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HIGHER ORDER BRANCHING OF PERIODIC

ORBITS FROM POLYNOMIAL ISOCHRONES

B. Toni

Abstract. We discuss the higher order local bifurcations of limit cycles from poly-

nomial isochrones (linearizable centers) when the linearizing transformation is explic-

itly known and yields a polynomial perturbation one-form. Using a method based on

the relative cohomology decomposition of polynomial one-forms complemented with

a step reduction process, we give an explicit formula for the overall upper bound of

branch points of limit cycles in an arbitrary n degree polynomial perturbation of the

linear isochrone, and provide an algorithmic procedure to compute the upper bound

at successive orders.
We derive a complete analysis of the nonlinear cubic Hamiltonian isochrone and

show that at most nine branch points of limit cycles can bifurcate in a cubic poly-

nomial perturbation. Moreover, perturbations with exactly two, three, four, six, and

nine local families of limit cycles may be constructed.

1. Introduction

If a planar system with an annulus of periodic orbits is subjected to an au-
tonomous polynomial perturbation, an interesting question is do any of the periodic
orbits survive giving birth to limit cycles (isolated periodic orbits).
In this paper we address this problem in the case of an isochronous annulus

of periodic orbits (all orbits have the same constant period), and the unperturbed
system is explicitly linearizable by a birational transformation of Darboux form, i.e.
involving polynomial maps and their complex powers [6]. The usual method for the
perturbation is to use the Poincaré-Andronov-Melnikov integral of the perturbation
one-form (divided if necessary by the integrating factor) along the closed orbits of
the unperturbed system. In general such an integral is a transcendental function,
and any question about its zeros is highly nontrivial.
The approach in this paper as in [10] is to apply an explicit linearizing transfor-

mation, and solve the perturbation problem in the new coordinates by reducing it
to computing the integral of a rational one-form R1(u, v)du + R2(u, v)dv over the
family of concentric circles u2 + v2 = r2. Using this idea a complete analysis at
first order has been given in [10] for the linear isochrone under an arbitrary degree
polynomial perturbation, and for the reduced Kukles system subjected to one-
parameter arbitrary cubic polynomial perturbation. Here we discuss higher order
perturbations, first for the linear isochrone at any order and then the more general
case when the polynomial perturbation remains polynomial under the linearizing
transformation. Our approach is based on the relative cohomology decomposition
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of polynomial one-forms [9]. As an application we give a complete analysis for cubic
planar Hamiltonian systems with an isochronous center subjected to one-parameter
arbitrary cubic polynomial perturbation.
More precisely, consider an autonomous polynomial perturbation (p, q) of a plane

vector field in the form

Pε := (P (x, y) + εp(x, y))
∂

∂x
+ (Q(x, y) + εq(x, y))

∂

∂y
, (1-1)

where

P (x, y) = −y +
∑

2≤i+j≤n

Pijx
iyj , Q(x, y) = x+

∑
2≤i+j≤n

Qijx
iyj

p(x, y) =

n∑
i=1

i∑
k=0

pi−k,kx
i−kyk, q(x, y) =

n∑
i=1

i∑
k=0

qi−k,kx
i−kyk,

with λn = (Pij , Qij , pij , qij , 1 ≤ i + j ≤ n) the set of system coefficients, and ε a
small parameter. When ε = 0, we assume further that the unperturbed vector field
(P0) has an isochronous period annulus A.
For fixed λn, there is a neighborhood U of the origin in R2 on which the flow

associated with (Pε) exists for all initial values in U . Assume, furthermore, that U
is small enough so that a Poincaré return mapping δ(r, ε, λn) is defined on U , with
the distance coordinate r. The solution γε(t) starting at (r, 0), r > 0, intersects
the positive x−axis for the first time at some point (δ(r, ε, λn), 0) after time T (r, ε).
Let Σ = {(x, 0) ∈ U, x > 0} denote the transversal or Poincaré section of U . By
transversality and blowing up arguments the mapping δ is analytic. On Σ we define
the displacement function

d(r, ε, λn) := δ(r, ε, λn)− r =
k∑
i=1

di(r, λ
n)εi +O(εk+1), (1-2)

where di(r, λ
n) = 1

i!
∂id(r,ε,λn)

∂εi
|ε=0. The isolated zeros of d(r, ε, λn) correspond to

limit cycles (isolated periodic orbits) of (Pε) intersecting Σ. In the period annulus
A, d(r, 0, λn) ≡ 0. We reduce the analysis to that of finding the roots of a suitable
bifurcation function derived from the displacement function. For the higher order
bifurcation analysis we need to determine dk(r, λ

n) under the assumptions that
dj(r, λ

n) ≡ 0 for j < k.
Below in section two we describe our improved isochrone reduction method in-

troduced in [10] where we proved that to first order at most n−12 (resp.
n−2
2 ) local

families of limit cycles bifurcate from a polynomial perturbation of odd (resp. even)
degree n of the linear isochrone. In section three, using the relative cohomology de-
composition of polynomial one-forms along with a so-called step-reduction process,
we effectively compute the explicit formula for the maximum number of branch
points of limit cycles in an arbitrary n degree polynomial perturbation of the linear
isochrone. This upper bound is three (resp. five) in a quadratic (resp. cubic) per-
turbation. An algorithmic construction for the upper bounds at successive orders is
presented. Section four addresses the cubic Hamiltonian isochrones. We show that,
from these isochrones, at most nine local families of limit cycles bifurcate in a cubic
polynomial perturbation. Moreover, in all cases, one may construct in the usual
way perturbations with the maximum number. As shown in [10] each limit cycle
is asymptotic to a circle whose radius is a simple positive zero of the bifurcation
function.
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2. Isochrone reduction

