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On mathematicians’ disagreements on what constitutes a proof 

Abstract. We report the results of a study in which we asked 94 mathematicians to 

evaluate whether five arguments qualified as proofs. We found that mathematicians 

disagreed as to whether a visual argument and a computer-assisted argument qualified as 

proofs, but they viewed these proofs as atypical. The mathematicians were also aware 

that many other mathematicians might not share their judgment and viewed their own 

judgment as contextual. For typical proofs using standard inferential methods, there was a 

strong consensus amongst the mathematicians that these proofs were valid. An 

instructional consequence is that for the standard inferential methods covered in 

introductory proof courses, we should have the instructional goal that students appreciate 

why these inferential methods are valid. However, for controversial inferential methods 

such as visual inferences, students should understand why mathematicians have not 

reached a consensus on their validity. 

 

Keywords: Agreement; Mathematicians; Proof 

 

1 Introduction 

Because proving is regarded as central to mathematicians’ practice, there is a 

consensus among mathematics educators1 that proving should play a central role in all 

mathematics classrooms (Stylianides, Bieda, & Morselli, 2016; Stylianides, Stylianides, 

 

1 Throughout the paper, the term “mathematics educators” refers to researchers in mathematics 

education. 
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& Weber, 2017). Further, many mathematics educators maintain that the way that proof 

is practiced in mathematics classrooms should be informed by, and compatible with, the 

way that proof is practiced by the mathematical community (e.g., Dawkins & Weber, 

2017; Harel & Sowder, 2007; Herbst & Balacheff, 2009; Stylianides, 2007), where the 

mathematical community is usually assumed to be comprised of research-active 

mathematicians who work at universities2. Mathematics educators do not expect 

mathematical classrooms to be exact replicas of professional mathematical communities 

with regard to proving, both because mathematicians have conceptual and 

representational resources that students lack (Stylianides, 2007; Weber, Inglis, & Mejia-

Ramos, 2014) and because the needs of the mathematical community and the classroom 

community differ (Staples, Bartlo, & Thanheiser, 2012). Nonetheless, many mathematics 

educators expect students to develop standards of conviction and perceptions of proof 

that align with those held by professional mathematicians (Harel & Sowder, 2007) and 

desire students’ proofs to meet some of mathematicians’ professional standards (adapted 

to the needs and background of the classroom community) (Dawkins & Weber, 2017). At 

a minimum, teachers and mathematics educators have an obligation to present proving in 

a manner that does not distort, or is incompatible with, how mathematicians engage in 

this activity (Herbst & Balacheff, 2009). 

 Although many mathematics educators agree that classroom communities should 

engage in proving practices that are compatible with professional mathematical practice, 

 

2 It is not necessarily the case that the mathematical community should be defined in this way 

(Stillman, Brown, & Czocher, in preparation). We only observe that this is how the mathematical 

community is usually operationalized in mathematics education studies, in which participants are recruited 

from mathematics staff and the opinions of research-active mathematicians are cited. We also do not claim 

that the mathematical community that we described is homogeneous. Indeed, one purpose of this paper is to 

highlight their heterogeneity. 
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there are deep disagreements among mathematics educators as to what mathematicians’ 

proving practices are or even what constitutes a proof to a mathematician. These 

disagreements have led to inconsistent recommendations on how proof should be taught 

and an incoherent literature base containing contradictory claims (Cirillo et al., 2015; 

Balacheff, 2008; Reid & Knipping, 2010)3.  

In this paper, we begin by raising a contentious question about mathematical 

practice: Do mathematicians agree on what constitutes a proof? We discuss how the 

answer to this question has important consequences for pedagogy and research; we 

further document that mathematics educators answer this question in different ways. 

Next, we introduce data from an empirical study illustrating the extent to which 

mathematicians agree and disagree on controversial proofs. We then use this data to 

bridge the contrasting positions and propose a resolution to the question. Finally, we 

explore the implications of our resolution for teaching mathematics, conducting 

mathematics education research, and understanding how mathematicians practice their 

craft. 

2 Theoretical perspective 

2.1 On empirical studies of mathematical practice 

This paper is based on three premises about mathematics education research: (1) 

Mathematics educators’ beliefs about proof should be informed by how mathematicians 

practice their craft. (2) To understand how mathematicians practice their craft, it is useful 

 

3 For a notable example, see the well-known debates about the relationship between 

argumentation and proof (Balacheff, 1999; Boero, 1999; Duval, 1999). These debates hinged on the extent 

that a proof needs to be a structured argument highlighting logical dependency within an axiomatic system 

(c.f., Balacheff, 1999; Mariotti, 2006), a matter that is still being disputed today. 
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to consider the work of scholars whose research concerns mathematicians’ practices 

regarding proof. These scholars include philosophers as well as mathematicians who 

write reflective essays on their practice. (3) When the aforementioned scholars are unable 

to reach a consensus on some issue about mathematical practice, systematic empirical 

studies can provide useful data to inform these debates. 

