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TRANSITION FRONTS OF KPP-TYPE LATTICE RANDOM

EQUATIONS

FENG CAO, LU GAO

Abstract. In this article, we investigate the existence and stability of random

transition fronts of KPP-type lattice equations in random media, and explore

the influence of the media and randomness on the wave profiles and wave speeds
of such solutions. We first establish comparison principle for sub-solutions and

super-solutions of KPP type lattice random equations and prove the stability

of positive constant equilibrium solution. Next, by constructing appropriate
sub-solutions and super-solutions, we show the existence of random transition

fronts. Finally, we prove the stability of random transition fronts of KPP-type

lattice random equations.

1. Introduction

This article studies the existence and stability of transition fronts for the KPP-
type lattice random equation

u̇i(t) = ui+1(t)− 2ui(t) + ui−1(t) + a(θtω)ui(t)(1− ui(t)), i ∈ Z, (1.1)

where ω ∈ Ω, (Ω,F ,P) is a given probability space, θt is an ergodic metric dynamical
system on Ω, a : Ω → (0,∞) is measurable, and aω(t) := a(θtω) is locally Hölder
continuous in t ∈ R for every ω ∈ Ω.

Equation (1.1) is used to model the population dynamics of species living in
patchy environments in biology and ecology (see, for example, [43, 44]). It is a
spatial-discrete counterpart of the reaction diffusion equation

∂tu = uxx + a(θtω)u(1− u), x ∈ R. (1.2)

Equation (1.2) is widely used to model the population dynamics of species when
the movement or internal dispersal of the organisms occurs between adjacent loca-
tions randomly in spatially continuous media. The study of traveling wave solutions
of (1.2) traces back to Fisher [16] and Kolmogorov, Petrovsky and Piskunov [24] in
the special case a(θtω) ≡ 1. They investigated the existence of traveling wave solu-
tions, that is, solutions of the form u(x, t) = φ(x−ct) with φ(−∞) = 1, φ(+∞) = 0.
Fisher in [16] proved that (1.2) with a(θtω) ≡ 1 admits traveling wave solutions if
the wave speed c ≥ 2 and showed that there are no such traveling wave solutions
of slower speed. Kolmogorov, Petrovsky, and Piskunov in [24] proved that for any
nonnegative solution u(x, t) of (1.2) with a(θtω) ≡ 1, if at time t = 0, u is 1 near
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−∞ and 0 near ∞, then limt→∞ u(t, ct) is 0 if c > 2 and 1 if c < 2. c∗ := 2 is
therefore the minimal wave speed and is also called the spreading speed of (1.2)
with a(θtω) ≡ 1. The spreading property was extended to more general monostable
nonlinearities by Aronson and Weinberger [2].

Since then, traveling wave solutions of Fisher or KPP type evolution equations
in spatially and temporally homogeneous media or spatially and/or temporally
periodic media have been widely invetigated. The reader is referred to [1, 2, 5, 6, 7,
8, 14, 15, 17, 20, 23, 25, 26, 27, 28, 30, 34, 35, 36, 38, 40, 39, 45, 46] for the study of
Fisher or KPP type reaction diffusion equations in homogeneous or periodic media.
As for the study of Fisher or KPP type lattice equations in homogeneous or periodic
media, the reader is referred to [11, 12, 13, 21, 29, 47, 48] for the existence and
stability of traveling wave solutions in homogeneous media, and to [18, 19, 21] for
the existence and stability of periodic traveling wave solutions in spatially periodic
media. Recently, Cao and Shen [10] proved the existence and stability of periodic
traveling wave solutions for Fisher or KPP type lattice equations in spatially and
temporally periodic media.

The study of traveling wave solutions of general time and/or space dependent
Fisher or KPP type equations is attracting more and more attention due to the
presence of general time and space variations in real world problems. To study
the front propagation dynamics of Fisher or KPP type equations with general time
and/or space dependence, one first needs to properly extend the notion of traveling
wave solutions in the classical sense. Some general extension has been introduced in
the literature. For example, in [39, 41], notions of random traveling wave solutions
and generalized traveling wave solutions are introduced for random Fisher or KPP
type equations and quite general time dependent Fisher or KPP type equations, re-
spectively. In [3, 4], a notion of generalized transition waves is introduced for Fisher
or KPP type equations with general space and time dependence. Among others,
the authors of [31, 32, 33] proved the existence of generalized transition waves of
general time dependent and space periodic, or time independent and space almost
periodic Fisher or KPP type reaction diffusion equations. Zlatos [49] established
the existence of generalized transition waves of spatially inhomogeneous Fisher or
KPP type reaction diffusion equations under some specific hypotheses. Shen [42]
proved the stability of generalized transition waves of Fisher or KPP type reaction
diffusion equations with quite general time and space dependence.

However, there is little study on the traveling wave solutions of Fisher or KPP
type lattice equations with general time and/or space dependence. Since in nature,
many systems are subject to irregular influences arisen from various kind of noise,
it is also of great importance to study traveling wave solutions in random media.
The purpose of this article is to investigate the existence and stability of traveling
wave solutions for KPP-type lattice equations in random media under very general
assumption (See (H1) below), and to understand the influence of the media and
randomness on the wave profiles and wave speeds of such solutions. We note that
the work [37] studied the existence and stability of random transition fronts for
random KPP-type reaction diffusion equations.

It should be pointed out that Cao and Shen [9, 10] investigated the existence
and stability of transition fronts for KPP-type lattice equations with general time
dependence under some more restrictive assumptions. For KPP-type lattice equa-
tions in random media, although it’s easy to get that the wave speed is stationary
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ergodic in t, but it is far from being obvious that the same is true for the random
profile. Besides, when dealing with spatial-discrete equations, we need find another
approach to get the existence of traveling wave solutions due to the lack of space
regularity.

First we give notation and assumptions related to (1.1). Let

a(ω) = lim inf
t−s→∞

1

t− s

∫ t

s

a(θτω)dτ := lim
r→∞

inf
t−s≥r

1

t− s

∫ t

s

a(θτω)dτ,

a(ω) = lim sup
t−s→∞

1

t− s

∫ t

s

a(θτω)dτ := lim
r→∞

sup
t−s≥r

1

t− s

∫ t

s

a(θτω)dτ.

We call a(·) and a(·) the least mean and the greatest mean of a(·), respectively.
It’s easy to show that

a(θtω) = a(ω), a(θtω) = a(ω) ∀t ∈ R,

and

a(ω) = lim inf
t,s∈Q,t−s→∞

1

t− s

∫ t

s

a(θτω)dτ, a(ω) = lim sup
t,s∈Q,t−s→∞

1

t− s

∫ t

s

a(θτω)dτ.

Then a(ω) and a(ω) are measurable in ω. Throughout the paper, we assume that

(H1) 0 < a(ω) ≤ a(ω) <∞ for a.e. ω ∈ Ω.

This implies that a(·), a(·), a(·) ∈ L1(Ω,F ,P) (see Lemma 2.4). Also (H1) and
the ergodicity of the metric dynamical system (Ω,F ,P, {θt}t∈R) imply that, there
are a, a ∈ R+ and a measurable subset Ω0 ⊂ Ω with P(Ω0) = 1 such that

θtΩ0 = Ω0 ∀t ∈ R

lim inf
t−s→∞

1

t− s

∫ t

s

a(θτω)dτ = a ∀ω ∈ Ω0

lim sup
t−s→∞

1

t− s

∫ t

s

a(θτω)dτ = a ∀ω ∈ Ω0.

