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OPTIMIZING CHEMOTHERAPY IN AN HIV MODEL

K. Renee Fister
Suzanne Lenhart

Joseph Scott McNally

Abstract. We examine an ordinary differential system modeling the interaction

of the HIV virus and the immune system of the human body. The optimal control

represents a percentage effect the chemotherapy has on the interaction of the CD4+T

cells with the virus. We maximize the benefit based on the T cell count and minimize

the systemic cost based on the percentage of chemotherapy given. Existence of an
optimal control is proven, and the optimal control is uniquely characterized in terms

of the solution of the optimality system, which is the state system coupled with the

adjoint system. In addition, numerical examples are given for illustration.

1. Introduction

Various chemotherapies for patients with human immunodeficiency virus (HIV)
are being examined to determine the optimal scheme for treatment. The questions
of when and how treatment should be initiated given that treatment can only
be continued for a finite interval are analyzed. An ordinary differential equation
model which describes the interaction of HIV in the immune system is utilized, and
optimal control of this ordinary differential equation model is explored. Also, the
concept that the treatment control affects the ability of the virus to further infect
the patient is assumed.
The challenge of this disease is that the CD4+T cells (CD4 positive T lympho-

cytes, a type of white blood cells) that HIV infects are the very ones that are
necessary to ward off the invasion. The CD4 represents a protein marker on the
surface of the CD4+T cell. The T in the CD4+T cell describes the connection to
the thymus gland. After the initial CD4+T cells flow from the bone marrow where
they are produced, they arrive in the thymus gland where they mature. On their
surfaces, they possess proteins that can bind to foreign substances, such as HIV.
At these connectors, the HIV is fused into the host CD4+T cell. Since HIV is a
retrovirus, the RNA of the virus is converted into DNA inside the CD4+T cell.
Thus, the DNA of the virus is duplicated and the new virus particles bud from
the CD4+T cell. This process can proceed slowly and allow the CD4+T cell to
survive, or it can cause the host cell to erupt and die. The hallmark of the onset
of AIDS (Acquired Immune Deficiency Syndrome) is the depletion of the CD4+T
cell population, which lowers the effectiveness of the immune system. The CD4+T
cells serve as command centers for the immune system and elicit responses from the

1991 Mathematics Subject Classifications: 34B15, 49K15, 92D30.

Key words and phrases: Chemotherapy, HIV, Optimal Control.
c©1998 Southwest Texas State University and University of North Texas.
Submitted April 15, 1998. Published December 4, 1998.

1



2 K.R. Fister, S. Lenhart, & J.S. McNally EJDE–1998/32

CD8+T cells and the B cells that can lead to the destruction of the virus. See the
discussion in reference [10] and the survey paper by Kirschner [7] for background
and references in HIV models.
Let T represent the concentration of the uninfected CD4+T cells, and let T ∗,

T ∗∗ denote the concentrations of latently infected and actively infected CD4+T
cells. Let V denote the concentration of free infectious virus particles. Definitions
and numerical data for the parameters can be found before the references. Using
the model from [9], the assumption is made that the populations evolve as follows:

dT

dt
=

s

1 + V
− µTT + rT

(
1−
T + T ∗ + T ∗∗

Tmax

)
−K1V T (1.1)

dT ∗

dt
= K1V T − µTT

∗ −K2T
∗ (1.2)

dT ∗∗

dt
= K2T

∗ − µbT
∗∗ (1.3)

dV

dt
= NµbT

∗∗ −K1V T − µvV (1.4)

with initial conditions T (0) = T0, T
∗(0) = T ∗0 , T

∗∗(0) = T ∗∗0 , and V (0) = V0 for
infection by both infected cells and virus.
In (1.1), s/(1 + V ) is a source term from the thymus and represents the rate of

generation of new CD4+T cells. The T cells have a finite life span with a death rate
µT per cell. In (1.2), latently infected T cells are assumed to have a natural death
rate, µT , even though other factors can change the natural death rate. In (1.1), r
is the coefficient of the growth rate of T cells, which is a logistic-type growth. This
growth ensures that the T cells never grow larger than Tmax.
In (1.1) and (1.2), the term K1V T models the rate that free virus infects CD4

