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POSITIVE SOLUTIONS OF A NONLINEAR PROBLEM
INVOLVING THE p-LAPLACIAN WITH NONHOMOGENEOUS
BOUNDARY CONDITIONS

AHMED LAKMECHE, ABDELKADER LAKMECHE, MUSTAPHA YEBDRI

ABSTRACT. In this work we consider a boundary-value problem involving the
p-Laplacian with nonhomogeneous boundary conditions. We prove the exis-
tence of multiple solutions using the quadrature method.

1. INTRODUCTION

The p-Laplacian operator arises in the modelling of physical and natural phe-
nomena [I1] [15] [16], 2T, 22| 23] [24], and has has been considered in many papers;
see for example [I} Bl 5 [6] 10, [T, 12} 13} 4] 15, 16l 17 19, 22} 25]. In this work
we consider the boundary-value problem

—(|u/ (2)|P7%u (z)) = Mf(u(z)), ae 0<z<l, (1.1)
uw(0) = u(1) + k(u(1))u'(1) =0 (1.2)

where A >0, p € (1,2], k: Ry — R%, and f: Ry — R% smooth enough.

Problem 7 was considered by Lakmeche and Hammoudi [19] for & con-
stant, in Anuradha et al. [2][2] and Lakmeche [20] for p = 2 and k constant. In this
work we generalize [19] by considering the nonhomogeneous boundary conditions.
Our aim in this work is to prove existence of solutions of , and their
multiplicity, using the quadrature method [8] [, 12, [18]. In section 2, we give some
preliminaries and definitions, in section 3 we give our main results, and we conclude
by some remarks in the last section.

2. PRELIMINARIES
In this section we give some definitions and preliminaries.

Definition 2.1. A pair (u,\) € C([0,1];R4) x [0,+00] is called a solution of

D@, i

o (|u/|P~24/) is absolutely continuous, and

o —(|/|P72u') = Af(u) a.e. in (0,1), and u(0) = u(1) + k(u(1))u/(1) = 0.
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Note that the pair (0,0) is a solution of (1.1f), (1.2)).
Let F : Ry — Ry be defined by F(u) = [ f(s)ds, and g : Ry — Ry be defined
by
—1\1/p pp ds
g9(p) = 2(25) " I wor—Fe for p>0,
0 for p=0.
Let n > 0. Define h,, : [n,4+00) — R% , by

=Ly (P ds L ds
o) =0 o L o Fem)
Note that g = ho.

Lemma 2.2. The functions g and h,, are continuous, and g(p) < 2h,(p) < 2g(p),
forallp>n > 0.

The proof of the lemma above can be found in [7, Theorem 7].
For u € CY([0,1]; Ry ), we define ||ul| := sup{u(s);s € (0,1)}.
Lemma 2.3. If (u, ) is a solution of (1.1)), (L.2)) with A > 0, then
(1) /(1) <0, u(l) >0, and
(2) AYP = h,(||ul)), where n = u(1).

Proof. Let (u, \) be a positive solution of (1.1f), (1.2) with A > 0, then v # 0. Using
the maximum principle [26], we obtain u > 0 in (0, 1), then «(1) > 0, which implies

Since f(0) > 0, then v/(1) < 0 and u(1) > 0. Also there exists a unique z € (0, 1)
such that u'(zg) = 0, u(zo) = |ull, v'(x) > 0 for z € (0,z0), and u'(z) < 0 for
x € (z0,1).

