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REACTION DIFFUSION EQUATIONS WITH BOUNDARY
DEGENERACY

HUASHUI ZHAN

Abstract. In this article, we consider the reaction diffusion equation

∂u

∂t
= ∆A(u), (x, t) ∈ Ω× (0, T ),

with the homogeneous boundary condition. Inspired by the Fichera-Olěinik
theory, if the equation is not only strongly degenerate in the interior of Ω, but

also degenerate on the boundary, we show that the solution of the equation is

free from any limitation of the boundary condition.

1. Introduction

Consider the equation
∂u

∂t
= ∆A(u), (x, t) ∈ Ω× (0, T ), (1.1)

with the homogeneous boundary condition, where Ω ⊂ RN is an open bounded
domain with the appropriately smooth boundary ∂Ω, and

A(u) =
∫ u

0

a(s)ds, a(s) ≥ 0, a(0) = 0. (1.2)

One of particular cases of equation (1.1) is

∂u

∂t
= ∆um. (1.3)

According to the degenerate parabolic equation theory, if there is no interior point
in the set {s ∈ R : a(s) = 0}, as usual we say that equation (1.1) is weakly
degenerate; otherwise, we say that equation (1.1) is strongly degenerate.

For the Cauchy problem of equation (1.1), Vol’pert and Hudjave [14] investigated
its solvability. Thereafter, much attention has dedicated to the study of its well-
posedness [1, 2, 3, 10, 16, 17, 18].

When we consider the initial-boundary value problem of equation (1.1), usually
one needs the initial condition as

u(x, 0) = u0(x), x ∈ Ω. (1.4)
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However, can we impose the Dirichlet homogeneous boundary condition

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ), (1.5)

into the problem?
Obviously, when both (1.2) and (1.5) hold, equation (1.1) is not only degenerate

in the interior of Ω, but also on the boundary ∂Ω. If it is weakly degenerate, we will
show that equation (1.1) can be imposed by the boundary condition (1.5) actually.
While, if it is in the strongly degenerate case, we will show that the solution of
equation (1.1) is free from any limitation of the boundary condition. Let us give a
brief review on the corresponding problems.

The memoir by Tricomi [13], as well as subsequent investigations of equations of
mixed type, elicited interest in the general study of elliptic equations degenerating
on the boundary of the domain. The paper by Keldyš [9] plays a significant role in
the development of the theory. It was brought to light that in the case of elliptic
equations degenerating on the boundary, under definite assumptions, a portion of
the boundary may be free from the prescription of boundary conditions. Later,
Fichera[6, 7] and Olěinik [11, 12] developed the general theory of second order
equations with a nonnegative characteristic form, which, in particular contains
those degenerating assumptions on the boundary. We can call the theory as the
Fichera-Olěinik theory.

To study the boundary value problem of a linear degenerate elliptic equation:
N+1∑
r,s=1

ars(x)
∂2u

∂xr∂xs
+
N+1∑
r=1

br(x)
∂u

∂xr
+ c(x)u = f(x), x ∈ Ω̃ ⊂ RN+1, (1.6)

it needs and only needs the part boundary condition. In detail, let {ns} be the unit
inner normal vector of ∂Ω̃ and denote

Σ2 = {x ∈ ∂Ω̃ : arsnrns = 0, (br − arsxs)nr < 0},

Σ3 = {x ∈ ∂Ω̃ : arsnsnr > 0}.
(1.7)

Then, to ensure the well-posedness of equation (1.7), according to the Fichera-
Oleinik theory, the suitable boundary condition is

u|Σ2∪Σ3 = g(x). (1.8)

In particular, if the matrix (ars) is definite positive, (1.8) is the regular Dirichlet
boundary condition.

If A−1 exists, in other words, equation (1.1) is weakly degenerate, let v = A(u)
and u = A−1(v). Then it has

∆v − (A−1(v))t = 0. (1.9)

According to the Fichera-Oleinik theory, one can impose the Dirichlet homogeneous
boundary condition (1.5).