+T
cells. After a T cell becomes infected, it becomes a latently infected T cell. Hence
the K1V T term is subtracted from (1.1) and added to (1.2).
Equation (1.3) describes the actively infected CD4+T cells. At the rate K2,

latently infected T cells become actively infected. The actively infected T cells
manufacture virus and die at a rate per cell µb. Equation (1.4) models the free virus
population. An assumption is made that when an actively infected CD4+T cell
becomes stimulated by antigen exposure, replication of the virus begins. Further,
N viruses are formed before the host cell dies. Also, free virus is lost by connecting
to CD4+T cells at a rate K1. The term −µvV takes into account loss of infectivity
or removal from the body.
See the references [1, 6] for control problems on similar models of HIV infection

and see [5] for background on treatment strategies. Note that this paper contains
existence and uniqueness results with proofs for the optimal control, and such
results are not given in [1] or [6]. Here, an optimal chemotherapy treatment is
considered with the control affecting the interaction term K1V T . This control
represents the percentage of effect the chemotherapy has on interaction of T cells
with the virus. The control for the chemotherapy, u(t), multiplies the parameter K1
in equations (1.1) and (1.2). Therefore, the control class is chosen to be measurable
functions defined on [t0, t1], with the condition 0 ≤ u(t) ≤ 1. The interval of
treatment is necessary since a plausible assumption is made that chemotherapy
only has a certain designated time for allowable treatment. After some finite time
frame, HIV is able to build up resistance to the treatment due to its mutation
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ability. Also, chemotherapy has potentially hazardous side effects. Therefore, the
length of treatment is restricted. For most HIV chemotherapy drugs, the length
of treatment is less than 500 days. In addition, the optimal control will depend
implicitly on the length of the treatment, and the general shape of the optimal
control stays the same as the treatment interval changes. Hence, the state system
is

dT

dt
=

s

1 + V
− µTT + rT

(
1−
T + T ∗ + T ∗∗

Tmax

)
− (1− u(t))K1V T (1.5)

dT ∗

dt
= (1− u(t))K1V T − µTT

∗ −K2T
∗ (1.6)

dT ∗∗

dt
= K2T

∗ − µbT
∗∗ (1.7)

dV

dt
= NµbT

∗∗ −K1V T − µvV (1.8)

with given initial values for T , T ∗, T ∗∗, and V at t0.
The objective functional is defined as

J(u) =

∫ t1
t0

[
T (t)−

1

2
Bu2
]
dt.

The parameter B represents the “weight” on the benefit and cost. The benefit
based on the T cell count is being maximized and the systemic cost based on
the percentage effect of the chemotherapy given is being minimized. If u(t) = 1
represents maximal use of chemotherapy, then the maximal cost is represented by
u2. The goal is to characterize the optimal control u∗ satisfying max

0≤u≤1
J(u) = J(u∗).

In section 2, a constraint on Tmax is discussed, a priori estimates on the solutions
are determined, and existence of an optimal control is investigated. In section 3,
the aim is to seek to maximize the objective functional which is based on the
benefit of the T cell count less the cost of the damage to the patient’s body. The
optimal control is characterized using Pontryagin’s Maximum Principle. In section
4, uniqueness of the optimality system, which is the state system coupled with the
adjoint system, is determined. In section 5, a numerical illustration for our problem
is presented.

2. Existence of an optimal control

There are certain parameter restrictions that are imposed to ensure that this
model is realistic. For the death rate at Tmax to be greater than the supply rate,
an assumption is that

µTTmax > s. (2.5)

The steady state population size should be below Tmax in order for the T cell
population to expand when stimulated by the infection of HIV. Furthermore if the
population ever gets near Tmax, it’s growth should slow. See [9] for analysis of
stability properties for this model.
Upper bounds are needed for the existence of an optimal control and in the

uniqueness proof of the optimality system. Using T (t) < Tmax, upper bounds on
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the solutions of the state system are determined.

dT̂ ∗

dt
= K1V̂ Tmax T̂ ∗(t0) = T̂

∗
0

dT̂ ∗∗

dt
= K2T̂

∗ T̂ ∗∗(t0) = T
∗∗
0 where K1,K2 > 0

dV̂

dt
= NµbT̂

∗∗ V̂ (t0) = V0

or 
 T̂ ∗T̂ ∗∗
V̂



′

=


 0 0 TmaxK1
K2 0 0
0 Nµb 0




 T̂ ∗T̂ ∗∗
V̂




Since this is a linear system in finite time with bounded coefficients, then the
supersolutions T̂ ∗, T̂ ∗∗, V̂ are uniformly bounded.

