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SOLVABILITY OF NONLOCAL INVERSE BOUNDARY-VALUE
PROBLEM FOR A SECOND-ORDER PARABOLIC EQUATION
WITH INTEGRAL CONDITIONS
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Communicated by Ludmila Pulkina

ABSTRACT. This article studies a nonlocal inverse boundary-value problem
for a second-order parabolic equation on the rectangular domain. First, we
introduce a definition of a classical solution, and then the original problem is
reduced to an equivalent problem. Existence and uniqueness of the solution of
the equivalent problem is proved using a contraction mapping. Finally, using
the equivalency, the existence and uniqueness of classical solution is obtained.

1. INTRODUCTION

Practical requirements often lead to the problem of determining the coefficients
or the right hand side of the differential equations for some known data about its
solutions. Such problems are called inverse problems in mathematical physics. In-
verse problems arise in various fields of human activity, such as seismology, mineral
exploration, biology, medical visualization, computed tomography, Earth remote
sensing, spectral analysis, nondestructive control, etc. Fundamentals of the the-
ory and practice of research of inverse problems were established and developed in
the pioneering works by Tikhonov [19], Lavrent’ev [I1], [I2], Ivanov [7], Romanov
[18], Denisov [3]. Subsequently, the methods developed by them were applied to
investigate a wide scale of inverse problems by their pupils and followers. Recently,
there have been many studies of inverse problems for parabolic and other types of
equations. A more detailed bibliography and a classification of problems are found
in [1 (5 6, [7,, 8 14}, 15, [16].

Recently, problems with nonlocal conditions for partial differential equations
have been of great interest. We note that most of the publications about problems
with spatially nonlocal conditions and integral conditions for partial differential
equations are found in[9, 4, [I7]. In [10], a problem of time nonlocal integral condi-
tions for hyperbolic conditions is investigated.

In this article we study an inverse boundary-value problem for second-order
parabolic equations with nonlocal conditions. A distinctive feature of this article
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is the consideration of a parabolic equation with both spatial and time non-local
conditions.
2. FORMULATION OF THE PROBLEM

Let T > 0 be a fixed number and Dy := {(z,t) : 0 < 2 < 1,0 <t <T}. We
consider the equation

c(ug(z, t) = ugg(x, t) + a(t)u(z, t) + b(t)g(x, t) + f(x,t) (2.1)

in the rectangular domain D7. The inverse problem has nonlocal initial condition

T
u(z,0) + du(x, T) —|—/ p(u(z, t)dt = p(x) (0<z<1), (2.2)
0
periodic boundary condition
w(0,t) =u(l,t) (0<t<T), (2.3)

nonlocal integral condition

1

/ w(z, )z =0 (0<t<T), (2.4)
0

and the additional conditions
u(zg, t) =hi(t) (1=1,2, 0<¢<T), (2.5)
where § > 0, x; € (0, ) (1 =1,2; x1 # x2) are fixed numbers, 0 < c¢(t), g(z,t),
f(z,t), 0 < p(t), o(x), hi(t) (i = 1,2) are given functions, u(z,t),a(t), b(t) are the

sought functions.

Definition 2 1 The triplete {u(z,t), a(t), b(
of problem (2.1 ., if the functions u(z,t

conditions:

)} is said to be a classical solution
,a(t) and b(t) satisfy the following

t

)

(1) The function u(z,t) and its derivatives ug(z,t), uz(x,t), Uz, (2, t) are con-
tinuous in the domain Dr;

(2) the functions a( ) and b(t) are continuous on the interval [0, T7;

(3) equation (2.1)) and conditions (2.2)—(2.5) are satisfied in the classical (usual)
sense.

Lemma 2.2. Suppose that § > 0, 0 < ¢(t) € C[0,T1], a(t) € C[0,T] and 0 < p(t) €
C[0,T] hold. Then the problem

c(t)y'(t) = alt)y(t) (0<t<T), (2.6)

T
y(0) + 5y(T) + / p(t)y(t)dt =0 (2.7)

has a unique trivial solution.

