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CONTINUITY OF ATTRACTORS FOR A
REACTION-DIFFUSION PROBLEM WITH RESPECT TO

VARIATIONS OF THE DOMAIN

LUIZ A. F. DE OLIVEIRA, ANTÔNIO L. PEREIRA, MARCONE C. PEREIRA

Abstract. We show that for a class of dissipative semilinear parabolic prob-

lems, the global attractor varies continuously (upper and lower semi-continuity)

with respect to perturbations of the spatial domain.

1. Introduction

Let Ω be an open bounded region in Rn with smooth boundary, where we consider
the semilinear parabolic problem

ut(x, t) = ∆u(x, t) + f(u(x, t)), x ∈ Ω, t > 0

u(x, t) = 0, x ∈ ∂Ω, t > 0.
(1.1)

It is well known that, under appropriate growth conditions for the nonlinearity
f , problem (1.1) is locally well-posed in various functional spaces (see [10]). With
some additional dissipative conditions, the associated (global) dynamical system
has a global attractor; see, for example [6, 7, 15]. The dependence of the global
attractor of (1.1) on the parameters present in the equation is also an important
object of study (see for example [8, 9, 13]). An excellent review of the subject can
be found in [17].

Our purpose here is to address the problem of continuity of attractors for (1.1)
when the parameter involved is the domain where the problem is posed. That is,
we assume that Ω is a small perturbation of a fixed smooth region Ω0 and we want
to discuss the changes of the attractor of (1.1) with respect to the region Ω. As
we shall see, small perturbations of Ω0 cause small perturbations of the attractors.
We say that Ω is a Ck small perturbation of Ω0 if there exists a Ck diffeomorphism
h : Ω0 → Rn such that Ω = h(Ω0) and ‖h − iΩ0‖Ck is small (cf. Section 2) and
closeness of attractors means upper semicontinuity and/or lower semicontinuity.
One of the difficulties here is that the functional spaces change as we change the
region. Our first task is then to find a way to compare the attractors of problem
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(1.1) in different regions. One possible approach is the one taken by Henry in [11]
which we describe very briefly.

Given an open bounded region Ω ⊂ Rn, consider the set

Diff m(Ω) = {h ∈ Cm(Ω,Rn);h is injective and
1

|deth′(x)|
is bounded in Ω}

and consider the collection of regions

{h(Ω0);h ∈ Diff m(Ω0)}.
We introduce a topology in this set by defining a sub-basis of the neighborhoods of
a given set Ω by

{h(Ω); ‖h− iΩ‖Cm(Ω,Rn) < ε, ε > 0 sufficiently small}.
When ‖h − iΩ‖Cm(Ω,Rn) is small, h is a Cm embedding of Ω in Rn, that is,

a Cm diffeomorphism to its image h(Ω). Michelleti [14] has shown this topology
is metrizable, and the set of regions Cm-diffeomorphic to Ω may be considered a
separable metric space, which we denote by Mm(Ω), or simply Mm. We say that
a function F defined in the space Mm with values in a Banach space is Cm or
analytic if h 7→ F (h(Ω)) is Cm or analytic as a map of Banach spaces (h near
iΩ in Cm(Ω,Rn)). In this sense, we may express problems of perturbation of the
boundary of a boundary value problem as problems of differential calculus in Banach
spaces.

If h : Ω 7→ Rn is a Ck embedding, we may consider the ‘pull-back’ of h

h∗ : Ck(h(Ω)) → Ck(Ω) (0 ≤ k ≤ m)

defined by h∗(ϕ) = ϕ ◦ h, which is an isomorphism with inverse h−1∗. Other func-
tion spaces can be used instead of Ck, and we will actually be interested mainly in
Sobolev spaces and fractional power spaces. If Fh(Ω) : Cm(h(Ω)) → C0(h(Ω))
is a (generally nonlinear) differential operator in Ωh = h(Ω) we can consider
h∗Fh(Ω)h

∗−1, which is a differential operator in the fixed region Ω.
Now it is easily seen that v(·, t) satisfies (1.1) in Ωh if and only if u(·, t) = h∗v(·, t)

(that is, u(x, t) = v(h(x), t)) satisfies

ut(x, t) = h∗∆Ωh
h∗−1u(x, t) + f(u(x, t)), x ∈ Ω0, t > 0
u = 0, x ∈ ∂Ω0,

(1.2)

where h∗∆Ωh
h∗−1 : H2 ∩H1(Ω0) → L2(Ω0) is defined by[

h∗∆Ωh
h∗−1u

]
(x) = ∆Ωh

(u ◦ h−1)(h(x)).

In particular, if Ah is the global attractor of (1.1) in H1
0 (Ωh), then Ãh = {v ◦h|v ∈

Ah} is the global attractor of (1.2) in H1
0 (Ω0) and conversely. In this way we can

consider the problem of continuity of the attractors as h → iΩ0 in a fixed phase
space.

For simplicity, we work here in L2 spaces, assuming that the nonlinearity f is
globally Lipschitz and satisfies the standard dissipation condition

lim sup
|u|→∞

f(u)
u

≤ 0.

This is not such a stringent requirement as it may seem at first in the problem at
hand. We may, as is done in [15] for example (see also [3]), pose the problem in Lp
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spaces. Choosing p big enough, we can, without assuming any growth condition,
prove existence of the attractors and find estimates on their size in L∞. It turns out
that this bound depends only on a linear problem that can be chosen independently
of the parameter in the problem we treat. This in turn allows as to perform the
standard trick of ‘cutting’ f outside a ball containing the attractors so as to have
it (and as many of its derivatives as wished), globally Lipschitz without changing
the attractors.

During the last stages of preparation of this work, we learned of similar results
(now already published) obtained by Arrieta and Carvalho [5]. The authors used
a different method based on the spectral converge which allows more irregular
perturbations. On the other hand, we believe that our method is simpler and gives
more detailed results for the regular case. For instance, hyperbolicity of equilibria
can be proved in our context for ‘generic’ regular regions (see [11]). Also, we believe
that our method can be used to prove similar results for other (including nonlinear)
boundary conditions (see Remark at the end of section 4). The upper semicontinuity
of attractors, in the case of ‘thin domains’, have been obtained previously in [16],
also using convergence of the spectra.

This paper is organized as follows. In section 2 we prove a result on continuity
of linear semigroups with respect to variation of the generator following the same
lines of Theorem 1.3.2 in [10] and apply it to the Laplacian operator in varying
domains. We also prove a result on continuity of the unstable manifolds of the
equilibria in the appendix. In Section 3 we prove that the nonlinear semigroup Th(t)
generated by (1.2) is continuous with respect to all its arguments. Since continuity
with respect to t and initial conditions follows easily from our assumptions, we
concentrate in proving the continuity with respect to h, the ‘perturbation’ of the
domain. In Section 4 we prove the main results of the paper, namely, that the
family {Ah : ‖h− iΩ‖ < ε0} is upper and, assuming hyperbolicity of the equilibria,
also lower semicontinuous at iΩ.

2. Continuity of the linear semigroup with respect to parameters

An abstract result.

