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BRANCHING OF PERIODIC ORBITS

FROM KUKLES ISOCHRONES

B. Toni

Abstract. We study local bifurcations of limit cycles from isochronous (or lineariz-

able) centers. The isochronicity has been determined using the method of Darboux

linearization, which provides a birational linearization for the examples that we an-

alyze. This transformation simplifies the analysis by avoiding the complexity of the

Abelian integrals appearing in other approaches. As an application of this approach,
we show that the Kukles isochrone (linear and nonlinear) has at most one branch

point of limit cycles. Moreover, for each isochrone, there are small perturbations

with exactly one continuous family of limit cycles.

1. Introduction

In this paper we address the bifurcations of limit cycles (isolated periodic orbits)
for polynomial perturbations of polynomial integrable vector fields. When the
unperturbed system is isochrone (linearizable), the linearization is known, and is
a birational transformation in the phase plane, which is, in general, a Darboux
linearization, i.e., a linearizing transformation involving polynomial maps and their
complex powers, [5].
Specifically, we consider an autonomous polynomial perturbation (p, q) of a plane

vector field in the form

Xε := (P (x, y) + εp(x, y))
∂

∂x
+ (Q(x, y) + εq(x, y))

∂

∂y
, (Pε)

where

P (x, y) = −y +
∑

2≤i+j≤n

Pijx
iyj , Q(x, y) = x+

∑
2≤i+j≤n

Qijx
iyj

p(x, y) =
n∑
i=1

i∑
k=0

ai−k,kx
i−kyk, q(x, y) =

n∑
i=1

i∑
k=0

bi−k,kx
i−kyk,

and λij = (aij , bij , pij , qij) ∈ R4, with ε a small parameter. When ε = 0, we assume
further that the unperturbed vector field (X0) has an isochronous center at the
origin O ∈ R2, i.e., all orbits in a sufficiently small neighborhood A of the origin
are closed and have the same period. The largest such neighborhood is called an
isochronous period annulus. For a closed orbit γ0 ∈ A, it is interesting to study the
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creation of limit cycles from γ0 on passing from ε = 0 to small nonzero values of ε.
Recall that a limit cycle is a periodic orbit isolated in the set of closed orbits of the
vector field.
For fixed λij , there is a neighborhood U of the origin in R

2 on which the flow
associated with (Pε) exists for all initial values in U . Assume, furthermore, that
U is small enough so that a Poincaré return mapping δ(r, ε) is defined on U , with
the distance coordinate r. The solution γε(t) starting at (r, 0), r > 0, intersects
the positive x−axis for the first time at some point (δ(r, ε), 0). Let Σ = {(x, 0) ∈
U, x > 0} denote the transversal section or Poincaré section of U . By transversality
the mapping δ is analytic, and can be expanded as the convergent Taylor series

δ(r, ε) = r +
∑
k≥1

δk(ε)r
k. (1-1)

On Σ we define the displacement function d(r, ε) := δ(r, ε) − r. Of course, the
zeros of d(r, ε) correspond to periodic orbits of (Pε) intersecting Σ. Assuming
that the period annulus A is parametrized by r, then d(r, 0) ≡ 0. We reduce
the analysis to that of finding the roots of a suitable bifurcation function derived
from the displacement function. This is achieved by investigating the number and
position of the periodic orbits in the isochronous period annulus A that survive
after perturbation by giving birth to a continuous family γε of limit cycles of the
perturbed system.
In section two below, we describe our isochrone reduction method for study-

ing both the first order bifurcations of limit cycles in autonomous perturbations
of a polynomial isochronous system, and the branching of periodic orbits from
isochrones. Section three is entirely devoted to Kukles isochrones. We show that at
most one local family of limit cycles bifurcates at first order from these isochrones.
Moreover, there exist perturbations which exhibit exactly one such perturbation.
Each limit cycle is asymptotic to a circle whose radius is a simple positive zero of
the bifurcation function.