Proof. Obviously, the general solution of equation (2.6 has the form:

¢t a(r)
y(t) = celo a7, (2.8)

Using ([2.7) we obtain
o(1+8el’ ot +/ p(t)els ST Tdt) = 0.
0
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By 6 > 0, and p(t) > 0, from the latter relation it is clear that ¢ = 0. Substituting
the value of ¢ = 0 in (2.8)), we obtain that problem ([2.6]), (2.7) has only the trivial
solution. The proof is complete. O

Theorem 2.3. Assume the following conditions are satisfied: 6 > 0, 0 < ¢(t) €
C[0,T], 0 < p(t) € C[0,T), f(z,t) € C(Dr), v(x) € C[0,1], folf(x,t)dx =0
(0<t<T), g(x,t) € C(Dr),

1
/ gz, t)de =0 (0<t<T),
0

hi(t) € CH0,T] (i = 1,2), h(t) = hi(t)g(x2,t) — ha(t)g(w1,t) #0 (0 <t < T), and
the compatibility conditions

1
/ p(x)dx =0, (2.9)
0

T
ha(0) + 5hi(T) + / p(Ohi(t)dt = p(z:) (i =1,2). (2.10)

Then the problem of finding a classical solution of (2.1)—(2.5)) is equivalent to the
problem of determining functions u(z,t) € C*Y(Dr), a(t) € C[0,T], and b(t) €
C[0,T], satisfying equation (2.1), conditions (2.2)) and (2.3), and the conditions
ug(0,8) = ug(1,8) (0<t<T), (2.11)
c(t)hi(t) = s (i, t) + a(t)hi(t) +b(t)g(i, t) + f(zi,1) (212)
fori=1,2,0<t<T.

Proof. Suppose that {u(z,t),a(t),b(t)} is a classical solution of (2.1)—(2.5)). Inte-
grating both sides of (2.1) with respect to = from 0 to 1 gives

d [! 1
C(t)ﬁ/o u(z, t)de = ug (1,t) — ug(0,1) + a(t)/o u(, t)dz (2.13)

1 1
+b(t)/0 g(:c,t)das+/0 flz,t)de (0<t<T).

Under the assumptions fol f(x,t)dz = 0 and fol gz, t)dr =0 (0 <t <T), we

obtain ([2.11)).
Setting x = x; in (2.1]) we obtain

c(t)ug(zi,t) = u(zg, t) + a(®)u(z;, t) + b(t)u(z;, t) (2.14)

+ flxi,t) (i=1,2,0<t<T).

Further, assuming h;(t) € C'[0,T] (i = 1,2) and differentiating (2.5), we have
ur(zi,t) = hi(t) (i=1,2). (2.15)

From , by and , we conclude that the relation (2.12) is fulfilled.

Now, assume that {u(z,t),a(t),b(t)} is the solution of (2.1))—(2.3), (2.11)), (2.12).
Then from (2.13)), taking into account (2.11)), we find

C(t)%/o u(z, t)dr = a(t)/o w(z, t)de (0<t<T). (2.16)
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By (2.2) and (2.9), it is easy to see that
1 1 T 1
/ u(x,())dx+5/ u(a:,T)der/ p(t)/ u(x, t)dxdt
0 0 0 0

= /01 (u(x, 0) + du(z, T) + /OT p(t)u(m,t)dt) dz (2.17)

= /01 p(x)dx = 0.