Lemma 2.1. Suppose A is a sectorial operator with ‖(λ − A)−1‖ ≤ M
|λ−a| for all

λ in the sector Sa,φ0 = {λ | φ0 ≤ |arg(λ − a)| ≤ π, λ 6= a}, for some a ∈ R
and 0 ≤ φ0 < π/2. Suppose also that B is a linear operator with D(B) ⊃ D(A)
and ‖Bx − Ax‖ ≤ ε‖Ax‖ +K‖x‖, for any x ∈ D(A), where K and ε are positive
constants with ε ≤ 1

4(1+LM) , K ≤
√

5
20M

√
2L−1

L2−1 , for some L > 1.

Then B is also sectorial. More precisely, if b = L2

L2−1a−
√

2L
L2−1 |a|, φ = max{φ0,

π
4 }

and M ′ = 2M
√

5 then

‖(λ−B)−1‖ ≤ M ′

|λ− b|
,

in the sector Sb,φ = {λ | φ ≤ |arg(λ− b)| ≤ π, λ 6= b}.

Proof. Simple computations show that in the sector Sb,φ, we have

|λ|
|λ− a|

≤ L, (2.1)

|λ− a| ≥
(√2L− 1
L2 − 1

)
|a|, (2.2)
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|λ− b|
|λ− a|

≤
√

5. (2.3)

Therefore,

‖A(λ−A)−1‖ ≤ ‖(A− λ)(λ−A)−1‖+ |λ|‖(λ−A)−1‖
= ‖I‖+ |λ|‖(λ−A)−1‖

≤ 1 + |λ| M

|λ− a|
≤ 1 + LM by (2.1).

Thus

‖(A−B)(λ−A)−1‖ ≤ ε‖A(λ−A)−1‖+K‖(λ−A)−1‖

≤ ε(1 + LM) +K
M

|λ− a|
≤ 1

2

by (2.2). Therefore, I + (A − B)(λ − A)−1 is invertible with ‖[I + (A − B)(λ −
A)−1]−1‖ ≤ 2. From this we obtain

‖(λ−B)−1‖ = ‖(λ−A+A−B)−1‖

= ‖
[
(I + (A−B)(λ−A)−1)(λ−A)

]−1 ‖
= ‖(λ−A)−1(I + (A−B)(λ−A)−1)−1‖
≤ ‖(λ−A)−1‖‖(I + (A−B)(λ−A)−1)−1‖

≤ 2M
|λ− a|

=
2M
|λ− b|

|λ− b|
|λ− a|

≤ 2M
√

5
|λ− b|

by (2.3) as claimed. �

Remark 2.2. Observe that b can be made arbitrarily close to a by taking L
sufficiently large. In particular, if a > 0 then b > 0.

Theorem 2.3. Suppose that A is as in Lemma 2.1, Λ a topological space and
{Aγ}γ∈Λ is a family of operators in X with Aγ0 = A satisfying the following con-
ditions:

(1) D(Aγ) ⊃ D(A), for all γ ∈ Λ;
(2) ‖Aγx − Ax‖ ≤ ε(γ)‖Ax‖ + K(γ)‖x‖ for any x ∈ D(A), where K(γ) and

ε(γ) are positive functions with limγ→γ0 ε(γ) = 0 and limγ→γ0 K(γ) = 0.
Then, there exists a neighborhood V of γ0 such that Aγ is sectorial if γ ∈ V and
the family of (linear) semigroups e−tAγ satisfy

‖e−tAγ − e−tA‖ ≤ C(γ)e−bt

‖A
(
e−tAγ − e−tA

)
‖ ≤ C(γ)

1
t
e−bt

‖Aα
(
e−tAγ − e−tA

)
‖ ≤ C(γ)

1
tα
e−bt, 0 < α < 1
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for t > 0, where b is as in Lemma 2.1 and C(γ) → 0 as γ → γ0.

Proof. If γ is sufficiently close to γ0, ε(γ) ≤ 1
4(1+LM) and K(γ) ≤

√
5

20M

√
2L−1

L2−1 . To
simplify the notation we suppress, from now on, the dependence of K and ε on γ.
By Lemma 2.1, Aγ is sectorial and the estimate

‖(λ−Aγ)−1‖ ≤ M ′

|λ− b|

holds in the sector Sb,φ = {λ | φ ≤ |arg(λ− b)| ≤ π, λ 6= a} with M ′ = 2
√

5M ; M ,
b and φ are independent of γ.

If Γ is a contour in −Sb,φ with | arg λ − b| → π − φ as |λ| → ∞ then, for any x
in X

e−Aγtx− e−Atx =
1

2πi

∫
Γ

[
(λ+Aγ)−1x− (λ+A)−1x

]
eλt dλ.

We estimate the integrand as follows. Firstly we have, for λ ∈ Sb,φ

‖(λ−Aγ)−1 − (λ−A)−1‖ ≤ ‖(λ−Aγ)−1
[
I − (λ−Aγ)(λ−A)−1

]
‖

≤ ‖(λ−Aγ)−1
[
I − (λ−A+A−Aγ)(λ−A)−1

]
‖

≤ ‖(λ−Aγ)−1
[
(A−Aγ)(λ−A)−1

]
‖

≤ ‖(λ−Aγ)−1‖‖(A−Aγ) · (λ−A)−1)‖.

Proceeding as in the proof of Lemma 2.1, we obtain

‖(A−Aγ) · (λ−A)−1)‖ ≤ ε(1 + LM) +K
M

|λ− a|
.

It follows that

‖(λ−Aγ)−1 − (λ−A)−1‖ ≤ M ′

|λ− b|
(
ε(1 + LM) +K

M

|λ− a|
)
.

Therefore,

‖e−Aγt − e−At‖ ≤ 1
2π

∫
Γ

‖(λ+Aγ)−1 − (λ+A)−1‖| eλt|| dλ|

≤ M ′

2π

(
ε(1 + LM) +

MK(L2 − 1)
(
√

2L− 1)|a|

)
e−bt

∫
Γ

|e(λ+b)t|
|λ+ b|

|dλ|

≤ C1(γ)e−bt

∫
Γ

|eµ|
|µ|

| dµ|,

where C1(γ) → 0 as γ → 0, as claimed.
Now, we have

‖A
(
(λ−Aγ)−1 − (λ−A)−1

)
‖ ≤ ‖A(λ−Aγ)−1‖‖(A−Aγ) · (λ−A)−1‖.