The isochrone reduction technique has been introduced in [10]. We recall it for
the sake of completeness, and present here a partially generalized version. Consider
r∗ ∈ Σ a simple zero of d1(r, λn). Thus, by the Implicit Function Theorem, there
exits a smooth function r = r(ε) defined in some neighborhood of ε = 0 such that
r(0) = r∗ and d(r(ε), ε, λ

n) ≡ 0. The curve r = r(ε) corresponds to a local family of
limit cycles emerging from the periodic trajectory γ(r∗) of the unperturbed system
which meets Σ at r∗. For d1(r, 0, λ

n) ≡ 0, or if one of the zeros is not simple, then
higher order derivatives must be computed. Actually, in A, ∂rd(r, 0, λ

n) = 0 for all
values of r, and so we cannot apply the Implicit Function Theorem. However, from
the perturbation of the Taylor series

d(r, ε, λn) = εd1(r, 0, λ
n) +O(ε2) = ε(d1(r, 0, λ

n) +O(ε)) = εBn1 (r, λ
n), (2-1)

with Bn1 (r, λ
n) := d1(r, 0, λ

n)+O(ε), we define a reduced displacement function by

Bn1 (r, λ
n) := d1(r, λ

n), (2-2)

for small real values of ε. Clearly, if Bn1 (r(ε), λ
n) ≡ 0 then d(r(ε), ε, λn) ≡ 0 and

the Implicit Function Theorem does apply to Bn1 . A simple zero r∗ of B
n
1 is called

a first order branch point of periodic orbits for the system (Pε). The corresponding
periodic orbit γ(r∗) is said to survive or to persist after perturbation.
If r∗ is a simple root of B

n
1 (r, λ

n) of order k, then the corresponding perturbation
Taylor series

d(r, ε, λn) = εk(dk(r, λ
n) +O(ε)) := εkBnk (r, λ

n) (2-3)

yields Bnk (r∗, λ
n) = 0 and ∂rB

n
k (r∗, λ

n) 6= 0. Bnk (r, λ
n) is the order k bifurcation

function. Similarly by the Implicit Function Theorem applied to Bnk , there is a local
family of limit cycles emerging from γ(r∗), whereas there are at most m such local
families for a root r∗ of multiplicity m following from the Weierstrass Preparation
Theorem [7].
In the case of an isochronous period annulus the isochronal assumption is es-

sential to our approach for determining the order k bifurcation function Bnk under
the assumptions Bnj (r, λ

n) ≡ 0 for j < k. It is well known (see, e.g., [6]) that the
origin of the unperturbed system (P0) is isochronous if and only if there exists an
analytic change of coordinates

(Tl) : (u(x, y), v(x, y)) = (x+ o(|(x, y)|), y + o(|(x, y)|)) (2-4)

in its neighborhood, reducing the system to the linear isochrone I0 = −y∂x +
x∂y. Once we know explicitly (Tl), we reduce the autonomous perturbation of the
nonlinear isochrone to that of a linear one; we then derive a simple expression of
the bifurcation function Bnk . In fact through (Tl), (Pε) is simplified to the weakly
linear system

u̇ =− v + εp̄(u, v)

v̇ =u+ εq̄(u, v),
(P̄ε)

whose orbits are in correspondence with the solutions of the one-parameter family
of differential one-forms on the plane

ω̄ε = dH + εω̄, (2-5)

with H(u, v) = 1
2 (u

2 + v2), and ω̄(u, v) = q̄(u, v)du − p̄(u, v)dv.
The expression of the first order bifurcation function is recalled in the following

theorem that we proved in [10].
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Theorem 2.1. Consider a weakly linear system in the form (P̄ε). Assume the
unperturbed system has a period annulus parametrized by r. A first order branch
point of periodic orbits of (P̄ε) is a simple zero of the function

Bn1 (r, λ
n) :=

∫ 2π
0

(p̄(r cos t, r sin t) cos t+ q̄(r cos t, r sin t) sin t) dt, (2-6)

where r is taken in an interval of (0,∞).

At this point we must note that the resulting perturbation one-form ω̄ is not
necessarily polynomial. Actually formula (2-6) is equivalent to a classic Poincaré
formula (See [3])

Bn1 (r, λ
n) = d1(r, 0, λ

n) = −

∫
γ(r)

ω̄ (2-7)

also called the first Melnikov function M1(r), along the level line γ(r) : H = r.