But, if equation (1.1) is strongly degenerate, then A−1 does not exist, we can
not deal with it as equation (1.9). We rewrite equation (1.1) as

∂u

∂t
= a(u)∆u+ a′(u)|∇u|2, (x, t) ∈ Ω× (0, T ), (1.10)

and let t = xN+1. We regard the strongly degenerate parabolic equation (1.10) as
the form of a “linear” degenerate elliptic equation as follows: when i, j = 1, 2, . . . , N ,
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aii(x, t) = a(u(x, t)), aij(x, t) = 0, i 6= j, then it has

(ãrs)(N+1)×(N+1) =
(
aij 0
0 0

)
.

If a(0) = 0, then equation (1.10) is not only strongly degenerate in the interior of
Ω, but also degenerate on the boundary ∂Ω. We can see that Σ3 is an empty set,
while

b̃s(x, t) =

{
a′(u) ∂u∂xi , 1 ≤ s ≤ N,
−1, s = N + 1.

Under this observation, according to the Fichera-Oleinik theory, the initial condi-
tion (1.4) is always required. But on the lateral boundary ∂Ω× (0, T ), by a(0) = 0,
the part of boundary in which we should give the boundary value is

Σp =
{
x ∈ ∂Ω :

(
a′(0)

∂u

∂xi

∣∣
x∈∂Ω

− a′(0)
∂u

∂xi

∣∣
x∈∂Ω

)
ni < 0

}
= ∅, (1.11)

where {ni} is the unit inner normal vector of ∂Ω. This implies that no any boundary
condition is necessary. In other words, the initial-boundary problem of equation
(1.1) is actually free from the limitation of the boundary condition. Certainly, the
above discussion is based on the assumption that there is a classical solution of
equation (1.1). In fact, due to the strongly degenerate properties of A(u), equation
(1.1) generally only has a weak solution. So it remains to be clarified whether
the solution of the equation is actually free from the limitation of the boundary
condition or not?

2. Main results

For small η > 0, let

Sη(s) =
∫ s

0

hη(τ)dτ, hη(s) =
2
η

(1− |s|
η

)+. (2.1)

Obviously, hη(s) ∈ C(R), and

hη(s) ≥ 0, |shη(s)| ≤ 1, |Sη(s)| ≤ 1,

lim
η→0

Sη(s) = sign s, lim
η→0

sS′η(s) = 0. (2.2)

Definition 2.1. A function u is said to be the entropy solution of (1.1) with the
initial condition (1.4), if

1. u satisfies

u ∈ BV (QT ) ∩ L∞(QT ),
∂

∂xi

∫ u

0

√
a(s)ds ∈ L2(QT ). (2.3)

2. For any ϕ ∈ C2
0 (QT ), ϕ ≥ 0, k ∈ R, with a small η > 0, u satisfies∫∫

QT

[
Iη(u− k)ϕt +Aη(u, k)∆ϕ− S′η(u− k)|∇

∫ u

0

√
a(s)ds|2ϕ

]
dx dt ≥ 0. (2.4)

3. The initial condition is true in the sense that

lim
t→0

∫
Ω

|u(x, t)− u0(x)|dx = 0. (2.5)
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One can see that if (1.1) has a classical solution u, by multiplying (1.1) by
ϕ1Sη(u−k) and integrating it overQT , we are able to show that u satisfies Definition
2.1. On the other hand, letting η → 0 in (2.4), we have∫∫

QT

[|u− k|ϕt + sign(u− k)(A(u)−A(k))∆ϕ] dx dt ≥ 0.

Thus if u is the entropy solution as in Definition 2.1, then u is a entropy solution
as defined in [10, 14] et al.

Theorem 2.2. Suppose that A(s) is C3 and u0(x) ∈ L∞(Ω). Suppose that

A′(0) = a(0) = 0. (2.6)

Then (1.1) with the initial condition (1.4) has a entropy solution in the sense of
Definition 2.1.