A full discussion of these theoretical premises is beyond the scope of this paper, 

but we briefly elaborate on each premise below. Regarding (1), some mathematicians 

(and philosophers in the analytic tradition) have defined proof syntactically—as a 

sequence of statements in a logical theory with explicit and precise rules for what 

constitutes permissible statements, axioms, and rules of inference. Mathematics educators 

nearly uniformly agree that this formal perspective on proof is inappropriate for forming 

the basis of mathematics instruction, both because few mathematicians actually produce 

proofs of this type and because adopting this perspective would focus students’ attention 

on form over content. For further discussion, see CadwalladerOlsker (2011). Regarding 

(2), there is a rich tradition in mathematics education to appeal to philosophers of 

mathematics to gain insight into mathematicians’ practice with regard to proof. For 

instance, some appeal to philosophers such as Rav (1999) to highlight the social nature of 

proof. Others appeal to Steiner (1978) to emphasize that proofs can have explanatory 

value. Still others appeal to Lakatos (1976) to note that theorems and proofs are 

corrigible. For further discussion, see Weber and Dawkins (2018). Regarding (3), 

sometimes scholars reach different conclusions about some aspect of mathematical 

practice. When this occurs, we adopt the simple assumption that mathematical practice is 

an empirical phenomenon and therefore how members of the mathematics community 
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behave is subject to systematic empirical investigation. For further discussion, see Inglis 

and Aberdein (2016). 

2.2 On the nature of proof 

In this paper, we follow Stylianides (2007) in defining a proof as an argument that begins 

with true statements that are acceptable to a mathematical community, deduces new 

statements via valid logical inference, and is couched within an appropriate 

representation system4. Our paper focuses on what inference methods mathematicians 

accept as valid and appropriate in a proof. That is, following Balacheff (1999), when does 

the prover have the “license to infer”?  

The goal of this paper is to investigate the question about the extent to which 

mathematicians agree on which inferential schemes are permissible. In the remainder of 

this section, we elaborate on two contrasting positions on the nature of mathematical 

proof. The first position, which we call the consensus view on proof, asserts that 

mathematicians usually or always agree on whether an argument qualifies as a proof (and 

consequently on which inferential schemes are permissible in a proof). The second 

position, which we call the pluralistic view on proof, asserts that different mathematical 

communities (and perhaps different mathematicians within the same community) 

disagree on what qualifies as a proof. This disagreement is due to mathematicians having 

different positions on what inferential schemes are permissible in a proof.  

 

4 Stylianides tailored his definition to be appropriate to classrooms and included that the accepted 

statements should be known by the classroom community and the inferential schemes should be accepted 

by, or within the conceptual grasp, of the community. In this paper, we only discuss statements and 

inferential methods that are within the conceptual grasp of the professional mathematical community, so 

these important nuances for classroom proofs will not be relevant here. 
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2.3 Sources of disagreement 

To clarify the consensus and pluralistic views, it is useful to distinguish among 

three ways in which mathematicians may disagree on whether a particular argument is a 

proof. We classify these three types of disagreement as arising from performance errors, 

gap sizes, and permissible inferential schemes. The first source of disagreement is rooted 

in the fact that mathematicians sometimes overlook mistakes. That is, two 

mathematicians may disagree on whether an argument qualifies as a proof because one 

identifies an invalid step that the other has overlooked. We refer to this type of 

disagreement as resulting from performance error. A mathematician who accepted a 

proof because she failed to locate a flaw in the proof simply made an error. Those who 

hold a consensus view on proof usually do not deny that performance errors occur. 

Instead, they claim that disagreements due to performance errors can be resolved through 

discussion. For instance, Selden and Selden (2003), who adopted a consensus view, wrote 

that, “if two mathematicians disagree on the correctness of a proof, they will often 

attempt a joint validation of it (or fragment of it). Typically they will either expand the 

proof and agree on the expanded version or, failing that, they will find and agree on a 

mistake that cannot be fixed” (p. 7).  

A second source of disagreement on whether an argument is a proof is due to 

different views on whether a particular gap in a proof is too large. In both mathematical 

practice and pedagogical practice, proofs commonly contain gaps in which routine logical 

steps are omitted. When a mathematician encounters a gap while she is evaluating the 

validity of a proof, she must estimate whether a knowledgeable audience member would 

have the capacity to bridge this gap with a series of logical inferences. The 
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appropriateness of a gap therefore may be contextual in two respects. First, the 

permissibility of a gap may depend on the purpose of the proof. Perhaps mathematicians 

would be less tolerant of a gap if the goal of the proof was to rigorously establish a 

theorem for the first time in a research journal than if the same proof appeared for 

recreational purposes in an expository journal. Second, a mathematician’s judgment on 

the permissibility of a gap presumably depends on whether the intended audience would 

be capable of bridging that gap. Hence, the target audience is a contextual feature of a 

proof that could influence a decision about the permissibility of a gap. 

The third source arises from mathematicians disagreeing about which inferential 

schemes are permissible in a proof. For instance, one mathematician may accept a 

computer-assisted argument (i.e., an argument where some assertions are justified solely 

on behalf of computer calculations) as a proof on the grounds that it is permissible to 

warrant a claim by a computer calculation (e.g., Fallis, 1996, who claims that most 

mathematicians would accept some computer-assisted arguments as proofs). Another 

mathematician may reject the argument, not because she has doubts about the quality or 

correctness of how the argument was carried out, but because in principle arguments that 

rely on a computer to perform calculations cannot qualify as proofs (e.g., Rota, 1997). 