Let (u, ) be a solution of , , and u(1) = n with 0 < n < p, then we
have u(zg) = max,e(o ] |u(x)| = p. Multiplying by /(z), and integrate it for
x € [0,20] and g, we obtain

[ wwrteayoa- [

x

x

" (u() (). (2.1)
‘We have in one hand
z0 u(xo)
/ M (u(t)) (t)dt = A / @A =NEG) - Fa@),  22)

and in the other hand

- [T iworeydon =Ly, (23)
From (1), (2) and (Z3), we have
2oL ) = AF ()~ Flule)). 2.4
Then for all @ € (0, o), we have
(' (@) = (-2 )MF(p) — F(u(x))), (2.5)
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which implies

W@ = (L) EQ) - Fu@)? forse D, (26)
and by symmetry
W@ = (L) PNER) - Fu@) o€ ot (27)
Integrate (2.6) between 0 and xg, we obtain
—1i1p [P ds
APy = (P2 p/ _ . (2.8)
=5 T - Fem
Similarly, by integration of (2.7)) between 1 and xg, we obtain
—1y1p [P ds
)\1/1)(1 —xp) = b= / _— (2.9)
&), Fo-Fo
From (2.8) and (2.9)), we deduce that
—1.1 P ds P ds
AP — (B 2y/p / +/ . (2.10)
G wor—rems . wo-Fers
From equation this equation, we deduce the results of lemma [2.3 g

Consider the boundary-value problem consisting of (1.1)) and the Dirichlet bound-
ary conditions
u(0) =u(l) =0. (2.11)
Lemma 2.4. [I9] We have
(1) If limy— oo 2% =0, then limy_4o0 g(s) = +00

sp—1 ™

(2) Iflimg_ ¢ oo Sfp(f)l = +o0, then lims_, 100 g(s) =0
For the proof of the lemma above, see [19].

Theorem 2.5 ([19]). Iflim,_. o f(s)/s?~! =0, then problem (L)), 2.11) has at

least one positive solution for all A > 0.
Proof. From lemma [2.4] we have lim,_. g(s) = +oo and g(0) = 0. O

Theorem 2.6 ([19]). If lim,_ .o f(5)/sP~! = 400, then there exist \* > 0 such
that the problem (1.1)), (2.11)) has at least two positive solutions for A € (0,\*), and

no positive solution for A > \*.

Proof. From lemma[2.4] we have lim,_ 1 g(s) = g(0) = 0. Then g is bounded and

reaches its maximum at some point py > 0. Further \* = (g(po))P. O
3. MAIN RESULTS

Let (u, ) be a solution of (L.1), (1.2)), and u(1) = n with 0 < n < p, then we
have u(xg) = max,co 1) |u(z)| = p. Substituting x by 1 in (2.7), we obtain

wo = G EG) — F (3.1)
Hence
)\l/p: (pi]')l/p n (32)
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Then from (2.10) and (3.2)), we have

. ds P ds n
/o [F(p) — F(s)]*/? +/n [F(0) — FOI? ~ k(n) [F(p) — F(n)]/* (3.3)
Theorem 3.1. Assume that k € C(Ry;R%). Let p > 0, then

(1) there exist at least n* € (0, p), such that (3.3) is satisﬁed for n=n";

(2) for each n* satisfying (3.3)), there is a unique A = A(p,n*) given by (2.10)
or such that (L)), (1.2) has ezactly one solution (u, \), with |[u| = p,
u(l) =n*, u'(1) = —% and

p—Lyi/py 1 /p ds
x0 = (—— AP _
R A P
(3) if k is decreasing, n* is unique.
Proof. Equation (3.3)) is equivalent to
P ds P ds -1 n
K(n) = / S S / .
0=}, Fo—Fors * ), o Fom)  FH- Fa
Let v : [0, p) — R4 be defined by

(3.4)

P ds P ds -1 n
0= ([ wr=re . o rors) | om0
We have v(0) = 0, lim,,_, ,- v(n) = +00 and 7 is differentiable on (0, p), with
plF(p) — F(n)] + nf(n)
PLF(p) = FI" (J5 mi=reare + S meo=reor7e)

n
+ F F 1/17 P ds 2
[F(p) = F(IM? (f5 morFrr + I roor—pws)

Then + increases from 0 to +o0 on (0, p). Since k : Ry — R7 is continuous and
k(0) > 0, k(p) < oo, then there exist at least n* € (0, p) such that k(n*) = y(n*).

If k decreases, we have 0 < k(n) < k(0) for all n € [0,p], v(0) = 0 and
lim,_,,- y(s) = +o0.

