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TRANSITION FRONTS OF KPP-TYPE LATTICE RANDOM
EQUATIONS

FENG CAO, LU GAO

ABSTRACT. In this article, we investigate the existence and stability of random
transition fronts of KPP-type lattice equations in random media, and explore
the influence of the media and randomness on the wave profiles and wave speeds
of such solutions. We first establish comparison principle for sub-solutions and
super-solutions of KPP type lattice random equations and prove the stability
of positive constant equilibrium solution. Next, by constructing appropriate
sub-solutions and super-solutions, we show the existence of random transition
fronts. Finally, we prove the stability of random transition fronts of KPP-type
lattice random equations.

1. INTRODUCTION

This article studies the existence and stability of transition fronts for the KPP-
type lattice random equation

uz(t) = uiJr](t) — 2ui(t) + ui,l(t) + a(Htw)ui(t)(l — ui(t)), i €7, (11)

where w € Q, (Q, F,P) is a given probability space, 6; is an ergodic metric dynamical
system on 2, a : @ — (0,00) is measurable, and a“(t) := a(fiw) is locally Hélder
continuous in t € R for every w € .

Equation is used to model the population dynamics of species living in
patchy environments in biology and ecology (see, for example, [43, [44]). It is a
spatial-discrete counterpart of the reaction diffusion equation

QU = Ugg + a(fiw)u(l —u), zeR. (1.2)

Equation is widely used to model the population dynamics of species when
the movement or internal dispersal of the organisms occurs between adjacent loca-
tions randomly in spatially continuous media. The study of traveling wave solutions
of traces back to Fisher [16] and Kolmogorov, Petrovsky and Piskunov [24] in
the special case a(f;w) = 1. They investigated the existence of traveling wave solu-
tions, that is, solutions of the form u(z,t) = ¢(x—ct) with ¢p(—o0) = 1, ¢(400) = 0.
Fisher in [16] proved that with a(f;w) = 1 admits traveling wave solutions if
the wave speed ¢ > 2 and showed that there are no such traveling wave solutions
of slower speed. Kolmogorov, Petrovsky, and Piskunov in [24] proved that for any
nonnegative solution u(z,t) of with a(f;w) = 1, if at time ¢ = 0, w is 1 near
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—oo and 0 near oo, then lim; o u(t,ct) is 0if ¢ > 2 and 1 if ¢ < 2. ¢, 1= 2 is
therefore the minimal wave speed and is also called the spreading speed of
with a(f;w) = 1. The spreading property was extended to more general monostable
nonlinearities by Aronson and Weinberger [2].

Since then, traveling wave solutions of Fisher or KPP type evolution equations
in spatially and temporally homogeneous media or spatially and/or temporally
periodic media have been widely invetigated. The reader is referred to [11, 2, B} 6], [7)
8, 14}, [15), 17, 20}, 23], 25], 26], 27, 28], 301, [34] 351, [36], [38], [40}, 39}, [45], [46] for the study of
Fisher or KPP type reaction diffusion equations in homogeneous or periodic media.
As for the study of Fisher or KPP type lattice equations in homogeneous or periodic
media, the reader is referred to [111, 12 13 21], 29] 47, [48] for the existence and
stability of traveling wave solutions in homogeneous media, and to [I8], 19, 2] for
the existence and stability of periodic traveling wave solutions in spatially periodic
media. Recently, Cao and Shen [I0] proved the existence and stability of periodic
traveling wave solutions for Fisher or KPP type lattice equations in spatially and
temporally periodic media.

The study of traveling wave solutions of general time and/or space dependent
Fisher or KPP type equations is attracting more and more attention due to the
presence of general time and space variations in real world problems. To study
the front propagation dynamics of Fisher or KPP type equations with general time
and/or space dependence, one first needs to properly extend the notion of traveling
wave solutions in the classical sense. Some general extension has been introduced in
the literature. For example, in [39] [41], notions of random traveling wave solutions
and generalized traveling wave solutions are introduced for random Fisher or KPP
type equations and quite general time dependent Fisher or KPP type equations, re-
spectively. In [3| @], a notion of generalized transition waves is introduced for Fisher
or KPP type equations with general space and time dependence. Among others,
the authors of [31], [32] [33] proved the existence of generalized transition waves of
general time dependent and space periodic, or time independent and space almost
periodic Fisher or KPP type reaction diffusion equations. Zlatos [49] established
the existence of generalized transition waves of spatially inhomogeneous Fisher or
KPP type reaction diffusion equations under some specific hypotheses. Shen [42]
proved the stability of generalized transition waves of Fisher or KPP type reaction
diffusion equations with quite general time and space dependence.

However, there is little study on the traveling wave solutions of Fisher or KPP
type lattice equations with general time and/or space dependence. Since in nature,
many systems are subject to irregular influences arisen from various kind of noise,
it is also of great importance to study traveling wave solutions in random media.
The purpose of this article is to investigate the existence and stability of traveling
wave solutions for KPP-type lattice equations in random media under very general
assumption (See (H1) below), and to understand the influence of the media and
randomness on the wave profiles and wave speeds of such solutions. We note that
the work [37] studied the existence and stability of random transition fronts for
random KPP-type reaction diffusion equations.

It should be pointed out that Cao and Shen [9] [I0] investigated the existence
and stability of transition fronts for KPP-type lattice equations with general time
dependence under some more restrictive assumptions. For KPP-type lattice equa-
tions in random media, although it’s easy to get that the wave speed is stationary
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ergodic in ¢, but it is far from being obvious that the same is true for the random
profile. Besides, when dealing with spatial-discrete equations, we need find another
approach to get the existence of traveling wave solutions due to the lack of space
regularity.