This is the type of disagreement that is of theoretical interest for our paper. The 

consensus view on proof asserts that mathematicians agree on which inferential schemes 

are permissible in a proof; the pluralistic view holds that mathematicians disagree on 

which inferential schemes are permissible. 
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2.4 The consensus view of proof 

Some philosophers claim that mathematicians can usually agree on whether a 

particular mathematical argument is a proof (e.g., Berry, 2018). For instance, Azzouni 

(2004) offered an explanation of how “mathematicians are so good at agreeing with one 

another on whether some proof convincingly establishes a theorem” (p. 84). Mathematics 

educators have also endorsed this position. McKnight, Magid, Murphy, and McKnight 

(2000) asserted that “all agree that something is either a proof or it is not and what makes 

it a proof is that every assertion in it is correct” (p. 1). Selden and Selden (2003) 

remarked on “the unusual degree of agreement about the correctness of arguments and 

the truth of theorems arising from the validation process” (p. 7). Selden and Selden 

further suggested that mathematicians are consistent in judging the validity of a proof:  

“Mathematicians say an argument proves a theorem, not that it proves it for Smith and 

possibly not for Jones” (p. 11).  

Philosophers who advance the consensus view on proof often draw strong 

conclusions about mathematical practice. For instance, many philosophers have argued 

that mathematics is a special discipline “with a type of knowledge being categorically 

more secure than that of other sciences” (Geist, Loewe, and van Kerkhove, 2010, p. 155). 

Berry (2018) claimed that established mathematical results are rarely subsequently 

overturned in part because there is consensus about which arguments are proven 

(although for a critical analysis, see Geist et al., 2010). 

The consensus view on proof significantly shapes mathematics education 

research, affecting both theory and methodology. A central tenet of Harel and Sowder’s 

(2007) influential proof schemes framework is “the goal of instruction must be 
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unambiguous—namely, to gradually refine current students’ proof schemes toward the 

proof scheme shared and practiced by contemporary mathematicians. This claim is based 

on the premise that a shared proof scheme exists” (p. 809; emphasis ours).  

The consensus view is also a root presumption for mathematics education studies 

of alignment between students’ views of proving and those held by mathematicians. For 

instance, one popular paradigm is to ask students to evaluate arguments and decide 

whether they qualify as proofs (e.g., Alcock & Weber, 2005; Healy & Hoyles, 2000; Ko 

& Knuth, 2013; Selden & Selden, 2003; Weber, 2010). If students judge a (purportedly) 

invalid argument to be a proof or if they judge a correct proof as invalid, the mathematics 

educators find this to be a mathematical shortcoming on the part of the student that 

warrants instructional remediation. These studies are sensible only if the mathematical 

community at large would agree with the mathematics educators’ judgments on the 

validity of the arguments that they used. It would hardly be reasonable to critique a 

student for evaluating an argument as (not a) proof if mathematicians themselves could 

not reach a consensus on the item. 

2.5 The pluralistic view of proof 

Other philosophers are skeptical of the consensus view. In response to Azzouni 

(2004, cited above), Rav (2007) said that proof is “pluralistic” by nature and added, 

“because of the historical and methodological wealth of proof practices (plural), any 

attempt to encapsulate such multifarious practices in a unique and uniform one-block 

perspective is bound to be defective” (p. 299, the parenthetical remark was the author’s). 

Aberdein (2009) coined the term proof* to denote the “species of alleged ‘proof’ where 

there is no consensus that the method provides proof, or there is a broad consensus that it 
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doesn’t, but a vocal minority or an historical precedent point the other way” (p. 1). As 

examples of proof*, Aberdein included “picture proofs*, probabilistic proofs*, [and] 

computer-assisted proofs*” (p. 1). Each of the proofs* cited above is based on a different 

inferential scheme that are purportedly permitted by some mathematicians but not others. 

For instance, the legitimacy of computer-assisted proofs* hinges on whether it is 

permissible to warrant a claim in a proof solely by a computer calculation. Rav’s and 

Aberdein’s commentaries question whether the mathematical community has reached 

consensus on the permissibility of every inferential scheme. 

Many mathematics educators support the pluralistic position as well (e.g., Almeida, 

1996; Dreyfus, 2004; Inglis et al., 2013). For instance, Dreyfus (2004) asserted that “what 

counts as a proof is not absolute […] It may thus depend on contextual factors such as 

historical period, the domain within mathematics and the aim of the proof in a given 

situation” (p. 4). To support his position that proof is not absolute, Dreyfus (2004) cited 

computer-assisted proofs and visual proofs among the specific types of proofs whose 

status as proofs among mathematicians is uncertain.  