Proceeding as in Lemma 2.1

‖A(λ−Aγ)−1‖ ≤ ‖(A−Aγ)(λ−Aγ)−1‖+ ‖Aγ(λ−Aγ)−1‖

≤ ε‖A(λ−Aγ)−1‖+
KM

|λ− a|
+ 1 + LM ′

and

‖(A−Aγ)(λ−A)−1‖ ≤ ε (1 + LM) +
KM

|λ− a|
. (2.4)



6 L. A. F. DE OLIVEIRA, A. L. PEREIRA, M. C. PEREIRA EJDE-2005/100

From (2.4) and (2.4), we obtain

‖A
(
(λ−Aγ)−1 − (λ−A)−1

)
‖

≤ 1
1− ε

( KM

|λ− a|
+ 1 + LM ′){ε(1 + LM) +

KM

|λ− a|
}

= C2(γ),

where C2(γ) → 0 as γ → 0. Then we have

‖A
(
e−Aγt − e−At

)
‖ ≤ 1

2π

∫
Γ

‖A
(
(λ+Aγ)−1 − (λ+A)−1

)
‖| eλt|| dλ|

≤ 1
2π
C2(γ)e−bt

∫
Γ

|e(λ+b)t| |dλ|

≤ 1
2π
C2(γ)

e−bt

t

∫
Γ

|eµ|
|µ|

| dµ|.

The above inequality follows immediately from [10, Theorem 1.4.4]. �

2.1. Application to the Laplacian operator in varying domains. Suppose Ω
is a C2 domain in Rn and h : Ω → Rn is a C2 embedding, i.e., a C2 diffeomorphism
to its image.

Let ∆h(Ω) represent the Laplacian operator in the region h(Ω). Then we can
consider the differential operator h∗∆h(Ω)(h∗)−1 defined in the fixed region Ω. More
explicitly, if u ∈ C2(h(Ω)) and x ∈ Ω, then[

(h∗∆h(Ω)(h∗)−1)u
]
(x) =

[
∆h(Ω)(u ◦ h−1)

]
(h(x)).

We need to express the coefficients of h∗∆h(Ω)(h∗)−1 in terms of h. To this end,
we write

h(x) = h(x1, x2, . . . , xn) = (h1(x), h2(x) . . . , hn(x)) = (y1, y2, . . . , yn) = y.

Then, we have (
h∗

∂

∂yi
h∗−1(u)

)
(x) =

∂

∂yi
(u ◦ h−1)(h(x))

=
n∑

j=1

∂u

∂xj
(h−1(y))

∂h−1
j (y)
∂yi

(y)

=
n∑

j=1

[(∂h
∂x

)−1]
j,i

(x)
∂u

∂xj
(x)

=
n∑

j=1

bi,j(x)
∂u

∂xj
(x),

where bij(x) is the i, j entry in the inverse-transpose of the Jacobian matrix hx =
[ ∂hi

∂xj
]ni,j=1. Therefore,

h∗
∂2

∂y2
i

h∗−1(u)(x) =
n∑

k=1

bi,k(x)
∂

∂xk

( n∑
j=1

bi,j
∂u

∂xj

)
(x)

=
n∑

k=1

bi,k(x)
n∑

j=1

[∂bi,j
∂xk

(x) · ∂u
∂xj

(x) + bi,j(x)
∂2u

∂xk∂xj
(x)

]
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=
n∑

j,k=1

bi,k(x)bi,j(x)
∂2u

∂xk∂xj
(x) +

n∑
j,k=1

bi,k(x)
∂bi,j
∂xk

(x)
∂u

∂xj
(x)

=
( ∂2

∂x2
i

(u)
)
(x) + Li(u)(x),

where

Li(u)(x) = (bii(x)− 1)
∂2u

∂xi
+

n∑
j,k=1

(1− δi,j,k)bi,k(x)bi,j(x)
( ∂2u

∂xk∂xj

)
(x)

+
n∑

j,k=1

bi,k(x)
( ∂

∂xk
bi,j

)
(x)

∂u

∂xj
(x)

with δi,j,k = 1 if i = j = k, and 0 otherwise. Thus(
h∗∆h(Ω)h

∗−1(u)
)

= ∆Ω + Lu

with

Lu =
n∑

i=1

Liu.

Since bj,k → δj,k in C2(Ω̄) as h → iΩ in C2(Ω̄,Rn), the coefficients of L go to 0 as
h→ iΩ in C2(Ω̄,Rn). From the results in [1], we obtain

‖Lu‖ ≤ ε(h)‖∆Ωu‖+K(h)‖u‖ (2.5)

with ε(h) and K(h) going to 0 as h → iΩ in C2(Ω̄,Rn). (When dealing with
Dirichlet boundary conditions, we can take K(h) = 0.) Therefore, the estimates
obtained in Theorem 2.3 hold for the linear semigroup generated by the operators
h∗∆h(Ω)h

∗−1(u) in L2(Ω).

3. Continuity of the nonlinear semigroup

We work first in an abstract setting.

Lemma 3.1. Suppose Y is a Banach space, Λ is an open set in Y , {−Aλ}λ∈Λ is a
family of operators in a Banach space X satisfying the conditions of Theorem 2.3
at λ = λ0, U is an open set in R+ ×Xα, 0 ≤ α < 1 and f : U × Λ → X is Hölder
continuous in t, continuos in λ at λ0 uniformly for (t, x) in bounded subsets of U ,
‖f(t, x, λ) − f(t, y, λ)‖ ≤ L‖x − y‖α,||f(t, x, λ0)|| ≤ R for (t, x), (t, y) in U and
λ ∈ Λ. Suppose the solution x(t, x0, λ of the problem

dx

dt
= Aλx+ f(t, x, λ), t > t0

x(t0) = x0.
(3.1)

exist for x0 in bounded subsets of Xα λ in a neighborhood of λ0 and t0 ≤ t ≤ T .
Then the function λ 7→ x(t, x0, λ) ∈ Xα is continuous at λ0 uniformly for x0 in

bounded subsets of Xα and t0 ≤ t ≤ T .

Proof. Let b be the exponential rate of decay of the semigroup generated by Aλ, λ
in the neighborhood of λ0, given by Theorem 2.3. We write xλ(t) and x(t) for the
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solutions of (3.1) with parameter values λ and λ0. If x0 belongs to a bounded set
B of Xα, we have, by the variation of constants formula

xλ(t) ≤ ‖eAλ(t−t0)x0‖α +
∫ t

t0

‖eAλ(t−s)f(s, xλ(s), λ)‖α ds

≤ e−b(t−t0)‖x0‖α +R

∫ t

t0

e−b(t−s)(t− s) ds

so xλ(t) remains in a bounded set for x0 ∈ B and t − t0 bounded. By hypothesis
there exists then a a function θ(λ) such that θ(λ) → 0 as λ→ λ0 and ‖f(s, x(s), λ)−
f(s, x(s), λ0)‖θ(λ), for x0 ∈ B. Using again the the variation of constants formula

‖xλ(t)− x(t)‖α ≤ ‖[eAλ(t−t0) − eA(t−t0)]x0‖α +
∫ t

t0

‖eAλ(t−s)[f(s, xλ(s), λ)

−f(s, x(s), λ)]‖α ds+
∫ t

t0

‖eAλ(t−s)[f(s, x(s), λ)− f(s, x(s), λ0)]‖α ds

+
∫ t

t0

‖[eAλ(t−s) − eA(t−s)]f(s, (x(s), λ)‖α ds

≤ C(λ)e−b(t−t0)(t− t0)α‖x0‖+ LM

∫ t

t0

(t− s)−αe−b(t−s)‖xλ(s)− x(s)‖α ds

+θ(λ)M
∫ t

t0

(t− s)−αe−b(t−s) ds+ C(λ)R
∫ t

t0

(t− s)−αe−b(t−s) ds.