First we give notation and assumptions related to . Let

¢ 1 ¢
/ a(f;w)dr := lim inf / a(0rw)dr,
s r—ooot—s>rt — 8 s

I I
a(w) =limsup —— | a(f;w)dr := lim sup / a(frw)dr.

t—s—o0 UL — S8 Jg T t—s>r t—s

a(w) = liminf
t—s—ocot — §

We call a(-) and @(-) the least mean and the greatest mean of a(-), respectively.
It’s easy to show that

a(bw) = a(w), a(bw)=a(w) VteR,

a(w) = liminf
t,s€Q,t—s—o0 t — S

/st a(f;w)dr.

Then a(w) and @(w) are measurable in w. Throughout the paper, we assume that
(H1) 0 < a(w) < a(w) < oo for a.e. w € Q.
This implies that a(-),a(-),a(-) € L'(Q, F,P) (see Lemma . Also (H1) and
the ergodicity of the metric dynamical system (2, F, P, {6;}+cr) imply that, there
are a,a@ € RT and a measurable subset Q¢ C Q with P(£2y) = 1 such that

t
/a(GTw)dT7 a(w) = limsup

t,s€Q,t—s—00 t—s

0:Q20=Q¢ VteR

lim inf
t—s—oot — 8

¢
/ a(f,w)dr =a Yw € Qg

¢
lim sup / a(frw)dr =a Yw € Q.
t—s—oo U — S8 Jg
Let
1°°(Z) = {u = {uiticz : sup |u;| < oo}
i€l
with norm |lu|| = ||ul|s = sup;ey |u;|. Since a(w) is locally Holder continuous in

t € R for every w € Q, for any given u° € [°(Z) , has a unique (local) solution
u(t;ul,w) = {ui(t;u®,w)}icz with w(0;u®,w) = u®. Note that, if u) > 0 for all
i € Z, then u(t; u®, w) = {u;(t; u®,w)}iez exists for all t > 0 and u;(t;u®,w) > 0 for
all i € Z and t > 0 (see Proposition [2.1)).

A solution u(t;w) = {u;(t;w)}iez of is called an entire solution if it is a
solution of for t € R.

Definition 1.1 (Transition front). A solution u(t;w) = {u;(t;w)}icz is called a
random generalized traveling wave or a random transition front of (|1.1)) connecting
1 and 0 if for a.e. w € Q,

ui(tw) = @(i - /Ot c(s;w)ds,&tw)
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for some @(z,w) (z € R) and c¢(t;w), where &(z,w) and ¢(t;w) are measurable in
w, and for a.e. w € : 0 < P(z,w) < 1 and
lim &(z,6w)=1, lim &(z,6,w)=0 uniformly int e R.
T—r—00 r—00
Suppose that u(t;w) = {ul(t w) biez with u;(t;w) = @(i — fo s;w)ds, biw) is a
random transition front of (L1). If ®(x,w) is non-increasing in z for a.e. w € €

and all z € R, then u(t;w) is said to be a monotone random transition front. If
there is ¢,¢ € R such that for a.e. w € €,

t
/ e(T;w)dT = Cing,
S

then ¢t is called its least mean speed.
For a given u > 0, let

lim inf
t—s—oot — 8

et4+e H—-—24a
cp := inf .
n>0 1%
By [0, Lemma 5.1], there is a unique p* > 0 such that
_ et 4 e H —2+4a
#*

Co =

and for any v > ¢g, the equation v = w has exactly two positive solutions
for p.

Now we are in a position to state the main results on the existence and stability
of random transition fronts of KPP-type lattice random equations.

Theorem 1.2. For any given v > cg, there is a monotone random transition front
of (1.1) with least mean speed Cins = . More precisely, for any given v > cq, let

0 < p < w* be such that w = 7. Then ) has a monotone random

transition front u(t;w) = {u;(t;w) }icz with w;(t;w) = §Z5 fo s;w, p)ds, Bw),

L P=2+al0iw) ond hence G = Ste—2+a
11 -

where c(t;w, p) = m m

for any w € Qo,

= ~. Moreover,

lim &(z,0w)=1, lim Pz, )

T——00 rz—oo e HT

Remark 1.3. (1) Let

=1 wuniformly fort € R.

¢« (w) = sup{c : lim sup sup lui(t;u®, w) — 1] = 0 for all u® € I5°(Z)},
t—oo  seR,IE€Z,|i|<ct

where

I5°(Z) = {u={ui}icz € 1°°(Z) : u; > 0 for all i € Z, u; =0 for |i| > 1, {u;} # 0}.
Then by the similar arguments as proving [9, Theorem 1.3 (2)], we can get that
for a.e. w € Q, ci(w) = . If u(t;w) = {ui(t;w)hiez with w;(t;w) = D> —
fo s;w)ds,buw) is a random transition front of (L.I)) connecting 1 and 0, then
inf, <, infser @(z,0;sw) > 0 for all z € R. Therefore, we can choose ul € I5°(Z)

such that u? < ®(z,0,w) for all s € R. Let 0 < € < 1. Then by c,(w) = ¢y and
the comparison principle (see Proposition 7 we have

1 = liminf inf £ uico ey (t;ul, Ow)

t—oo seR
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< lim inf inf uje, ey (t; (-, Osw), Osw)

t—oo seR

t
= liminf inf @([(CO —e)t] — / e(T; Osw)dr, 0t+sw).
0

t—oo seR

t+s s t
/ e(T;w)dr =/ C(T;w)dT—l—/ e(r; 0sw)dr.
0 0 0

Then there is a constant M (w) such that

Note that

t+s S
(co—e)t < / e(Tyw)dr — / e(Tyw)dr + M(w)
0 0
for all t > 0, s € R. Hence,

t+s s
c(rw)dr — [ c(T;w)dT
Cinf = liminf inf fO ( ) fo (T3w)
t—o0 sER t

> co— €.

By the arbitrariness of € > 0, we get Gins > ¢g. This implies that there is no random
transition front of with least mean speed less than cg.