2. Isochrone reduction

Under the previous assumptions, consider an element r∗ ∈ Σ such that

dε(r∗, 0) = 0, and drε(r∗, 0) 6= 0 , (2-1)

i.e., r∗ is a simple zero of dε; the subscripted ε and r denote partial derivatives.
Thus, by the Implicit Function Theorem, there exits a smooth function r = ω(ε)
defined in some neighborhood of ε = 0, such that ω(0) = r∗ and d(ω(ε), ε) ≡ 0.
The curve r = ω(ε) corresponds to a local family of limit cycles emerging from
the periodic trajectory γr∗ of the unperturbed system which meets Σ at r∗. A
difficulty arises in the calculations and analysis of the partial derivatives of d(r, ε).
Of course, for dε(r, 0) ≡ 0, or if one of the zeros is not simple, then higher-order
derivatives must be computed. Actually, in A, dε(r, 0) = 0 for all values of r, and so
we cannot apply the Implicit Function Theorem. However, from the perturbation
of the Taylor series

d(r, ε) = εdε(r, 0) +O(ε
2) = ε(dε(r, 0) +O(ε)) = εB(r, ε), (2-2)
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with B(r, ε) := dε(r, 0) +O(ε), we define a reduced displacement function by

B(r) := dε(r, 0), (2-3)

for small real values of ε. Clearly, if B(ω(ε), ε) ≡ 0 then d(ω(ε), ε) ≡ 0 and the
Implicit Function Theorem does apply to B. In other words, a simple zero of B
corresponds to the appearance of a local family r = ω(ε) of periodic orbits. Such
a zero, r∗, of B is called a branch point of periodic orbits for the system (Pε). The
corresponding periodic orbit γr∗ is said to survive or to persist after perturbation.
If r∗ is a simple root of B(r) of order k, i.e., ∂

k
ε d(r∗, 0) = 0, ∂r∂

k
ε (r∗, 0) 6= 0,

with ∂iεd(r∗, 0) ≡ 0, for i = 0, . . . , (k − 1), then writing the perturbation Taylor
series in the form

d(r, ε) = εk(∂kε d(r∗, 0)/k! +O(ε)) := ε
kBk(r, ε) (2-4)

yields Bk(r∗, 0) = 0 and B
k
r (r∗, 0) 6= 0. Applying the Implicit Function Theorem

to Bk, we see that by continuity, there is a number ε1 > 0 and a unique smooth
function r = ω(ε) with |ε| < ε1 such that ω(0) = r∗ and d(ω(ε), ε) ≡ 0. If r∗ is a
root of multiplicity m, it follows from the Weierstrass Preparation theorem [6] that
there at most m distinct smooth functions r = ωi(ε).
In the case of an isochronous period annulus the isochronal assumption is es-

sential to our approach. It is well known (see, e.g., [5]) that the origin of (Pε) is
isochronous if and only if there exists an analytic change of coordinates

(Tl) : (u(x, y), v(x, y)) = (x+ o(|(x, y)|), y + o(|(x, y)|))

in its neighborhood, reducing the system to a linear isochrone. Once we know
explicitly (Tl), we reduce the autonomous perturbation of the nonlinear isochrone
to that of a linear one; we then derive a simple expression of the bifurcation function
B. Practically speaking, consider the perturbed system (Pε). Through (Tl), (Pε)
is simplified to the weakly linear system

v̇ = Av + εh(v), (P̄ε)

with v := (X,Y ) ∈ R2, A =

(
0 −1
1 0

)
, and h(v) := (h1(v), h2(v)).

The determination of the branch points of the periodic orbits of (Pε) proceeds
as follows. We first reduce the appropriate displacement function to a bifurcation
function and apply the Implicit Function Theorem and its related corollaries. We
next identify the bifurcation function in terms of the reduced perturbed system;
the branch points are its simple zeros.

Theorem 2.1. Consider a weakly linear system in the form (P̄ε). Assume the
unperturbed system has a period annulus parametrized by r. A branch point of
periodic orbits of (P̄ε) is a simple zero of the function

B(r) :=

∫ 2π
0

(h1(r cos t, r sin t) cos t+ h2(r cos t, r sin t) sin t) dt,

where r is taken in an interval of (0,∞).