2.1 Higher order Perturbations of the isochrone.
In general such as in [10], under the linearizing transformation, the resulting

perturbation ω̄(u, v) = q̄(u, v)du − p̄(u, v)dv is not necessarily a polynomial. We
consider here the particuliar case where ω̄(u, v) is a polynomial of u and v of degree
n, and make use of the relative cohomology decomposition of polynomial one-forms
in the plane to analyze the higher order perturbations. It goes as follows.
λn denotes the set of n2+3n coefficients of the polynomial one-form ω̄. Assume

the first order bifurcation function Bn1 (r, λ
n) vanishes identically as a function of

r, for a value λn1 of λ
n. We then need to compute Bn2 (r, λ

n
1 ) := d2(r, λ

n
1 ), whose

positive roots give the branch points at second order. The relative cohomology
decomposition (See for instance [3,9] ) states that for such a function H(u, v) in
(2-5), and if

∫
γ(r)
ω̄ ≡ 0, then there are polynomials gn1 (u, v) and R

n
1 (u, v) such that

ω̄(u, v) = gn1 (u, v)dH + dR
n
1 (u, v). (2-8)

This leads to

Bn2 (r, λ
n
1 ) =

∫
γ(r)

(gn1 ω̄) (modulo B
n
1 (r, λ

n) ≡ 0). (2-9)

Thus similarly to formula (2-6), it entails

Bn2 (r, λ
n
1 ) =

∫ 2π
0

[(gn1 · p̄)(r cos t, r sin t) cos t+ (g
n
1 · q̄)(r cos t, r sin t) sin t] dt.

(2-10)
We recall briefly the construction [3]. Let γε(r) be solution of 0 = ω̄ε = dH + εω̄.
From the definitions of Bn1 and the displacement function, integrating over γε yields

εBn1 (r, λ
n) + ε

∫
γ(r)

ω̄ = 0 (modulo ε2). (2-11)

That is

Bn1 (r, λ
n) = −

∫
γ(r)

ω̄. (2-12)
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Assume Bn1 (r, λ
n) ≡ 0 and (2-8). Integrating over γε the equality

(1− εgn1 )(dH + εω̄) = d(H + εR
n
1 )− ε

2gn1 ω̄ (2-13)

gives

ε2Bn2 (r, λ
n) + ε2

∫
γ(r)

gn1 ω̄ = 0 (modulo ε
3). (2-14)

Hence formula (2-9). Inductively, given

Bnk (r, λ
n
k−1) = (−1)

k

∫
γ(r)

(gnk−1ω̄)

= (−1)k
∫ 2π
0

(
gnk−1 · [p̄(r cos t, r sin t) cos t+ q̄(r cos t, r sin t) sin t]

)
dt

(2-15)
if Bnk (r, λ

n
k−1) ≡ 0 (as a function of r), there exist polynomials g

n
k and R

n
k such that

gnk−1ω̄(u, v) = g
n
k (u, v)dH + dR

n
k (u, v), (2-16)

and therefore the (k + 1)th bifurcation function is given by

Bnk+1(r, λ
n) = (−1)k+1

∫
γ(r)

(gnk ω̄). (2-17)

Consequently constructing the sequence of polynomials gni ∈ R[u, v], i = 1, · · · , k
yields the computation of the first nonzero identically bifurcation function Bnk (r, λ

n)
whose positive roots give the branch points of order k.

2.1.1 Computing the relative cohomology decomposition.

The polynomial gn1 (u, v) in (2-8) is determined by the following.

Proposition 2.2. Assume that p̄(u, v) and q̄(u, v) in (2-5) are polynomials in u
and v. If Bn1 (r, λ

n) vanishes identically then the polynomial gn1 (u, v) such that

ω̄(u, v) = gn1 (u, v)dH + dR
n
1 (u, v)

is given by the partial differential equation

u
∂gn1 (u, v)

∂v
− v
∂gn1 (u, v)

∂u
= Div(p̄, q̄)(u, v), (2-18)

where Div(p̄, q̄) is the divergence of p̄ and q̄.

Proof. The cohomology decomposition

ω̄(u, v) = gn1 (u, v)dH + dR
n
1 (u, v) = q̄(u, v)du − p̄(u, v)dv (2-19)

yields
dω̄ = dgn1 ∧ dH = dq̄ ∧ du− dp̄ ∧ dv. (2-20)

This entails (
v
∂gn1
∂u
− u
∂gn1
∂v

)
du ∧ dv = −

(
∂p̄

∂u
+
∂q̄

∂v

)
du ∧ dv. (2-21)
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Hence the claim. The kth, k ≥ 1 cohomology decomposition factor gnk is computed
the same way using the polynomials gnk−1p̄ and g

n
k−1q̄. �

Consequently gn1 (u, v) is a polynomial of maximum degree d = n−1. The second
order bifurcation function is then

Bn2 (r, λ
n
1 ) =

∫ 2π
0

[gn1 (r cos t, r sin t)(p̄(r cos t, r sin t) cos t+ q̄(r cos t, r sin t) sin t)] dt.

(2-22)
This yields an algorithmic construction of the bifurcation function Bnk (r, λ

n) modulo
Bnj (r, λ

n) ≡ 0 for j < k.

Remarks 2.3.