To determine existence of an optimal control to our problem, we use a result
from ([2, Thm 4.1, pg. 68-69]).

Theorem 2.1. Under assumption (2.5), there exists an optimal control u∗ that
maximizes the objective functional J(u).

To prove this theorem, the following conditions must be satisfied.

i) The class of all initial conditions with a control u such that u is a Lebesgue-
integrable function on [t0, t1] with values in the admissible control set and such
that the state system is satisfied is not empty.

ii) The admissible control set is closed and convex.

iii) The right hand side of the state system is continuous, is bounded above by a sum
of the bounded control and the state, and can be written as a linear function of
u with coefficients depending on time and the state variables.

iv) The integrand of the functional is concave on the admissible control set and is
bounded above by c2 − c1|u|β , where c1 > 0, and β > 1.

First, an existence result in Lukes ([8], Theorem 9.2.1) for the state system (1.5)–
(1.8) for bounded coefficients is invoked. The control set is closed and convex by
definition. The right hand side of the state system (1.5)–(1.8) has at most linear
growth since the state solutions are a priori bounded. In addition, the integrand in
the functional, T (t)− 12Bu

2, is concave on the admissible control set. To complete

the existence of an optimal control, one uses that T (t)− 12Bu
2 ≤ c2− c1|u|β , where

c1 > 0, and β > 1, since T (t) < Tmax.

3. Characterization of an optimal control

Since an optimal control exists for maximizing the functional subject to (1.5)–
(1.8), then Pontryagin’s Maximum Principle is used to derive necessary conditions
on the optimal control[4].

Theorem 3.1. Given an optimal control u∗ and solutions of the corresponding
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state system (1.5)–(1.8), there exist adjoint variables λi, i = 1, . . . , 4 satisfying

λ′1 = −
∂L

∂T
= −
{[
1 + λ1

(
−µT + r(1−

T + T ∗ + T ∗∗

Tmax
)−

rT

Tmax

−(1− u)K1V
)]
+ λ2(1− u)K1V − λ4K1V

}
λ′2 = −

∂L

∂T ∗
= −

(
−
λ1rT

Tmax
− λ2(µT +K2) + λ3K2

)

λ′3 = −
∂L

∂T ∗∗
= −

(
−
λ1rT

Tmax
− λ3µb + λ4Nµb

)

λ′4 = −
∂L

∂V
= −
( −sλ1
(1 + V )2

+ (λ2 − λ1)K1T (1− u)− λ4(K1T + µv)
)

λi(t1) = 0 for i = 1, 2, 3, 4 .

(3.1)

Further, u∗ is represented by

u∗ = min(1, (
(λ2 − λ1)K1V T

B
)+).

Proof. Define the Lagrangian as follows

L(T, T ∗, T ∗∗, V, u, λ1, λ2, λ3, λ4)

= T −
1

2
Bu2 + λ1(

s

1 + V
− µTT + rT (1−

T + T ∗ + T ∗∗

Tmax
)

− (1− u(t))K1V T ) + λ2((1− u(t))K1V T − µTT
∗ −K2T

∗)

+ λ3(K2T
∗ − µbT

∗∗) + λ4(NµbT
∗∗ −K1V T − µvV )

+w1(t)u(t) + w2(t)(1 − u(t))

(3.2)

where w1(t) ≥ 0, w2(t) ≥ 0 are penalty multipliers satisfying

w1(t)u(t) = 0, w2(t)(1− u(t)) = 0 at the optimal u
∗.

In [4], the maximum principle gives the existence of adjoint variables satisfying
(3.1).
Since,

L =−
1

2
Bu(t)2 − λ1(1− u(t))K1V T + λ2(1− u(t))K1V T

+w1(t)u(t) +w2(t)(1 − u(t)) + other terms without u ,

then by differentiating this expression for L with respect to u, we have

∂L

∂u
= −Bu(t) + λ1K1V T − λ2K1V T + w1(t)− w2(t) = 0 .

Solving for the optimal control yields

u∗(t) =
(λ2 − λ1)K1V T +w1(t)− w2(t)

B
.
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To determine an explicit expression for the optimal control (without w1 and w2), a
standard optimality technique is utilized. One considers the following three cases
to determine a specific characterization of an optimal control.
(i) On the set {t|0 < u∗(t) < 1}, w1(t) = 0 = w2(t). Hence the optimal control is

u∗(t) =
(λ2 − λ1)K1V T

B
.