(2) As for the critical random transition front of (1.1)), that is, random transition
front of with least mean speed Gnr = ¢g. The approach used in [9] can’t be
applied as the stationary ergodic property of the critical random profile can’t be
guaranteed. We leave this as an question open.

Theorem 1.4. For a given p € (0,u*), the random transition front u(t;w) =
{ui(t;w)tiez,

t
u;(t;w) 245(1'—/ c(s;w, p)ds, Byw)
0

wi (tie) =1 (c(tyw,p) = Lret=24alw)y 4o qsumptotically

with Tim; o oG J§ e(ssonmyds) m

stable, that is, for any w € Qo and u° € I°°(Z) satisfying
0

u
inf u? o €Z, lim —— =1
i1£i0u1>0 Yig € Z, il)rgouz_(o;w) )
it holds
(t: 0
LA G SRR

t—oo ' wu.(t;w)

The rest of this article is organized as follows. In Section 2, we establish the com-
parison principle for sub-solutions and super-solutions of KPP-type lattice random
equations and stability of the positive constant equilibrium solution. Also, we
give in Section 2 some results including the technical lemmas for the use in later
section. We investigate the existence and stability of random traveling waves for
KPP-type lattice equations in random media and prove Theorem and in
Section 3.

2. PRELIMINARIES

We first present a comparison principle for sub-solutions and super-solutions of
(1.1). Then we prove the stability of the positive constant equilibrium solution
u = 1 and the convergence of solutions on compact subsets. Finally we present
some technical lemmas.
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Consider now the following space continuous version of (1.1f),
Opv(z,t) = Ho(z,t) + a(bw)v(z, t)(1 —v(x,t)), z€R, teR, we, (2.1)

where
Ho(z,t) =v(x + 1,t) + v(x — 1,t) — 2v(x,t), xz€R, teR.

Recall that [*°(Z) = {u: Z — R : sup,¢z |u(z)| < co}. Let

IR)={u:R—>R: i1€1£|u(3:)| < oo}

with norm ||u|| = sup g |u(z)|. Let

1°M(Z) = {u €1°°(Z) : irelguz >0}, I°T([R)={ucl®R): ;Ielﬁu(li) > 0}.

For any ug € [°°(R), let u(z, t; ug, w) be the solution of with u(z, 0; up,w) =
ug(r). Recall that for any u® € [°°(Z), u(t; u®, w) = {u;(t;u’,w)}iez is the solution
of with u;(0;u%, w) = u? for i € Z.

A function v(z,t;w) on R x [0,7) which is continuous in t is called a super-
solution or sub-solution of (resp. (L1)) if for a.e. w € Q and any given z € R
(resp. = € Z), v(x, t;w) is absolutely continuous in ¢ € [0,7T), and

ve(x, t;w) > Ho(x, t;w) + a(frw)v(z, t;w) (1 — v(z, t;w)) for t € [0,T)
or
vz, tw) < Hu(z, t;w) + a(fw)v(z, t;w) (1 — v(z, t;w)) for t € 0,T).

Proposition 2.1 (Comparison principle). (1) If ui(z,t;w) and us(x, t;w) are
bounded sub-solution and super-solution of (resp. ) on [0,7T),
respectively, and uy(-,0;w) < (-, 0;w), then ui(-,t;w) < us(-t;w) for
tel0,T).

(2) Suppose that ui(x,t;w), us(x,t;w) are bounded and satisfy that for any
given x € R (resp. x € Z), ui(x,t;w) and ug(x,t;w) are absolutely contin-
uous in t € [0,00), and

Opuz(z, t;w) — (Huz(z, t;w) + a(fiw)uz(x, t;w) (1 — ug(z, t;w)))
> Opuy (x, tyw) — (Huy (2, tw) + a(fpw)us (2, 8 w) (1 — ug (2, tw)))

fort > 0. Moreover, suppose that us(-,0;w) > ui(-,0;w). Then us(-, t;w) >
up (-, t;w) fort > 0.

(3) If ug € I°°F(R) (resp. u® € 1°°7(Z)), then u(x,t;ug,w) (resp. u(t;u’,w))
exists and u(-,t;ug,w) > 0 (resp. u(t;u’,w) > 0) for all t > 0.

Proof. We prove the proposition only for (2.1)); it can be proved similarly for (1.1]).
(1) This part is proved by we modifying the arguments in [22] Proposition 2.4].
Let Q(z,t;w) = e (ua(z, t;w) — ui(x, t;w)), where ¢ := c(w) is to be determined

later. Then there is a measurable subset ) of Q with P(2) = 0 such that for any



EJDE-2019/129 KPP-TYPE LATTICE RANDOM EQUATIONS 7

w e N\ Q, we have
9 Q(,t;w)
= e (Opua(m, t;w) — Oy (z, 1 w)) + ce (uz(z, t;w) — uy (2, t;w))
> e (Hug(z, t;w) — Huy (2, t;w) + a(sw)us(z, t;w) (1 — uz(z, t;w))
—a(bw)ur(z, t;w) (1 —ui(z, t;w))) + cQ(z, t; w) (2.2)
= HQ(z,t;w) + e a(0w) (uz(z, t; w) — uy (2, t;0)) (1 — uz(z, t;w))
—e“a(Ow) (ug(z, t;w) — uy (z, t;w))us (T, t;w) + cQ(x, t;w)
=Q(z+ 1L, t,w)+Q(z — 1,t;w) + (b(z, t;w) — 2+ 0)Q(z, t; w)
for x € R and ¢ € [0,T], where
b(z, t;w) = a(bw) (1 — wi (2, t;w) — us(z, t;w)) forz €R, t €[0,T].

Let p(z,t;w) = b(z, t;w) — 2 4 ¢. By the boundedness of u; and us, we can choose
¢ = ¢(w) > 0 such that

inf t; 0.
(m,t)GIEX[O,T]p(g:’ w) >

We claim that Q(z,t;w) > 0 for x € R and ¢ € [0, 7).