Let ng € (0, p) such that k(ng) = y(no). Suppose that there exists ny € (0, p)
such that k(n1) = y(n1). Then we have k(ng) = v(no) < v(n1) = k(ny) for ng < ny
and k(ng) > k(n1), which is a contradiction. Similarly we find a contradiction if
ng > ny. Finally, we deduce that ng = n;. O

7'(n) =

> 0.

Corollary 3.2. Assume that k € C(Ry;R Let p > 0, then the bifurcation
diagram (A, p) of the positive solutions of (|1.1] i, is given by

1p _ (P=1\1/p P ds ° ds
A0 = [ = rern L = )
where n* is the solution of .

Remark 3.3. If k is not decreasing, then the solution n* of (3.3)) is not necessarily
unique, in some cases it could be infinite. This is one of different results with
respect to precedent works [2] [I8], [19].

Theorem 3.4. Assume that k € C*(Ry;R%). Let p > 0, and k decreasing, then
there exists a unique n*(p) € (0, p) such that k(n*) = vy(n*). Further n* is contin-
wously differentiable.
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Proof. Because k is decreasing, k' < 0; further 4" > 0, hence k' —+’ < 0. From the
implicit function theorem, there exists a unique n*(p) € (0, p) such that k(n*) =
~v(n*), and n*(p) is continuously differentiable. O

Theorem 3.5. Assume that k € C(R_;R* ). Let p > 0 and k decreasing. Then
there exists a unique n*(p) € (0, p), such that (3.3) is satisfied for n = n*. Also

there exists a unique A = \(p) given by (2.10) or (3.2) for which (1.1), (1.2)) has a

unique solution (u, A), with ||u]| = p, u(l) = n*(p),
* —Ly1ip_1 [* ds
u'(1) = _ o) and o= (2==)"7A P/ _ .
A0 o) G e ror
The result is easily deduced from Theorems [3.1] and [3.4}

Corollary 3.6. Assume that k € C(R_;RY). If k is decreasing, then the bifurca-
tion diagram (X, p) of positive solutions of (1.1), (1.2) is given by

=117 [* ds P ds
A P 1/p — L / - +/ —_ |,
0= o P * ey B FO
where n*(p) is the unique solution of (3.3).

Theorem 3.7. Assume that k € C(Ry;RY). If k is decreasing, then

(1) when limg_, o f(s)/sP~L =0, ([1.1), (1.2) has at least one positive solution
for all A > 0; and
(2) when lims_, ; f(s)/sP~! = +oo, there exist

Ao = (sup{hy=(5)(s); s € (O,—i—oo)})p

such that (1.1), (1.2)) has at least two positive solutions for A € (0, \)), and
zero positive solution for A > Af.

Proof. We have g(p) < 2h,-(,)(p) < 29(p), for all p > 0. From theorems and
[2:6] we deduce the results. O

CONCLUDING REMARKS

In this work we have studied a boundary value problem of the one-dimensional
p-Laplacian with nonhomogeneous boundary conditions. We have proved existence
of positive solutions using quadrature method, also we have proved the multiplicity
of the solutions for lim, .1 sfp(f)l = +o00. In the case where the nonhomogeneous
term k is a decreasing function, we proved the uniqueness of the solution (u, )
for each |lu|]| = p > 0. Our results generalize the works [2] [I9]. When k is not a
decreasing function we can find, some examples in which the solution n* of is
not unique, for example for k given as it follows

v(p1), for0<n < p,
k(n) =< ~(n), for py <n < pa,
v(p2), for p2 <mn,
where 0 < p; < pa < p, we have an infinite number of solutions of equation
(k(n) = 7(n)) which constitutes exactly the interval [p1, pa].

It will be interesting to analyze the ramification of solutions for concrete and
simple examples with boundary conditions cited above.
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In this work we have considered un autonomous problem, it will be interesting to

consider the non-autonomous problem using the fixed point method as the Avery
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d Peterson fixed point theorem [4].
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