Since, by Lemma problem ([2.16 - has only a trivial solution, it follows
that

1
/ u(z,t)de =0 (0<t<T),
0
i.e. the condition ([2.4) holds.
Moreover, from (2.12) and (2.14) we find
d
c(t)a(u(xht) —hi(t)) = a(t)(u(x;, t) — hi(t)) (1=1,2;0<¢t<T). (2.18)

Using (2.2) and the compatibility conditions (2.10)) we have

T
i 0) = (0) + 8ules T) = i(0) + [ p(O)u(aint) = hi(0)d
= (e 0) + bules T) + [ plOyutade) = (1) +0,0)+ [ p(Ohi)at)
T
= () = (m0) +om () + [ ph(ar) =0 (i=1.2).

From this equality and (2.18)), by Lemma[2.2] we conclude that conditions (2.5) are
satisfied. The proof is complete. ([l

3. SOLVABILITY OF INVERSE BOUNDARY-VALUE PROBLEM

In [2], it is known that the system
1,cos \ix,sin A1z, ...,cos \px,sin \pz, . . ., (3.1)
where A\, = 2k7 (k=0,1,...), is a basis for Ls(0,1).
Since the system (3.1)) form a basis in Ly(0, 1), we shall seek the first component

u(z,t) of classical solution {u(z,t),a(t),b(t)} of the problem (2.1))—(2.3)), ,
(2.12)) in the form

t) = Zulk( ) cos Apx + Zuzk )sin Az (A = 2kmn), (3.2)
k=1

where

wolt) = / (e tyde,

1
g (t 2/ u(z,t)cos \pzdr (k=1,2,...),
0

1
u(z,t)sin \pzdr (k=1,2,...).

S~

’u,gk =2
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Then applying the formal scheme of the Fourier method, for determining of un-
known coeﬁicients uig(t) (k=0,1,...) and ugr(t) (k= 1,2,...) of function u(z,t)

from and . we have

c(t)ulo(t) = Fio(t;u,a,b) (0<t<T), (3.3)
(O (t) + MNuin(t) = Fip(t;u,a,0) (i=1,2k=1,2...; 0<t<T),
T

win(0) + Sui(T) + [ p(uan®)dt = g, (i=1,2 k=0,1,2...),  (3.5)

S—

where

Fir(tu,a,b) = fir(t) +0(t)gir(t) + a(t)uir(t) (i=1,2; k=0,1,2...),
1
= ) d )
fio(t) / f(z,t)dz,  gio(t) /0 g(z,t)dx
1
fie(t) = 2/ flx,t)cos Mgz dx,  for(t) = 2/ f(x,t)sin Apzx d,
0 0
1 1
qik(t) = 2/ g(x,t)cos \px dz,  gop(t) = 2/ g(z,t) sin \px dex,
0 0
1 1
_ de, —9 Aot i,
10 /o o(x)dx, p1i(t) /0 o(x) cos \px dx
1
=2 x) sin Agx dx
enlt) =2 [ pla)sindy

fork=1,2,....
Solving problem (3.3)—(3.5) we obtain

u1o(t) = (1 +5)—1(¢10 _ /OT (t)uio(t 5/ F10 (t;u,a b)dt)

= (3.6)
+Acv>w“%mwm,

o~ Ja s .

ik (t) = —(<sz */ p(t) ik (t )dt)

1+5€ fO C(s) 0

) 7]0 mds T 1 B |
_ 6—/\2/ 7Fik(7';u,a,b)e - C(Q) S dr (3 7)

14 e Jo wbyds Jo e(T)

t 1 +
+/ —Fik(T;u,a,b)eff* C(S> fdr (i=1,2 k=1,2,...).
o c(7)
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After substituting expressions uyx(¢) (K = 0,1,...) and ug(t) (k = 1,2,...) in
(13.2), we obtain

1
—Fio(t;u, a, b)dt)

T T
u(x,t):(1+5)71(<p107/0 p(t)ulg(t)dt—5/0 =

t
1
—|—/ ——Fio(T;u,a,b)dr
) oy olri )

+ Z {—_ fe (sﬂm - /OTP( tuag(t )dt>

k=1 1_|_§6 fo c(s)

se~ I Tb")ds S| _ ot Ak gy
- [ S Ruuae P
1+68e fOT T’S‘)ds 0 C(T)