Let po(w) = Sup(, 1yerxjo,r] P(T, t;w). It suffices to prove the claim for x € R and
t € (0,Tp] with Tp = min{T, Wl)—&-?} Assume that there are # € R and # € (0, Tp)
such that Q(Z,#;w) < 0. Then there is tY € (0,7p) such that

in = inf 7t; .
Q f(W) (z,t)ell%x [0,t9] Q(I W) <0

Observe that there are x,, € R and ¢,, € (0,t"] such that
Q(zn,tn;w) = Qine(w) as n — oco.
By and the fundamental theorem of calculus for Lebesgue integrals, we obtain
Q(zn, tn;w) — Q(xn, 0;w)

tn
> / [Q(xn + l,t;w) + Q(xn - 1,t;w) +p(xn,t;w)Q(xn,t;w)]dt
0

- [ " Q) + Pl ) Qurlw)ldt
> t°(2 + po(w))Qint(w)  for n > 1.
Note that Q(z,,0;w) > 0, we then have
Q(zp, tniw) > 1°(2 + po(w))Qint (w) for n > 1.
Letting n — oo, we obtain
Qint(w) > 1°(2 4 po(w)) Qint (w) > Qint(w).

A contradiction. Hence the claim is true and u; (7, t;w) < ug(z,t;w) for w € Q\ Q,
zeRandte[0,T].

(2) For w € )\ Q, by the similar arguments as for getting (2.2)), we can find
c(w), p(w) > 0 such that

WQ(z,t;w) > Q(z+ L, tiw) + Q(z — L, t;w) + p(w)Q(z, t;w) forz eR t > s,
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where Q(z,t;w) = e““ (uy(z, t;w) — uy (x, t;w)). Thus we have that for z € R,

Q(z,t;w) > Q(x,0;w) + /0 (Q(a: +1,mw)+Q(xr— 1,1 w) + p(w)Q(x, T;w))dT.

By the arguments in (1), Q(z,t;w) > 0 for all z € R and ¢ > 0. It then follows that
Q(z,t;w) > Q(z,0;w) > 0 and hence ug(r, t;w) > uy (7, t;w) forw € R\ Q, z € R
and t > 0.

(3) By (1), for any ug € I°>T(R), 0 < u(-, t;up,w) < max{|ugl|/,1} for all t > 0
in the existence interval of u(-, ¢;ug,w). It then follows that u(-,¢; ug,w) exists and
u(-, t;up,w) > 0 for all ¢ > 0. ]

We have the following proposition on the stability of the constant equilibrium
solution u = 1.

Proposition 2.2. For every ug € [*(R) with inf,cruo(z) > 0 and for every
w € Q, we have that

llu(z, t;up,w) — 1lloc = 0 ast — oco.
Proof. The proof is similar to that of [37, Theorem 2.1 (1)]. We give the details
for completeness. For ug € {*°(R) with inf,cgug(z) > 0 and w € 2. Let u, =

min{1,inf,cr uo(z)} and g := max{1,sup,cp uo(z)}. It follows from Proposition

21l that
uy < u(z, t;uy,w) < min{l, u(z, t;ug,w)}, Ve eR, t>0, (2.3)
max{1,u(z, t; up,w)} < u(z, t;dp,w) < Ty, YR, t>0. (2.4)

Note that u, and Wy are constants. Then by the uniqueness of solution of (2.1)
with respect to the initial value, we obtain

u(z, t;uy, w) = u(0,t;ug,w) and  wu(z,t;0p,w) = u(0,t; g, w), VxR, t>0.

Since
u(t) = (; _ 1)efot a(0sw)ds o119 u(t) = (1 _ ;)efot a(f.w)ds
o u(ovt;QO;W) U(O,t;ﬂo,w)
satisfy
d d
- — 77 — t
at= gt =0 >0

it follows that
u(t) =u(0) and u(t) =u(0), V¢>0.

Therefore,

1 —u(z, t;up,w) = w(0)u(z, t; uy, w)e™ Jo a(fsw)ds (2.5)

u(z, t;0g, w) — 1 = w(0)u(x, t;ug,w)e” Jg a(0aw)ds, (2.6)
By and , we have

0 < ug < ulz, t;ug,w) <u(z,t;dp,w) <y, YreR, t>0.
It then follows from , , and that
|u(z, t;ug, w) — 1| < o max{u(0),u(0)}e” Joas)ds gy e R > 0.

The Proposition thus follows. [
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Proposition 2.3. Suppose that ug,,ug € I°T(R) (n = 1,2,---) with {|luon||}
being bounded. If ug,(x) = uo(z) as n — oo uniformly in x on bounded sets, then
for each t > 0, u(x,t;uon, O,w) —u(z, t; ug, Oryw) — 0 as n — oo uniformly in x on
bounded sets and tg € R.

Proof. This is proved by the similar arguments in [9, Proposition 2.2]. Fix any
w e Q. Let v™(z,t;0,w) = u(x, t; uon, Or,w) — u(z, t; ug, Oyw). Then v™(x,t; 0y w)
satisfies

vy (2,6 0, w) = Ho™(x,t; 0yw) + by (0, t; O, w) 0™ (2, 1 O, w),

where by, (z,t;0;,w) = a(Orpi,w)(1 — ulx, t; uon, Or,w) — ulx, t; ug, Ot,w)). Observe
that {b,(x,t;0:,w)}y, is uniformly bounded. Take A > 0, and let

X\ ={u:R—R|u()e N eI™R)}

with norm [jul[x = [lu(-)e || (r). Note that H : X(X\) — X()\) generates an
analytic semigroup, and there are M > 0 and « > 0 such that

e x(ny < Me™, vt >0.
Hence,

¢
V" (-t Oy w) = e (-, 0; 04, w) +/ eHEb, (-, 73 0y w)0™ (-, 75 Oy ) dr
0

and then

([0 (-5 & Orow) I x (1)

< Me™ [[v" (-, 0; 0row) | x ()

+M  sup b (2, 73 Oy )| /t W™ (T3 04 w) || x (1) AT
to€R,7€[0,t],z€R 0
By Gronwall’s inequality,
[0 (-, £ r0) || x () < @M PPz reto aen Pn (e 00 DD L0 (-, 05 6y w) | x (x))-
Note that [[v™(-,0;0¢,w)|| x(x) — 0 uniformly in ¢y € R. It then follows that
0™ (- t; 0row) [ x () = 0 asn — o0
uniformly in ¢35 € R and then
u(z, t; ugn, Oryw) — u(z, t;ug, Orow) — 0 asn — oo

uniformly in z on bounded sets and ty € R. O

Now we present some lemmas including technical results.