Advocates of the pluralistic view of proof sometimes critically question the 

pedagogical goals with regard to proof. First, Dreyfus (2004) challenged whether a goal 

of instruction for students should be developing specific requirements for what 

constitutes a proof. He argued that, “In view of the socially constituted nature of proof, 

even in mathematics, uniformity is the last thing to aim for” (p. 8, emphasis ours; note the 

contrast to Harel & Sowder, 2007). Second, a pluralistic view advises teachers to be 

aware that different judgments on particular proof candidates are possible and they 
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should consider admitting arguments that use a broad range of inferential schemes as 

proofs (Almeida, 1996; Boero et al., 2018; Dreyfus, 2004).  

The pluralistic view also has implications for conducting mathematics education 

research. Consider the proof evaluation studies in which students are asked to determine 

if various arguments qualify as proofs. Czocher and Weber (in press) and Inglis et al. 

(2013) claimed that if mathematicians do not agree on the status of proofs, items in proof 

evaluation studies would need to be tested with mathematicians before using them in 

studies of students’ judgments about proof.   

2.6 Motivation for study 

The extent to which mathematicians agree on which inferential schemes are 

permissible within a proof has significant implications, both for how scholars understand 

the nature of mathematical practice and how mathematics should be taught. Yet, as we 

documented above, scholars have been unable to reach a consensus on this issue. In this 

paper, we present an exploratory study addressing the following questions: (1) To what 

extent do mathematicians agree on the validity of computer-assisted proofs and visual 

proofs in elementary number theory? (2) To what extent do mathematicians agree on the 

validity of proofs using methods of inference standard in a university introductory proof 

course, such as direct proof and proof by cases, in elementary number theory? Note that 

question (1) is an open question, with the consensus view predicting agreement and the 

pluralistic view predicting a lack of agreement.  

Broadly, there are two ways to investigate mathematicians’ perceptions on the 

validity of inferential schemes. A qualitative approach might study a small number of 

mathematicians’ beliefs about validity of given arguments in a task-based or open-ended 
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interview. A qualitative study could provide valuable nuance to views of mathematicians’ 

thinking. Of course, the drawback would be that the small sample size would raise 

questions about representativeness and therefore limit generalization to the larger 

community of mathematicians. For this reason, we believe that a qualitative approach 

would be inappropriate for examining whether, or the extent to which, there is consensus 

or disagreement within the larger community.  A survey approach could ask a large 

number of mathematicians about their views on specific arguments and generate tentative 

conjectures about the larger mathematical community’s treatment of proof.   

Our study used a survey approach. Our rationale is that the extant literature 

already offers individual mathematicians’ insights about particular inferential schemes or 

whether mathematicians usually agree on whether an argument is a proof. For instance, 

Selden and Selden (2003), both published mathematicians, have described their 

experiences on how mathematicians usually reach a consensus on whether an argument is 

a proof. Rav (1999, 2007), also a published mathematician, made the case that 

disagreement about the validity of inferential methods was common. We believe these 

insights can be complemented by measuring when, and the extent to which, disagreement 

about whether an argument is a proof occurs amongst mathematicians. Our results will 

provide evidence regarding if and when mathematicians disagree, but further research 

will be necessary to uncover why the agreement or lack thereof occurs. We treat potential 

follow up studies in the discussion. 
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3 Methods 

3.1 An internet study 

A key aim of this study was to estimate the rates of agreement and disagreement 

in mathematicians’ evaluations of specific arguments. Because a large sample of 

mathematicians is needed to make such estimates, we chose to collect data through an 

online study in order to increase the sample size of mathematicians. This method of data 

collection to study mathematical practice was pioneered by Inglis and Mejia-Ramos 

(2009a, 2009b) and has since been used as a primary means to conduct quantitative 

studies about the mathematical community (e.g., Fukawa-Connelly & Cook, 2016; Inglis 

& Mejia-Ramos, 2009a, 2009b; Lew, 2016; Weber, 2013; Weber & Mejia-Ramos, in 

press). Papers using this methodology have been published in prestigious journals5, 

including Research in Mathematics Education. Psychologists have documented the 

validity of these studies (e.g., Kranz & Dalal, 2000; Gosling et al., 2004).  

3.2 Participants 

A recruitment e-mail was sent to the mathematics department faculty secretary at 

25 large research universities in Great Britain. The email requested they forward an 

invitation to the mathematics staff to participate in a survey on what proofs were valid. 

This e-mail contained a hyperlink to a Qualtrics6 survey. Ninety-four mathematicians 

participated and completed the survey. 

 

5 These journals include Educational Studies in Mathematics (Mejia-Ramos & Weber, 2014), 

Cognition and Instruction (Lai, Weber, & Mejia-Ramos, 2012; Inglis & Mejia-Ramos, 2009a), and 

Research in Mathematics Education (Weber, 2013). 
6 Qualtrics is a software company that allows researchers to conduct on-line surveys. 
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3.3 Items 

 The survey asked participants to evaluate the validity of five arguments, which 

are presented in the Appendix of this paper. We summarize the arguments in Table 1 

below: 

Type Claim Source Inferential 

Methods 

Prototypical 

Proof (PP1) 
The nth prime pn satisfies 𝑝𝑛 ≤ 22

𝑛−1
 for all 

n≥1 

Undergrad 

Textbook (Jones & Jones, 

1998) 

Proof by strong 

induction, algebraic 

manipulation of 

inequalities 

 

Prototypical  

Proof (PP2) 

If n is a number of the form 4k+3, then n is not 

perfect 

American Math. 