Let

l∞(Z) = {u = {ui}i∈Z : sup
i∈Z
|ui| <∞}

with norm ‖u‖ = ‖u‖∞ = supi∈Z |ui|. Since a(θtω) is locally Hölder continuous in
t ∈ R for every ω ∈ Ω, for any given u0 ∈ l∞(Z) , (1.1) has a unique (local) solution
u(t;u0, ω) = {ui(t;u0, ω)}i∈Z with u(0;u0, ω) = u0. Note that, if u0

i ≥ 0 for all
i ∈ Z, then u(t;u0, ω) = {ui(t;u0, ω)}i∈Z exists for all t ≥ 0 and ui(t;u

0, ω) ≥ 0 for
all i ∈ Z and t ≥ 0 (see Proposition 2.1).

A solution u(t;ω) = {ui(t;ω)}i∈Z of (1.1) is called an entire solution if it is a
solution of (1.1) for t ∈ R.

Definition 1.1 (Transition front). A solution u(t;ω) = {ui(t;ω)}i∈Z is called a
random generalized traveling wave or a random transition front of (1.1) connecting
1 and 0 if for a.e. ω ∈ Ω,

ui(t;ω) = Φ
(
i−
∫ t

0

c(s;ω)ds, θtω
)
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for some Φ(x, ω) (x ∈ R) and c(t;ω), where Φ(x, ω) and c(t;ω) are measurable in
ω, and for a.e. ω ∈ Ω: 0 < Φ(x, ω) < 1 and

lim
x→−∞

Φ(x, θtω) = 1, lim
x→∞

Φ(x, θtω) = 0 uniformly in t ∈ R.

Suppose that u(t;ω) = {ui(t;ω)}i∈Z with ui(t;ω) = Φ(i −
∫ t

0
c(s;ω)ds, θtω) is a

random transition front of (1.1). If Φ(x, ω) is non-increasing in x for a.e. ω ∈ Ω
and all x ∈ R, then u(t;ω) is said to be a monotone random transition front. If
there is cinf ∈ R such that for a.e. ω ∈ Ω,

lim inf
t−s→∞

1

t− s

∫ t

s

c(τ ;ω)dτ = cinf ,

then cinf is called its least mean speed.
For a given µ > 0, let

c0 := inf
µ>0

eµ + e−µ − 2 + a

µ
.

By [9, Lemma 5.1], there is a unique µ∗ > 0 such that

c0 =
eµ
∗

+ e−µ
∗ − 2 + a

µ∗

and for any γ > c0, the equation γ = eµ+e−µ−2+a
µ has exactly two positive solutions

for µ.
Now we are in a position to state the main results on the existence and stability

of random transition fronts of KPP-type lattice random equations.

Theorem 1.2. For any given γ > c0, there is a monotone random transition front
of (1.1) with least mean speed cinf = γ. More precisely, for any given γ > c0, let

0 < µ < µ∗ be such that eµ+e−µ−2+a
µ = γ. Then (1.1) has a monotone random

transition front u(t;ω) = {ui(t;ω)}i∈Z with ui(t;ω) = Φ(i −
∫ t

0
c(s;ω, µ)ds, θtω),

where c(t;ω, µ) = eµ+e−µ−2+a(θtω)
µ and hence cinf = eµ+e−µ−2+a

µ = γ. Moreover,

for any ω ∈ Ω0,

lim
x→−∞

Φ(x, θtω) = 1, lim
x→∞

Φ(x, θtω)

e−µx
= 1 uniformly for t ∈ R.

Remark 1.3. (1) Let

c∗(ω) = sup{c : lim sup
t→∞

sup
s∈R,i∈Z,|i|≤ct

|ui(t;u0, θsω)− 1| = 0 for all u0 ∈ l∞0 (Z)},

where

l∞0 (Z) = {u = {ui}i∈Z ∈ l∞(Z) : ui ≥ 0 for all i ∈ Z, ui = 0 for |i| � 1, {ui} 6= 0}.

Then by the similar arguments as proving [9, Theorem 1.3 (2)], we can get that
for a.e. ω ∈ Ω, c∗(ω) = c0. If u(t;ω) = {ui(t;ω)}i∈Z with ui(t;ω) = Φ(i −∫ t

0
c(s;ω)ds, θtω) is a random transition front of (1.1) connecting 1 and 0, then

infx≤z infs∈R Φ(x, θsω) > 0 for all z ∈ R. Therefore, we can choose u0
ω ∈ l∞0 (Z)

such that u0
ω ≤ Φ(x, θsω) for all s ∈ R. Let 0 < ε � 1. Then by c∗(ω) = c0 and

the comparison principle (see Proposition 2.1), we have

1 = lim inf
t→∞

inf
s∈R

u[(c0−ε)t](t;u
0
ω, θsω)
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≤ lim inf
t→∞

inf
s∈R

u[(c0−ε)t](t;Φ(·, θsω), θsω)

= lim inf
t→∞

inf
s∈R

Φ
(

[(c0 − ε)t]−
∫ t

0

c(τ ; θsω)dτ, θt+sω
)
.

Note that ∫ t+s

0

c(τ ;ω)dτ =

∫ s

0

c(τ ;ω)dτ +

∫ t

0

c(τ ; θsω)dτ.

Then there is a constant M(ω) such that

(c0 − ε)t ≤
∫ t+s

0

c(τ ;ω)dτ −
∫ s

0

c(τ ;ω)dτ +M(ω)

for all t > 0, s ∈ R. Hence,

cinf = lim inf
t→∞

inf
s∈R

∫ t+s
0

c(τ ;ω)dτ −
∫ s

0
c(τ ;ω)dτ

t
≥ c0 − ε.

By the arbitrariness of ε > 0, we get cinf ≥ c0. This implies that there is no random
transition front of (1.1) with least mean speed less than c0.

(2) As for the critical random transition front of (1.1), that is, random transition
front of (1.1) with least mean speed cinf = c0. The approach used in [9] can’t be
applied as the stationary ergodic property of the critical random profile can’t be
guaranteed. We leave this as an question open.

Theorem 1.4. For a given µ ∈ (0, µ∗), the random transition front u(t;ω) =
{ui(t;ω)}i∈Z,

ui(t;ω) = Φ(i−
∫ t

0

c(s;ω, µ)ds, θtω)

with limi→∞
ui(t;ω)

e−µ(i−
∫ t
0 c(s;ω,µ)ds)

= 1 (c(t;ω, µ) = eµ+e−µ−2+a(θtω)
µ ) is asymptotically

stable, that is, for any ω ∈ Ω0 and u0 ∈ l∞(Z) satisfying

inf
i≤i0

u0
i > 0 ∀i0 ∈ Z, lim

i→∞

u0
i

ui(0;ω)
= 1,

it holds

lim
t→∞

‖u·(t;u
0, ω)

u·(t;ω)
− 1‖l∞ = 0.

The rest of this article is organized as follows. In Section 2, we establish the com-
parison principle for sub-solutions and super-solutions of KPP-type lattice random
equations (1.1) and stability of the positive constant equilibrium solution. Also, we
give in Section 2 some results including the technical lemmas for the use in later
section. We investigate the existence and stability of random traveling waves for
KPP-type lattice equations in random media and prove Theorem 1.2 and 1.4 in
Section 3.

2. Preliminaries

We first present a comparison principle for sub-solutions and super-solutions of
(1.1). Then we prove the stability of the positive constant equilibrium solution
u = 1 and the convergence of solutions on compact subsets. Finally we present
some technical lemmas.
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Consider now the following space continuous version of (1.1),

∂tv(x, t) = Hv(x, t) + a(θtω)v(x, t)(1− v(x, t)), x ∈ R, t ∈ R, ω ∈ Ω, (2.1)

where

Hv(x, t) = v(x+ 1, t) + v(x− 1, t)− 2v(x, t), x ∈ R, t ∈ R.