Theorem 2.3. Suppose that A(s) is C2. Let u and v be solutions of (1.1) with the
different initial values u0(x), v0(x) ∈ L∞(Ω) respectively. Suppose that the distance
function d(x) = dist(x,Σ) < λ satisfies

|∆d| ≤ c, 1
λ

∫
Ωλ

dx ≤ c, (2.7)

where λ is a sufficiently small constant, and Ωλ = {x ∈ Ω, d(x, ∂Ω) < λ}. Then∫
Ω

|u(x, t)− v(x, t)|dx ≤
∫

Ω

|u0 − v0|dx+ ess sup(x,t)∈∂Ω×(0,T ) |u(x, t)− v(x, t)|.

(2.8)

3. Proof of Theorem 2.2

Let Γu be the set of all jump points of u ∈ BV (QT ), v be the normal of Γu at
X = (x, t), u+(X) and u−(X) be the approximate limit of u at X ∈ Γu with respect
to (v, Y − X) > 0 and (v, Y − X) < 0 respectively. For the continuous function
p(u, x, t) and u ∈ BV (QT ), we define

p̂(u, x, t) =
∫ 1

0

p(τu+ + (1− τ)u−, x, t)dτ, (3.1)

which is called the composite mean value of p.
For a given t, we denote Γtu, H

t, (vt1, . . . , v
t
N ) and ut± as all jump points of

u(·, t), Housdorff measure of Γtu, the unit normal vector of Γtu, and the asymptotic
limit of u(·, t) respectively. Moreover, if f(s) ∈ C1(R) and u ∈ BV (QT ), then
f(u) ∈ BV (QT ) and

∂f(u)
∂xi

= f̂ ′(u)
∂u

∂xi
, i = 1, 2, . . . , N,N + 1, (3.2)

holds, where xN+1 = t.

Lemma 3.1. Let u be a solution of (1.1). Then

a(s) = 0, s ∈ I(u+(x, t), u−(x, t)) a.e. on Γu, (3.3)

where I(α, β) denote the closed interval with endpoints α and β, and (3.3) is in the
sense of Hausdorff measure HN (Γu).

The proof of the above lemma is similar to the one in [18], so we omit it.
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Lemma 3.2 ([4]). Assume that Ω ⊂ RN is an open bounded set and let fk, f ∈
Lq(Ω), as k →∞, fk ⇀ f weakly in Lq(Ω) and 1 ≤ q <∞. Then

lim inf
k→∞

‖fk‖qLq(Ω) ≥ ‖f‖
q
Lq(Ω). (3.4)

We now consider the regularized problem

∂u

∂t
= ∆A(u) + ε∆u, (x, t) ∈ Ω× (0, T ), (3.5)

with the initial and boundary conditions

u(x, 0) = u0(x), x ∈ Ω, (3.6)

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ). (3.7)

It is well known that there are classical solutions uε ∈ C2(QT ) ∩ C3(QT ) of this
problem provided that A(s) satisfies the assumptions in Theorem 2.2. One can
refer to [15] or the eighth chapter of [8] for details.

We need to make some estimates for uε of (3.5). Firstly, since u0(x) ∈ L∞(Ω)
is sufficiently smooth, by the maximum principle we have

|uε| ≤ ‖u0‖L∞ ≤M. (3.8)

Secondly, let us make the BV estimates of uε. To the end, we begin with the
local coordinates of the boundary ∂Ω.

Let δ0 > 0 be small enough. Denote

Eδ0 = {x ∈ Ω̄; dist(x,Σ) ≤ δ0} ⊂ ∪nτ=1Vτ ,

where Vτ is a region, and one can introduce local coordinates of Vτ ,

yk = F kτ (x) (k = 1, 2, . . . , N), yN |Σ = 0, (3.9)

with F kτ appropriately smooth and FNτ = FNl , such that the yN−axes coincides
with the inner normal vector.

Lemma 3.3 ([15]). Let uε be the solution of equation (3.5) with (3.6), (3.7). If
the assumptions of Theorem 2.2 are true, then

ε

∫
Σ

|∂uε
∂n
|dσ ≤ c1 + c2(|∇uε|L1(Ω) + |∂uε

∂t
|L1(Ω)), (3.10)

with constants ci, i = 1, 2 independent of ε.