where M is such ‖eAλ(t−t0)‖ ≤Me−b(t−t0).
For 0 < t < T , we have

∫ t

t0
(t − s)−αe−b(t−s) ds ≤ η(t − t0)−α, where η is a

constant. Therefore, it follows from Gronwall’s inequality (see [10]), that ‖xλ(t)−
x(t)‖α ≤ C̃(λ)K(t− t0)−α (1 + ‖x0‖α), where K = K(α, T,B does not depend on
the initial condition. This proves the claim. �

Lemma 3.2. Suppose, in addition to the hypotheses of Lemma 3.1, that the deriva-
tive ∂f

∂x (t, x, λ) exists, is continuous and bounded for 0 ≤ t ≤ T , λ in a neighborhood
of λ0, and x in the ball of radius N . Then, the map λ 7→ ∂x(t,x0,λ)

∂x0
∈ Xα is contin-

uous at λ0 uniformly for x0 ∈ B and t0 ≤ t ≤ T .

Proof. The local existence and continuity of the derivative is shown in [10] (theorem
3.4.4). In fact the derivative vλ(t) = ∂x(t,x0,λ)

∂x0
· ∆x0 is the solution of the initial

(linear) value problem
dy

dt
= Aλy + fx(t, x(t), λ)y, t > t0

y(t0) = ∆x0.
(3.2)

To prove continuity in λ we again use the variation of constants formula as in
Lemma 3.1. Due to the linearity in v, we obtain now ‖vλ(s)− v(s)‖α ≤ C(λ)K(t−
t0)−α (‖∆x0‖α), where K is a constant depending only on the size of the ball. From
this, the result follows readily. �

We now apply the results to our context.
Let Ω ⊂ Rn be a C2 region, X = L2(Ω) and α = 1/2. Using the results of

section 2 and [10], it follows that (1.1) generates a nonlinear C1 semigroup T (t, h)x
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in Xα = H1
0 (Ω), for h in a neighborhood H of the inclusion iΩ in C2. We then have

the following result

Corollary 3.3. Suppose f : R → R is a C1 bounded function with bounded deriv-
ative, B ⊂ H1

0 (Ω) is a bounded open set and T (t,H)B is a bounded set in Xα for
t ∈ R+. Then, the map h ∈ H 7→ T (t, h) ∈ C1(B,H1

0 (Ω)) is continuous with respect
to h at h = iΩ for t in compact subsets of R+.

Proof. The result follows immediately from Theorem 2.3 and Lemmas 3.1 and 3.2,
by taking U = Xα = H1

0 (Ω). �

4. Existence and continuity of attractors

We first mention some definitions and results from [7] that will be used in the
sequel. Suppose Λ is a metric space, X a complete metric space, and, for each
λ ∈ Λ, T (t, λ) : X → X is a Cr-semigroup with T (t, λ)x continuous in t, λ, x.
For any λ let Tλ(t) = T (λ, t) : X → X. We say that Tλ(t) is asymptotically
smooth if for any closed, bounded and positively invariant set B, there exists a
compact set Kλ(B) ⊂ B that attracts B. The family of mappings {Tλ(t) : λ ∈ Λ}
is collectively asymptotically smooth if

⋃
λ∈ΛKλ(B) is compact (for any bounded

positively invariant set B).

Theorem 4.1. Suppose Λ is a metric space, X a complete metric space and Tλ(t)
is a Cr-gradient semigroup on X, r ≥ 1, for each λ ∈ Λ. Denote by Eλ the set of
equilibria of Tλ(t), for each λ ∈ Λ.

If the family of semigroups {Tλ(t) : λ ∈ Λ} is collectively asymptotically smooth,
continuous in λ and

⋃
λ∈ΛEλ is bounded, then the global attractor Aλ of Tλ(t)

exists and Aλ is upper semicontinuous at λ0 ∈ Λ.

Let Ω ⊂ Rn be a C2-region and h : Ω → Rn the family of C2 embeddings with
||h− iΩ||C2 < ε. Consider the family of semigroups T (h, t) generated by (1.2).

We know that (1.1) generates a gradient system in H1
0 (Ωh) with Lyapunov func-

tional

Ṽh(ψ) =
∫

Ωh

[1
2
|∇ψ(y)|2 − F (ψ(y))

]
dy

where F (v) =
∫ v

0
f(s) ds. We define Vh in H1

0 (Ω) by

Vh(φ) = Ṽh(φ ◦ h−1). (4.1)

Since u is a solution of (1.2) if and only if v = h∗−1u is a solution of (1.1), we
immediately obtain

Lemma 4.2. The system generated by (1.2) is a gradient system with Lyapunov
functional given by (4.1).

Let ‖u‖H1(Ω) (resp. ‖u‖H1(Ωh)) denote the H1 norm in Ω (resp. Ωh.)
Define a new norm ‖u‖h

H1(Ω) in H1(Ω) by

‖u‖h
H1(Ω) = ‖u ◦ h−1‖H1(Ωh). (4.2)

Lemma 4.3. Suppose Ω is a C2 region and h : Ω → Ωh is a C2-diffeomorphism.
Then, we have



10 L. A. F. DE OLIVEIRA, A. L. PEREIRA, M. C. PEREIRA EJDE-2005/100

(1) ‖u‖h
H1(Ω) and ‖u‖H1(Ω) are equivalent norms in H1(Ω) , that is, there are

positive constants K1(h) and K2(h) such that K1(h)‖u‖h
H1(Ω) ≤ ‖u‖H1(Ω) ≤

K2(h)‖u‖h
H1(Ω), for any u inH1(Ω). Furthermore K1(h),K2(h) → 1 as

h→ iΩ in the C2 norm.
(2) K1(h)|V (u)| ≤ |Vh(u)| ≤ K2(h)|V (u)|, for any u inH1(Ω). Furthermore

K1(h),K2(h) → 1 as h→ iΩ in the C2 norm.

Proof. We prove item (1), the proof of item (2) is similar.

(‖u‖h
H1(Ω))

2 =
∫

Ωh

(u ◦ h−1(y))2 + |∇h(u ◦ h−1)|2 d y

=
∫

Ω

(u(x))2 + | T (hx)−1 · ∇u(x)|2 |Jh(x)| dx,

where T (hx)−1 is the inverse transpose of the Jacobian matrix hx = [ ∂hi

∂xj
]ni,j=1 and

Jh(x) = dethx.
Now Jh(x) is clearly bounded from above and below since it is a positive contin-

uous function in Ω. The same is true for the norm of the operator ||hx|| in L(Rn).
From this the equivalence of the norms follows immediately.