Recall that l∞(Z) = {u : Z→ R : supx∈Z |u(x)| <∞}. Let

l∞(R) = {u : R→ R : sup
x∈R
|u(x)| <∞}

with norm ‖u‖ = supx∈R |u(x)|. Let

l∞,+(Z) = {u ∈ l∞(Z) : inf
i∈Z

ui ≥ 0}, l∞,+(R) = {u ∈ l∞(R) : inf
x∈R

u(x) ≥ 0}.

For any u0 ∈ l∞(R), let u(x, t;u0, ω) be the solution of (2.1) with u(x, 0;u0, ω) =
u0(x). Recall that for any u0 ∈ l∞(Z), u(t;u0, ω) = {ui(t;u0, ω)}i∈Z is the solution
of (1.1) with ui(0;u0, ω) = u0

i for i ∈ Z.
A function v(x, t;ω) on R × [0, T ) which is continuous in t is called a super-

solution or sub-solution of (2.1) (resp. (1.1)) if for a.e. ω ∈ Ω and any given x ∈ R
(resp. x ∈ Z), v(x, t;ω) is absolutely continuous in t ∈ [0, T ), and

vt(x, t;ω) ≥ Hv(x, t;ω) + a(θtω)v(x, t;ω)(1− v(x, t;ω)) for t ∈ [0, T )

or

vt(x, t;ω) ≤ Hv(x, t;ω) + a(θtω)v(x, t;ω)(1− v(x, t;ω)) for t ∈ [0, T ).

Proposition 2.1 (Comparison principle). (1) If u1(x, t;ω) and u2(x, t;ω) are
bounded sub-solution and super-solution of (2.1) (resp. (1.1)) on [0, T ),
respectively, and u1(·, 0;ω) ≤ u2(·, 0;ω), then u1(·, t;ω) ≤ u2(·, t;ω) for
t ∈ [0, T ).

(2) Suppose that u1(x, t;ω), u2(x, t;ω) are bounded and satisfy that for any
given x ∈ R (resp. x ∈ Z), u1(x, t;ω) and u2(x, t;ω) are absolutely contin-
uous in t ∈ [0,∞), and

∂tu2(x, t;ω)− (Hu2(x, t;ω) + a(θtω)u2(x, t;ω)(1− u2(x, t;ω)))

> ∂tu1(x, t;ω)− (Hu1(x, t;ω) + a(θtω)u1(x, t;ω)(1− u1(x, t;ω)))

for t > 0. Moreover, suppose that u2(·, 0;ω) ≥ u1(·, 0;ω). Then u2(·, t;ω) >
u1(·, t;ω) for t > 0.

(3) If u0 ∈ l∞,+(R) (resp. u0 ∈ l∞,+(Z)), then u(x, t;u0, ω) (resp. u(t;u0, ω))
exists and u(·, t;u0, ω) ≥ 0 (resp. u(t;u0, ω) ≥ 0) for all t ≥ 0.

Proof. We prove the proposition only for (2.1); it can be proved similarly for (1.1).
(1) This part is proved by we modifying the arguments in [22, Proposition 2.4].

Let Q(x, t;ω) = ect(u2(x, t;ω) − u1(x, t;ω)), where c := c(ω) is to be determined
later. Then there is a measurable subset Ω̄ of Ω with P(Ω̄) = 0 such that for any
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ω ∈ Ω \ Ω̄, we have

∂tQ(x, t;ω)

= ect(∂tu2(x, t;ω)− ∂tu1(x, t;ω)) + cect(u2(x, t;ω)− u1(x, t;ω))

≥ ect(Hu2(x, t;ω)−Hu1(x, t;ω) + a(θtω)u2(x, t;ω)(1− u2(x, t;ω))

− a(θtω)u1(x, t;ω)(1− u1(x, t;ω))) + cQ(x, t;ω)

= HQ(x, t;ω) + ecta(θtω)(u2(x, t;ω)− u1(x, t;ω))(1− u2(x, t;ω))

− ecta(θtω)(u2(x, t;ω)− u1(x, t;ω))u1(x, t;ω) + cQ(x, t;ω)

= Q(x+ 1, t;ω) +Q(x− 1, t;ω) + (b(x, t;ω)− 2 + c)Q(x, t;ω)

(2.2)

for x ∈ R and t ∈ [0, T ], where

b(x, t;ω) = a(θtω)
(
1− u1(x, t;ω)− u2(x, t;ω)

)
for x ∈ R, t ∈ [0, T ].

Let p(x, t;ω) = b(x, t;ω)− 2 + c. By the boundedness of u1 and u2, we can choose
c = c(ω) > 0 such that

inf
(x,t)∈R×[0,T ]

p(x, t;ω) > 0.

We claim that Q(x, t;ω) ≥ 0 for x ∈ R and t ∈ [0, T ].
Let p0(ω) = sup(x,t)∈R×[0,T ] p(x, t;ω). It suffices to prove the claim for x ∈ R and

t ∈ (0, T0] with T0 = min{T, 1
p0(ω)+2}. Assume that there are x̃ ∈ R and t̃ ∈ (0, T0]

such that Q(x̃, t̃;ω) < 0. Then there is t0 ∈ (0, T0) such that

Qinf(ω) := inf
(x,t)∈R×[0,t0]

Q(x, t;ω) < 0.

Observe that there are xn ∈ R and tn ∈ (0, t0] such that

Q(xn, tn;ω)→ Qinf(ω) as n→∞.

By (2.2) and the fundamental theorem of calculus for Lebesgue integrals, we obtain

Q(xn, tn;ω)−Q(xn, 0;ω)

≥
∫ tn

0

[Q(xn + 1, t;ω) +Q(xn − 1, t;ω) + p(xn, t;ω)Q(xn, t;ω)]dt

≥
∫ tn

0

[2Qinf(ω) + p(xn, t;ω)Qinf(ω)]dt

≥ t0(2 + p0(ω))Qinf(ω) for n ≥ 1.

Note that Q(xn, 0;ω) ≥ 0, we then have

Q(xn, tn;ω) ≥ t0(2 + p0(ω))Qinf(ω) for n ≥ 1.

Letting n→∞, we obtain

Qinf(ω) ≥ t0(2 + p0(ω))Qinf(ω) > Qinf(ω).

A contradiction. Hence the claim is true and u1(x, t;ω) ≤ u2(x, t;ω) for ω ∈ Ω \ Ω̄,
x ∈ R and t ∈ [0, T ].

(2) For ω ∈ Ω \ Ω̄, by the similar arguments as for getting (2.2), we can find
c(ω), µ(ω) > 0 such that

∂tQ(x, t;ω) > Q(x+ 1, t;ω) +Q(x− 1, t;ω) + µ(ω)Q(x, t;ω) for x ∈ R, t > s,
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where Q(x, t;ω) = ec(ω)t(u2(x, t;ω)− u1(x, t;ω)). Thus we have that for x ∈ R,

Q(x, t;ω) > Q(x, 0;ω) +

∫ t

0

(
Q(x+ 1, τ ;ω) +Q(x− 1, τ ;ω) + µ(ω)Q(x, τ ;ω)

)
dτ.

By the arguments in (1), Q(x, t;ω) ≥ 0 for all x ∈ R and t ≥ 0. It then follows that
Q(x, t;ω) > Q(x, 0;ω) ≥ 0 and hence u2(x, t;ω) > u1(x, t;ω) for ω ∈ Ω \ Ω̄, x ∈ R
and t > 0.

(3) By (1), for any u0 ∈ l∞,+(R), 0 ≤ u(·, t;u0, ω) ≤ max{‖u0‖, 1} for all t > 0
in the existence interval of u(·, t;u0, ω). It then follows that u(·, t;u0, ω) exists and
u(·, t;u0, ω) ≥ 0 for all t ≥ 0. �

We have the following proposition on the stability of the constant equilibrium
solution u = 1.

