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Radially Symmetric Solutions for a Class of

Critical Exponent Elliptic Problems in z" *

C. O. Alves, D. C. de Morais Filho & M. A. S. Souto

Abstract

We give a method for obtaining radially symmetric solutions for the
critical exponent problem

—Au+a(z)u = Iu? +u* "' in RV
u > 0 and f]RN |Vul? < oo

where, outside a ball centered at the origin, the non-negative function a
is bounded from below by a positive constant a, > 0. We remark that,
differently from the literature, we do not require any conditions on a at
infinity.

1 Introduction

Our purpose in this paper is to solutions for the semi-linear elliptic problem:
—Au+ a(z)u = Mg +u? 1 in RN (1)
u>0and [y |Vul? < oo.

where @ : RY — R is a non-negative radially symmetric C' function,
2« =2N/(N—-2); 1 <g<2*—1,A>0,and N > 3.

Several researchers have studied variants of problem (1). Among others,
we can cite the article by Brezis & Nirenberg [8] which treats the case a = 0
in bounded domains. Azorero & Alonzo in [3] and [4] generalize some similar
results for the p—Laplacian operator in bounded domains. Egnell [11] also
generalizes some results in [9]. In the case of unbounded domains, Rabinowitz
[21] considers a more general non-linearity, but he does not treat the Sobolev
critical exponent case. Benci & Cerami [5] consider the problem (1) when A = 0,
and [2] deals with the case where X is replaced by an integrable function. In
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[10], a variation of this problem, with a constant, was solved for the biharmonic
operator. To finish citations we list the following works: [1] Alves & Gongalves,
[14] Gongalves & Miyagaki, [15] Jianfu, [16] Jianfu & Xiping. All the last
results in unbounded domains are obtained under the crucial hypothesis that a

is a coercive function or that lim a(z) exists.
|| =400

We improve their results, relaxing the coerciveness of a and the existence of
the above limit. As in [21], we shall use variational method to solve problem
(1). To describe precisely our results, we present below the hypotheses on the
function a:

(4,) a € CY(RY) is a radially symmetric function and there are a,, R > 0
such that a(x) > a,, for all |z] > R .

Let us consider the following W2(R¥) Hilbert subspace:

HL

rad

RY) = {u € WH2(RY) : u radially symmetric }.
Our main result is the following.

Theorem 1 If (A,) is satisfied, then problem (1) possesses a nontrivial classical
solution u € HL (RN), for all X > 0 and 1 < q¢ < 2* — 1 when N > 4. In the

rad

case N = 3 the same result is valid if 3 < q <6 .

Remark 1 When X is large enough, (1) possesses a nontrivial classical solu-
tion. Later we shall justify this remark.

Employing the same techniques used to prove the above theorem, we improve
the results obtained in the subcritical exponent case due to Rabinowitz (see [21]),
where he considers the problem

—Au+a(z)u = f(z,u) in RY (2)

for a given C!-function f : RV x R — R with a coercive.

Results related to this kind of problem can be found in [6], [21], among
others.

In [6], H. Berestycki and P. L. Lions obtained positive solution of problem
(1) when the non-linearity f does not depend on z. They obtained the solution
as a limit of positive solutions of the problem restricted to bounded domains.
In their paper they basically made use of H'-estimates.

Our second result is a global version on RY of a well known result for
bounded domain due to Rabinowitz (theorem 2.15 in [20]):

Theorem 2 Suppose that a € C1(RY) satisfies (A,) and f satisfies:

(fo) The function f is a C*, radially symmetric function in z, i.e., f(x,s) =
f(r,s) where r = |z|, for all z € RN, s € R.
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(f1) For each € > 0, there is a constant ay > 0, such that
|f(x,8)| < els| +ai|s|P, for allz € RY, scR,
where 1 < p < 2* —1.
(f2) There is p > 2, such that
0 < uF(x,s)<sf(x,s), for all z € RN, s € R\{0},
where F(z,s) = [ f(z,t)dt.