If h(x) = iΩ + r(x) with ‖r(x)‖, ‖r′(x)‖ ≤ 1 for x ∈ Ω, then

(‖u‖h
H1(Ω))

2 =
∫

Ω

(
(u(x))2 + | T (hx)−1 · ∇u(x)|2

)
| Jh(x)| dx. (4.3)

We have Jh(x) = det(I + r′(x)) = eλ(x), with λ(x) = ln(det(I + r′(x))) =∑∞
1

(−1)m−1

m Hm(x), where Hm = trace(r′(x)m). Now eλ(x) = 1 +
∑∞

k=1
λk

k! , and∣∣ ∞∑
k=1

λk

k!

∣∣ ≤ |λ|
∞∑

k=1

|λk−1|
k!

≤ |λ|
∞∑

k=1

|λk−1|
(k − 1)!

≤ |λ|e|λ|.

Since |Hm(x)| = | trace (r′(x)m) | ≤ n‖r′(x)‖m, it follows that

|λ(x)| ≤ n

∞∑
k=1

‖r′(x)‖k

k
= n ln(1− ‖r′(x)‖).

Therefore, we obtain

|Jh(x)| − 1 ≤ −n ln(1− ‖r′(x)‖)(1− ‖r′(x)‖)n. (4.4)

Furthermore,

T (I + r′(x))−1 = (I + T r′(x))−1 = I +
∞∑

k=1

(−1)k T r′(x)k.

Thus
T (I + r′(x))−1 · ∇u(x) = ∇u(x) +

∞∑
k=1

(−1)k T r′(x))k · ∇u(x)

and so

‖T (I + r′(x))−1∇u(x)‖2 = ‖∇u(x)‖2 + 2〈
∞∑

k=1

(−1)k T r′(x))k · ∇u(x),∇u(x)〉

+ ‖
∞∑

k=1

(−1)k T r′(x))k · ∇u(x)‖2.
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Since

‖
∞∑

k=1

(−1)k T r′(x))k · ∇u(x)‖ ≤
∞∑

k=1

‖r′(x))‖k · ‖∇u(x)‖ ≤ ‖r′(x‖
1− ‖r′(x)‖

‖∇u(x)‖

we obtain
‖T (I + r′(x))−1 · ∇u(x)‖2 − ‖∇u(x)‖2

≤ 2‖r′(x)‖
1− ‖r′(x‖

‖∇u(x)‖2 +
( ‖r′(x)‖
1− ‖r′(x)‖

)2‖∇u(x)‖2.
(4.5)

From (4.3), (4.4) and (4.5), we obtain (taking ‖r′‖ = supx∈Ω ‖r′(x)‖ ≤ 1/2)

(‖u‖h
H1(Ω))

2 − (‖u‖H1(Ω))2

≤ ‖u‖2H1(Ω) · (−n ln(1− ‖r′‖)(1− ‖r′‖)n) +
2‖r′‖

1− ‖r′‖
‖∇u‖2 + (

‖r′‖
1− ‖r′‖

)2‖∇u‖2

≤ ‖u‖2H1(Ω)

(
n(1− ‖r′‖)n−1 +

2− ‖r′‖
(1− ‖r′‖)2

)
‖r′‖

≤ ‖u‖2H1(Ω)(n+ 8)‖r′‖.

From this we obtain∣∣‖u‖h
H1(Ω) − ‖u‖H1(Ω)

∣∣ ≤ ‖u‖H1(Ω)

(√n+ 8
2

√
‖r′‖

)
which proves the claim. �

Lemma 4.4. The family Eh of equilibria of (1.2) is uniformly bounded for h in a
neighborhood of iΩ.

Proof. The equilibria of (1.2) in Ωh are the solutions of

∆u(x) + f(u(x)) = 0 in Ωh

u = 0 in ∂Ωh.

Multiplying by u and integrating, we get∫
Ωh

u∆u dx = −
∫

Ωh

f(u)u dx .

Therefore, ∫
Ωh

|∇u|2 dx =
∫

Ωh

f(u)u dx.

Since lim sup|u|→∞
f(u)

u ≤ 0, there exist ε > 0 and M(ε) > 0 such that f(u)u < εu2

for |u| > M .
Let Ω1 = {x ∈ Ωh | |u(x)| > M} and Ω2 = Ωh \ Ω1. We have∫

Ωh

|∇u|2 dx ≤ ε

∫
Ω1

|u|2 dx+
∫

Ω2

Mf(u) dx ≤ ε

∫
Ωh

|u|2 dx+M‖f‖|Ωh|

where ‖f‖ = sup|s|≤M |f(s)| and |Ωh| is the measure of Ωh.
Since

∫
Ωh
|∇u|2 dx ≥ λ0

∫
Ωh
|u|2 dx, where λ0 is the first eigenvalue of the Lapla-

cian with Dirichlet boundary conditions, we obtain

(1− ε

λ0
)
∫

Ωh

|∇u|2 dx ≤ ‖f‖M(ε)|Ωh| .
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Now, in a neighborhood of a fixed region Ω0, both λ0 and |Ω| are continuous
functions of h and therefore bounded. If λ∗ ≥ λ0(h), |Ω| ≤ K and ε ≤ λ∗

2 , then∫
Ωh

|∇u|2 dx ≤ 2‖f‖M(ε)K

as claimed. �

We are now in a position to prove our main results.

Theorem 4.5. The flow generated by (1.2) has a global compact attractor Ah for
each h in a neighborhood of iΩ in C2(Ω,Rn). The family of attractors Ah is upper
semicontinuous in X

1
2 = H1

0 (Ω) at h = iΩ.

Proof. It follows from Lemmas 4.3 and 4.4 that, for each h in a neighborhood of iΩ,
the semigroup generated by (1.2) has an attractor and they are uniformly bounded
in H1

0 (Ω). From regularity properties of the flow (see [10], Theorem 3.3.6) they are
also bounded in Xβ for 1/2 < β < 1, and, therefore, their union is a compact set
in H1

0 (Ω) = X1/2. From this and Theorem 4.1 the result follows immediately. �

Now we prove the lower semicontinuity property near the inclusion for the semi-
group generated by (1.2), under the additional assumption that the equilibria are
all hyperbolic. We observe that this property holds generically in h as proved by
Henry in [11]. Our proof is based on the following result of Hale and Raugel (see
[9], or [7, Theorem 4.10.8]).

Theorem 4.6. Let X be a Banach space and, for 0 ≤ ε ≤ ε0, let Tε(t), t ≥ 0, be a
family of semigroups on X. Suppose the following hypotheses hold

(H1) T0(t) is a C1-gradient system, asymptotically smooth and orbits of bounded
sets are bounded.

(H2) The set E0 of equilibrium points of T0(t) is bounded in X.
(H3) Each element of E0 is hyperbolic.
(H4) For ε 6= 0, Tε(t) is a C1-semigroup which is asymptotically smooth.
(H5) If Eε is the set of equilibrium points of Tε(t) and E0 = {φ1, φ2, . . . , φN},

then there exists a neighborhood W0 of E0 such that

W0 ∩ Eε = {φ1,ε, φ2,ε, . . . , φN,ε},

where each φj,ε, 1 ≤ j ≤ N , is hyperbolic and φj,ε → φj as ε→ 0.
(H6) δX(Wu

loc(φj),Wu
loc,ε(φj,ε)) → 0 as ε→ 0.