Proposition 2.2. For every u0 ∈ l∞(R) with infx∈R u0(x) > 0 and for every
ω ∈ Ω, we have that

‖u(x, t;u0, ω)− 1‖∞ → 0 as t→∞.

Proof. The proof is similar to that of [37, Theorem 2.1 (1)]. We give the details
for completeness. For u0 ∈ l∞(R) with infx∈R u0(x) > 0 and ω ∈ Ω. Let u0 :=
min{1, infx∈R u0(x)} and u0 := max{1, supx∈R u0(x)}. It follows from Proposition
2.1 that

u0 ≤ u(x, t;u0, ω) ≤ min{1, u(x, t;u0, ω)}, ∀x ∈ R, t ≥ 0, (2.3)

max{1, u(x, t;u0, ω)} ≤ u(x, t;u0, ω) ≤ u0, ∀x ∈ R, t ≥ 0. (2.4)

Note that u0 and u0 are constants. Then by the uniqueness of solution of (2.1)
with respect to the initial value, we obtain

u(x, t;u0, ω) = u(0, t;u0, ω) and u(x, t;u0, ω) = u(0, t;u0, ω), ∀x ∈ R, t ≥ 0.

Since

u(t) =
( 1

u(0, t;u0, ω)
− 1
)
e
∫ t
0
a(θsω)ds and u(t) =

(
1− 1

u(0, t;u0, ω)

)
e
∫ t
0
a(θsω)ds

satisfy
d

dt
u =

d

dt
u = 0, t > 0,

it follows that

u(t) = u(0) and u(t) = u(0), ∀t ≥ 0.

Therefore,

1− u(x, t;u0, ω) = u(0)u(x, t;u0, ω)e−
∫ t
0
a(θsω)ds, (2.5)

u(x, t;u0, ω)− 1 = u(0)u(x, t;u0, ω)e−
∫ t
0
a(θsω)ds. (2.6)

By (2.3) and (2.4), we have

0 < u0 ≤ u(x, t;u0, ω) ≤ u(x, t;u0, ω) ≤ u0, ∀x ∈ R, t ≥ 0.

It then follows from (2.3), (2.4), (2.5) and (2.6) that

|u(x, t;u0, ω)− 1| ≤ u0 max{u(0), u(0)}e−
∫ t
0
a(θsω)ds, ∀x ∈ R, t ≥ 0.

The Proposition thus follows. �
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Proposition 2.3. Suppose that u0n, u0 ∈ l∞,+(R) (n = 1, 2, · · · ) with {‖u0n‖}
being bounded. If u0n(x)→ u0(x) as n→∞ uniformly in x on bounded sets, then
for each t > 0, u(x, t;u0n, θt0ω)−u(x, t;u0, θt0ω)→ 0 as n→∞ uniformly in x on
bounded sets and t0 ∈ R.

Proof. This is proved by the similar arguments in [9, Proposition 2.2]. Fix any
ω ∈ Ω. Let vn(x, t; θt0ω) = u(x, t;u0n, θt0ω) − u(x, t;u0, θt0ω). Then vn(x, t; θt0ω)
satisfies

vnt (x, t; θt0ω) = Hvn(x, t; θt0ω) + bn(x, t; θt0ω)vn(x, t; θt0ω),

where bn(x, t; θt0ω) = a(θt+t0ω)(1 − u(x, t;u0n, θt0ω) − u(x, t;u0, θt0ω)). Observe
that {bn(x, t; θt0ω)}n is uniformly bounded. Take λ > 0, and let

X(λ) = {u : R→ R |u(·)e−λ|·| ∈ l∞(R)}

with norm ‖u‖λ = ‖u(·)e−λ|·|‖l∞(R). Note that H : X(λ) → X(λ) generates an
analytic semigroup, and there are M > 0 and α > 0 such that

‖eHt‖X(λ) ≤Meαt, ∀t ≥ 0.

Hence,

vn(·, t; θt0ω) = eHtvn(·, 0; θt0ω) +

∫ t

0

eH(t−τ)bn(·, τ ; θt0ω)vn(·, τ ; θt0ω)dτ

and then

‖vn(·, t; θt0ω)‖X(λ)

≤Meαt‖vn(·, 0; θt0ω)‖X(λ)

+M sup
t0∈R,τ∈[0,t],x∈R

|bn(x, τ ; θt0ω)|
∫ t

0

eα(t−τ)‖vn(·, τ ; θt0ω)‖X(λ)dτ.

By Gronwall’s inequality,

‖vn(·, t; θt0ω)‖X(λ) ≤ e(α+M supt0∈R,τ∈[0,t],x∈R |bn(x,τ ;θt0ω)|)t(M‖vn(·, 0; θt0ω)‖X(λ)).

Note that ‖vn(·, 0; θt0ω)‖X(λ) → 0 uniformly in t0 ∈ R. It then follows that

‖vn(·, t; θt0ω)‖X(λ) → 0 as n→∞
uniformly in t0 ∈ R and then

u(x, t;u0n, θt0ω)− u(x, t;u0, θt0ω)→ 0 as n→∞
uniformly in x on bounded sets and t0 ∈ R. �

Now we present some lemmas including technical results.

Lemma 2.4. We have a(·), a(·), a(·) ∈ L1(Ω,F ,P), and a(ω) and a(ω) are inde-
pendent of ω for a.e. ω ∈ Ω.

The proof of the above lemma follows from [37, Lemma 2.1].

Lemma 2.5. Suppose that for ω ∈ Ω, aω(t) = a(θtω) ∈ C(R, (0,∞)). Then for
a.e. ω ∈ Ω,

a = sup
A∈W 1,∞

loc (R)∩L∞(R)

ess inft∈R(A′ + aω)(t).

The proof of the above lemma follows from [37, Lemma 2.2] and Lemma 2.4.
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Lemma 2.6. Let ω ∈ Ω0. Then for any µ, µ̃ with 0 < µ < µ̃ < min{2µ, µ∗}, there

exist {tk}k∈Z with tk < tk+1 and limk→±∞ tk = ±∞, Aω ∈W 1,∞
loc (R)∩L∞(R) with

Aω(·) ∈ C1((tk, tk+1)) for k ∈ Z, and dω > 0 such that for any d ≥ dω the function

ṽµ,d,Aω (x, t, ω) := e−µ(x−
∫ t
0
c(s;ω,µ)ds) − de( µ̃µ−1)Aω(t)−µ̃(x−

∫ t
0
c(s;ω,µ)ds)

satisfies

∂tṽ
µ,d,Aω ≤ Hṽµ,d,Aω + a(θtω)ṽµ,d,Aω (1− ṽµ,d,Aω )

for t ∈ (tk, tk+1), x ≥
∫ t

0
c(s;ω, µ)ds+ ln d

µ̃−µ + Aω(t)
µ , k ∈ Z.