(ii) On the set {t|u∗(t) = 1}, w1(t) = 0. Hence,

1 = u∗(t) =
(λ2 − λ1)K1V T − w2(t)

B
.

This implies that 0 ≤ w2(t) = (λ2 − λ1)K1V T −B and

1 = u∗(t) ≤
(λ2 − λ1)K1V T

B
.

(iii) On the set {t|u∗(t) = 0}, w2(t) = 0. Hence,

0 = u∗(t) =
(λ2 − λ1)K1V T + w1(t)

B
.

Since w1(t) ≥ 0, then
(λ2 − λ1)K1V T

B
≤ 0. Notice

(
(λ2 − λ1)K1V T

B
)+ = 0 = u∗(t)

in this case. Combining these three cases, the optimal control is characterized
as

u∗(t) = min(1, (
(λ2 − λ1)K1V T

B
)+)

where s+ is defined as

s+ =

{
s, if s > 0

0, if s ≤ 0 .

If λ2 − λ1 < 0 for some t, then u∗(t) 6= 0. Hence, 0 < u∗(t) ≤ 1 for such t.
λ2 < λ1 means the marginal valuation of the benefit functional with respect to
the T cells is greater than the marginal valuation of the benefit functional with
respect to the T ∗ cells. �
The optimality system consists of the state system coupled with the adjoint

system with the initial conditions and transversality conditions together with the
following relationship,

u∗(t) = min(1, (
(λ2 − λ1)K1V T

B
)+). (3.3)

Utilizing (3.3), the following optimality system characterizes the optimal control.

dT

dt
=

s

1 + V
− µTT + rT

(
1−
T + T ∗ + T ∗∗

Tmax

)

− (1−min(1, (
(λ2 − λ1)K1V T

B4
)+))K1V T

dT ∗

dt
= (1−min(1, (

(λ2 − λ1)K1V T

B
)+))K1V T − µTT

∗ −K2T
∗

dT ∗∗

dt
= K2T

∗ − µbT
∗∗

dV

dt
= NµbT

∗∗ −K1V T − µvV

T = T0, T
∗ = T ∗0 , T

∗∗ = T ∗∗0 , and V = V0 at t0.
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λ′1 = −
{[
1 + λ1

(
−µT + r(1−

T + T ∗ + T ∗∗

Tmax
)−

rT

Tmax

− (1−min(1, (
(λ2 − λ1)K1V T

B
)+))K1V

)]
+ λ2(1−min(1, (

(λ2 − λ1)K1V T

B
)+))K1V − λ4K1V

}
λ′2 = −

(
−
λ1rT

Tmax
− λ2(µT +K2) + λ3K2

)
(3.4)

λ′3 = −

(
−
λ1rT

Tmax
− λ3µb + λ4Nµb

)

λ′4 = −
( −sλ1
(1 + V )2

+ (λ2 − λ1)K1T (1−min(1, (
(λ2 − λ1)K1V T

B
)+))

− λ4(K1T + µv)
)

λi(t1) = 0 for i = 1, 2, 3, 4

4. Uniqueness of Optimality System

Using T (t) < Tmax, the state system and adjoint system have finite upper
bounds. These bounds are needed in the uniqueness proof of the optimality system.

Theorem 4.1. For t1 sufficiently small, the solution to the optimality system is
unique.

Proof. Suppose (T, T ∗, T ∗∗, V, λ1, λ2, λ3, λ4) and (T , T
∗
, T
∗∗
, V , λ1, λ2, λ3, λ4) are

two solutions of the optimality system (3.4). Let T = eλtp, T ∗ = eλtp∗, T ∗∗ =
eλtp∗∗, V = eλtq, λ1 = e

−λtw, λ2 = e
−λtz, λ3 = e

−λtv, λ4 = e
−λty. Similarly let

T = eλtp, T
∗
= eλtp∗, and so forth.

Let

u = min(1, (
K1e

λt(w − z)qp

B
)+)

and

u = min(1, (
K1e

λt(w − z)qp

B
)+).