(H7) Tε(t)x is continuous in ε uniformly with respect to (t, x) in bounded sets of
R+ ×X.

Then the family of sets {Aε, 0 ≤ ε ≤ ε0} is continuous in X at ε = 0.

Theorem 4.7. The family of attractors Ah of (1.2) is continuous in X
1
2 = H1

0 (Ω)
at h = iΩ

Proof. Hypotheses (H1), (H2), (H4) and (H7) have already been proved, and (H3)
is one of our hypotheses. (H5) follows by the Implicit Function Theorem applied
to the map

F : H2 ∩H1
0 (Ω)×H → L2(Ω)

(u, h) → h∗(∆ + λ)h∗−1u+ f(u),
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where H is a neighborhood of iΩ, observing that the equilibria are all in a common
compact set.

Finally (H6) is a consequence of Lemma 3.3 and results of [18] or [4], as observed
in [17]. We also offer a direct proof in the appendix.

From this (H6) follows and the result is, therefore, proved. �

We proved continuity in X1/2 = H1
0 (Ω) but our attractors actually belong to

more regular spaces (see [3] for a discussion of this point). Using the regularization
properties of the semigroup one can easily prove continuity also in these spaces.
To be more precise, denote by ∆p the Laplacian operator in Lp with Dirichlet
boundary conditions. It is well-known that ∆p is a sectorial operator with domain
W 2,p ∩ W 1,p

0 . If Ω is regular enough (see [10]), the fractional power spaces Xα
p

satisfy the continuous embeddings:

Xα ⊂W k,p(Ω) when k − n

q
< 2α− n

p
, q ≥ p;

Xα ⊂ Cν(Ω) when 0 < ν < 2α− n

p

We then have the following continuity result.

Corollary 4.8. The family of attractors Ah of (1.2) is continuous at h = iΩ in the
topology of the fractional power space Xα

p , for any p > 0, 0 < α < 1. In particular,
it is continuous in the topology of C1+δ for any 0 < δ < 1.

Proof. Since the first eigenvalue of the Dirichlet problem for the Laplacian is bounded
away from zero for Ω in a neighborhood of the reference region Ω0, it follows from re-
sults in [3] or [15], that the family of attractors Ah of (1.2) is contained in a bounded
set of L∞ and, therefore, also in a bounded set Bp ⊂ Lp for any 0 < p <∞. Since
we have assumed that f is globally bounded, we also obtain ‖f(u)‖p ≤ M , for
u ∈ Bp (M can be taken independently of p). If u0 is an initial condition in Bp, we
obtain from the variation of constants formula

‖uh(t)‖α ≤ ‖eAh(t−t0)u0‖α +
∫ t

t0

‖eAh(t−s)f(s, uh(s), h)‖α ds

≤ C(h)e−b(t−t0)(t− t0)α‖u0‖+M

∫ t

t0

(t− s)−αe−b(t−s) ds

where ‖ · ‖α denotes the norm in the fractional power space associated with the
function h∗∆h(Ω)h

∗−1 in Lp. Taking (t − to) = 1 and using the invariance of the
attractors we obtain an uniform bound for the family Ah in Xα

p . Since Xα
p is com-

pactly imbedded in Xα′

p if α > α′, the family Ah actually lies in a compact subset
of Xα

p . We then can show upper semicontinuity of the family arguing by contradic-
tion. Suppose the family Ah is not upper semicontinous at h = iΩ. Then we may
find a sequence xn ∈ Ahn , with hn → iΩ as n→∞ such that distα(xn,A) ≥ ε > 0,
where distα is the distance in Xα

p . By compacity, we can extract a subsequence,
which we still denote by xn for simplicity, converging in Xα

p to some point x. We
must have, of course, distα(x,A) ≥ ε. However, if p ≥ 2, α ≥ 1

2 , such a sequence

must also converge in X
1
2
2 = H1

0 . Since upper semicontinuity in H1
0 has already

been established, we conclude that x must lie in A0 = AiΩ , which is a contradiction.
The lower semicontinuity can be obtained in a similar way. �
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Remark 4.9. We have considered here only the reaction-diffusion problem with
Dirichlet boundary conditions. Our method also applies to other boundary condi-
tions but the extension is not completely straightforward. The difficulty with, say,
Neumann boundary conditions is that they change with the ‘change of coordinates’
h, so we do not have a fixed space of functions to work with. One way to circumvent
this difficulty is to consider the problem in a weaker space, where the boundary
conditions do not appear explicitly but are included in the operator. This has been
done, for instance in [6] and [15], to treat nonlinear boundary conditions. One
then obtain continuity only in a weaker norm but then the ‘bootstrap’ arguments
of Corollary 4.8 can be used to obtain continuity in better spaces.

5. Appendix

In this section, we study a more general equation than (1.1). Given an open
bounded region Ω in Rn, a Banach space XΩ composed by real valued functions in
Ω and a sectorial operator AΩ in XΩ, we consider the equation

vt +Ah(Ω)v = fh(v) in h(Ω), t > 0

v(0) = v0
(5.1)

where h ∈ Diff m(Ω), v ∈ Xh(Ω) and fh ∈ Ck(Xα
h(Ω), Xh(Ω)) for some k ≥ 1 and

some 0 ≤ α < 1.
As in (1.2), we work with the problem

ut + h∗Ah(Ω)h
∗−1u = f iΩ(u) in Ω, t > 0

u(0) = u0

(5.2)

which is equivalent the problem (5.1). In fact, if h∗ is an isomorphism of Xh(Ω) in
XΩ and h∗fh(h∗−1u) = f iΩ(u) for all h we have that v is solution of (5.1) if and
only if u = h∗v ∈ XΩ is solution of (5.2). So, we always think that h∗ : Xh(Ω) → XΩ

is an isomorphism with inverse h∗−1 = h−1∗ : XΩ → Xh(Ω).
Observe that {h∗Ah(Ω)h

∗−1u}h∈Diff m(Ω) is a family of operators in XΩ. We will
assume in this section that this family satisfies the conditions of the Theorem 2.3.
Our first result is

Proposition 5.1. Given h0 ∈ Diffm(Ω), assume that fh0 : X1
h0(Ω) → Xh0(Ω)

and X1
h0(Ω) × Diffm(Ω) → Xh0(Ω) : (u, h) → h∗Ah(Ω)h

∗−1u are C1 and that e is a
hyperbolic equilibrium of (5.2) with h = h0. Then, there exist bounded neighborhoods
U0 ⊂ X1

h0(Ω) and H0 ⊂ Diffm(Ω) of e and h0, respectively, such that given h ∈ H0

there exists an unique equilibrium e(h) of (5.2) in U0 with the same Morse index
as the equilibrium e. Also, the map H0 → U0 : h→ e(h) is C1.

Proof. We may assume that h0 = iΩ. Consider the mapping

F : X1
Ω ×Diff m(Ω) → XΩ : (u, h) → h∗Ah(Ω)h

∗−1u− f iΩ(u).