(1) As a consequence of the explicit decomposition (2-19) and the algorith-
mic construction, we have Bnk (r, λ

n) ∈ R[λn], i.e., the bifurcation function
Bnk (r, λ

n) depends polynomially on the system coefficients λn.
(2) This construction yields an increasing sequence of ideals generated by the
polynomials Bnk in the Noetherian ring R[λ

n] of polynomials in λn.
(3) By Hilbert’s basis theorem the ideal Iω̄ =< B

n
1 , B

n
2 , · · · , B

n
k , · · · > of all

the bifurcation polynomials is finitely generated, i.e., there exists a positive
integer τ = τ(n) such that Iω̄ = Iτ(n) =< B

n
1 , · · · , B

n
τ(n) >. We call Iτ(n)

the Bautin-like ideal associated to the polynomial perturbation ω̄.
(4) Therefore whenever the resulting perturbation ω̄ is polynomial under the
linearizing transformation, the relative cohomology decomposition allows to
compute explicitly the Bautin-like ideal [1] which contains all the informa-
tions for finding the bound Mτ(n)(n) to the number of limit cycles to be
born to the origin in a perturbation of the isochrone.

For the sake of illustration, first we address the case of the linear isochrone.
Next as an example of a nonlinear isochrone we discuss the cubic Hamiltonian
isochrone. This isochronous system admits a linearization that preserves the poly-
nomial perturbation allowing the use of the relative cohomology decomposition-
based approach.

3. Higher order Perturbations of the linear isochrone

Consider a perturbation of degree n of the linear isochrone in the form

Iε := (−y + εp(x, y))
∂

∂x
+ (x+ εq(x, y))

∂

∂y
, (3-1)

with p(x, y) and q(x, y) given in (1-1), and the set of system coefficients λn =
(pij , qij , 1 ≤ i+ j ≤ n). Computing the first order bifurcation function from (2-6)
yields

Bn1 (r, λ
n) =

n∑
i=1

riCi(λ
n), (3-2)

where (terms of negative subindex assumed zero)

Ci(λ
n) =

i+1∑
k=0

(pi−k,k + qi−k+1,k−1)

∫ 2π
0

cos ti−k+1 sin tkdt. (3-3)
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Simplifying through the well-known rules
∫ 2π
0
cos tm sin tldt = 0 for m or l odd we

get
Ci(λ

n) ≡ 0 (resp. Ci(λ
n) 6≡ 0) for i even (resp. odd). (3-4)

Note that the coefficients Ci(λ
n) are of degree one in the component of λn. They

are also linearly independent. For instance

C1(λ
n) = π(p10 + q01); C3(λ

n) =
π

4
(3p30 + p12 + q21 + 3q03). (3-5)

From (3-2) the branch points are the real positive roots ρ = r2 of

B̄n1 (ρ, λ
n) = C1(λ

n) + C3(λ
n)ρ+ · · ·+ C2N+1(λ

n)ρN , (3-6)

where N = n−2
2
(resp. n−1

2
) for n even (resp. n odd). Hence the following theorems

we proved in [10].

Theorem 3.1. To first order, no more thanM1(n) = (n− 1)/2, (resp. (n− 2)/2)
continuous families of limit cycles can bifurcate from the linear isochrone in the
direction of any autonomous polynomial perturbation of degree n, for n odd (resp.
even). We can construct small perturbations with the maximum number of limit
cycles. Moreover the limit cycles are asymptotic to the circles whose radii are simple
positive roots of the bifurcation function.

For n = 2, (resp. n = 3) we have

Corollary 3.2. No (resp. at most one) continuous family of limit cycles bifurcates
from the linear isochrone in the direction of the quadratic (resp. cubic ) autonomous
perturbation (p, q). In the cubic case the maximum number one is attained if and
only if the coefficients satisfy the condition C1(λ

3) · C3(λ3) < 0, where C1(λ3) and
C3(λ

3) are given in (3-5). In this instance, this family emerges from the real positive
simple roots of the function

∆(ρ, λ3) := C1(λ
3) + C3(λ

3)ρ. (3-7)

We now proceed to the higher orders and prove the following.

Theorem 3.3. From the linear isochrone, to second order, no more thanM2(n) =
n − 2 continuous families of limit cycles can bifurcate in the direction of any au-
tonomous polynomial perturbation of degree n independently of the parity of n.
These families emerge from the real positive simple roots of the (n − 2)th degree
polynomial equation

B
n

2 (ρ, λ
n
1 ) := C3(λ

n
1 ) + C5(λ

n
1 )ρ+ · · ·+ C2n−1(λ

n
1 )ρ

n−2. (3-8)

Moreover we can construct small perturbations with the maximum number of limit
cycles as below.