Then (2) possesses a nontrivial classical solution u € WH2(RY),

2 Proof of Theorem 1

First, let us formulate a proper framework to solve problem (1). Define the
Hilbert space

E={ucHL;R"): /RN a(r)u® < oo},

endowed with the inner product (u,v) =: [pn(VuVv 4 a(x)uv) and the norm

[lul]? =: fon (IVul® + a(z)u?
Now we present two lemmas that will be used in the proof of the Theorem 1.
Lemma 1 Let w be a Wlf)cs (RN) function satisfying
—Aw = h, )

(3
in RM\{0} in the weak sense, where h is a L{ (RY) function and s > .
Then (3) is weakly satisfied in the whole RY.

Proof: In order to prove this result, consider ¢ € C*(RY) such that ¢(z) = 0
in |z| <1 and p(z) = 1 in |z| > 2. For each £ > 0, define ¢.(z) = ¢(%). Fix a
function ¢ € C°(RY). As ¢.¢p € C°(RV\{0}) we have that

Vv (.6) = /R b)),

RN
and then
[ vvuvos [ ovuvi.= [ h@)(ws) (4)
RN RN RN
Using the dominated convergence theorem, we obtain the limits
lim P.VwVep = VwVe¢ (5)
e—0 RN RN

iy [ w@)w.o) = [ b
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We claim that the limit of the second term on the left side of (4) is zero. In
fact,

/R Vs,

< 1]l o ) / V| [V |

|z|<2e

Using Holder’s inequality in the above inequality with %—I—% = 1, we obtain that

1/s 1/q
[ o905 < ol ( | |Vw|5> ( | |V¢E|Q>
and then
1/s
‘ / 9V < I1gllzee 2 IVl o ( / |Vw|8> 5

Observe that N > ¢ and passing to the limit in this last inequality we prove the
claim.
Finally using the claim and the limits (5) in (4) we have that

/ VoV = [ h(z)é.
]RN

RN

Remark 2 The above result is not valid for VVIEC1 (RN functions. The function

w = |z[> N (if N >3, or w=log|z|, if N = 2) belongs to W\ (RN), satisfies
—Aw = 0 in RM\{0}, but if v is a radially symmetric function in C° (RY)
such that v(0) # 0, we have that

o0
Vuvy = 52 / PN Ny () dr = SN0 (0) £0, if N >3
RN - o

2 2—-N

or
VwVu = 27v(0) #0, if N = 2.
RN
Lemma 2 Let f: RY xR — R be a C! function satisfying (f,) such that
|F(z,s) <cls|+|s|> 7! for all z € RN, s € R;

and let a be a radially symmetric function. Suppose that u € E satisfies
/ (VuVu + a(z)uv) = / f(z,u)v, foralvekFE.
RN RN

Then u € C?*(RY) and —Au(z) + a(z)u(z) = f(z,u(x)) for all z € RV.
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Proof: Since a and f are radially symmetric we rewrite the above expression
as

/Oo rN (WY + a(r)uv)dr = /Oo PN f(ru)odr, (6)

for all v € E. We have that h(r) := —a(r)u(r) + f(r,u(r)) is in C>*(RN\{0}),
since HL ;(RY) is contained in C**(RM\{0}). Hence

rad
/ rN =y dr = / N7 h(r)epdr, for all ¢ € C°(0, +o0),

and

[ e yar = [TE s i (7)

for all ¢ € C°(0,+o0). For each ¢ € C°(0,+00), considering ¢ = r!=N ¢ in
(7) we conclude that u is a weak solution of

N-1
o = - u’ + h(r), for r > 0.

Since u’ € L2 (0,+00), it follows that u € HZ (0, +o0), v’ € H{ (0, +00), and
u € Hyog(RY) N C2(RV\{0}).