Of course, F is C1 and F (e, iΩ) = 0. Since e is hyperbolic we have that ∂F
∂u (e, iΩ) =

AΩ − f ′(e) is an isomorphism and, by the Implicit Function Theorem, there exists
a neighborhood H0 of iΩ and a C1 map h→ e(h) of H0 in X1

Ω such that e(iΩ) = e
and, for all h ∈ H0, F (e(h), h) = 0. Observe that the Implicit Function Theorem
also implies that ∂F

∂u (e(h), h) is an isomorphism for all h ∈ H0, that is, e(h) is a
hyperbolic equilibrium for all h ∈ H0. Moreover, by the hypotheses of AΩ and f iΩ ,
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there exist real positive continuous functions ε(h) and δ(h) defined in H0 such that
for all h ∈ H0

‖(AΩ − g′(e)− h∗Ah(Ω)h
∗−1 + g′(e(h)))u‖

≤ ‖(AΩ − h∗Ah(Ω)h
∗−1)u‖+ ‖g′(e)− g′(e(h))‖ ‖u‖

≤ ε(h)‖AΩu‖+ δ(h)‖u‖,
for all u ∈ D(AΩ). So, it follows from [12, Theorems 2.14 IV and 3.16 IV] that the
Morse index of e(h) is constant in H0. �

Let H be a neighborhood of iΩ in Diffm(Ω) such that e(h) is a hyperbolic equi-
librium of (5.2) for all h ∈ H with e(h) ∈ U ⊂ XΩ continuous in h. Suppose that
Re σ(AΩ) > 0 and the function f : Xα = D(Aα

Ω) → X = XΩ is C1 and satisfies

f(e(h) + z) = h∗Ah(Ω)h
∗−1e(h) + f ′(e(h))z + r(z, h), (5.3)

for all h ∈ H, with r(0, h) = 0, sup‖z‖α≤% ‖r(z, h0)− r(z, h)‖ ≤ Ch0(h), Ch0(h) → 0
when h→ h0 in H, ‖r(z1, h)− r(z2, h)‖ ≤ k(%)‖z1− z2‖α for ‖z1‖α ≤ %, ‖z2‖α ≤ %,
k(%) → 0 when %→ 0+ and k(·) is nondecreasing.

Assume also that the family of operators {h∗Ah(Ω)h
∗−1}h∈H satisfies the hy-

potheses of Theorem 2.3 and the Banach spaces D(h∗Ah(Ω)h
∗−1α

) are all equiva-
lent for some 0 ≤ α < 1, that is, given 0 ≤ α < 1, there are positive constants mα

and Mα such that

mα‖h∗Ah(Ω)h
∗−1α

u‖ ≤ ‖Aα
Ωu‖ ≤Mα‖h∗Ah(Ω)h

∗−1α
u‖,

for all u ∈ D(Aα
Ω) and all h ∈ H. Since e(h) is a hyperbolic equilibrium of the

equations (5.2), we have that L(h) = h∗Ah(Ω)h
∗−1−f ′(e(h)) is an isomorphism for

all h ∈ H. We decompose X in subspaces X1 and X2 corresponding to the spectral
sets σ1 = σ(L(iΩ)) ∩ {Reλ < 0} and σ2 = σ(L(iΩ)) ∩ {Reλ > 0}. Let E1, E2 be
the projections onto X1 and X2, respectively. The hypotheses on AΩ and f imply
the existence of positive real continuous functions ε(h) and δ(h) defined in H such
that for all h ∈ H, L(h) is a sectorial operator in X and for all u ∈ D(AΩ),

‖(L(iΩ)− L(h))u‖ ≤ ε(h)‖AΩu‖+ δ(h)‖u‖.
By Theorem 2.3 and by [10, Theorem 1.5.3], if ε(h) and δ(h) are sufficiently small
in H the following estimates hold for positive constants M and b independent on h

‖Aα
Ωe

−L(h)1t‖ ≤Mebt, ‖e−L(h)1t‖ ≤Mebt, t ≤ 0; (5.4)

‖Aα
Ωe

−L(h)2t‖ ≤Mt−αe−bt, ‖Aα
Ωe

−L(h)2tE2A
−α
Ω ‖ ≤Me−bt t ≥ 0. (5.5)

Theorem 5.2. Under the above hypotheses, there exists % > 0 such that, for any
h ∈ H,
1. The stable local manifold of e(h)

W s
loc(e(h)) = {e(h) + z0 ∈ Xα : ‖E2z0‖α ≤

%

2M
, ‖z(t, t0, z0, h)‖α ≤ % for t ≥ t0}

where z(t, t0, z0, h) is the solution of the equation

zt + L(h)z = r(z, h) for t ≥ t0 (5.6)

with initial value z0. When z0 +e(h) ∈W s
loc(e(h)), ‖z(t, t0, z0, h)‖α → 0 as t→∞.

2. The unstable local manifold e(h)

Wu
loc(e(h)) = {e(h) + z0 ∈ Xα; ‖E1z0‖α ≤

%

2M
, ‖z(t, t0, z0, h)‖α ≤ % for t ≤ t0, }
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where z(t, t0, z0, h) is the solution of the equation (5.6) in (−∞, t0) with initial value
z0. When z0 + e(h) ∈Wu

loc(e(h)), ‖z(t, t0, z0, h)‖α → 0 as t→ −∞.
3. If h0 and h are sufficiently close, the solution z(t, t0, z0(h0), h0) and the solution
z(t, t0, z0(h), h) of (5.6) are close in Xα uniformly in [t0,∞) (or (−∞, t0]).
4. If β(O,Q) = supo∈O infq∈Q ‖q − o‖α for O, Q ⊂ Xα, then for all h0 ∈ H,

β
(
W s

loc(e(h)),W
s
loc(e(h0))

)
, β

(
W s

loc(e(h0)),W s
loc(e(h))

)
,

β
(
Wu

loc(e(h)),W
u
loc(e(h0))

)
, β

(
Wu

loc(e(h0)),Wu
loc(e(h))

)
approach zero as h→ h0 in H.

Proof. The results 1 and 2 follow from [10, Theorem 5.2.1], the independence of M
and b of the variable h in H and the equivalence of the spaces D(h∗Ah(Ω)h

∗−1α
).

To prove 3 is sufficient to show that the map defined in the proof of [10, Theorem
5.2.1] is a uniform contraction and is continuous in h. We prove 3 only in the interval
[t0,∞), the other case is analogous. Let

U0 = {a ∈ X2 : ‖a‖α ≤
%

2M
}

and

Z0 =
{
z : [t0,∞) → Xα; z is continuous,

sup ‖z(t)‖α ≤ %,E2z(t0) = a with ‖a‖α ≤
%

2M
}
.

The contraction map in [10, Theorem 5.2.1] now depends on the parameter h and
is given by G : Z0 × U0 ×H → Z0 defined by

G(z, a, h)(t) = e−L(h)2(t−t0)a+
∫ t

t0

e−L(h)2(t−s)E2r(z(s), h)ds

−
∫ ∞

t

e−L(h)1(t−s)E1r(z(s), h)ds.