Proof. First note that in (3-8) there are n+1
2
(resp. n

2
) Ci(λ

n) for n odd (resp. n
even.) Let λn1 = λ

n|Ci(λn)=0 the set of system coefficients (pij , qij) such that, from
(3-6)

C1(λ
n
1 ) = C3(λ

n
1 ) = · · · = Ci(λ

n
1 ) = · · · = C2N+1(λ

n
1 ) = 0. (3-9)
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That is Bn1 (r, λ
n
1 ) ≡ 0. Important to our analysis is the fact that every equation

Ci(λ
n
1 ) = 0 allows to derive one system coefficient in terms of the remaining in its

expression. Therefore we have

card(λn1 ) =

{
n2 + 3n− n+12 =

2n2+5n−1
2 , for n odd

n2 + 3n− n
2
= 2n2+5n

2
, for n even,

(3-10)

where card(λn1 ) is the number of components pij , qij in λ
n
1 . Using the relative

cohomology decomposition we compute the (n − 1)th degree polynomial gn1 (x, y)
by solving equation (2-18). Take gn1 (x, y) as

gn1 (x, y) =

n−1∑
i=1

i∑
k=0

g1i−k,kx
i−kyk. (3-11)

The coefficients g1i−k,k = g
1
i−k,k(λ

n
1 ) are determined by the relation

(k+1)g1i−k−1,k+1−(i−k+1)g
1
i−k+1,k−1 = (i−k+1)pi−k+1,k+(k+1)qi−k,k+1. (3-12)

Set

Gi(λ
n
1 , t) =

i∑
k=0

g1i−k,k cos
i−k t sink t

Fi+1(λ
n
1 , t) =

i+1∑
k=0

(pi−k,k + qi−k+1,k−1) cos t
i−k+1 sin tk,

(3-13)

and compute the second order bifurcation function using (2-10). It entails

Bn2 (r, λ
n
1 ) =

2n−1∑
i=2

riCi(λ
n
1 ), (3-14)

with

Ci(λ
n
1 ) =

i−1∑
k=1

∫ 2π
0

Gi−k(λ
n
1 , t)Fk+1(λ

n
1 , t)dt, (3-15)

terms of negative subindex are assumed zero, Gj(λ
n
1 , t) = 0 for j > n − 1, and

Fj(λ
n
1 , t) = 0 for j > n+1. Through the rules

∫ 2π
0
cos tm sin tldt = 0 for m or l odd

it results

Ci(λ
n
1 ) ≡ 0 (resp. Ci(λ

n
1 ) 6≡ 0), for i even (resp. i odd). (3-16)

In particular C2(λ
n
1 ) = 0, and C2n−1(λ

n
1 ) 6≡ 0, independently of the parity of n.

Hence the claim. �

We repeat the above outlined process in the following Sj , j = 1, · · · ,Mn steps
after which we obtain the first non identically zero Bnτ and derive the overall upper
boundMτ (n). This procedure is called the Step Reduction Process. We prove
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Theorem 3.4.

(1) For n odd (resp. n even), the first odd (resp. even) integer τ = τ(n) =Mn
determined by (3-20) (resp. (3-22)) yields Bnτ−1 6≡ 0 (resp. B

n
τ 6≡ 0).

(2) At most

Mτ (n) =

{
τn−(τ+2)

2 , for n odd

τn−(τ+3)
2 , for n even

branch points of limit cycles bifurcate from the linear isochrone in a n−degree
polynomial perturbation.

(3) At any arbitrary order 1 ≤ k ≤ τ the kth order upper bound of limit cycles
is given by (3-18).

Proof. At every step Sj we compute the relative cohomology decomposition factor
gnk which is a polynomial of degree k(n− 1)th for k = j + 1. At the corresponding
coefficients λnk |Ci(λnk−1)=0, the number of bifurcation coefficients Ci(λ

n
k−1) is

card(Ci(λ
n
k−1)) =

{
kn−k
2 , for k odd, n odd

kn−(k+1)
2 , for k odd, n even.

(3-17)

we determine the kth order bifurcation function Bnk (r, λ
n
k−1) that yields a kth order

upper bound of branch points

Mk(n) =

{
kn−(k+2)

2 , for k even and every n; k odd and n odd.

kn−(k+3)
2 , for k odd and n even.

(3-18)

As above we derive some system coefficients in function of others in solving Ci(λ
n
k−1) =

0. Finally, we know from remark (2.3) that the process must stop giving the overall
upper bound. Recall that the coefficients Ci(λ

n
k−1) are linearly independent and

polynomials of degree k in the components of λnk−1. After the last Mn step the
number of remaining system coefficients is less or equal to the number of bifurca-
tion coefficients Ci(λ

n
Mn
). Thus at least the last Ci is necessarily nonzero yielding

BnMn 6≡ 0, as illustrated in the quadratic and cubic cases below. We next determine
Mn.

(1) For n odd, after Mn steps, from (3-10), we have

2n2 + 5n − 1

2
≤
Mn∑
k=2

kn− k

2
(3-19)

This leads to Mn satisfying

Mn(Mn + 1) ≥ 4
n2 + 3n− 1

n− 1
(3-20)

(2) For n even, it amounts to determining Mn =Mn/2 such that

2n2 + 5n

2
≤
Mn∑
k=2

(
kn− k

2
+
(k + 1)n − (k + 2)

2

)
. (3-21)

We get

Mn(Mn + 1) ≥
2n2 + 9n− 6

n− 1
(3-22)

Hence the result. �
For example, for n = 2 we have
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Corollary 3.5. In a quadratic perturbation of the linear isochrone

(1) The maximum number of continuous families of limit cycles which can bi-
furcate is three.