We have the following important estimates of the solutions uε of equation (3.5)
with (3.6), (3.7).

Theorem 3.4. Let uε be the solution of equation (3.5) with (3.6), (3.7). If the
assumptions of Theorem 2.2 are true, then

| graduε|L1(Ω) ≤ c, (3.11)

where | gradu|2 =
∑N
i=1 |

∂u
∂xi
|2 + |∂u∂t |

2, and c is independent of ε.

Proof. Differentiate (3.5) with respect to xs, s = 1, 2, ·, N,N + 1, xN+1 = t, and
sum up for s after multiplying the resulting relation by uεxs

Sη(| graduε|)
| graduε| . In what

follows, we simply denote uε by u, denote ∂Ω by Σ, and denote dσ by the surface
integral unite on Σ.
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Integrating it over Ω yields∫
Ω

∂uxs
∂t

uxs
Sη(| gradu|)
| gradu|

dx =
∫

Ω

∂

∂t

∫ | gradu|

0

Sη(τ)dτdx =
d

dt

∫
Ω

Iη(| gradu|dx,

where pairs of the indices of s imply a summation from 1 to N + 1, pairs of the
indices of i, j imply a summation from 1 to N , and {ni}Ni=1 is the inner normal
vector of Ω. So we have∫

Ω

∆(a(u)uxs)uxs
Sη(| gradu|)
| gradu|

dx

=
∫

Ω

∂

∂xi
[a′(u)uxiuxs + a(u)uxixs ]uxs

Sη(| gradu|)
| gradu|

dx

=
∫

Ω

∂

∂xi
(a′(u)uxiuxs)uxs

Sη(| gradu|)
| gradu|

dx

+
∫

Ω

∂

∂xi
(a(u)uxixs)uxs

Sη(| gradu|)
| gradu|

dx ,

(3.12)

∫
Ω

∂

∂xi
(a′(u)uxiuxs)uxs

Sη(| gradu|)
| gradu|

dx

=
N+1∑
s=1

∫
Ω

∂

∂xi
(a′(u)uxi)u

2
xs

Sη(| gradu|)
| gradu|

dx

+
∫

Ω

a′(u)uxi
∂

∂xi
Iη(| gradu|)dx

=
∫

Ω

∂

∂xi
(a′(u)uxi)| gradu|Sη(| gradu|)dx

−
∫

Σ

a′(u)uxiniIη(| gradu|)dσ −
∫

Ω

Iη(| gradu|) ∂

∂xi
(a′(u)uxi)dx

=
∫

Ω

∂

∂xi
(a′(u)uxi) [| gradu|Sη(| gradu|)− Iη(| gradu|)] dx

−
∫

Σ

a′(u)uxiniIη(| gradu|)dσ ,

(3.13)

∫
Ω

∂

∂xi
(a(u)uxixs)uxs

Sη(| gradu|)
| gradu|

dx

=
∫

Ω

∂

∂xi
(a(u)uxixs)

∂

∂ξs
Iη(| gradu|)dx

= −
∫

Σ

a(u)uxixsni
∂

∂ξs
Iη(| gradu|)dσ

−
∫

Ω

a(u)
∂2Iη(| gradu|)

∂ξs∂ξp
uxsxiuxpxidx ,

(3.14)

where ξs = uxs .

ε

∫
Ω

∆uxsuxs
Sη(| gradu|)
| gradu|

dx

= −ε
∫

Σ

∂Iη(| gradu|)
∂xi

nidσ − ε
∫

Ω

∂2Iη(| gradu|)
∂ξs∂ξp

uxsxiuxpxidx.