Substituting T = eλtp into the first ODE of (3.4), the state equation becomes

eλtṗ+ λeλtp =
s

1 + eλtq
− µT e

λtp+ reλtp

(
1−
eλt(p+ p∗ + p∗∗)

Tmax

)

− (1−min(1, (
K1e

λt(w − z)qp

B4
)+))K1e

2λtqp

(4.1)

where ṗ = dp
dt
. Similarly, for λ1 = e

−λtw,

−ẇ + λw = eλt − µTw + rw

(
1−
eλt(2p + p∗ + p∗∗)

Tmax

)
−K1e

λtyq

+

{
K1e

λtq(1−min(1, (
K1e

λt(w − z)qp

B
)+))(−w + z)

} (4.2)
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The equations for T and T , T ∗ and T
∗
, T ∗∗ and T

∗∗
, V and V , λ1 and λ1, λ2

and λ2, λ3 and λ3, λ4 and λ4 are subtracted. Then each equation is multiplied
by an appropriate function and integrated from t0 to t1. Next, all eight integral
equations are added, and estimates to obtain the result are employed.
Some of the “integral equations” are listed below for illustration. Please note

that u and u are used instead of their specific characterization.

1

2
(p(t1)− p(t1))

2 + λ

∫ t1
t0

(p− p)2 dt

=

∫ t1
t0

(
s

1 + eλtq
−

s

1 + eλtq
)e−λt(p− p) dt

+ (r − µT )

∫ t1
t0

(p− p)2 dt+K1

∫ t1
t0

eλt(qp − qp)(p − p) dt

−
r

Tmax

∫ t1
t0

eλt
[
(p2 − p2) + (pp∗ − pp∗) + (pp∗∗ − pp∗∗)

]
(p− p) dt

−K1

∫ t1
t0

eλt(uqp− uqp)(p− p) dt .

(4.3)

Also notice that

1

2
(w(t0)− w(t0))

2 + λ

∫ t1
t0

(w − w)2 dt

=

∫ t1
t0

eλt dt+ (r − µT )

∫ t1
t0

(w − w)2 dt

−
r

Tmax

∫ t1
t0

[
eλt
{
2(wp −wp) + (wp∗ − wp∗)

+ (wp∗∗ − wp∗∗)
}]
(w − w) dt

−K1

∫ t1
t0

eλt {(uwq − uwq)− (uzq − uzq)} (w − w) dt

+K1

∫ t1
t0

eλt {−(wq − wq) + (zq − zq)} (w −w) dt

−K1

∫ t1
t0

eλt(yq − yq)(w − w) dt .

(4.4)

Several terms are estimated in these eight equations. First, notice∫ t1
t0

eλt(
1

1 + eλtq
−

1

1 + eλtq
)(p2 − p2) dt ≤ C1e

λt

∫ t1
t0

((p − p)2 + (q∗ − q∗)2) dt.

Below, four other estimates are presented that utilize upper bounds on the solutions.
They involve separating terms that involve squares, several multiplied terms, and
quotients.

r

Tmax

∫ t1
t0

eλt(p2 − p2)(p − p) dt ≤
r

Tmax

∫ t1
t0

eλt(p− p)22e−λtTmax dt

= 2r

∫ t1
t0

(p− p)2 dt

(4.5)
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r

Tmax

∫ t1
t0

eλt(pp∗ − pp∗)(p− p) dt =
r

Tmax

∫ t1
t0

eλt(pp∗ − pp∗ + pp∗

− pp∗)(p− p) dt

≤ C2e
λt1

∫ t1
t0

(p− p)2 + (p∗ − p∗)2 dt

(4.6)

∫ t1
t0

(u− u)2 dt ≤

∫ t1
t0

(K1eλt(w − z)qp
B

−
K1e

λt(w − z)qp

B

)2
dt

=
K21e

2λt1

B2

∫ t1
t0

[
(w − z)qp− (w − z)qp

]2
dt

≤ (
K1e

λt1

B
)2
∫ t1
t0

[
(z − w)2q2p2 − 2(w − z)qp(w − z)qp

+ (z − w)2q2p2
]
dt

≤ C̃4(
K1e

λt1

B
)2
∫ t1
t0

[
(z − z)2 + (w − w)2

]
dt

(4.7)

∫ t1
t0

eλt(uqp− uqp)(p− p) dt =

∫ t1
t0

eλt((u− u)qp+ u(qp− qp))(p − p) dt

≤ C̃5e
3λt1

∫ t1
t0

(p − p)2 + (q − q)2 + (z − z)2

+ (w − w)2 dt

(4.8)

To show uniqueness, the integral equations are combined. This combination pro-
duces

1

2
(p − p)2(t1) +

1

2
(p∗ − p∗)2(t1) +

1

2
(p∗∗ − p∗∗)2(t1) +

1

2
(q − q)2(t1)