(2) To first order, second order, and third order no limit cycles can bifurcate.
(3) The number of continuous families of limit cycles which can bifurcate is at
most one to fourth order and fifth order, at most two to sixth order and
seventh order, at most three to eighth order.

Proof. The result is straightforward by taking n = 2 in formulas (3-18) and (3-22).
We obtain M2 ≥ 8. Thus B28 6≡ 0. �
Item one in the above corollary confirms results in [2, section 3.1, and Theorem

4.8] whereas items 2, 3 correct and improve concluding remarks in [4]. The case
n = 3 yields

Corollary 3.6. In a cubic perturbation of the linear isochrone

(1) The maximum number of continuous families of limit cycles which can bi-
furcate is five.

(2) The number of continuous families of limit cycles which can bifurcate is at
most one to first order and second order, at most two to third order, at most
three to fourth order, at most four to fifth order, at most five to sixth order.

Proof. The result follows from n = 3 in formulas (3-18) and (3-20). We get M3 ≥
5.3. Thus B36 6≡ 0. �
Similar corollaries can be formulated for fourth, fifth, · · · , nth order perturbation

of the linear isochrone. We now discuss the nonlinear isochrone case of the cubic
polynomial Hamiltonian isochrones. Unlike the Kukles isochrone [10], it admits a
polynomial linearizing transformation that preserves the polynomial nature of the
perturbation one-form, allowing the use of the relative cohomology decomposition.

4. Cubic Hamiltonian Isochrones

Assuming the degenerate singularity on the y−axis without loss of generality, a
cubic Hamiltonian system may be written as

ẋ =− y − a1x
2 − 2a2xy − 3a3y

2 − a4x
3 − 2a5x

2y

ẏ =x+ 3a6x
2 + 2a1xy + a2y

2 + 4a7x
3 + 3a4x

2y + 2b5xy
2,

(H3)

with Hamiltonian function

H(x, y) =
x2 + y2

2
+ a6x

3 + a1x
2y+ a2xy

2 + a3y
3 + a7x

4 + a4x
3y+ a5x

2y2. (4-1)

Mardešić et al have established the following characterization in [8].

Theorem 4.1. The Hamiltonian cubic system (H3) is Darboux linearizable if and
only if it is of the form

ẋ =− y − Cx2

ẏ =x+ 2Cxy + 2C2x3.
(Hi)

This system is linearizable through the canonical change of coordinates

(u(x, y), v(x, y)) = (x, y + Cx2). (Tl)
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4.1 First Order Perturbation.

Consider a cubic autonomous perturbation (Hε) of system (Hi)

ẋ =− y − Cx2 + εp(x, y)

ẏ =x+ 2Cxy + 2C2x3 + εq(x, y),
(Hε)

where, along with small values of the parameter ε ∈ R, and C 6= 0 we take

p(x, y) =
3∑
i=1

i∑
k=0

pi−k,kx
i−kyk, q(x, y) =

3∑
i=1

i∑
k=0

qi−k,kx
i−kyk. (4-2)

The system coefficients set is λ3 = (C, pij , qij , 1 ≤ i + j ≤ 3) with card(λ3) = 19.
The linearizing change of coordinates (Tl) transforms (Hε) into system

u̇ =− v + εp̄(u, v)

v̇ =u+ εq̄(u, v),
(H̄ε)

with

p̄(u, v) =

3∑
i=1

i∑
k=0

pi−k,ku
i−k(v − Cu2)k =

6∑
i=1

i∑
k=0

p̄i−k,ku
i−kvk

=p10u+ p01v + (p20 − Cp01)u
2 + p11uv + p02v

2 + (p30 − Cp11)u
3+

(p21 − 2Cp02)u
2v + p12uv

2 + p03v
3 + (c2p02 − Cp21)u

4 − 2Cp12u
3v−

3Cp03u
2v2 + C2p12u

5 + 3C2p03u
4v −C3p03u

6,

q̄(u, v) =2Cup̄(u, v) +
3∑
i=1

i∑
k=0

qi−k,ku
i−k(v − Cu2)k =

7∑
i=1

i∑
k=0

q̄i−k,ku
i−kvk

=q10u+ q01v + (2Cp01 + q20 − Cq01)u
2 + (2Cp01 + q11)uv + q02v

2+

(2C(p20 −Cp01) + q30 − Cq11)u
3 + (2Cp11 + q21 − 2Cq02)u

2v + (2Cp02+

q12)uv
2 + q03v

3 + (2C(p30 − Cp11) + C
2q02 − Cq21)u

4 + (2Cp21−

4C2p02 − 2Cq12)u
3v + (2Cp12 − 3Cq03)u

2v2 + 2Cp03uv
3 + C2(2Cp02 − 2q21+

q12)u
5 + C2(−4p12 + 3q03)u

4v − 6C2p03u
3v2 + C3(2p12 − q03)u

6+

6C3p03u
5v − 2C4p03u

7.

(4-3)
Therefore the resulting one-form ω̄ = q̄du− p̄dv is polynomial of degree deg(ω̄) :=

max(deg(p̄), deg(q̄)) = 7. Denoting λ
7
the system coefficients set after linearization

card(λ̄7) = card(λ3) = 19. We then prove the following.