Proof. For given ω ∈ Ω0 and 0 < µ < µ̃ < min{2µ, µ∗}, by the arguments in

the proof of [9, Lemma 5.1] we can get that eµ̃+e−µ̃−2+a
µ̃ < eµ+e−µ−2+a

µ , and

hence a > µ(eµ̃+e−µ̃−2)−µ̃(eµ+e−µ−2)
µ̃−µ . Let 0 < δ � 1 be such that (1 − δ)a >

µ(eµ̃+e−µ̃−2)−µ̃(eµ+e−µ−2)
µ̃−µ . It then follows from Lemma 2.5 that there exist T > 0

and Aω ∈ W 1,∞
loc (R) ∩ L∞(R) such that Aω(·) ∈ C1((tk, tk+1)) with tk = kT for

k ∈ Z, and

(1− δ)a(θtω) +A′ω(t) ≥ µ(eµ̃ + e−µ̃ − 2)− µ̃(eµ + e−µ − 2)

µ̃− µ
(2.7)

for all t ∈ (tk, tk+1), k ∈ Z.
Now fix δ > 0 and Aω(t) chosen in the above inequality. Let ξ(x, t;ω) = x −∫ t

0
c(s;ω, µ)ds, and ṽµ,d,Aω (x, t, ω) := e−µξ(x,t;ω)−de( µ̃µ−1)Aω(t)−µ̃ξ(x,t;ω) with d > 1

to be determined later. Note that c(t;ω, µ) = eµ+e−µ−2+a(θtω)
µ . Then we have

∂tṽ
µ,d,Aω − (Hṽµ,d,Aω + a(θtω)ṽµ,d,Aω (1− ṽµ,d,Aω ))

= µc(t;ω, µ)e−µξ(x,t;ω) + d(−(
µ̃

µ
− 1)A′ω(t)− µ̃c(t;ω, µ))e( µ̃µ−1)Aω(t)−µ̃ξ(x,t;ω)

−
(

(eµ + e−µ − 2)e−µξ(x,t;ω) − d(eµ̃ + e−µ̃ − 2)e( µ̃µ−1)Aω(t)−µ̃ξ(x,t;ω)
)

− a(θtω)(e−µξ(x,t;ω) − de( µ̃µ−1)Aω(t)−µ̃ξ(x,t;ω))

×
(

1− (e−µξ(x,t;ω) − de( µ̃µ−1)Aω(t)−µ̃ξ(x,t;ω))
)

= d(−(
µ̃

µ
− 1)A′ω(t)− µ̃c(t;ω, µ) + eµ̃ + e−µ̃ − 2 + a(θtω))e( µ̃µ−1)Aω(t)−µ̃ξ(x,t;ω)

+ a(θtω)(e−µξ(x,t;ω) − de( µ̃µ−1)Aω(t)−µ̃ξ(x,t;ω))2

= d(
µ̃

µ
− 1)(−A′ω(t) +

µ(eµ̃ + e−µ̃ − 2)− µ̃(eµ + e−µ − 2)

µ̃− µ
− a(θtω))

× e( µ̃µ−1)Aω(t)−µ̃ξ(x,t;ω) + a(θtω)e−2µξ(x,t;ω)

− d(2e−µξ(x,t;ω) − de( µ̃µ−1)Aω(t)−µ̃ξ(x,t;ω))e( µ̃µ−1)Aω(t)−µ̃ξ(x,t;ω)a(θtω)

= d(
µ̃

µ
− 1)(

µ(eµ̃ + e−µ̃ − 2)− µ̃(eµ + e−µ − 2)

µ̃− µ
− (1− δ)a(θtω)−A′ω(t))

× e( µ̃µ−1)Aω(t)−µ̃ξ(x,t;ω) + (e−(2µ−µ̃)ξ(x,t;ω)

− dδ( µ̃
µ
− 1)e( µ̃µ−1)Aω(t))a(θtω)e−µ̃ξ(x,t;ω)
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+ d
(
− 2e−µξ(x,t;ω) + de( µ̃µ−1)Aω(t)−µ̃ξ(x,t;ω)

)
e( µ̃µ−1)Aω(t)−µ̃ξ(x,t;ω)a(θtω) (2.8)

for t ∈ (tk, tk+1).

Let dω ≥ max
{
e
−(

µ̃
µ
−1)‖Aω‖∞

δ( µ̃µ−1)
, e( µ̃µ−1)‖Aω‖∞}. Then we have

dδ(
µ̃

µ
− 1)e( µ̃µ−1)Aω(t) ≥ 1, ∀d ≥ dω.

Note that if x ≥
∫ t

0
c(s;ω, µ)ds+ ln d

µ̃−µ+Aω(t)
µ , then ξ(x, t;ω) = x−

∫ t
0
c(s;ω, µ)ds ≥ 0

and ṽµ,d,Aω (x, t, ω) ≥ 0. From (2.7), we obtain that every term on the right-hand
side of (2.8) is less than or equal to zero. �

3. Random transition fronts

In this section, we study the existence and stability of random transition fronts,
and prove Theorem 1.2 and 1.4.

3.1. Existence of random transition fronts. For any γ > c0, let 0 < µ < µ∗ be

such that eµ+e−µ−2+a
µ = γ. Then for every ω ∈ Ω, let c(t;ω, µ) = eµ+e−µ−2+a(θtω)

µ

and v̂µ(x, t;ω) = e−µ(x−
∫ t
0
c(s;ω,µ)ds). Then v̂µ(x, t;ω) satisfies

∂tv̂
µ(x, t;ω)−Hv̂µ(x, t;ω)− a(θtω)v̂µ(x, t;ω)

= v̂µ(x, t;ω)[µc(t;ω, µ)− (eµ + e−µ − 2 + a(θtω))] = 0, for x ∈ R, t ∈ R.

Then we have

∂tv̂
µ(x, t;ω) = Hv̂µ(x, t;ω) + a(θtω)v̂µ(x, t;ω)

≥ Hv̂µ(x, t;ω) + a(θtω)v̂µ(x, t;ω)(1− v̂µ(x, t;ω)),

for x ∈ R and t ∈ R. Hence, v̂µ(x, t;ω) = e−µ(x−
∫ t
0
c(s;ω,µ)ds) is a super-solution of

(2.1). Let

vµ(x, t;ω) = min{1, v̂µ(x, t;ω)}.

Lemma 3.1. For ω ∈ Ω0, we have

u(x, t− t0; vµ(·, t0;ω), θt0ω) ≤ vµ(x, t;ω), ∀x ∈ R, t ≥ t0, t0 ∈ R.

Proof. For any constant C, the function û(x, t;ω) := eCtv̂µ(x, t;ω) satisfies

∂tû(x, t;ω) = (∂tv̂
µ(x, t;ω) + Cv̂µ(x, t;ω))eCt

≥ Hû(x, t;ω) + Cû(x, t;ω) + a(θtω)û(x, t;ω)(1− v̂µ(x, t;ω)),

hence,

û(x, t;ω) ≥ û(x, t0;ω) +

∫ t

t0

(
Hû(x, τ ;ω) + Cû(x, τ ;ω)

+ a(θτω)û(x, τ ;ω)(1− v̂µ(x, τ ;ω))
)
dτ.

Let u(x, t;ω) := eCtvµ(x, t;ω). Then we also have

u(x, t;ω) ≥ u(x, t0;ω) +

∫ t

t0

(
Hu(x, τ ;ω) + Cu(x, τ ;ω)

+ a(θτω)u(x, τ ;ω)(1− vµ(x, τ ;ω))
)
dτ.
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Let Q(x, t;ω) = eCt(vµ(x, t;ω)− u(x, t− t0; vµ(·, t0;ω), θt0ω)). Then

Q(x, t;ω) ≥ Q(x, t0;ω) +

∫ t

t0

(HQ(x, τ ;ω) + (C + b(x, τ ;ω))Q(x, τ ;ω))dτ,

where

b(x, t;ω) = a(θtω)(1− vµ(x, t;ω)− u(x, t− t0; vµ(·, t0;ω), θt0ω)).