(3.15)
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From (3.12)–(3.15), by the assumption a(0) = 0, we have
d

dt

∫
Ω

Iη(| gradu|dx

=
∫

Ω

∂

∂xi
(a′(u)uxi) [| gradu|Sη(| gradu|)− Iη(| gradu|)] dx

−
∫

Ω

a(u)
∂2Iη(| gradu|)

∂ξs∂ξp
uxsxiuxpxidx

− ε
∫

Ω

∂2Iη(| gradu|)
∂ξs∂ξp

uxsxiuxpxidx

−
[ ∫

Σ

a′(u)uxiniIη(| gradu|)dσ + ε

∫
Σ

∂Iη(| gradu|)
∂xi

nidσ
]
.

(3.16)

Note that on Σ, we have

0 = ε∆u+ ∆A(u), u = 0, (3.17)

then the surface integrals in (3.16) can be rewritten as

S = −
[
ε

∫
Σ

∂Iη(| gradu|)
∂xi

nidσ +
∫

Σ

a′(u)uxiniIη(| gradu|)dσ
]

= −ε
∫

Σ

[∂Iη(| gradu|)
∂xi

ni −∆u
Iη(| gradu|)

∂u
∂n

]
dσ

+
∫

Σ

a(u)
[∂Iη(| gradu|)

∂xi
ni −∆u

Iη(| gradu|)
∂u
∂n

]
dσ

= −ε
∫

Σ

[∂Iη(| gradu|)
∂xi

ni −∆u
Iη(| gradu|)

∂u
∂n

]
dσ.

Since uxN+1 |Σ = ut|Σ = 0, we have

lim
η→0

S = −ε
∫

Σ

sign(
∂u

∂n
)(uxixjnjni −∆u)dσ. (3.18)

Using the local coordinates on Vτ , τ = 1, 2, . . . , n, we have

yk = F kτ (x), k = 1, 2, . . . , N, ym|Σ = 0.

By a direct computation (refer to [15]), on Σ ∩ Vτ we obtain

uxixj =
N∑
k=1

uyNykF
N
xiF

k
xj +

N−1∑
k=1

uyNykF
N
xiF

k
xj + uymF

m
xixj ,

uxixjnjni =

∑N
k=1 uyNykF

N
xiF

k
xjF

N
xjF

N
xi

| gradFN |2
+
N−1∑
k=1

uyNykF
k
xiF

N
xj +

uymF
m
xixjF

N
xjF

N
xi

| gradFN |2
,

in which F k = F kτ . since the inner normal vector is

~n = −(
∂FN

∂x1
, . . . ,

∂FN

∂xN
) = − gradFN ,

it follows that

uxixjnjni −∆u = uym

(FmxixjFNxjFNxi
| gradFN |2

− Fmxixi
)
.

By Lemma 3.3, we see that limη→0 S can be estimated by | gradu|L1(Ω).
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By letting η → 0, from

lim
η→0

[| gradu|Sη(| gradu|)− Iη(| gradu|)] = 0,

we have
d

dt

∫
Ω

| gradu|dx ≤ c1 + c2

∫
Ω

| gradu|dx.

Further, by Gronwall’s Lemma we have∫
Ω

| gradu|dx ≤ c. (3.19)

�

By (3.5) and (3.19), it is easy to show that∫∫
QT

(a(uε) + ε)|∇uε|2 dx dt ≤ c. (3.20)

Thus, there exists a subsequence {uεn} of uε and a function u ∈ BV (QT )
∩L∞(QT ) such that uεn → u a.e. on QT .

Proof. We now prove that u is a generalized solution of equation (1.1) with the
initial condition (1.4). For any ϕ(x, t) ∈ C1

0 (QT ), we have∫∫
QT

[
∂

∂xi

∫ uε

0

√
a(s)ds− ∂

∂xi

∫ u

0

√
a(s)ds]ϕ(x, t) dx dt

= −
∫∫

QT

[ ∫ uε

0

√
a(s)ds−

∫ u

0

√
a(s)ds

]
ϕxi(x, t) dx dt.

By a limiting process, we know the above equality is also true for any ϕ(x, t) ∈
L2(QT ). By (3.20), we have

∂

∂xi

∫ uε

0

√
a(s)ds ⇀

∂

∂xi

∫ u

0

√
a(s)ds

weakly in L2(QT ) for i = 1, 2, . . . , N . This implies

∂

∂xi

∫ u

0

√
a(s)ds ∈ L2(QT ), i = 1, 2, . . . , N.