1 ot 2R g
+/ ——Fii(T;u,a,b)e” /7 < dT}Cos/\kx
o o(r)

+Z {O—C()A(@Qk — /OTp( tuop (t )dt)

k=1 1+($6 pr(k)ds

T k

5 -/ c(s)ds T 1 A2

_ e—ﬂ/ — Fop(r;u,a,b)e” I 7% qr
1t se I absas Joo e(7)

t 2

1 t Ao

—|—/ —ng(r;u,a,b)e_ff C<§>d5d7'} sin \p.
o ()

Now, using and we have

a(t) = [h<t)]_1{<c(t)h/1(t) — [y, 1))g(w2,t) = (c()hs(t) — f(x2,1))g(21, 1)

+ Z Mourk(t)(g(z, t) cos Ay — g(z1,t) cos ) (3.9)

+ Z M ugr(t)(g(z2, t) sin \gzy — g(x1,t) sin )\ka)},
b(t) = [h(t)]_l{hl(t)(C(t)h'z(t) = [(@2,)) = ha(t)(c(t)Py (t) — f(21,1))

4 Z )\kulk ) cos Ao — ha(t) cos A\pxz) (3.10)

+ Z N ugp (1) ) sin Ao — hao(t) sin )\kxl)},

where

h(t) = hi(t)g(w2,t) — ha(t)g(x1,t) #0 (0<t <T). (3.11)
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Taking into account (3.7)), from and we obtain
a(t) = [h(®))H(c®hy(t) = f(z1,8)g(w2, t) = (c()hy(t) — f(22,1))g(x2,1t)

ds

+ Z A2 [% (tpm - /OTp( g (t )dt)

k=1 1+6e‘fo zok

S _fo st T 1 e AR
- e—k/ . Fu(riu,a,b)e” I w9 gr
Ly se i abas Jo el7)

¢ 1 t Ai d
+/ ——Fip(t;u,a,b)e” o) sdT} (g(x2,t) cos Agxq
o ()

— g(x1,t) cos Apaa)

(3.12)
= o= i Zhas v
F [ (en | pOua)ar)
k=1 1 _|_ de fo c( ) 0
fo (s) T 1 : A2
- 66—%,/ — Fop(riu,a,b)e” 7 % dr
|4 se— I ayas Jo e(7)
¢ 1 _ [t id
—|—/ ——For(T;u,a,b)e” /7 o SdT} (g(x2,t) sin Apzq
o (1)
—g(xq1,1) sin)\ka)},
b(t) = [h(t)]_l{h1(t)(c(t)h'2(t) — f(x2,1)) = ha(t)(c(t)Ry (t) — f(21,1))
0o —fJ ;\(—2’;)(13 T
e
+ Z)\i [ﬁ (90119 —/ p(t)uir(t )dt)
k=1 14 de” Jo i5d 0
-/ Oy ds T . A2
- o A2 / . Flk(T; u, a, b)e_ fT mdsd,r
14 deJo wiyds o(7)
t 2
1 . I} ks
+/0 HFlk(T,u,a,b)e ) dTi| (h1(t) cos Mg
— ha(t) cos Ap1) (3.13)

N iv [f” (W _ /OTp( )z (t)dt

k=1 1+5e fo (‘()

e 17 T _ e 2R
e v / For(T;u,a,b)e Iz w5 ds g
|4 e b aksas o e(T)

t
1
—|—/ ——For(T;u,a,b)e” Iz °<S> dT} (hy () sin A\gxo
o ()

— ha(t) sin )\k$1)}-

Analogously, the following lemma was proved in [13].
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Lemma 3.1. If {u(z,t),a(t),b(t)} is a solution of (2.1)—(2.3), (2.11), (2.12), then

the functions

1
uo(®) = [ ute.tyds
0
1
uig(t) = 2/ u(z,t)cos \pxdr  (k=1,2,...),
0

1
ug(t) = 2/ u(z,t)sin \pzde (k=1,2,...)
0

satisfy system (3.6)), (3.7) on the interval [0,T).
From Lemmalt follows that to prove the uniqueness of the solution of problem