Choose C > 0 such that b(x, t;ω)− 2 +C > 0 for all t ≥ t0, x ∈ R and a.e. ω ∈ Ω.
By the arguments of Proposition 2.1, we have

Q(x, t;ω) ≥ Q(x, t0;ω) = 0,

and hence for ω ∈ Ω0, we have

u(x, t− t0; vµ(·, t0;ω), θt0ω) ≤ vµ(x, t;ω), ∀x ∈ R, , t ≥ t0, t0 ∈ R.
�

Next, we construct a sub-solution of (2.1). Let µ̃ > 0 be such that µ < µ̃ <
min{2µ, µ∗} and ω ∈ Ω0. Let Aω and dω be given by Lemma 2.6, and let

xω(t) =

∫ t

0

c(s;ω, µ)ds+
lndω + lnµ̃− lnµ

µ̃− µ
+
Aω(t)

µ
.

Recall that

ṽµ,d,Aω (x, t, ω) = e−µ(x−
∫ t
0
c(s;ω,µ)ds) − de( µ̃µ−1)Aω(t)−µ̃(x−

∫ t
0
c(s;ω,µ)ds)

By calculation we have that for any given t ∈ R,

ṽµ,dω,Aω (xω(t), t, ω) = sup
x∈R

ṽµ,dω,Aω (x, t, ω)

= e−µ( ln dω
µ̃−µ +

Aω(t)
µ )e−µ

ln µ̃−lnµ
µ̃−µ (1− µ

µ̃
).

(3.1)

Define

vµ(x, t; θt0ω) =

{
ṽµ,dω,Aω (x, t+ t0, ω), if x ≥ xω(t+ t0),

ṽµ,dω,Aω (xω(t+ t0), t+ t0, ω), if x ≤ xω(t+ t0).

It is clear that

0 < vµ(x, t; θt0ω) < vµ(x, t; θt0ω) ≤ 1, ∀t ∈ R, x ∈ R, t0 ∈ R.
and

lim
x→∞

sup
t∈R,t0∈R

vµ(x, t; θt0ω)

vµ(x, t; θt0ω)
= 1. (3.2)

Note that by the similar arguments as in Lemma 3.1, we can prove that

u(x, t− t0; vµ(·, t0;ω), θt0ω) ≥ vµ(x, t;ω)

for x ∈ R, t ≥ t0 and a.e. ω ∈ Ω.

Proof of Theorem 1.2. By Lemma 3.1,

u(x, t− t0; vµ(·, t0;ω), θt0ω) ≤ vµ(x, t;ω), ∀x ∈ R, t ≥ t0, t0 ∈ R.
It then follows that

u(x, τ2 − τ1; vµ(·,−τ2;ω), θ−τ2ω) ≤ vµ(x,−τ1;ω), ∀x ∈ R, τ2 > τ1 .

Then

u(x, t+ τ1;u(·, τ2 − τ1; vµ(·,−τ2;ω), θ−τ2ω), θ−τ1ω)



EJDE-2019/129 KPP-TYPE LATTICE RANDOM EQUATIONS 13

≤ u(x, t+ τ1; vµ(·,−τ1;ω), θ−τ1ω)

for x ∈ R, t ≥ −τ1, τ2 > τ1, and hence

u(x, t+ τ2; vµ(·,−τ2;ω), θ−τ2ω) ≤ u(x, t+ τ1; vµ(·,−τ1;ω), θ−τ1ω)

for x ∈ R, t ≥ −τ1, τ2 > τ1. Therefore limτ→∞ u(x, t+ τ ; vµ(·,−τ ;ω), θ−τω) exists.
We define

V (x, t;ω) = lim
τ→∞

u(x, t+ τ ; vµ(·,−τ ;ω), θ−τω) (3.3)

for x ∈ R, t ∈ R, ω ∈ Ω0. Then V (x, t;ω) is non-increasing in x ∈ R and by
dominated convergence theorem we know that V (x, t;ω) is a solution of (2.1).

We claim that, for every ω ∈ Ω0,

lim
x→−∞

V (x+

∫ t

0

c(s;ω, µ)ds, t;ω) = 1 uniformly for t ∈ R. (3.4)

In fact, for any ω ∈ Ω0, letting x̂ω = ln dω+ln µ̃−lnµ
µ̃−µ − ‖Aω‖∞µ , it follows from

vµ(x, t;ω) ≤ V (x, t;ω) and (3.1) that

0 < (1− µ

µ̃
)e−µ( ln dω+ln µ̃−lnµ

µ̃−µ +
‖Aω‖∞

µ ) ≤ inf
t∈R

V (x̂ω +

∫ t

0

c(s;ω, µ)ds, t;ω).

Let u0(x) ≡ u0 := inft∈R V (x̂ω +
∫ t

0
c(s;ω, µ)ds, t;ω), and ũ0(x) be uniformly con-

tinuous such that ũ0(x) = u0(x) for x < x̂ω − 1 and ũ0(x) = 0 for x ≥ x̂ω. Then
limn→∞ ũ0(x − n) = u0(x) locally uniformly in x ∈ R. Note that by the proof of
Proposition 2.2, we have

lim
t→∞

u(x, t;u0, θt0ω) = 1

uniformly in t0 ∈ R and x ∈ R. Then for any ε > 0, there is T := T (ε) > 0 such
that

1 > u(x, T ;u0, θt0ω) > 1− ε, ∀t0 ∈ R, x ∈ R.
Therefore, by (H1) and the definition of c(t, ω, µ) we derive,

1 > u(x+

∫ T

0

c(s; θt0ω, µ)ds, T ;u0, θt0ω) > 1− ε, ∀t0 ∈ R, x ∈ R.

By Proposition 2.3, there is N := N(ε) > 1 such that

1 > u
(∫ T

0

c(s; θt0ω, µ)ds, T ; ũ0(· −N), θt0ω
)
> 1− 2ε, ∀t0 ∈ R.

That is,

1 > u
(∫ T

0

c(s; θt0ω, µ)ds−N,T ; ũ0(·), θt0ω
)
> 1− 2ε, ∀t0 ∈ R.

Note that

V
(
x+

∫ t−T

0

c(s;ω, µ)ds, t− T ;ω
)
≥ ũ0(x), ∀t ∈ R, x ∈ R.

and ∫ t

0

c(s;ω, µ)ds =

∫ T

0

c(s; θt−Tω, µ)ds+

∫ t−T

0

c(s;ω, µ)ds.

Then

1 > V
(
x+

∫ t

0

c(s;ω, µ)ds, t;ω
)
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= u
(
x+

∫ T

0

c(s; θt−Tω, µ)ds, T ;V (·+
∫ t−T

0

c(s;ω, µ)ds, t− T ;ω), θt−Tω
)

> 1− 2ε, ∀t ∈ R, x ≤ −N.

Thus (3.4) follows.
Note that by (3.2), for every ω ∈ Ω0, we have

lim
x→∞

sup
t∈R

V (x+
∫ t

0
c(s;ω, µ)ds, t;ω)

e−µx
= 1.

Set

Φ̃(x, t;ω) = V
(
x+

∫ t

0

c(s;ω, µ)ds, t;ω
)
, Φ(x, ω) = Φ̃(x, 0;ω).

We claim that Φ̃(x, t;ω) is stationary ergodic in t, that is, for a.e. ω ∈ Ω,

Φ̃(x, t;ω) = Φ̃(x, 0; θtω).

In fact, note that for ω ∈ Ω,∫ t

−τ
c(s;ω, µ)ds =

∫ t

−τ

eµ + e−µ − 2 + a(θsω)

µ
ds

=
eµ + e−µ − 2

µ
(t+ τ) +

∫ t

−τ

a(θsω)

µ
ds

(3.5)

and ∫ 0

−(t+τ)

c(s; θtω, µ)ds =

∫ 0

−(t+τ)

eµ + e−µ − 2 + a(θs ◦ θtω)

µ
ds

=
eµ + e−µ − 2

µ
(t+ τ) +

∫ 0

−(t+τ)

a(θs+tω)

µ
ds

=
eµ + e−µ − 2

µ
(t+ τ) +

∫ t

−τ

a(θsω)

µ
ds.