Lemma 2.4. We have a(+),a(-),a(-) € L'(Q, F,P), and a(w) and a(w) are inde-
pendent of w for a.e. w € (.

The proof of the above lemma follows from [37, Lemma 2.1].

Lemma 2.5. Suppose that for w € Q, a*(t) = a(fw) € C(R,(0,00)). Then for
a.e. w €,
a= sup essinfyer (A" + a®)(t).
AeW % (R)NL>=(R)

loc

The proof of the above lemma follows from [37, Lemma 2.2] and Lemma
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Lemma 2.6. Let w € Qy. Then for any pu, it with 0 < p < fi < min{2u, u*}, there
exist {tg trez with t < trp41 and limyg_ 1oty = £o00, Ay, € VV;)COO( YN L>®(R) with

A,(-) € CH(th,try1)) for k € Z, and d,, > 0 such that for any d > d, the function

'D"’d’A‘“(x,t,w) — o hle—[g e(sw,p)ds) _ de(ﬁ—l)A ®)—i(z—J§ c(siw,p)ds)

satisfies
ot Ae < HomdAe 4 a(@tw)ﬁ”’d’A“(l _ 5u,d7Aw)

fO'I“tG (tk,tk+1 x>f0 S;w M)d8+ Ind + A, (t) kGZ

Proof. For given w € Q¢ and 0 < p < i < mln{2,u ©*}, by the arguments in

the proof of [0, Lemma 5.1] we can get that <+ ;72+“ < e“Jre: 2+a

hence a > “(eﬁ%iﬂ_?fﬂ(euﬂw 2 Let 0 < § < 1 be such that (1 — §)a >

Meﬂﬁiﬂ_?:ﬁ(eu%i“_z) It then follows from Lemma that there exist T > 0
and A, € Wlicoo(]R) N L*®(R) such that A,(-) € Cl((tk,tk+1)) with ¢t = kT for
k € Z, and

, and

(1 —6)a(bw) + AL(t) > (2.7)

p(ef +e " —2) — (et + e —2)
P—p
for all t € (tg, tkr1), k € Z.
Now fix § > 0 and A,(¢) chosen in the above inequality. Let {(z,t;w) = = —
fo siw, p)ds, and §dAe (1t w) 1= e HE@ W) _ gl mDACM=AE@LW) with ¢ > 1

to be determined later. Note that c(t;w, p) = M

. Then we have

3t1~)u,d,Au _ (H,l"}/"'adsAw + a(Htw)f;“’d’Aw (1 _ ﬁu,d,Au))

= et o, e ) (= DAL = fielts o, )l DAO T

_ ((eu e Q)e—uf(ryt;w) _ d(ef‘ fe A 2)eli E_1)A,(t)— ﬂg(;;;,t;@)
— a(fw)(e M) de(%—l)Aw(t)—ﬂf(z,t;w))
% (1 _ (e—uf(ryt w) _ geli (E-1)A (t)*ﬂﬁ(m;w)))

— d(—(E = 1) AL (1) — fie(t;w, ) + € + e — 2 + a(fiw))eli DA )
u
Byw) (e HE@ W) _ goli—D)Au(D)—RE( tiw) y2

L plef e =)~ ji(eh 4 et~ 2)
= (!}~ )=, + o

X e(%*l)Aw(t)*ﬂf(Tatiw) + a(etw)e—Q,uE(:v,t;w)

+
2

— a(0w))

— d(2e~HE@tw) _ ge( DA (=RE(m w)y o (F =D Au()=AE(m1w) (g, 1)

(6”—|—€ A _9

— (1= d)a(brw) — AL(1))

fifet + e = 2)
I

—(u—p)¢(z,tiw)

2) -
fi —
(e

« o E-DAL() (2 tw) |

_ d(g(ﬁ _ 1)6(5—1)Aw(t))a(gtw)e—ﬂg(m,t;w)
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i i

+ d( — 9 HE(@Hw) | g0 ;—1)Aw(t)—ﬂ£($,t;w))e ;—1)Aw(t)—ﬁ§(m,t;w)a(9tw) (2.8)

for t € (tkatk+1)~

—(E D)) Awlico

Let d, > max{e ‘;(‘lq) ,e(%*l)”AWHW}. Then we have

i

ds(E —1)eE DA > 1 v > d,.

=

Note that if z > fot c(s;w,u)ds—&—%—i—AwT(t)7 then &(x, t;w) = x—fot c(s;w, pu)ds >0
and 9*%4« (z,t,w) > 0. From (2.7), we obtain that every term on the right-hand
side of (2.8) is less than or equal to zero. O

3. RANDOM TRANSITION FRONTS

In this section, we study the existence and stability of random transition fronts,

and prove Theorem [I.2] and

3.1. Existence of random transition fronts. For any v > ¢, let 0 < p < p* be
such that &te “—2+a efte " —2+a(bw)
M I
and 0" (z, t;w) = e~ #@=[5 e(siw,n)ds)  Then O (z, t; w) satisfies
oot (x, t;w) — HoM (x, t; w) — a(Bw) oM (x, t; w)

= 0 (, ) pe(ts w, 1) — (¢ + e — 2+ a(6w))] =0, forz €R, ¢ ER.