Moreover for |z| > 0 , the function u satisfies (1) in the classical sense. &

Proof of Theorem 1 . This proof consists of using variational methods to
get critical points of the Euler-Lagrange functional associated to (1) and defined
on E:

1 A

I(u) = 5 /RN(WUP + a(z)u?) — i1 (u+)f1+1 _

1 2
L6
where vt (z) = max{u(z),0} and u*(z) = min{—u(zx),0}.

The critical points of I are precisely the weak solutions of (1). These solu-
tions may be regularized.

The Hilbert space E is immersed continuously in W12(RY). This assertion
comes from (A,) and the following inequalities

1/2 1/2*
L) = o)
|z|<R lz|<R

<
N 1/2
< o (/ |u|2)
]RN
1/2
< e (/ |Vu|2> .
]RN
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We also have that H! (RY) c LP(RY) continuously if 2 < p < 2* and
compactly if 2 < p < 2*(see [17]). Using these results one has the following
lemma:

Lemma 3 The Banach space E is continuously immersed in LP(RN) if
2 <p < 2" and compactly if 2 < p < 2*.

Using lemma 3 we verify that I is a well-defined C'(E) functional - see [22].
It is easy to verify that

A
q+1 RN

@ g [ ol ssuso.(®)

and hence that I has a local minimum at the origin. This is not a global
minimum. If w € E\{0} , v > 0, we have that

*

2

3 2 oy AT fyg41 T 1 2*
I(tu)zE RN(|VU| +a(z)u’) — ) RN(u ) o RN(u )>* .

Since [pv(ut)?" # 0, we conclude that I(tu) — —oo as t — oo. So, we have
just seen that I has the Mountain Pass Theorem Geometry.
Let e € E such that I(e) < 0, and

I'={g:[0,1] = E:¢(0) =0 and g(1) = e}

and

“ ;Iellf“ 02t Hg(®))-

Thus ¢ is the mountain pass minimax value associated to I. At this moment,
it is important to notice that ¢ is not the minimax value associated to the Euler
Lagrange functional of problem (1) defined in the whole W12(RY). Assertion
(8) implies ¢ > 0. Using an application of the Ekeland Variational Principle
(Theorem 4.3 of [19]), there exists a sequence {u,,} C E such that

I(um) = ¢, I'(um) — 0. 9)

Lemma 4 The above sequence {un,} is bounded.

Proof: Notice that

) = i = (5= 7 ) lunl+ (1~ 3¢

qg+1



EJDE-1996/07 C.0. Alves, D.C.de Morais & M.A.S. Souto 7

Combining this last inequality with

1
I(um) — H—ll'(um)um <14 c+||umll
for large m, we conclude the proof. &

The following lemma shows that we can choose a vector e € E\{0} in the
definition of T', such that I(e) < 0 and

L ony2
— 1
0<e< NS , (10)
where S is the best constant of the Sobolev immersion W2(RV) c L (RV),
this is

S = inf{/ |Vau|?; u € WH2(RY) and lu?” = 1}.
RN RN

Using the above facts and arguments due to Brézis & Nirenberg [9], we will
show that the choice in (10) applies in obtaining a non-trivial solution of (1).

Lemma 5 Suppose that A > 0 and one of the following conditions is satisfied:
(i) N > 4;
(ii)) N =3 and 3 < ¢ < 6.

Then, there is a vector e € E\{0}, e > 0, I(e) < 0 such that

1
sup I (te) < —SN/2, (11)
£>0 N

Proof: For each € > 0, consider the function

NV - 2)g T
(e + Jaf2) N 272

The functions ¢, satisfy the problem

—Au=u*"1 inRV
u>0, [on|Vul? <oo

and

/‘|v@ﬁ::/)hmﬁ*=sNﬂ
RN RN
(see [23], lemma 2 - pp. 364). Now, consider v. = p¢. where ¢ € C°(RY),

0<¢(z)<1and
()_ 1 ifz e B;
PE=V0 ifa¢gB
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Using arguments due to [18] there is € > 0 such that
1
sup I (tv.) < —SN/2.
tzg (tve) N

If t. > 0is such that I(t.v:) < 0, we choose e = t.v. and the proof is complete. ¢

In order to complete the proof of Theorem 1, let us consider e € E\{0} given
by lemma 5. Let {u,,} be the sequence in E satisfying (9). From Lemmas 3
and 4, we may assume that

Uy —uin B
Um — uin L¥(RY), 2 < s < 2%
Um (7) — u(z) a.e. in RY .