Thus u satisfies (2.3) in Definition 2.1.
Let ϕ ∈ C2

0 (QT ), ϕ ≥ 0, and {ni} be the inner normal vector of Ω. Multiplying
(3.5) by ϕSη(uε − k), and integrating it over QT , we obtain∫∫

QT

Iη(uε − k)ϕt dx dt+
∫∫

QT

Aη(uε, k)∆ϕdx dt

− ε
∫∫

QT

∇uε · ∇ϕSη(uε − k) dx dt− ε
∫∫

QT

|∇uε|2S′η(uε − k)ϕdx dt

−
∫∫

QT

a(uε)|∇uε|2S′η(uε − k)ϕdx dt = 0.

(3.21)

By Lemma 3.2,

lim inf
ε→0

∫∫
QT

S′η(uε − k)a(uε)
∂uε
∂xi

∂uε
∂xi

ϕdx dt

≥
∫∫

QT

S′η(u− k)|∇
∫ u

0

√
a(s)ds|2ϕdx dt.

(3.22)
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Let ε → 0 in (3.21). By (3.22), we get (2.4). Finally, we can prove equality (2.5)
in a similar manner as that in [14] or [18], we omit the details. �

4. Proof of Theorem 2.3

Proof. Let u and v be two entropy solutions of (1.1) in the sense of Definition 2.1.
Suppose the initial values are

u(x, 0) = u0(x), v(x, 0) = v0(x) . (4.1)

By Definition 2.1, for any ϕ ∈ C2
0 (QT ), ϕ ≥ 0, and η > 0, k, l ∈ R, we have∫∫

QT

[
Iη(u− k)ϕt +Aη(u, k)∆ϕ− S′η(u− k)|∇

∫ u

0

√
a(s)ds|2ϕ

]
dx dt ≥ 0, (4.2)∫∫

QT

[
Iη(v − l)ϕτ +Aη(v, l)∆ϕ− S′η(v − l)|∇

∫ v

0

√
a(s)ds|2ϕ

]
dy dτ ≥ 0. (4.3)

Let ψ(x, t, y, τ) = φ(x, t)jh(x− y, t− τ), where φ(x, t) ≥ 0, φ(x, t) ∈ C∞0 (QT ), and

jh(x− y, t− τ) = ωh(t− τ)ΠN
i=1ωh(xi − yi), (4.4)

ωh(s) =
1
h
ω(
s

h
), ω(s) ∈ C∞0 (R), ω(s) ≥ 0, ω(s) = 0

if |s| > 1,
∫ ∞
−∞

ω(s)ds = 1.
(4.5)

We choose k = v(y, τ), l = u(x, t), ϕ1 = ψ(x, t, y, τ) in (4.2)-(4.3), integrating
over QT we obtain∫∫

QT

∫∫
QT

[Iη(u− v)(ψt + ψτ ) +Aη(u, v)∆xψ +Aη(v, u)∆yψ]

− S′η(u− v)
(
|∇
∫ u

0

√
a(s)ds|2 + |∇

∫ v

0

√
a(s)ds|2

)
ψ dx dt dy dτ = 0.

(4.6)

Clearly,
∂jh
∂t

+
∂jh
∂τ

= 0,
∂jh
∂xi

+
∂jh
∂yi

= 0, i = 1, . . . , N ;

∂ψ

∂t
+
∂ψ

∂τ
=
∂φ

∂t
jh,

∂ψ

∂xi
+
∂ψ

∂yi
=

∂φ

∂xi
jh.