= . Then for every w € Q, let ¢(t;w, p) =

Then we have
oot (z, t;w) = HoM (x, t; w) + a(O;w) " (z, t; w)
> Ho*(x, t;w) + a(Oyw) 0" (z, t;w) (1 — o*(x, t; w)),

for z € R and t € R. Hence, 0*(x,t;w) = e~ @[5 elsiw,mds) jg o super-solution of

. Let

T (x, t;w) = min{1, 0" (x, t;w)}.
Lemma 3.1. For w € Qy, we have
u(z,t — to; 0" (-, to;w), Orow) < TH(x,t;w), VYo €R, t >ty tg €R.
Proof. For any constant C, the function 4(x,t;w) := e“*0" (x, t; w) satisfies
Oz, t;w) = (OpH (x, t;w) + CoH(z, t;w))e?
> Hi(z, t;w) + Cl(z, t;w) + a(bw)ti(z, t;w) (1 — 0*(x, t;w)),
hence,
¢
w(z, t;w) > iz, to; w) —&-/t (Hﬁ(wm;w) + Cl(z, Ty w)
0

+a(f,rw)i(z, ;w)(1 — 0*(x, 75 w)))dT.

Let u(z, t;w) := e“*v*(x,t;w). Then we also have

t
u(z, t;w) > u(z, to; w) +/ (Hﬂ(wmw) + Cu(z, m3w)

to

+a(l,w)u(z, ;w)(1 — v (z, 75 w)))dT'
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Let Q(z,t;w) = e“ (" (x, t;w) — u(w, t — to;0"(+, to;w), Oyyw)). Then

Qz, t;w) > Q(x,to;w) +/ (HQ(z,7;w) + (C + b(z, 730))Q (2, T;w))dT,

to
where

b(x,t;w) = a(fw)(1 — 0" (x, t;w) —u(z, t — to; T (-, to;w), Or,w)).

Choose C > 0 such that b(z,t;w) —2+C > 0 for all t > ¢y, z € R and a.e. w € Q.
By the arguments of Proposition we have

Q(‘rataw) > Q(x,to,W) = 07
and hence for w € Qg, we have
u(z,t — to; v (-, to;w), Opyw) < TH(x,t;w), Vz eR, ,t>tg, top € R.
O

Next, we construct a sub-solution of (2.1). Let & > 0 be such that u < g <
min{2u, p*} and w € Qg. Let A, and d,, be given by Lemma and let

¢ Ind, + Inji — 1 At
2uft) = [ el s  BEEREZI 00,

fi— I

Recall that
,D,u,d,Aw (1,7 t,w) _ e—u(ac—fot c(ssw,p)ds) de %71)Aw(t)fﬂ(x7fot c(s;w,p)ds)
By calculation we have that for any given ¢ € R,

e Aw (2,(t),t,w) = sup gHodeAw (z,t,w)
z€R

_lndy | Aw(®)y _ Inj-lnp
—e ”(ﬂf;u'_ “ )e L = (1—

).

==

Define
s Aw (o t 4t if x > t+1
oty = [T ), e ati)
oo (g, (E+ o), t + to,w), if & <z, (t+ ).
It is clear that
0 < v’(z,t; 0 ,w) <V*(x,t;0,w) <1, VE€eR, z€R, top eR.
and B 0
t.
lim  sup w =1 (3.2)
200 1R toer U (T, 1 O, w)
Note that by the similar arguments as in Lemma we can prove that
u(w,t — to; 0" (-, to;w), Or,w) > v (2, t;w)

for x € R, t >ty and a.e. w € Q.
Proof of Theorem[I.4 By Lemma
u(z, t — to; o' (-, to;w), Orow) < (2, t;w), Ve eR, t>tg, to €R.
It then follows that
w(z, 79 — ;0" (¢, —T2sw), 0_pryw) <TH(z, —T5w), Vx ER, T >T.
Then

(st 4 (T — T T — o), 0 gw), 0y 0)
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< U($,t+T1;@#(',—Tl;W),e_TIW)
forx € R, t > —7, 79 > 71, and hence
U(LE, t+ 72;§'u('a —Tz;(d), G—Tzw) < U(l’,t—F Tl;iu(W —7'1;(4)), 0—7’1(“))

forx € R, t > —71, 72 > 71. Therefore lim, o u(z,t+ 7;0* (-, —T; w), 0_rw) exists.
We define
Viz, t;w) = li_>m u(z,t + ;0% (-, -7y w), 0_rw) (3.3)

forzx € R, t € R, w € Qy. Then V(x,t;w) is non-increasing in = € R and by
dominated convergence theorem we know that V' (z,t;w) is a solution of (2.1)).
We claim that, for every w € Qy,

¢
lim V(z +/ c(s;w, p)ds, t;w) =1 uniformly for ¢ € R. (3.4)
T——00 0
In fact, for any w € o, letting z, = lnd“‘;fg_ln“ — HAZ”‘”, it follows from

v (z, t;w) < V(x, t;w) and (3.1)) that

t
ndy+lng—In | AW |l oo
0< (1= By SRS Cin v, 4 [ el nhds,tiw).
il teR 0

Let up(x) = ug := infrer V(T + fot c(s;w, p)ds, t;w), and 4g(z) be uniformly con-
tinuous such that tg(z) = ug(z) for x < &, — 1 and Gg(x) = 0 for x > Z,,. Then
lim,, s o0 to(x — n) = ug(x) locally uniformly in € R. Note that by the proof of
Proposition we have

tlggo u(z, t;ug, Opyw) =1

uniformly in ¢g € R and € R. Then for any € > 0, there is T := T'(¢) > 0 such
that

1> u(x,T;ug, 0,w) >1—¢€, VigeR, xR
Therefore, by (H1) and the definition of ¢(¢,w, 1) we derive,