The above limits with an observation in Brezis & Lieb [7] yield that v must be
a critical point of I in E, that is,

I'(u) = 0.
We claim that u # 0. In fact, if w = 0 and taking [ > 0 such that

/ |V |? — 1,
RN

[ ) =
RN

for the reason that I'(u,,) — 0 and E C LI9T}(RY) compactly. Since I(u,,) — ¢,
we get

then

Ne=1. (12)
From the definition of S,

/ |vum|2 > S(/ |um|2*)2 > (/ (uj);)z*)z .
RN RN RN

Taking the limit in the last inequalities, we achieve that
1> 81
and by (12) that
1
C 2 NSN/Q >c

which contradicts the above choice of e, and thus the claim is proved.

Observe that I'(u)u™ = 0 implies [n [Vu™|? + a(z) (u‘)2 = 0 and then
u~ = 0 which implies v > 0. Notice that at this moment we do not know if u
satisfies (1) in the W12(RY) sense but, thanks to lemma 2, u is a nontrivial
classical solution of (1) with u > 0. The Hopf maximum principle assures that
u > 0. Theorem 1 is proved. &

We conclude this section by justifying Remark 1 in the beginning of Section 1.
The argument we are going to use is due to Azorero & Alonzo [4].
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Justification of Remark 1. Fix ¢ € C°(RN\{0}), ¢(x) > 0. Notice that
the real function I(ty) possesses a positive maximum value . Suppose that this
maximum value is assumed for ¢t = ¢,. Thus

d

E I(tgp)|t:t)\ =0

then

ol =x [ e g = [ aaa [ e
RN RN RN

From the last inequality we have that ¢ty — 0 as A — oco. On the other hand
ity 9
swpI(tp) < 2 [ [V
t>0 RN
and for large enough A > 0 we get
I(tg) < —5%
su —S2.
tzg SN

Using the same arguments employed in the proof of Theorem 1 we conclude the
justification.

We have just finished the proof of Theorem 1. Our next step is the proof of
Theorem 2

3 Proof of Theorem 2

Let (E, || -||) be the same defined in the proof of Theorem 1 and consider

I(w) = 5 / (VP + a(e)u?) - / Fa,u) (13)

RN

defined in E, as the associated Euler-Lagrange functional to problem (2), which
is C'— see [22] . Under hypothesis (f1), it is easy to verify that

/‘H%MZMMW%U%Q (14)
RN

and hence that I has a local minimum at the origin. Hypothesis (f3) implies
that
F(z,5) > asls|" (15)

for large |s| . Then, by (14) and (15), I has the Mountain Pass Theorem
Geometry. Let

I'={g:[0,1] = E:g(0) =0 and I(g(1)) < 0}
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and
= inf I .

°= e 1)
As in the proof of Theorem 1, ¢ > 0 and there is a sequence {u,,} C E satisfying
(9). Using standard arguments, (fz) implies that ||um|| is a bounded sequence.
Therefore, along a subsequence, u,, converges weakly in E and strongly in
LP(RY), 2 <p < 228, to a function u € E which is a weak solution of (2). We
claim that u # 0. In fact, for large m,

< I(u) — %I/(um)um - /R ) [% F(@ )t — F (@, upn)].

Taking m — oo, in the above expression we obtain that

RN

N O

contradicting a possible vanishing of u. Then the claim is proved.
We have that u € E C H j(RY) is a non-zero function satisfying

r

/ (VuVo + b(x)uv) = f(z,u)v, forallve E.

RN RN

As in the proof of Theorem 1, using Lemma 2 we have v is a classical solution
of (2). O
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