} ?7 2.3), (2.11)), (2.12), it suffices to prove the uniqueness of the solution of (3.8),
3.12

(13-13).
)
Now, consider the space Bj ;- [13] consisting of functions of the form

t) = Zulk( COS AT + ZUQk sin \gx (A = 2km)

k=1

in domain Dy, where the functions w1 (t) (k=0,1,...), uk(t) (k=1,2,...), are
continuous on [0, 7] and satisfy the condition

fuss®llcor+ (3 (Hun®lloon)’)+ (3 (Mluse@lenm) )" < +oc.

k=1 k=1

. 3 .
The norm in the space Bj 1 is

e 2\ 1/2
lutz, O, = luro@ller + (3 (Allu®lown) )

k=1
+ (3 (s o))
k=1
We denote by E32., the Banach space BS,T x C[0,T] x C[0,T] of vector functions
z(z,t) = {u(x,t),a(t),b(t)} with norm
I2(z, )l B3 . = lulz, )]s, + lla®)llcro.r + [6()]cp,-

It is known that BS’T and E2. are Banach spaces
Now consider the operator

CD(ua a, b) - {(I)l(u7 a, b)a @Q(Ua a, b)a CI)3(u, a, b)}
in the space E3., where

cos/\kaH—E U (t) sin A\,
k=1

<I>2(u,a,b) d(t) ®3(u, a,b) = b(t)

D (u,a,b) = u(zx,t) =

OM8

and the functions @yo(t), @ (t) (i =1,2; k=0,1,2,...), a(t) and b(t) are equal to

the right-hand sides of (3.6)), (3.7)), (3.12), and (3.13]) respectively.
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Using simple transformations from (3.6), (3.7), (3.12), and (3.13)) we obtain

Hulo( )HC (0,17

< (1+8)lprol + Tllp(®) o r1 a0 (®) o
T
+0ll 5 )||C[0T )(vr( / o) Par)” + Tla o o e
+\/T||b(t)||C[O,T] (/0 |910(T)|2d7>1/2)} (3.14)
1 T ) 1/2
+ ||@||C[0,T] {\/T</O | f10(7)] dT)

T 1/2
+ Tlla(t)llctomluso(®)llcror + VI Ib®llcpo.r / lgr0(r)Pdr) ]

(3 BigOEaa®lcom) )
k=1

<233 (leul) )+ 23O e (3 (hwelleon))

k=1 k=1

+2\/§(1+5)||C(1t leonVT / Z Xl fin(T ) dT)1/2 (3.15)

o0

1 1/2
+ 2021+ 9) | sl Tl o (Z (Ml (Do) )

k=1

T o0
+2\/ﬁ(1Jr(;)||c(t)||C[OT]||b ||COT(/ Z(/\ilgm )dT)l/%
k=1

la(®)llcror
< H[h(t)]*llIC[O,T]{H(C(t)h’l (t) — fla1,1)g(@2,t) — (c(t)h5(t)
- f(ir% t))g(‘rla t) Hc[o T]

2 o)

(Z)\ ) llg@2, )+ lg(@1, Dlllcpm [Z (Z </\2|§0ik|)2)1/2

=1 k=1
> 2\ 1/2
b0l (> (Ml ®licpn))
=1 k=1

2 T 0 2 \1/2
(40 gllennvT Y ([ 3 (W) o) (3.16)

i=1 Y0 g=1

2 o] 1/

+ 1+ 5)||$||C[O,T]T||a(t)||0[o,ﬂ > (Z (AkHUm e, T])Q) :