(3.6)

Combining (3.5) with (3.6), we obtain
∫ t
−τ c(s;ω, µ)ds =

∫ 0

−(t+τ)
c(s; θtω, µ)ds for

τ ≥ 0 and t ∈ R. Recall that

vµ(x, t;ω) = min
{

1, e−µ(x−
∫ t
0
c(s;ω,µ)ds)

}
.

Then

Φ̃(x, t;ω) = lim
τ→∞

u
(
x+

∫ t

0

c(s;ω, µ)ds, t+ τ ; vµ(·,−τ ;ω), θ−τω
)

= lim
τ→∞

u
(
x, t+ τ ; vµ

(
·+
∫ t

0

c(s;ω, µ)ds,−τ ;ω
)
, θ−τω

)
= lim
τ→∞

u
(
x, t+ τ ; vµ(·,−(t+ τ); θtω), θ−τω

)
= lim
τ→∞

u
(
x, t+ τ ; vµ(·,−(t+ τ); θtω), θt−(t+τ)ω

)
= lim
τ→∞

u
(
x, τ ; vµ(·,−τ ; θtω), θt−τω

)
=Φ̃(x, 0; θtω).

The claim thus follows and we obtain the desired random profile Φ(x, ω). �
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3.2. Stability of random transition fronts.

Proof of Theorem 1.4. We prove it by modifying the arguments of [37, Theorem
4.1]. For any ω ∈ Ω0 and given µ ∈ (0, µ∗), u(t;ω) = {ui(t;ω)}i∈Z with ui(t;w) =

Φ(i −
∫ t

0
c(s;ω, µ)ds, θtω) is a random transition front of (1.1). Let u0 ∈ l∞(Z),

u0 = {u0
i }i∈Z satisfy

inf
i≤i0

u0
i > 0 ∀i0 ∈ Z, lim

i→∞

u0
i

ui(0;ω)
= 1.

Then there is α ≥ 1 such that

1

α
≤ u0

i

ui(0;ω)
≤ α, ∀i ∈ Z.

By the comparison principle we have

ui(t;u
0, ω) ≤ ui(t;αu·(0;ω), ω), ∀i ∈ Z, t ≥ 0,

and

ui(t;ω) ≤ ui(t;αu0, ω), ∀i ∈ Z, t ≥ 0. (3.7)

Also, we have

d

dt
(αui(t;u

0, ω)) ≥ H(αui(t;u
0, ω)) + a(θtω)αui(t;u

0, ω)(1− αui(t;u0, ω)).

Again by the comparison principle and (3.7) we have

ui(t;ω) ≤ ui(t;αu0, ω) ≤ αui(t;u0, ω), ∀i ∈ Z, t ≥ 0.

Similarly,

ui(t;u
0, ω) ≤ αui(t;ω), ∀i ∈ Z, t ≥ 0.

Thus for every t ≥ 0, we can define α(t) ≥ 1 as

α(t) = inf{α ≥ 1 :
1

α
≤ ui(t;u

0, ω)

ui(t;ω)
≤ α for any i ∈ Z}. (3.8)

It is easy to see that α(t2) ≤ α(t1) for every 0 ≤ t1 ≤ t2. Therefore

α∞ := inf{α(t) : t ≥ 0} = lim
t→∞

α(t)

exists. Then to prove Theorem 1.4, it is sufficient to prove taht α∞ = 1.
Suppose by contradiction that α∞ > 1. Let 1 < α < α∞ be fixed, we first prove

that there is Iα � 1 such that

1

α
≤ ui(t;u

0, ω)

ui(t;ω)
≤ α, ∀i ≥ Iα +

∫ t

0

c(s;ω, µ)ds, t ≥ 0. (3.9)

To this end, we only need to prove that

lim
i→∞

ui(t;u
0, ω)

e−µ(i−
∫ t
0
c(s;ω,µ)ds)

= 1 uniformly for t ≥ 0. (3.10)

In fact, since for every ε > 0, there is Jε,ω � 1 such that

1− ε ≤ u0
i

ui(0;ω)
≤ 1 + ε, ∀i ≥ Jε,ω.

Let Aω(t) be as in Lemma 2.6. Since

e−µ(i−
∫ t
0
c(s;ω,µ)ds) − dωeAω(t)−µ̃(i−

∫ t
0
c(s;ω,µ)ds) ≤ ui(t;ω) ≤ e−µ(i−

∫ t
0
c(s;ω,µ)ds),
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it follows that

(1− ε)e−µi − (1− ε)dωeAω(0)−µ̃i ≤ u0
i ≤ (1 + ε)e−µi, ∀i ≥ Jε,ω. (3.11)

We claim that there is d� 1 such that

(1− ε)e−µi − deAω(0)−µ̃i ≤ u0
i ≤ (1 + ε)e−µi + deAω(0)−µ̃i, ∀i ∈ Z. (3.12)

Indeed, note that

‖u0‖∞eµ̃Jε,ω+|Aω(0)|eAω(0)−µ̃i ≥ ‖u0‖∞e(µ̃−µ̃)Jε,ω ≥ u0
i , ∀i ≤ Jε,ω.

Hence

u0
i ≤ dε,ωeAω(0)−µ̃i ≤ (1 + ε)e−µi + dε,ωe

Aω(0)−µ̃i, ∀i ≤ Jε,ω,

where dε,ω =: ‖u0‖∞eµ̃Jε,ω+|Aω(0)|. Combining this with (3.11), we obtain

u0
i ≤ (1 + ε)e−µi + dε,ωe

Aω(0)−µ̃i, ∀i ∈ Z. (3.13)

On the other hand, for every d > 1, the function Z 3 i 7→ (1− ε)e−µi − deAω(0)−µ̃i

attains its maximum value at

Jd :=
[ ln

(
dµ̃eAω(0)

(1−ε)µ
)

µ̃− µ

]
or

[ ln
(
dµ̃eAω(0)

(1−ε)µ
)

µ̃− µ

]
+ 1.

Note that limd→∞ Jd =∞ and

lim
d→∞

((1− ε)e−µJd − deAω(0)−µ̃Jd) = 0.

Then there is d̃ε,ω � (1− ε)dω such that Jd̃ε,ω ≥ Jε,ω and

(1− ε)e−µJd̃ε,ω − d̃ε,ωe
Aω(0)−µ̃Jd̃ε,ω ≤ inf

i≤Jε,ω
u0
i .

Together with (3.11), it follows that

(1− ε)e−µi − deAω(0)−µ̃i ≤ u0
i , ∀i ∈ Z, d ≥ d̃ε,ω. (3.14)

By (3.13) and (3.14) we drive that claim (3.12) holds for d ≥ max{d̃ε,ω, dε,ω}. Thus
by similar arguments as in Lemma 2.6, we can get that for d� 1,

˙̃ui(t, ω) ≤ Hũi(t, ω) + a(θtω)ũi(t, ω)(1− ũi(t, ω))

on the set Dε := {(i, t) ∈ Z× R+|ũi(t, ω) ≥ 0}, where

ũi(t, ω) = (1− ε)e−µ(i−
∫ t
0
c(s;ω,µ)ds) − deAω(t)−µ̃(i−

∫ t
0
c(s;ω,µ)ds).

Then by the comparison principle we obtain

(1− ε)e−µ(i−
∫ t
0
c(s;ω,µ)ds) − deAω(t)−µ̃(i−

∫ t
0
c(s;ω,µ)ds) ≤ ui(t;u0, ω) (3.15)

for i ∈ Z, t ≥ 0, d� 1. Similarly, we can obtain

ui(t;u
0, ω) ≤ (1 + ε)e−µ(i−

∫ t
0
c(s;ω,µ)ds) + deAω(t)−µ̃(i−

∫ t
0
c(s;ω,µ)ds)

for i ∈ Z, t ≥ 0, d� 1. Then (3.10) and (3.9) follow form the last two inequalities
and the arbitrariness of ε > 0.