T
1> u(zx Jr/ c(s; 0w, p)ds, T ug, Og,w) > 1 —€, Vig €R, z € R.
0
By Proposition there is N := N(e¢) > 1 such that
T
1> u(/ c(8; 0w, p)ds, T to (- — N),F)tow) >1—2¢e, VtyeR.
0
That is,
T
1> u(/ c(s; 0w, u)ds — N, T ﬂo(-),9t0w> >1-—2e, VtgeR.
0
Note that
t—T
V(x—I—/ c(s;w,,u)ds,t—T;w) > ao(x), VteR, zeR.
0

and

t T t—T
/C(S;w,u)ds=/ C(S;Ht_Tw,u)der/ c(s;w, p)ds.
0 0 0
Then

t
1> V(x—i—/ c(s;w,u)ds,t;w)
0
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T =T

= u(:v + / c(8;0i—rw, n)ds, T; V(- + / c(s;w, p)ds, t — T w), Ht,Tw)
0 0

>1—-2, VteR, < —N.

Thus (3.4) follows.
Note that by (3.2]), for every w € €, we have

) V(x+ fot c(s;w, p)ds, t;w)
lim sup =

T—00 teR e Hx

Set
t
D(z,t;w) = V(:c Jr/ c(s;w, p)ds, t; w), (z,w) = P(x,0;w).
0
We claim that 43(:1:, t;w) is stationary ergodic in ¢, that is, for a.e. w € Q,
P(x, t;w) = B(x,0; 0,w).
In fact, note that for w € Q,

t PETI S )
/C(S;w7#)d82/ o te +a(‘w)ds

—T -7 H

et +e M —2 b a(fsw) (8:9)

= 7(754—7)4—/ —==ds

Iz —r M
and
0 0 w H—2 0s00
/ c(s; Orw, p)ds z/ e tre +affs o tw)ds
—(t+7) —(t+7) 1%
By e—H _9 0 0,
L(t+7—) +/ Mds (36)
K —(t+7) H

M B _ t
B +/ a0s)
o ju

—T

Combining (3.5)) with (8.6), we obtain ffT c(s;w, p)ds = fE(HT) c(s; 04w, pw)ds for
7> 0 and t € R. Recall that

T (z, t; w) = min {1, e~ re=Jg C(S;“’“)ds)}.

Then
&(z,t;w) = lim u(x / c(s;w, p)ds, t + ;0" (-, —T;w),H,Tw)
T—00
t

= lim u(a:,t—FT v“( / c(s;w, p)ds, —T;w),G_Tw>
T—00 0

= Tlggo u(ac t+ 70" (, —(t + 7); 6w), O,Tw)

:Tlir{:ou<x t+ 70", —(t+ 7); 0w), 0, _ (H_T)w)

= li_>m u(m,T;@“(-,—T;Htw),ﬁt_7w>

=&(x,0; Ow).

The claim thus follows and we obtain the desired random profile @(z,w). O
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3.2. Stability of random transition fronts.

Proof of Theorem[I.]] We prove it by modifying the arguments of [37, Theorem
4. 1] For any w € Qo and given p € (0, u*), u(t;w) = {u;(t;w) }iez with ul(t w) =
&(i — fo s;w, p)ds, byw) is a random transition front of (L.I). Let u® € I°°(Z),
ud = {uo}lez satisfy
0

1nfu > 0Vig € Z, limLzl.
i<ig i—00 Ui(OH«U)
Then there is o > 1 such that
1 0
W <a Viel

a ~ u(0;w) ’
By the comparison principle we have
wi(t;ul, w) < u(t;ou (0;w),w), Vi€ Z, t>0,
and
ui(t;w) < ui(t;ou’,w), Vi€ Z, t>0. (3.7

Also, we have

%(aui(t;uo,w)) > H (o (t;u°,w)) + a(fw)au (t;u’, w) (1 — au;(t;u°, w)).

Again by the comparison principle and we have

ui(t;w) < wi(t; o, w) < aui(t;u’,w), Vi€ Z, t>0.
Similarly,

ui(t;u’,w) < aug(t;w), VieZ, t>0.

Thus for every ¢ > 0, we can define «(t) > 1 as

a(t):inf{a>1:;<w
It is easy to see that a(ta) < af(ty) for every 0 < t; < to. Therefore

O = 1inf{a(t) : t > 0} = tllglo a(t)

< « for any i € Z}. (3.8)

exists. Then to prove Theorem [T.4] it is sufficient to prove taht o = 1.
Suppose by contradiction that a, > 1. Let 1 < a < o be fixed, we first prove
that there is I, > 1 such that
1 ui(tud, w ¢
- < M <a, Vi>1I, —|—/ c(s;w, p)ds, t > 0. (3.9)
@ u; (t; w) 0
To this end, we only need to prove that

o 0y0
lim w; (t;u, w)

1—00 o —p(i— [y c(siw,p)ds) =1 uniformly for ¢ > 0. (3'10)

In fact, since for every e > 0, there is J,,, > 1 such that
0

1_5S S1+€7 Viz']e,uw

u; (0;w)
Let A, (t) be as in Lemma n Since

efﬂ(iffcf c(s;w,p)ds) d, eA t)—p(e fo c(s;w,p)ds) < (t w) <e —p(i— [0 c(s; w,u)ds)
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it follows that
(1—€e ™ — (1 —e)duet O <o? < (1+e)e ™, Vi>J... (3.11)
We claim that there is d > 1 such that
(1 —€)e ™ —dedO=A <30 < (14 €)e ™™ 4 de~O-F Viez (312
Indeed, note that
||u0||OoeﬂJe,wHAw(O)leAw(O)—ﬂi > HuO”OOe(ﬂ—ﬂ)Je,w >0 Vi< Je.
Hence
u? < de,weAW(O)_m < —|—€)e_”i —I—d67w€A“’(O)_m, Vi < Je o,
where d ., =t |[u’]|cefTewH 4O Combining this with (3.11)), we obtain
wd < (14 e)e ™™ 4 d et vic7. (3.13)

On the other hand, for every d > 1, the function Z 3 i — (1 — €)e™H* — deA= ()~
attains its maximum value at

Aw (0) Aw(0)

Jg = [7111 (ﬁ)} or [7111 (;ﬁe_z# )} + 1.