Theorem 4.2.
From a periodic trajectory in the period annulus A of the nonlinear isochrone

(Hi), at most two local families of limit cycles bifurcate to first order in the direction
of the cubic perturbation (p, q). Moreover there are autonomous perturbations with
exactly 0 ≤ N+ ≤ 2 families of limit cycles. These families emerge from the real
positive simple roots of the quadratic function

∆(ρ, λ3) := C1(λ
3) + C3(λ

3)ρ+ C5(λ
3)ρ2, (4-4)
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with the coefficients Ci(λ
3), i = 1, 3, 5 given below.

Proof. Computation of the first order bifurcation function

Bn1 (r, λ
3) =

∫ 2π
0

(p̄(r cos t, r sin t) cos t+ q̄(r cos t, r sin t) sin t)dt (4-5)

gives
Bn1 (r, λ

3) = r
(
C1(λ

3) +C3(λ
3)ρ+ C5(λ

3)ρ2
)
, (4-6)

with ρ = r2,

C1(λ
3) = π(p10 + q01); C3(λ

3) =
π

4
(3(p30 + q03) + p12 + q21 −C(p11 + 2q02)) ;

C5(λ
3) =

π

8
(p12 + 3q03)C

2.

(4-7)
The upper boundM1(3) is clearly two, more accurate thanM1(n) = n−1

2 = 3 for
n = 7 one might predict from the previous section.
A construction of small perturbations with an indicated number N+ of families

of limit cycles may be done using for instance Descartes rule of signs. We outline
the technique, not really necessary for this quadratic case but effective for higher
orders. Indeed denoting ν the number of sign changes in the sequence of coefficients
of ∆(ρ) = C1(λ

3) + C3(λ
3)ρ + C5(λ

3)ρ2, the number N+ of positive zeros is such
that N+ − ν = 2k, k ∈ N. Therefore

C1(λ
3) · C3(λ

3) < 0 and C3(λ
3) · C5(λ

3) < 0, we get N+ = 2 or 0 ,

C1(λ
3) · C3(λ

3) < 0 and C3(λ
3) · C5(λ

3) > 0, gives N+ = 1 or 0 .

C1(λ
3), C3(λ

3), C5(λ
3) of same sign, there is no positive zeros.

(4-8)

The analysis is completed by the following lemma.

Lemma 4.3.
Let s(x) be a real polynomial, s 6= 0, and let s0(x), s1(x), . . . , sm(x) be the se-

quence of polynomials generated by the Euclidean algorithm started with s0 := s(x);
s1 := s

′(x). Then for any real interval [α, β] such that s(α) · · · s(β) 6= 0, s(x) has
exactly ν(α)−ν(β) distinct zeros in [α, β] where ν(x) denotes the number of changes
of sign in the numerical sequence (s0(x), s1(x), . . . , sm(x)). Moreover all zeros of
s(x) in [α, β] are simple if and only if sm has no zeros in [α, β].

For a detailed proof, see [5, Theorem 6.3d]. Assume C5(λ
3) 6= 0 for a more

general treatment, and set

∆(ρ) = ρ2 + α2ρ+ α0, with α0 :=
C1(λ

3)

C5(λ3)
; α2 :=

C3(λ
3)

C5(λ3)
. (4-9)

We derive the following Euclidean sequence (up to constant factors):

s0(x) = ∆(r), and s1(x) = ∆
′(r)

s2(x) = −
α2
2
r2 − α0, and s3(x) = βr

s4(x) = α0,

(4-10)
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with β =
−2α22+8α0

α2
. We further assume α0 6= 0 and α2 6= 0, i.e., C1(λ3) and C3(λ3)

nonzero. At x = 0 we obtain the sequence (α0, 0,−α0, 0, α0); hence ν(0) = 2. At
∞, where the leading terms dominate, we get (1, 4,−α2

2
, β, α0). As a result, to

make N+ = 2, (resp. 1) we must have ν(∞) = 0 (resp. 1). It amounts to taking all
the terms −α22 , β, and α0 positive. Then it suffices to realize C1(λ

3) · C5(λ3) > 0,
C3(λ

3) · C5(λ3) < 0 and 4C1(λ3) · C5(λ3) < C23 (λ
3). And respectively C1(λ

3) ·
C3(λ

3) < 0 and C3(λ
3) · C5(λ3) < 0. Moreover for α0 6= 0, s4(x) is constant;

therefore all zeros made to appear by the previous construction are simple. �
Remarks 4.4. One may see the resulting system (H̄ε) as a 7th degree perturbation
of the linear isochrone and use the formulas in the previous section to predict the
successive upper boundMk(7), k = 1, 2, 3.... Although the results are not incorrect,
the bound obtained is not the best one. To obtain the most accurate upper bound
one must consider the explicit expression of each perturbation polynomial in the
building up of the combined cohomology decomposition-step reduction process.
Indeed (H̄ε) is not a typical 7th degree polynomial perturbation of the linear

isochrone so as to literally apply the previous section. For such a perturbation
card(λ7) = 70, which yields a more complicated step-reduction procedure than do
the actual 19 coefficients.