For the third and the fourth terms in (4.6), we have∫∫
QT

[Aη(u, v)∆xψ +Aη(v, u)∆yψ] dx dt dy dτ

=
∫∫

QT

∫∫
QT

{Aη(u, v)(∆xφjh + 2φxijhxi + φ∆jh) +Aη(v, u)φ∆yjh} dx dt dy dτ

=
∫∫

QT

∫∫
QT

{Aη(u, v)∆xφjh +Aη(u, v)φxijhxi +Aη(v, u)φxijhyi} dx dt dy dτ

−
∫∫

QT

∫∫
QT

{ ̂a(u)Sη(u− v)
∂u

∂xi
−

̂∫ v

u

a(s)S′η(s− v)ds
∂u

∂xi
)φjhxi} dx dt dy dτ,

where

̂a(u)Sη(u− v) =
∫ 1

0

a(su+ + (1− s)u−)Sη(su+ + (1− s)u− − v)ds,
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u

̂a(s)S′η(s− v)ds =
∫ 1

0

∫ v

su++(1−s)u−
a(σ)Sη(σ − su+ − (1− s)u−)dσds.

Since∫∫
QT

∫∫
QT

S′η(u− v)
(
|∇x

∫ u

0

√
a(s)ds|2 + |∇y

∫ v

0

√
a(s)ds|2

)
ψ dx dt dy dτ

=
∫∫

QT

∫∫
QT

S′η(u− v)
(
|∇x

∫ u

0

√
a(s)ds| − |∇y

∫ v

0

√
a(s)ds|

)2

ψ dx dt dy dτ

+ 2
∫∫

QT

∫∫
QT

S′η(u− v)∇x
∫ u

0

√
a(s)ds · ∇y

∫ v

0

√
a(s)dsψ dx dt dy dτ .

By Lemma 3.1, we have∫∫
QT

∫∫
QT

∇x∇y
∫ u

v

√
a(δ)

∫ v

δ

√
a(σ)S′η(σ − δ) dσ dδψ dx dt dy dτ

=
∫∫

QT

∫∫
QT

∫ 1

0

∫ 1

0

√
a(su+ + (1− s)u−)

√
a(σv+ + (1− σ)v−

××S′η[σv+ + (1− σ)v− − su+ − (1− s)u−] d dσ∇xu∇yv dx dt dy dτ

=
∫∫

QT

∫∫
QT

∫ 1

0

∫ 1

0

S′η[σv+ + (1− σ)v− − su+ − (1− s)u−] d dσ

×
√̂
a(u)∇xu

√̂
a(v)∇yv dx dt dy dτ

=
∫∫

QT

∫∫
QT

∫ 1

0

∫ 1

0

S′η(v − u)∇x
∫ u

0

√
a(s)ds∇y

∫ v

0

√
a(s)ds dx dt dy dτ.

and∫∫
QT

∫∫
QT

∇x∇y
∫ u

v

√
a(δ)

∫ v

δ

√
a(σ)S′η(σ − δ) dσ dδψ dx dt dy dτ

=
∫∫

QT

∫∫
QT

∫ 1

0

√
a(su+ + (1− s)u−)

×
∫ v

su++(1−s)u−

√
a(σ)S′η(σ − su+ − (1− s)u−)dσds

∂u

∂xi
jhxiφdx dt dy dτ.

We further have∫∫
QT

∫∫
QT

( ̂a(u)Sη(u− v)
∂u

∂xi
−

̂∫ v

u

a(s)S′η(s− u)ds
∂u

∂xi
)jhxiφdx dt dy dτ

+ 2
∫∫

QT

∫∫
QT

S′η(u− v)∇x
∫ u

0

√
a(s)ds · ∇y

∫ v

0

√
a(s)dsψ dx dt dy dτ

=
∫∫

QT

∫∫
QT

[ ∫ 1

0

a(su+ + (1− s)u−)Sη(su+ + (1− s)u− − v)ds

−
∫ 1

0

∫ v

su++(1−s)u−
a(σ)S′η(σ − su+ − (1− s)u−)dσds

+ 2
∫ 1

0

√
a(su+ + (1− s)u−)

∫ v

su++(1−s)u−

√
a(σ)S′η(σ − su+
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− (1− s)u−)dσds
] ∂u
∂xi

jhxiφdx dt dy dτ

= −
∫∫

QT

∫∫
QT

∫ 1

0

∫ v

su++(1−s)u−
[
√
a(σ)−

√
a(su+ + (1− s)u−)]