Since estimates (5.4) and (5.5) are uniform in H, we can choose % > 0 as in [10,
Theorem 5.2.1] so small as to have

Mk(%){‖E2‖
∫ ∞

0

u−αe−budu+ ‖E1‖
∫ ∞

0

e−budu} < 1
2
.

Therefore, G is a contraction map uniformly in H and U0. Now, we need to prove
that G is continuous in H. If h0 and h ∈ H, then

‖G(z, a, h0)(t)−G(z, a, h)(t)‖α

≤ ‖
(
e−L(h0)2(t−t0) − e−L(h)2(t−t0)

)
E2z(t0)‖α

+
∫ t

t0

‖
(
e−L(h0)2(t−s) − e−L(h)2(t−s)

)
E2r(z(s), h0)‖αds

+
∫ t

t0

‖e−L(h)2(t−s)E2

(
r(z(s), h0)− r(z(s), h)

)
‖αds

+
∫ ∞

t

‖
(
e−L(h0)1(t−s) − e−L(h)1(t−s)

)
E1r(z(s), h0)‖αds

+
∫ ∞

t

‖e−L(h)1(t−s)E1

(
r(z(s), h0)− r(z(s), h)

)
‖αds

(5.7)
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and so

‖G(z, a, h0)(t)−G(z, a, h)(t)‖α

≤ Cα(h)e−bt‖z(t0)‖α + Cα,1(h)
(
%k(%)‖E1‖

∫ ∞

0

e−budu
)

+ Cα,2(h)
(
%k(%)‖E2‖

∫ ∞

0

u−αe−budu
)

+ sup
‖z‖α≤%

‖r(z, h0)− r(z, h)‖
(
M‖E2‖

∫ ∞

0

u−αe−budu+M‖E1‖
∫ ∞

0

e−budu
)

where Cα(h), Cα,1(h), Cα,2(h) and sup‖z‖α≤% ‖r(z, h0) − r(z, h)‖ approach 0 as
h→ h0 in H. Therefore,

sup
t∈[t0,∞)

‖G(z, a, h0)(t)−G(z, a, h)(t)‖α ≤ C(h), (5.8)

with C(h) → 0 as h→ h0 in H and so G is continuous em h0.
Now, we prove 4 only for W s

loc(e(h)). The other cases are similar. For each
h ∈ H we have by [10, Theorem 5.2.1] that W s

loc(e(h)) is image of the Lipschitz
map Φh : U0 → Xα, defined by

Φh(a) = a−
∫ ∞

t0

e−L(h)1(t0−s)E1r(z(s, t0, a, h), h)ds,

where z(t, t0, a, h) is the solution of the equation (5.6) for t > t0 with initial value
z(t0, t0, a, h) = Φh(a). Since Φh(a) = G(z, a, h)(t0), it follows from (5.7) that

‖Φh0(·)− Φh(·)‖α → 0 as h→ h0.

Since W s
loc(e(h)) is the image of the application Φh we have

β
(
W s

loc(e(h)),W
s
loc(e(h0))

)
= sup

a∈U0

inf
b∈U0

‖Φh(a)− Φh0(b)‖α.

Then, since infb∈U0 ‖Φh(a)−Φh0(b)‖α ≤ ‖Φh(a)−Φh0(a)‖α for all a ∈ U0, we have

β
(
W s

loc(e(h)),W
s
loc(e(h0))

)
≤ sup

a∈U0

‖Φh(a)− Φh0(a)‖α → 0,

when h→ h0 in H, and the proof is complete. �
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the Instituto Superior Técnico de Lisboa, Portugal. He wishes to thank for the
support and warm hospitality while being there.

References

[1] S. Agmon, A. Douglis and L. Nirenberg; Estimates Near the Boundary for Solutions of
Elliptic Partial Differential Equations Satisfying General Boundary Conditions, Comm. on
Pure and Appl. Math., vol XII, 623-727 (1955).

[2] J. M. Arrieta and A. N. Carvalho; Abstract parabolic problems with critical nonlinearities and
applications to Navier-Stokes and heat equations. Trans. Amer. Math. Soc., 352(1), 285–310,

(2000).
[3] J. M. Arrieta, A. N. Carvalho and A. Rodriguez-Bernal; Attractors for Parabolic Problems

with Nonlinear Boundary Condition. Uniform Bounds, Communications in Partial Differential
Equations 25, 1-2, 1-37, January 20, (2000).



18 L. A. F. DE OLIVEIRA, A. L. PEREIRA, M. C. PEREIRA EJDE-2005/100

[4] A. V. Babin and M.I. Vishik; Unstable invariant sets of semigroups of non-linear operators

and their perturbations, Russ. Math. Surv. 41, 231-232 (1986).

[5] Jose M. Arrieta, Alexandre N. Carvalho; Spectral Convergence and nonlinear dynamics of
reaction-diffusion equations under perturbations of the domain, Journal of Diff. Equations

199, 143-178 (2004).

[6] A. N. Carvalho , S.M. Oliva, A.L. Pereira, A. Rodrigues-Bernal; Parabolic problems with
Nonlinear Boundary Conditions, Journal of Mathematical Analysis and Applications, 207,

409-461 (1997).

[7] J. K. Hale; Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Mono-
graphs, 25, AMS (1988).

[8] J. K. Hale, G. Raugel; Upper semi-continuity of the attractor for a singularly perturbed

hyperbolic equation, Journal of Diff. Equations 73, 197–214 (1988).
[9] J. K. Hale, G. Raugel; Lower Semicontinuity of Attractors of Gradient Systems and Appli-

cations, Ann. Mat. Pura Appl. (IV), Vol. CLIV, 281-326 (1988b).
[10] D. B. Henry; Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math.,

vol 840, Springer-Verlag, 1981.

[11] D. B. Henry; Perturbation of the boundary for boundary value problems, unpublished notes.
[12] T. Kato; Perturbation Theory for Linear Operators, Springer Verlag (1980).

[13] I. N. Kostin; Lower semicontinuity of a non-hyperbolic attractor, J. London Math. Soc. 52,

568-582.
[14] A. M. Micheletti; Perturbazione dello spectro dell operatore de laplace in relazione ad una

variazone del campo, Ann. Scuola Norm. Sup. Pisa, vol. 26, 151-169 (1972).

[15] S. Oliva, A. L. Pereira; Attractors for Parabolic Problems with Nonlinear Boundary Condi-
tions in Fractional Power Spaces, Dynamics of Continuous, Discrete and Impulsive Systems

Ser A Math. Anal. 9, 551-562 (2002).

[16] Martino Prizzi, Krzysztof P. Rybakowski The effect of domain squeezing upon the dynamics
of reaction-diffusion equation, Journal of Diff. Equations 173 , 271-320 (2001).

[17] G. Raugel; Global Attractors in partial differential equations, in Handbook of Dynamical
Systems vol II , B. Fiedler editor, Elsevier Science, (2002).

[18] J. C. Wells; Invariant manifolds of nonlinear operators, Pacific J. Math. 62, 285-293 (1976).

Luiz A. F. de Oliveira
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