Note that limg_, o Jq4 = o0 and

lim ((1 - e)e "/t — deA«(O=Aay = (.
d—o0
Then there is cL,w > (1 —€)d,, such that J; > J., and

—pd; ()R :
(1—e)e "dew —d, e O=Alicw < inf ul.
’ i1<Jew

Together with (3.11)), it follows that
(1—€)e ™™ —defO=F <0 VieZ d>d.,. (3.14)
By (3.13)) and ([3.14)) we drive that claim (3.12)) holds for d > max{dew de}. Thus

by similar arguments as in Lemma [2.6) we can get that for d > 1,

it w) < Hig(t,w) + a(B,w)i;(t, w)(1 — 4;(t,w))
on the set D, :={(i,t) € Z x R"|@;(t,w) > 0}, where

a(t,w) = (1 — e)efﬂ(iffot c(s;w,p)ds) _ godAe(t)—a(i—[g c(s;w,p)ds)
Then by the comparison principle we obtain
(1 — €)eH(i=Jg elswom)ds) _ godu(O=Al=[5 e(siw.n)ds) < 4. (140 ) (3.15)
fori € Z, t > 0, d > 1. Similarly, we can obtain
wi(t 1, w) < (1+ e)e—u(i—fot c(siwp)ds) | goAn(®)—ili= g c(siw,pu)ds)

fori € Z,t >0, d > 1. Then (3.10) and (3.9)) follow form the last two inequalities
and the arbitrariness of € > 0.
Next, let I, be given by (3.9) and set

1 t
Me ::—inf{ui(t;w) 1t >0, i—/ c(s;mu)dsgla},
%) 0
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where ag = a(0) = sup;>q a(t). From (3.8) it follows that
t
Me < min{u;(t;w), ui(t;u’,w)}, Vi < I, +/ c(s;w, p)ds, t> 0.
0

By (H1) there is T'= T'(w) > 1 such that

ol T
0< -5 < /T a(fsw)ds < 2aT < oo, V7 €R. (3.16)
Let 0 < § < 1 satisty
a<e T and  ((eo — 1) — ap(1 — e 2°T%))m, > 6. (3.17)
We claim that
a((k +1)T) < e=8 ir™ T aew)ds o (k1) i > 0. (3.18)

In fact, setting ay(t) = a(0yy17w), ar = a(kT), Wi (i, t;w) = €° e “(esw)dsui(tJr
KT;u° ,w) and Vi (i, t;w) = u;(t; u.(0; Oprw), Okrw), it follows from (3.16) that

d

—W

"

= dap() Wy + HWy, + ap () Wi (1 — u(t + kT;u°, w))

= HW, + ax(O)Wi(1 — W) + an(O) Wi (1 — e ® Jir " al0)ds )y 1 5)
< HW, + ak(t)Wk(l — Wk) + ak(t)Wk((l - 6_25Ta)Wk + 5)

for allt € (0,T), i € Z and k > 0. Also, it follows from (3.17)) and a < ai < ayg
that

(3.19)

jt(oéka) H(ap V)

=ak(t)(arVi) (1 — Vi)
= ar () (Vi) (1 — arVi) + ar(t) (Vi) (1 — e~ 273 (Vi) + 0)
+ ap(t) (Vi) (((a — 1) — (1 — e 2T%) 0, ) V3 — 6) (3:20)
> ap(t) (o Vi) (1 — Vi) + an () (e Vi) (1 — €727%) (g Vi) + )
+ar () (@ Vi) ((as = 1) = (1 = e T ag)my — 6)
> ag () (Vi) (1 = e Vi) + ar(t) (ax Vi) (1 — e27%) (ay Vi) + 6)
AT c(s;w,u)ds, 0 <t < T and k > 0. Therefore, from , ,
a < as < ay, and the comparison principle it follows that

It o Co)ds (1 4 kT, w) < gt + KT w)
t+kT

for i < I+ [,
6f§k+1)T a(fsw)ds

fori <Io+ [, c(s;w,p)ds, t € [0,T] and k > 0. That is

wi(t+ kT30, w) < e 8 Jir™ al0s)ds (4 4 KT w)

t+kT

for i <Io+ [, c(s;w,p)ds, t € [0,T] and k > 0. Note that

k+1)T k+1)T
a< 676 f( ) a(f w)ds o < 676 fk(T ) a(@sw)dsa

Then by (3.9) we have
wi(t + kT;u’, w) < e=0 Jiz"" albaw)ds g gy, (t+ kT;w)
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t+k:T

fori > I+ [; c(s;w,p)ds, t € [0,T] and k > 0. Therefore,

wit + kT 00, w) < e 0 St aOedds gy (¢ 4 kT w) (3.21)

fori € Z,t € [0,T] and k > 0. By interchanging W and Vj, in and (3.20),
we can also obtain

ui(t + kT w) < o0 it “(esw)dsakui(t + ET;u°, w) (3.22)

fori € Z,t € [0,T] and k > 0. Then the claim (3.18) follows from (3.21)) and (3.22)).
From ([3.18) it follows that

Qoo < O[((k+ 1)T) <e 521 ofL(Hrl)T (Osw)ds (O) — efgfo(kJrl)T a(ﬁsw)dsao (323)

for any k& > 0. Note that fo a(fsw)ds = oo for w € Qp. Then by letting k — oo in
(13-23), we get that as < 0, a contradiction. So we get that a = 1, which leads
to the asymptotic stability of the random transition fronts. O
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