Monthly (Holdener, 2002) 

 

Proof by cases, 

modular arithmetic 

Empirical 

Proof (EP) 

If n is an odd integer, then n2 is an odd integer 

 

MAA Blog on teaching7 

(Weber, 2003) 

 

Naïve empiricism 

Visual 

Proof (VP) 

If n is an odd integer, then n2 is congruent to 1 

(mod 8) 

Math Horizons (Nelsen, 

2008) 

Visual proof, 

recognizing features 

present in a generic 

diagram 

 

Computer- 

Assisted 

Proof (CAP) 

𝜋 = ∑
(−1)𝑘

4𝑘

∞

𝑘=0

(
2

4𝑘 + 1
+

2

4𝑘 + 2
+

1

4𝑘 + 3
) 

American Math. 

Monthly (Adamchik & 

Wagon, 1997) 

 

Computer-assisted 

calculation to 

simplify a 

complicated integral 

Table 1. Summary of items used in this study 

We chose these arguments with the following considerations in mind. First, to ensure that 

the participants could follow the arguments, we chose arguments in the domain of 

undergraduate number theory that were presented in expository journals and 

undergraduate textbooks. This ensured that specialist knowledge was not needed to 

interpret any of the arguments. Second, we focused on a conceptual domain that is taught 

to undergraduates, often in a transition-to-proof course, to increase the relevance of our 

findings for mathematics educators. If it is the case that, say, algebraists and topologists 

have different conceptions of validity in elementary number theory, this would suggest 

 

7 https://www.maa.org/programs/faculty-and-departments/curriculum-department-guidelines-

recommendations/teaching-and-learning/research-sampler-8-students-difficulties-with-proof. We chose to 

reference an educational blog for this empirical argument as we could not find a traditional mathematical 

outlet (i.e., a journal or a textbook) that would sanction an empirical argument as a proof.  
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that undergraduates are receiving mixed messages on what a proof is. Third, we 

deliberately chose some arguments that used typical inferential schemes in mathematical 

practice. We chose two “prototypical proofs” (PP1, PP2), which we call prototypical 

because they are arguments using standard mathematical notation and inferential schemes 

common in number theory proofs (e.g., proof by induction, case-based reasoning, 

inference by calculation). We chose two arguments that we anticipated might engender 

disagreement, a visual proof (VP) and a Computer Assisted Proof (CAP). We anticipated 

disagreement because previous scholarship has found them controversial (i.e., 

mathematicians would have strong and conflicting thoughts about the validity of these 

arguments): Aberdein (2009) suggested that they be considered as proofs* and Dreyfus 

(2004) stated that these kinds of proofs are controversial. Finally, we chose an empirical 

proof (EP), which we anticipated mathematicians would largely agree would not qualify 

as a proof. 

These choices aligned with our intent to test the hypothesis that mathematicians 

would agree on which inferential schemes are permissible. In choosing the controversial 

proofs, we aimed to maximize the possibility that any disagreement we observed would 

be due to the inferential scheme used in the proof and simultaneously minimize the 

possibility that the disagreement was due to performance error or gap size. In the next 

sub-section, we describe how we minimized disagreements due to performance error. To 

minimize potential disagreements over gap size, we chose the Visual Proof and the 

Computer Assisted Proof that contained only a small number of inferences. In the Visual 

Proof, the theorem was deduced directly from the diagram. In the Computer Assisted 

Proof, the proof contained two inferences – a simplification of a complicated integral in 
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Mathematica and a trivial calculation. Because the trivial calculation would presumably 

be non-problematic to any mathematician, we believe that any disagreement about Visual 

Proof or Computer Assisted Proof would be due to the inferential scheme employed. 

We used arguments from expository journals and undergraduate textbooks for two 

reasons. First, it would be unreasonable to ask mathematicians to read longer proofs from 

specialist research journals. Second, using discipline-specific proofs would mean we 

would need either to ask some mathematicians to evaluate proofs outside of their area of 

expertise or we would need different sets of proofs for each discipline. The former would 

not be a valid experimental design. The latter would produce very small sample sizes and 

would yield uninterpretable results because there would be no way to compare across 

subdisciplines in the case we found consensus within each subdiscipline. Nonetheless, 

these decisions may limit the generality of our study since mathematicians may referee 

proofs submitted to a research journal differently than how they would evaluate proofs 

from expository journals or from undergraduate textbooks. For instance, it is possible that 

mathematicians may place less value in rigor and more value in explanation when 

evaluating proofs from these sources. We discuss these possibilities in the Discussion 

section of this paper. 