× S′η(σ − su+ − (1− s)u−)dσds
∂u

∂xi
jhxiφdx dt dy dτ → 0,

as η → 0. Since

lim
η→0

Aη(u, v) = lim
η→0

Aη(v, u) = sign(u− v)[A(u)−A(v)],

we have
lim
η→0

[Aη(u, v)φxijhxi +Aη(u, v)φyijhyi ] = 0. (4.7)

By (4.6)–(4.7) and letting η → 0, h→ 0 in (4.6), we obtain∫∫
QT

[|u(x, t)− v(x, t)|φt + |A(u)−A(v)|∆φ] dx dt ≥ 0. (4.8)

Let δε be the mollifier. For any given ε > 0, y = (y1, . . . , yN ), δε(y) is defined by

δε(y) =
1
εN

δ(
y

ε
),

where

δ(y) =

{
1
Ae

1
|y|2−1 , if |y| < 1,

0, if |y| ≥ 1,
with

A =
∫
B1(0)

e
1

|y|2−1 dx.

Especially, we can choose φ in (4.8) by

φ(x, t) = ωλε(x)η(t),

where η(t) ∈ C∞0 (0, T ), and ωλε(x) is the mollified function of ωλ. Let ωλ(x) ∈
C2

0 (Ω) be defined as follows: for any given small enough 0 < λ, 0 ≤ ωλ ≤ 1,
ω|∂Ω = 0 and

ωλ(x) = 1, if d(x) = dist(x, ∂Ω) ≥ λ,
where 0 ≤ d(x) ≤ λ and

ωλ(d(x)) = 1− (d(x)− λ)2

λ2
.

Then ωλε = ωλ ∗ δε(d),

ω′λε(d) = −
∫
{|s|<ε}∩{0<d−s<λ}

ω′λ(d− s)δε(s)ds

= −
∫
{|s|<ε}∩{0<d−s<λ}

2(d− s− λ)
λ2

δε(s)ds.

We know that

∆φ = η(t)∆(ωλε(d(x)))

= η(t)∇(ω′λε(d)∇d)

= η(t)[ω′′λε(d)|∇d|2 + ω′λε(d)∆d]
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= η(t)[− 2
λ2

∫
{|s|<ε}∩{0<d−s<λ}

ds+ ω′λε(d)∆d].

By using condition (2.7), and that |∇d(x)| = 1, a.e. x ∈ Ω, from (4.8) we have∫
QT

|u(x, t)− v(x, t)|φt dx dt+ c

∫ T

0

∫
Ωλ

η(t)|ω′λε(d)||u− v| dx dt ≥ 0. (4.9)

where Ωλ = {x ∈ Ω, d(x, ∂Ω) < λ}. Since |ω′λε(d)| ≤ c
λ , let ε→ 0 in (4.9). We have

lim
ε→0

∫ T

0

∫
Ωλ

η(t)|ω′λε(d)||u− v| dx dt ≤ c

λ

∫ T

0

∫
Ωλ

η(t)|u− v| dx dt.

According to the the definition of the trace of the BV functions [4], we let ε → 0
and λ→ 0. Then we have

c ess sup∂Ω×(0,T ) |u(x, t)− v(x, t)|+
∫
QT

|u(x, t)− v(x, t)|η′t dx dt ≥ 0. (4.10)

Let 0 < s < τ < T , and

η(t) =
∫ s−t

τ−t
αε(σ)dσ, ε < min{τ, T − s}.

Then it follows that

c ess sup∂Ω×(0,T ) |u(x, t)− v(x, t)|+
∫ T

0

[αε(t− s)− αε(t− τ)]|u− v|L1(Ω)dt ≥ 0.

By letting ε→ 0, we obtain

|u(x, τ)− v(x, τ)|L1(Ω) ≤ |u(x, s)− v(x, s)|L1(Ω) + c ess sup∂Ω×(0,T ) |u(x, t)− v(x, t)|.
Consequently, the desired result follows by letting s→ 0. �
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