=1 k=1

+ (04D leonVTIHOTaon 3 ([ 3 Ollantriar)?) ],

i=1 k=1
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16(t) 0,7y
< O etoiry{ 10 (OO 0) — (a2, 0)) = halO) (el (1)
= f(z1, ))”C[OT
(ZA ) ol + o[ (3 (tlenl))
i=1 k=1
FTIpOllenn Y (3 (Rlua®lcnn) )

i=1 k=1
s (3.17)

+<1+6>\|%ucm,ﬂﬁz (f Z (Alfa(r)) ar)

i 2\ 1/2
+<1+6>\|$HC[O,T]TH HCOTz(Z(Aknum ew) )

i=1 k=1

+(1+6)H%

(3 (annan)) )

e, r \/T”b(t)”(:[o 7]

Assume that the data for problem (2.1)—(2.3), (2.11]) and (2.12) satisfy the fol-

lowing conditions

(A1) w(ﬂg))e C?[0,1], ¢""(x) € L2(0,1), »(0) = o(1), ¢'(0) = ¢'(1),¢"(0) =
¢ (1);

(A2) f(z,1), fo(z,t), fau(x,t) € C?[0,1], foaa(x,t) € La(Dr), f(0,8) = f(1,1),
fz(oat):fz(]-at)a fmz(o,t) fzz(l t) 0 OStST)7

(A3) g(z,t), 9u(2,t), gza(z,t) € C?0,1], Guaa(z,t) € La(Dr), g(0,t) = g(1,t),
92(0,t) = fo(1,t), 922(0,t) = guu(1,8) =0 (0 < ¢t < T);

(Ad) 6 >0, 0< p(t) € C0,T], hs(t) € CY0,T] (i = 1,2), h(t) = hi(t)g(ws,t) —
ha(t)g(wy,t) #0 (0 <t < T).

Then from (3.14)—(3.17) we find that

[a(z, )l B3 . < AL(T) + Bu(T)[la(®)llcro.mllulz, )l .

OOl + DO o,
a(®lleor < A2(T) + Ba(@)la(®)lcpo.mllut, )53 , o
+ Co(T) u(a, )3, + Da(TIB(O) lcpom: '
6(E) oty < As(T) + Bo(T)la®llcgo.r e Dl . 50
T Co(T)ul, B, + Da(DIBO o0,
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where

A4(T) = (1+ 5)‘1(2H<ﬂ( Do) + 20 s et | e Dllacon )

+ == llcp. I f @ )l o pe) +4V2]0" (@) |15 (0.1)

20
+ 4T s letoin o 2. Dl o)
BA(T) = (51 +8)" + )T | s o,
CuT) = ((1+0)7! +2v2 ) Tlp()llcom;
DuT) = (314 6)™ + 1+ 2v2) VT s et gsas (. Dl aor
Ao(T) = 10 o ry{ (RS (1) = F (1, ) g(w2,) = (b5 (2)

oo

oN\1/2
Mo + (Z 7:2) Clllgen 0] + g2 H)lllepon

- f(l‘g,t))g(l‘l,t

< [21e" @liaon) + 20+ Ol g5 lewmV T s Ol acom]

1/2

Bo(T) = |10t lowm (D ()

k=1

% lllg(@s, Ol + gz, Dlllero.n (1 + DT 77 )Hc 0,7];

( ) = || ||C[0T (Z ) |||9 w1, t)] + |9($27 )|||C[o T]||p( )||C[O,T]T7

Do) = @] o (30 45%) Mgt ) + o, Dllcrorm
k=1

x (14 0) | —= lletom VTl gaze (@, )| o (0r):

( )
A3(T) = [|[h(O] e, T]{th (c(®)hy(t) = f(w2,t)) = ha(t)(c(t)hi (t)

~ fw1t) ||C[0T]+(ZA ) @)1+ he®llegor

< 216" @)l a0y + 21+ 0)] ()ncmxf | Frae @, Ol 1a(0m)] §-

oo

Ba(1) = (0] o (3 (04%) 0]+ 1ha@lletor 1+ 75 o

k=1
oo

() = 1O oo (3 05) Wb @]+ a®lllogo mlp®) lego.n T
k=1
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oo

