≤ (C4Cλ,K)1/ββ1/β |u|βα∗ . (4.4)

The assertion is obtained by iteration of estimative (4.4). Namely, let χ = p∗

α∗ ; i.e.,
p∗ = χα∗. Then

|u|χ(m+1)α∗ ≤ C5(C4Cλ,K)
Pm

i=1
χ−i

p χ
Pm

i=1 iχ−i

C̄.

Passing to the limit as m →∞, we have

|u|L∞(RN ) ≤ C5(C4Cλ,K)σ1χσ2C̄,

where σ1 =
∑∞

i=1
χ−i

p and σ2 =
∑∞

i=1 iχ−i. To choose λ0, we consider the inequality[
C4(1 + λKs−q)

]σ1

χσ2C5C̄ ≤ αK.

We conclude that
(1 + λKs−q)σ1 ≤ αKC6

Cσ1
4 χσ2C̄

.

We choose λ0 verifying the inequality

λ0 ≤
[ (αKC6)

1
σ1

C4χ
σ2
σ1 C̄1/σ1

− 1
] 1
Ks−q

and fixing K such that [ (αKC6)1/σ1

C4χ
σ2
σ1 C̄1/σ1

− 1
]

> 0,

we have |uλ,ε|L∞(RN ) ≤ αK for all ε ∈ (0, ε̄(K, λ)) and all λ ∈ [0, λ0]. The result
follows from Remark 2.1. �
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