 

3.4 Procedure 

At the start of the survey, participants were told that they would be asked to make 

validity judgments on five mathematical arguments from number theory. We took 

deliberate steps to ensure that participants focused on the inferential schemes in the 

argument and to minimize the possibility that disagreements were due to performance 
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errors. To direct participants’ attention to the inferential schemes that were used, the 

participants were told that the focus of the study was on the type of reasoning within the 

argument and that no attempt was being made to deceive them. They were then told that 

each proof was published, each sentence in the argument was true, and each calculation 

was carried out correctly. After each proof was presented, participants were asked to 

make four judgments: 

• Participants were asked, “On a scale of 1 through 10, how representative is this 

argument to the types of proofs that you encounter in your mathematical practice? 

(10 signifies very typical. 1 signifies this proof bears little similarity to the proofs 

that you read and write)”. Participants were given an open response box to reply. 

For each proof, a small number of participants (less than seven) provided non-

numerical responses which we did not include in our analysis. 

• Participants were asked, “If you were forced to choose, would you say that this 

argument is a valid proof? (As a reminder, you may assume the statements 

within the argument are true. We are interested in whether you think the type of 

reasoning to deduce the statements and the conclusion in the argument is valid)”. 

Participants were given the following two options: (i) This is a valid proof; and 

(ii) This is not a valid proof. One purpose of asking this binary question is to 

show how participants’ apparent disagreement on the validity of some 

mathematical arguments can be explained by their responses to the two 

subsequent questions. 
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• Participants were asked, “What percentage of mathematicians do you think would 

agree with your judgment above?” Participants were given the following four 

options: (i) 91-100%; (ii) 71-90%; (iii) 51-70%; (iv) 31-50%; and (v) 0-30%. 

• Participants were asked, “For a more nuanced view of validity, which do you 

think best captures the validity of this argument?”. Participants were given the 

following four options: (i) I would consider this to be a valid proof in nearly all 

mathematical contexts.; (ii) I would generally consider this argument to be a valid 

proof, but there are some contexts where I would consider this argument to be 

invalid.; (iii) I would generally consider this argument to be invalid, but there are 

mathematical contexts in which I would consider this argument to be a valid 

proof.; (iv) I would consider this argument to be invalid in nearly all mathematical 

contexts. 

4 Results 

Among the participants completing the survey, 41 were regular faculty (22 with 

more than six years experience, 19 with less than six years), 10 were post-doctoral 

faculty, 41 were doctoral students, and the remaining two participants did not specify 

their status. Prior to analysis, statistical comparisons (t-tests for the representative ratings 

and Fisher exact tests for the other judgments) were made on all the ratings between the 

41 doctoral students and the 51 post-docs and faculty members on each of their ratings 

for the five proofs with an alpha of .05. None of these statistical tests found a difference 

between the doctoral students and the other participants. Similarly, statistical 

comparisons determined that there was no statistically significant relationship between 

faculty status and their responses to the items with an alpha of .05. These results are 
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consistent with the broader literature claiming that mathematicians’ practice or epistemic 

stances are not significantly related to their experience or faculty status; in particular, in 

prior studies, doctoral students responded similarly to questions about mathematical 

practice as mathematics faculty (Inglis et al., 2013; Mejia-Ramos & Weber, 2014; Weber 

& Mejia-Ramos, in press). Consequently, we analyzed all data in aggregate. 

The main results from this study are presented in Table 2 and Table 3 below. 

 

 Mean 
Typicality 

Validity 
Judgment 

 Anticipated Level of Agreement  

Proof Rating Valid Proof Invalid Proof 91-100% 71-90% 51-70% 0-50% 

PP1 7.4 99% 1% 90% 9% 1% 0% 

PP2 6.8 98% 2% 78% 20% 2% 0% 
VP 2.6 62% 38% 14% 46% 33% 7% 

CAP 2.7 39% 61% 10% 41% 37% 12% 

EP 1.6 0% 100% 93% 0% 1% 6% 

Table 2. Participants’ judgment on the validity of the five proofs that they read 

 

Proof Valid proof in nearly all 

contexts 

Valid proof but invalid 

in some contexts 

Invalid proof but valid 

in some contexts 

Invalid proof in nearly 

all contexts 

PP1 94% 5% 1% 0% 

PP2 79% 20% 0% 1% 

VP 21% 33% 39% 6% 
CAP 10% 33% 42% 15% 

EP 1% 1% 3% 95% 

Table 3. Participants’ judgment on the more fine-grained view of validity 

 

Prototypical proofs. The typicality ratings of these proofs were high (7.4, SD=2.5, 

for PP1 and 6.8, SD=2.6, for PP2), indicating that participants viewed these proofs as 

fairly typical. For PP1, there was a high level of agreement among the participants. All 

but one participant judged the proof to be valid. Further, most participants (94%) felt that 

the proof would be valid in nearly all mathematical contexts and most (90%) thought that 

more than 90% of their colleagues would agree with them. A similar (although less 

pronounced) trend was observed with PP2. All but two participants judged the proof to be 

valid, most (79%) thought the proof was valid in nearly all contexts, and most (78%) 

thought that more than 90% of their colleagues would agree with their judgment.  
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Empirical proof. The level of agreement for the Empirical Proof was also high. 

Every participant evaluated the Empirical Proof to be invalid; most indicated that this 

argument would be invalid in nearly all mathematical contexts (95%) and that over 90% 

of their colleagues would agree with their evaluation (92%).  