D) = O] ey (3 4:2) a0+ (@)oo

k=1

(146 ()chfngm(x | Lo (Dr)-

From ([3.18)—(3.20) we conclude that

(2, ) sg . + Na)llcror) + 160 lepo,r
< A(T) + B(T)[[a®)llcro,rlulz, ) 53 . (3.21)
+ C(D)lJu(z, t)ll B3, + DD)6E) | co,7)5

where

A(T) = Au(T) + A2(T) + A3(T), B(T) = Bi(T) + Ba(T) + Bs(T),
C(T) = C1(T) + Co(T) + C5(T), D(T) = D1(T) + D2(T) + Ds(T).

Theorem 3.2. If conditions (A1)—(A4) and the condition
(B(TY(A(T)+2)+ C(T)+ D(M)(A(T)+2) < 1 (3.22)

hold, then problem (12.1] ., -, - ) has a unique solution in the ball K =

Kr (|2llgs <R < A (T) +2) of the space E3..
Proof. In the space E3., we consider the equation
2= ®z, (3.23)

where z = {u, a,b}, the components P; (u a, b) (z = 1,2,3), of operator ®(u, a,b),

defined by the right side of equations (3 and -

Consider the operator ®(u,a,b), in the ball K Kpg of the space E2. Simi-
larly, with the aid of (3.21) we obtain that for any zi, 22,23 € Kgr the following
inequalities hold

[Pz g2
< A(T) + B(T)|la(®)llclomlu(z, 1)l pg ,, + C(T)[[ulz, 1)l 3, + D)6t clo1)
< A(T) + B(T)(A(T) + 2)? + C(T)(A(T) + 2) + D(T)(A(T) + 2)
<A(T)+2
(3.24)
[ @21 — P2a gz

< BIR(llar(t) = as(®)lcrory + Jun(w,6) = us(@,0) 153, ) (3.25)
+ O s (2,8) = ua(, D)l 3., + DD)1(1) = bo(V) o

Then by (3.22)), from (3.24) and (3.25)) it is clear that the operator ® on the set

K = Kp satisfy the conditions of the contraction mapping principle. Therefore the
operator ® has a unique fixed point {z} = {u,a, b}, in the ball K = Kp, which is
a solution of equation (3.23)); i.e. in the sphere K = Kg is the unique solution of
the systems , @ Then the function u(z,t), as an element of space
BS’T, is continuous and has continuous derivatives u,(x,t) and u.,(z,t) in Dy.
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Next, from (3.4) it follows that uf,(t) (¢ = 1,2; k = 1,2...) is continuous on
[0,T] and consequently we have

oo

(3 el Ollory?)
k=1

> o 1/2
SHE%SWAQHVQ[< (M llwir ()|l cpo.17) )

k=1
+ H”f:c(l',t) +a(t)uy(z,t) + b(t)gm(l'at)HC[O,T]||L2(071)} <40 (i=1,2).

Hence we conclude that the function u(z,t) is continuous in the domain Dp. Fur-

ther, it is possible to verify that equation (2.1)) and conditions (2.2)), (2.3, (2.11),

(2.12)) are satisfied in the usual sense. Consequently, {u(z,t),a(t),b(t)} is a solution
of (2.1)—(2.3)), (2.11)), , and by Lemma [3.1] it is unique in the ball K = Kp.

The proof is complete. U
From Theorem and Theorem it follows directly the following assertion.

Theorem 3.3. Suppose that all assumptions of Theorem|[3.9, and the compatibility

conditions (2.9), (2.10) hold. If

1 1
/ F,t)dz = 0, / g@ iz =0 (0<t<T)
0 0
then problem 1) has a unique classical solution in the ball K = Kg.
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