+
1

2
(w − w)2(t0) +

1

2
(z − z)2(t0) +

1

2
(v − v)2(t0) +

1

2
(y − y)2(t0)

+ C1

∫ t1
t0

[
(p− p)2 + (w − w)2 + (z − z)2

]
dt

+ C2

∫ t1
t0

[
(p∗∗ − p∗∗)2 + (y − y)2 + (q − q)2 + (v − v)2

]
dt

≤ C1e
3λt1

∫ t1
t0

[
(q − q)2 + (p − p)2

]
+
[
(p∗ − p∗)2 + (p∗∗ − p∗∗)2

]
+
[
(z − z)2 + (w − w)2 + (y − y)2 + (v − v)2

]
dt

+ C3

∫ t1
t0

[
(p∗ − p∗)2 + (p∗∗ − p∗∗)2 + (q − q)2

]
dt.

(4.9)

From (4.9) the simplification is

(λ− C̃1 − C̃2e
3λt1)

∫ t1
t0

[
(p− p)2 + (p∗ − p∗)2 + (p∗∗ − p∗∗)2 + (q − q)2

+ (w − w)2 + (z − z)2 + (v − v)2 + (y − y)2
]
dt ≤ 0
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where C̃1, C̃2 depend on the coefficients and the bounds of p, p
∗, p∗∗, q, w, z, v, y.

If λ is chosen such that λ > C̃1 + C̃2 and t1 <
1
3λ ln(

λ−C̃1
C̃2
), then p = p, p∗ = p∗,

p∗∗ = p∗∗, q = q, w = w, z = z, v = v, y = y. �

Uniqueness for a small time interval is not unusual in such a nonlinear boundary
value problem. The unique optimal control u∗ is characterized in terms of the
unique solution of the optimality system. The optimal control u∗ gives an optimal
chemotherapy strategy for the HIV positive patient.

4. Numerical Illustration

Using two different weight factors of B = 110 and B = 30, numerical solutions
for the uninfected T cells, virus concentration, and the optimal treatment strategy
have been generated. The optimality system is solved using an iterative method
with Runge-Kutta four scheme. Starting with a guess for the adjoint variables,
the state equations are solved forward in time. Then those state values are used
to solve the adjoint equations backward in time, and the iterations continue until
convergence. See [3] for background on such iterative algorithms. The optimal
treatment schedule is considered in the following picture. One notices that when B
increases from 30 to 110 that the chemotherapy is given at the maximal level for a
shorter period of time before decreasing in a continuous manner. Mathematically,
this is due to the fact that the percentage chemotherapy given is inversely related
to the weight factor, B. This says that if the systemic cost to the patient increases,
then the patient receives the maximal chemotherapy for a shorter period of time.
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Optimal treatment schedule with B=110 (dashed) and B=30 (solid)

The graphs for the concentration of the uninfected T cells and the virus concen-
tration are viewed on the next two pages. As the optimal chemotherapy is given,
the T cell concentration increases in a logistic way. However, for a higher systemic
cost, the T cell population increases at a slower rate. With both weight factors,
the maximal chemotherapy is given for about the first thirty days. The T cell
concentrations for these different factors produce similar graphs for the first thirty
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days. However, after the first thirty days of treatment, the T cell concentration for
B = 110 increases but at a slower rate than for the T cell concentration for B = 30.
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T cell behavior after optimal treatment with B=110 (dashed) and B=30 (solid)

If the systemic cost is greater, the body can not “fight off” the virus as effectively.
Indeed, this idea is supported in the virus concentration graph. Therefore, for
the higher systemic cost, the optimal chemotherapy given produces a lower T cell
concentration and a higher virus concentration.
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The following values were used for the constants in numerical calculations.

µT = 0.02/d Death rate of uninfected and latently infected CD4+T cells.
µb = 0.24/d Death rate of actively infected cells.
µV = 2.4/d Death rate of free virus.
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K1 = 0.000024mm
3/d Rate CD4+T cells become infected by free virus.

K2 = 0.003/d Rate T ∗ cells convert to actively infected.
r = 0.03/d Rate of growth for the CD4+T cells.
N = 1200 Number of free virus produced by T ∗∗ cells.
Tmax = 1500/mm

3 Maximum CD4+T cell level.
s = 10/mm3 Source term for uninfected CD4+T.
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