4.2 Higher Order Perturbations.

Set λ31 = λ
3|Ci(λ3)=0,i=1,3,5 that is

p10 + q01 = p12 + 3q03 = 3p30 + q21 − C(p11 + 2q02) = 0. (4-11)

Thus B31(r, λ
3
1) ≡ 0. We then analyze the second order perturbation and obtain the

following result.

Theorem 4.5.
At second order there is a choice of the relative cohomology decomposition first

factor leading to a maximum of three, and four continuous families of limit cycles
bifurcating in the direction of the cubic perturbation (p, q) of the nonlinear isochrone
(Hi).

Proof.
The particular expression of the resulting polynomial perturbation ω̄ impose the

search of a 5th degree first relative cohomology decomposition polynomial g31(u, v).
From formula (3-12) we obtain

g31(u, v) = g
1
10u+ g

1
01v + g

1
20u

2 + g102v
2 + g121u

2v + g103v
3 + g140u

4

+ g122u
2v2 + g104v

4 + g150u
5 + g105v

5,
(4-12)

with

g110 = −(p11 + 2q02); g
1
01 = 2p20 + q11; g

1
02 − g

1
20 = p21 + q12

g121 = −2C(p21 + q12); g
1
03 = −4C(p21 + q12) = 2g

1
21

g122 = 2g
1
40 = 2g

1
04; g

1
50 = g

1
05.

(4-13)

This expression of g31(u, v) is particularly interesting. It shows the non-uniqueness
of the cohomology decomposition in this case. Indeed, whereas in (4-13) the coeffi-
cients g110, g

1
01, g

1
21, g

1
03 are fixed in terms of the components of λ

3 we have multiple
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choices for g102 and g
1
20. Moreover g

1
22, g

1
40, g

1
04, g

1
50, g

1
05 are arbitrary. Consequently

we may consider the following possibilities for g31 .

(1) A cubic polynomial ḡ31 by making g
1
20 = g

1
04 = g

1
05 = 0.

(2) A 4th degree g̃31 with g
1
04 6= 0; g

1
05 = 0.

(3) A 5th degree ĝ31 for g
1
05 6= 0.

Of course the upper boundsMk(3), k ≥ 2 vary accordingly. Indeed following the
process outlined previously the second bifurcation function B32(r, λ

3
1) reduces to

B32(r, λ
3
1) =

N∑
i=3,iodd

riCi(λ
3
1), (4-14)

where the bifurcation coefficients Ci(λ
3
1) are computed as in (3-15). We get respec-

tively N = 11, for the 5th and 4th degree polynomial ḡ31 and g̃
3
1 yielding a 2nd

order upper boundM2(3) = (N − 3)/2 = 4. Whereas for the cubic polynomial ĝ31
we get N = 9 leading toM2(3) = (N − 3)/2 = 3. �
In the sequel we choose the ”best” relative cohomology decomposition first factor

ĝ31 which we denote again g
3
1 for convenience, by assuming zero the arbitrary coef-

ficients in (4-13). We follow the step procedure of the previous section to analyze
the higher orders. We obtain

Theorem 4.5. In a cubic perturbation of the nonlinear cubic Hamiltonian isochrone

(1) To third order (resp. fourth order) at most six (resp. nine) continuous
families of limit cycles can bifurcate.

(2) The maximum number of branch points of limit cycles is nine.

Proof. For λ32 = λ
3
1|Ci(λ31)=0,i=3,5,7,9, card(λ

3
2) = 12, and B

3
2(r, λ

3
2) ≡ 0. It yields the

determination of a 8th degree relative cohomology decomposition second factor g32 .
We then compute the third order bifurcation function B33(r, λ

3
2) and the bifurcation

coefficients Ci(λ
3
2), i = 3, 5, 7, 8, 9, 11, 13, 15 as in (3-15). This entails the third order

upper boundM3(3) = 6.
The equations Ci(λ

3
2) = 0, i = 3, 5, 7, 8, 9, 11, 13, 15 yield a coefficient set λ

3
3 =

λ32|Ci(r,λ32)=0,i=3,5,7,8,9,11,13,15 such that B
3
3(r, λ

3
3) ≡ 0, and card(λ

3
3) = 6. This leads

to compute a 14th degree cohomology decomposition factor g33 , and ten bifurcation
coefficients Ci(λ

3
3), i = 3, · · · , 21; odd. It entails a 4th order bifurcation function non

identically zero. We obtain the 4th order upper boundM4(3) = 9 as claimed. �

5. Concluding Remarks

The relative cohomology decomposition of polynomial one-forms complemented
with the step reduction procedure described above provides a useful technique
for the investigation of higher order branching of periodic orbits of polynomial
isochrones when the linearization preserves the polynomial characteristic of the
perturbation. It yields a complete analysis of an arbitrary n−degree polynomial
perturbation of the linear isochrone, and the nonlinear cubic Hamiltonian isochrone,
by providing an explicit formula for any order bifurcation function, as well as for
the overall upper bound M(n) of the branch points of limit cycles, i.e, the finite
number of the generators of the corresponding Bautin-like ideals.
A similar technique might be obtained when the resulting perturbation after

linearization is rational.
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