Non-prototypical proofs. The participants did not view the Visual Proof and the 

Computer Assisted Proof as typical proofs, giving typicality ratings of 2.6 (SD=1.8) and 

2.7 (SD=2.1) respectively. There was dissent among the participants as to whether the 

Visual Proof and the Computer Assisted Proof were valid; 62% judged the Visual PRoof 

to be valid and 39% judged the Computer Assisted Proof to be valid. However, most 

participants were aware that there would be dissent among mathematicians as to the 

validity of these proofs. In each case, fewer than 15% of the participants predicted that 

over 90% of their colleagues would agree with their judgment. Particularly important was 

participants’ judgment about the validity of the proof depending on context. In both 

cases, most participants claimed that there were both situations in which the proof would 

be valid and situations where the proof would be invalid (72% for the Visual Proof, 75% 

for the Computer Assisted Proof, these numbers are obtained by adding the middle two 

columns of Table 2). If we re-framed the question about the Visual Proof and the 

Computer Assisted Proof to be, “are there contexts in which this argument would be a 

valid proof?”, we would anticipate a high level of agreement. We can predict 

participants’ response to this question by adding the first three columns of Table 2 (100% 

minus the value in the “invalid in most contexts” category) from which we obtain values 

of 85% for the Computer Assisted Proof and 94% for the Visual Proof. Consequently, the 

subsequent questions suggest that the variation participants exhibited in their judgments 



   

 22 

of the validity of the Computer Assisted Proof and the Visual Proof may be due to the 

binary judgment that they were required to make. 

One post-hoc hypothesis that we considered was that participants’ judgments on 

typicality and validity were synonymous—that is, participants simply judged all typical 

proof methods to be valid and atypical proof methods to be invalid. There was a 

relationship between participants’ typicality ratings for the Computer Assisted Proof and 

the Visual Proof and whether they thought the proofs were valid. Of the 15 participants 

who gave the Computer Assisted Proof a typicality rating of 5 or higher, 11 (73%) 

evaluated the Computer Assisted Proof as valid. Of the 74 participants who gave the 

Computer Assisted Proof a typicality rating of 4 or lower, 25 (34%) evaluated the 

Computer Assisted Proof as valid, a significant difference (Fisher exact test p = .0427). 

(Five participants gave a non-numerical response for typicality). Similarly, of the 14 

participants who gave the Visual Proof a typicality rating of 5 or higher, 12 (86%) 

evaluated the Visual Proof as valid.  Of the 78 participants who gave the Computer 

Assisted Proof a typicality rating of 4 or lower, 44 (56%) evaluated the Visual Proof as 

valid, a significant difference (Fisher exact test p = .0079). (Two participants gave a non-

numerical response for typicality). Nonetheless, the data suggest that even for 

participants who viewed Computer Assisted Proof and the Visual Proof as typical, these 

participants were still more likely to judge these proofs as invalid than PP1 and PP2. 

5 Discussion 

5.1  Summary of main findings 

We summarize our main findings and how they relate to the consensus view and 

pluralistic view on proof. Our main finding is that mathematicians disagreed on the status 
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of computer-assisted proofs and visual proofs, which is consistent with the pluralistic 

position and confirms Aberdein’s (2009) and Dreyfus’ (2004) statements about 

mathematical practice. This is significant for two reasons. First, some scholars have 

claimed that computer-assisted proofs and visual proofs are not controversial. For 

instance, Fallis (1996) wrote that a debate about the status of computer-assisted proofs 

was “archaic” on the grounds that such proofs were usually accepted. Inglis and Mejia-

Ramos (2009b) asserted that the “common view” was that visual inferences could not be 

used to reliably secure mathematical knowledge and consequently could not be 

admissible in a proof. In the latter case, the fact that 62% of our participants accepted the 

Visual Proof as a proof and 94% thought the Visual Proof would be valid in at least some 

contexts demonstrates that the common view might not be so common after all. (We 

found similar findings when mathematicians were asked to judge the validity of graphical 

inferences in a student-generated proof in a real analysis course; see Weber and Mejia-

Ramos, in press). Second, the disagreement that we observed poses a challenge for 

mathematics educators who ascribe to a consensus view. A consensus view is a critical 

assumption underlying the proof schemes framework (Harel & Sowder, 2007). That is, 

finding support for the pluralist view calls into question the use of proof schemes as a 

basis for instructional theory. Happily, our next main result provides a response to this 

challenge. 