Next, let Iα be given by (3.9) and set

mα :=
1

α0
inf
{
ui(t;ω) : t ≥ 0, i−

∫ t

0

c(s;ω, µ)ds ≤ Iα
}
,
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where α0 = α(0) = supt≥0 α(t). From (3.8) it follows that

mα ≤ min{ui(t;ω), ui(t;u
0, ω)}, ∀i ≤ Iα +

∫ t

0

c(s;ω, µ)ds, t ≥ 0.

By (H1) there is T = T (ω) ≥ 1 such that

0 <
aT

2
<

∫ τ+T

τ

a(θsω)ds < 2aT <∞, ∀τ ∈ R. (3.16)

Let 0 < δ � 1 satisfy

α < e−2δTaα∞ and ((α∞ − 1)− α0(1− e−2δTa))mα > δ. (3.17)

We claim that

α((k + 1)T ) ≤ e−δ
∫ (k+1)T
kT a(θsω)dsα(kT ), ∀k ≥ 0. (3.18)

In fact, setting ak(t) = a(θt+kTω), αk = α(kT ), Wk(i, t;ω) = eδ
∫ t+kT
kT

a(θsω)dsui(t+
kT ;u0, ω) and Vk(i, t;ω) = ui(t;u·(0; θkTω), θkTω), it follows from (3.16) that

d

dt
Wk

= δak(t)Wk +HWk + ak(t)Wk(1− ui(t+ kT ;u0, ω))

= HWk + ak(t)Wk(1−Wk) + ak(t)Wk((1− e−δ
∫ t+kT
kT

a(θsω)ds)Wk + δ)

≤ HWk + ak(t)Wk(1−Wk) + ak(t)Wk((1− e−2δTa)Wk + δ)

(3.19)

for all t ∈ (0, T ), i ∈ Z and k ≥ 0. Also, it follows from (3.17) and α∞ ≤ αk ≤ α0

that

d

dt
(αkVk)−H(αkVk)

=ak(t)(αkVk)(1− Vk)

= ak(t)(αkVk)(1− αkVk) + ak(t)(αkVk)((1− e−2δT ā)(αkVk) + δ)

+ ak(t)(αkVk)(((αk − 1)− (1− e−2δT ā)αk)Vk − δ)

≥ ak(t)(αkVk)(1− αkVk) + ak(t)(αkVk)((1− e−2δT ā)(αkVk) + δ)

+ ak(t)(αkVk)(((α∞ − 1)− (1− e−2δT ā)α0)mα − δ)

≥ ak(t)(αkVk)(1− αkVk) + ak(t)(αkVk)((1− e−2δT ā)(αkVk) + δ)

(3.20)

for i ≤ Iα +
∫ t+kT

0
c(s;ω, µ)ds, 0 ≤ t ≤ T and k ≥ 0. Therefore, from (3.8), (3.9),

eδ
∫ (k+1)T
kT a(θsω)dsα ≤ α∞ ≤ αk, and the comparison principle it follows that

eδ
∫ t+kT
kT

a(θsω)dsui(t+ kT ;u0, ω) ≤ αkui(t+ kT ;ω)

for i ≤ Iα +
∫ t+kT

0
c(s;ω, µ)ds, t ∈ [0, T ] and k ≥ 0. That is

ui(t+ kT ;u0, ω) ≤ e−δ
∫ t+kT
kT

a(θsω)dsαkui(t+ kT ;ω)

for i ≤ Iα +
∫ t+kT

0
c(s;ω, µ)ds, t ∈ [0, T ] and k ≥ 0. Note that

α ≤ e−δ
∫ (k+1)T
kT a(θsω)dsα∞ ≤ e−δ

∫ (k+1)T
kT a(θsω)dsαk.

Then by (3.9) we have

ui(t+ kT ;u0, ω) ≤ e−δ
∫ t+kT
kT

a(θsω)dsαkui(t+ kT ;ω)
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for i ≥ Iα +
∫ t+kT

0
c(s;ω, µ)ds, t ∈ [0, T ] and k ≥ 0. Therefore,

ui(t+ kT ;u0, ω) ≤ e−δ
∫ t+kT
kT

a(θsω)dsαkui(t+ kT ;ω) (3.21)

for i ∈ Z, t ∈ [0, T ] and k ≥ 0. By interchanging Wk and Vk in (3.19) and (3.20),
we can also obtain

ui(t+ kT ;ω) ≤ e−δ
∫ t+kT
kT

a(θsω)dsαkui(t+ kT ;u0, ω) (3.22)

for i ∈ Z, t ∈ [0, T ] and k ≥ 0. Then the claim (3.18) follows from (3.21) and (3.22).
From (3.18) it follows that

α∞ ≤ α((k + 1)T ) ≤ e−δ
∑k
i=0

∫ (i+1)T
iT a(θsω)dsα(0) = e−δ

∫ (k+1)T
0 a(θsω)dsα0 (3.23)

for any k ≥ 0. Note that
∫∞

0
a(θsω)ds =∞ for ω ∈ Ω0. Then by letting k →∞ in

(3.23), we get that α∞ ≤ 0, a contradiction. So we get that α∞ = 1, which leads
to the asymptotic stability of the random transition fronts. �
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transition fronts, Arch. Ration. Mech. Anal., 203 (2012), no. 1, 217-246.

[37] R. B. Salako, W. Shen; Long time behavior of random and nonautonomous Fisher-KPP

equations. Part II. Transition fronts, arXiv:1806.03508.
[38] D. H. Sattinger; On the stability of waves of nonlinear parabolic systems, Advances in Math.,

22 (1976), no. 3, 312-355.
[39] W. Shen; Traveling waves in diffusive random media, J. Dynam. Differential Equations, 16

(2004), no. 4, 1011-1060.

[40] W. Shen; Variational principle for spreading speeds and generalized propagating speeds in

time almost periodic and space periodic KPP models, Trans. Amer. Math. Soc., 362 (2010),
5125-5168.

[41] W. Shen; Existence, uniqueness, and stability of generalized traveling waves in time dependent
monostable equations, J. Dynam. Differential Equations, 23 (2011), no. 1, 1-44.

[42] W. Shen; Stability of transition waves and positive entire solutions of Fisher-KPP equations

with time and space dependence, Nonlinearity, 30 (2017), 3466-3491.

[43] N. Shigesada, K. Kawasaki; Biological Invasions: Theory and Practice, Oxford Series in
Ecology and Evolution, Oxford University Press, Oxford, 1997.



20 F. CAO, L. GAO EJDE-2019/129

[44] B. Shorrocks, I. R. Swingland; Living in a Patch Environment, Oxford University Press, New

York, 1990.

[45] K. Uchiyama; The behavior of solutions of some nonlinear diffusion equations for large time,
J. Math. Kyoto Univ., 18 (1978), no. 3, 453-508.

[46] H. Weinberger; On spreading speeds and traveling waves for growth and migration models in

a periodic habitat, J. Math. Biol., 45 (2002), no. 6, 511-548.
[47] J. Wu, X. Zou; Asymptotic and periodic boundary values problems of mixed PDEs and wave

solutions of lattice differential equations, J. Differential Equations, 135 (1997), 315-357.

[48] B. Zinner, G. Harris, W. Hudson; Traveling wavefronts for the discrete Fisher’s equation, J.
Differential Equations, 105 (1993), 46-62.
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