Our next main result is that the disagreement that we observed only occurred for 

inferential methods that mathematicians found to be atypical. Further, mathematicians 

were aware that these proofs would be controversial. There was near universal agreement 

that PP1 and PP2 were valid proofs and the Empirical Proof was not. We believe this too 
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is significant. First, it suggests a way in which the consensus view is consistent with 

many educators’ and philosophers’ observations: mathematicians may indeed agree to a 

remarkable degree on the proofs that they typically encounter. Hence, claims such as “the 

unusual degree of agreement about the correctness of arguments and the truth of 

theorems arising from the validation process” (Selden & Selden, 2003, p. 7) are plausible 

provided that this is interpreted as an assertion about the typical proofs that 

mathematicians encounter. Second, the types of reasoning we aim to teach students to use 

(i.e., proof by induction, proof by cases, algebraic manipulation, modular reasoning) are 

types of reasoning that were judged as valid by nearly all mathematicians. Likewise, the 

mathematicians uniformly rejected naïve empirical reasoning which students are 

generally instructed not to use. Thus, even though mathematicians disagree on the status 

of some types of inferences, there appears to be a consensus on the types of inferences 

that form the foundation of instruction. In short, Harel and Sowder’s (2007) assumption 

about mathematicians’ shared proof schemes is supported empirically in the context of 

the inferences that we expect students to use or avoid, which is a wide enough scope for 

their theory to productively inform pedagogy. Third, many scholars have noted that the 

remarkable level of agreement among mathematicians about proof validity is unusual; in 

most other disciplines, it is rare that a single argument can command universal assent and 

settle an open question. Even if this does not always happen in mathematics (i.e., there 

are many high profile examples of conjectures whose status remained murky after a 

purported proof was produced), this does occur regularly. Hence, we agree with Azzouni 

(2004) and Berry (2018) that this is a phenomenon worthy of further investigation. 
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5.2 Limitations and caveats 

Our study had two significant limitations, each of which suggests useful avenues 

for future research. First, while our data suggests that mathematicians do agree on the 

validity of inferential schemes in prototypical proofs and disagree on the validity of 

inferential schemes that are not typical, the data does not help us understand why this is 

the case. A follow-up interview study in which mathematicians are shown the results of 

this paper and asked to provide their interpretation of these results could provide insight 

into why we obtained the results that we did. For instance, perhaps particular groups of 

mathematicians, such as topologists or geometers, are more accepting of visual proofs 

than others, which would be consistent with the Computer Assisted Proof and the Visual 

Proof data presented at the end of the results section. Addressing this issue is beyond the 

scope of our methodology (i.e., it would be extremely difficult to get sufficiently large 

samples of mathematicians from various sub-disciplines to make comparisons of this 

type), but we believe that qualitative studies can complement this quantitative study and 

provide depth and nuance into the findings we reported.  

Second, our conclusions are based on an implicit assumption: because the 

mathematicians in our sample agreed on the validity of the two prototypical proofs in our 

study, they would reach a similar level of agreement on other prototypical proofs that 

they encountered. However, only two prototypical proofs were used in this study. 

Further, these mathematicians’ evaluations were made in the context of proofs that 

appeared in expository journals or undergraduate textbooks. It is possible that the 

disagreements with the Visual Proof and the Computer Assisted Proof were due to 

differing views of what was appropriate for a general audience or even who members of 
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that general audience would be; however, such disagreements would not occur in a 

specialist journal that was written for active researchers. 

This hypothesis about the role of context can be tested in a future study in the 

following way. Mathematicians could be asked to bring in a recent issue of a 

mathematical journal that they regularly read. For each proof that appeared in the journal, 

the mathematician could be asked if the methods used in the argument were typical and 

given that the methods in the argument were carried out correctly, would the argument be 

a valid proof to the mathematician. Would most other mathematicians, including those 

from other disciplines, also accept the proof as valid if they could follow the proof and 

were convinced that the proof contained no mistakes? Our prediction is that participants 

would say that most published proofs would use typical inferential schemes, that 

participants would usually evaluate them as valid (modulo correct implementation of the 

methods), and participants would believe that their peers would make the same judgment.  

5.3 Implications for mathematics education 

Recall that Harel and Sowder’s (2007) unambiguous goal for instruction was for 

students’ proof schemes to align with the proof schemes of contemporary 

mathematicians; this goal presumes that contemporary mathematicians share a common 

view on acceptable proof schemes. Recall also that Dreyfus (2004) objected: because 

mathematicians disagree about what constitutes a proof, uniformity should not be a goal 

of instruction. What our work suggests is that there are three categories of inferential 

schemes: (i) valid schemes that are permissible in a proof such as proof by induction; (ii) 

invalid schemes that are never permissible in a proof such as naïve empiricism 

(Balacheff, 1988); and (iii) controversial schemes whose permissibility is unclear, such as 



   

 27 

drawing inferences from diagrams. Our opinion is that Harel and Sowder’s (2007) aims 

of having students see the limitations of invalid schemes and the legitimacy of valid 

schemes (e.g., Harel, 2001) is appropriate. Uniformity for these schemes is a worthwhile 

goal for instruction because mathematicians have reached consensus on the status of 

these inferential schemes. For controversial schemes, we accept Dreyfus’ (2004) critique; 

we believe students should be aware that the permissibility of these inferential schemes is 

contextual and subjective (c.f., Boero et al., 2018). As we argue in Czocher and Weber 

(in press), instead of debating whether arguments containing these inferences are proof, a 

more productive discussion (in classrooms and among mathematics educators) should 

concern the affordances and limitations that these types of inferences provide. 
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Appendix- Proofs used in this study 

Prototypical Proof 1 (PP1) 

 

Prototypical Proof 2 (PP2). 
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