Proof. Given d(r, ε), the associated displacement function, defined globally on the
Poincaré section Σ, the bifurcation function is defined as B(r) := dε(r, 0) for small
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values of ε. Using a periodic orbit γ with integral curve γε(r, t) := (X(t, r, ε), Y (t, r, ε))
starting at (r, 0) we obtain

dε(r, 0) = Ẋ(T (r, 0), r, 0)Tε(r, 0) +Xε(T (r, 0), r, 0). (2-5)

At r = 0 we have Ẋ(T (r, 0), r, 0) = −Y (0, r, 0) = 0. Thus, we obtain dε(r, 0) =
Xε(T (r, 0), r, 0). Looking for Xε(T (r, 0), r, 0) amounts to integrating the variational
equation

Ẋε = −Yε + h1(X,Y ),

Ẏε = Xε + h2(X,Y ),

Xε(0, r, 0) = Yε(0, r, 0) = 0 .

(2-6)

In matrix form it is expressed as

Ẇ = AW +H(t),

W (0) = 0 ,
(2-7)

where A is as given above, and

H(t) =

(
h1(X(t, r, ε), Y (t, r, ε))
h2(X(t, r, ε), Y (t, r, ε))

)
. (2-8)

By the method of variation of constants, we get

W (T (r, 0)) = (Xε(T (r, 0), r, 0), Yε(T (r, 0), r, 0))

=Φ(T (r, 0))

∫ T (r,0)
0

Φ−1(s)H(γ(r, s)) ds,
(2-9)

where Φ(t) denotes the principal fundamental matrix solution of Ẇ = AW at t = 0.
We have

Φ(t) = etA =

(
cos t − sin t
sin t cos t

)
(2-10)

and H(γ(r, t)) =

(
h1(r cos t, r sin t)
h2(r cos t, r sin t)

)
. Hence, for T (r, 0) = 2π, it follows

(
Xε(2π, r, 0)
Yε(2π, r, 0)

)
=

( ∫ 2π
0
(h1(r cos s, r sin s) cos s+ h2(r cos s, r sin s) sin s) ds∫ 2π

0
(−h1(r cos s, r sin s) sin s+ h2(r cos s, r sin s) cos s) ds

)
(2-11)

Thus we obtain

B(r) = dε(r, 0) =Xε(2π, r, 0)

=

∫ 2π
0

(h1(r cos s, r sin s) cos s+ h2(r cos s, r sin s) sin s) ds.
(2-12)

�
Perturbations of the linear isochrone. We consider a perturbation of degree
n of the linear isochrone and prove the following theorem.
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Theorem 2.2. From the linear isochrone, to first order, no more than (n − 1)/2,
(resp. (n−2)/2) continuous families of limit cycles can bifurcate in the direction of
any autonomous polynomial perturbation of degree n, where n is odd (resp. even).
And we can construct small perturbations with the maximum number of limit cy-
cles. Moreover the limit cycles are asymptotic to the circles whose radii are simple
positive roots of the bifurcation function.

Proof. Using the expressions of p and q as polynomials of degree n in (Pε), we
compute the bifurcation function B and obtain

B(r) =

n∑
i=1

ri
i∑
k=0

(∫ 2π
0

(ai−k,k cos t+ bi−k,k sin t) cos
i−k t sink t dt

)
. (2-13)

This can be simplified using the well known rules
∫ 2π
0
cosm t sinn tdt = 0, for m or

n odd (including 0). As a result

B(r) = r

N∑
s=1,s odd

rs−1cs, (2-14)

where

N =

{
n, for n odd

n− 1, for n even
(2-15)

and cs is the nonzero constant

cs = (as0 + b0s) +

s−2∑
k=1, k odd

(bs−k,k + as−k−1,k+1)

∫ 2π
0

coss−k t sink+1 t dt. (2-16)

Therefore the upper bound of the number of simple zeros of B(r) is M(n) = (n −
1)/2 for n odd and (n− 2)/2 for n even. Perturbations with the maximum number
are constructed as in the cubic case below.
As ε −→ 0, the weakly linear system (P̄ε) tends to the linear isochrone whose

solution curves are circles x2+ y2 = r2. Therefore the periodic orbits (limit cycles)
are asymptotic to these circles as ε −→ 0. �

Remark. Note that as an application to first order, no limit cycles can emerge
from periodic trajectories of the linear isochrone after a quadratic autonomous
perturbation, in agreement with a result in [1] (Section 3.1: The linear isochrone).
For a cubic autonomous perturbation, we obtain the following

Corollary 2.3. From a periodic trajectory γ0 in the period annulus A of the linear
isochrone, at most one continuous family of limit cycles bifurcate from γ0 in the
direction of the cubic autonomous perturbation (p, q). The maximum number one
is attained if and only if the coefficients satisfy the condition c0c2 < 0, where c0
and c2 are given below. In this instance, this family emerges from the real simple
roots of the quadratic function

∆(r) := c0 + c2r
2.
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Proof. The corresponding bifurcation function is given by

B(r) = (rπ)

(
(a10 + b01) +

r2

4
(3a30 + a12 + b21 + 3b03)

)
. (2-17)

Thus, the roots of the quadratic ∆(r) := a10 + b01 +
r2

4
(3a30 + a12 + b21 + 3b03)

yield the continuous families of limit cycles that bifurcate from the period annulus
at the origin of the linear isochrone. Define

c2 :=
1

4
(3a30 + a12 + b21 + 3b03), c0 := (a10 + b01) . (2-18)

If c0 = 0 and c2 6= 0, then the origin is the only root of the polynomial ∆(r);
however, But c0 6= 0 implies r2 = −c2/c0. Therefore, the condition c0c2 < 0 gives
exactly two real roots of opposite signs that must be simple. Only the positive
root is accounted for. Moreover one may construct perturbations with condition
c0c2 < 0. Hence the corollary is proven �

In [5], there are several examples of systems for which the isochronous strata
are known and an algebraic linearizing transformation is given explicitly. Thus,
there are many problems that can be solved using our approach. For the sake
of illustration, we choose to address the bifurcations of limit cycles from Kukles
isochrones.

3. First order bifurcations from Kukles isochrones

We consider the reduced Kukles system in the form

ẋ =− y ,

ẏ =x+ a1x
2 + a2xy + a3y

2 + a4x
3 + a5x

2y + a6xy
2,

(K)

parametrized by λ = (a1, a2, a3, a4, a5, a6) ∈ R6, see [2,4]. From [7], the following
theorem gives the Kukles isochrone, and actually shows that it does possess a
birational linearizing transformation as required.

Kukles isochrone. The origin is an isochronous center of (K) if and only if the
system is linear or can be brought, through rescaling of (x, y) and t to the form

ẋ =− y ,

ẏ =x+ 3xy + x3.
(K0)

Moreover, a rational linearizing change of coordinates of the system (K0) is given
by

(u(x, y), v(x, y)) =

(
x

x2 + y + 1
,
x2 + y

x2 + y + 1

)
. (Tl)
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First Order Perturbations

Consider a one-parameter cubic autonomous perturbation (Kε) of the Kukles
nonlinear isochrone (K0) in the form

ẋ =− y + εp(x, y)

ẏ =x+ 3xy + x3 + εq(x, y),
(Kε)

where the parameter ε ∈ R, and p and q are polynomials of degree 3. From
the linearizing change of coordinates (Tl), and by resetting (u(x, y), v(x, y)) =
(f∗(x, y), g∗(x, y), we derive the inverse transformation (T −1l )

x(u, v) = f(u, v) =
u

1− v
, y(u, v) = g(u, v) =

v − (u2 + v2)

(1− v)2
. (3-1)

The system (Kε) is transformed via (Tl) into the weakly linear system

u̇ =− v + εp̄(u, v) ,

v̇ =u+ εq̄(u, v) ,
(K̄ε)

where we have

p̄(u, v) = f∗x(u, v)p + f
∗
y (u, v)q , q̄(u, v) = g

∗
x(u, v)p + g

∗
y(u, v)q , (3-2)

with

f∗x(u, v) =
∂f∗

∂x
(u, v) = 1− 2u2 − v and f∗y (u, v) =

∂f∗

∂y
(u, v) = −u(1− v) ,

g∗x(u, v) =
∂g∗

∂x
(u, v) = 2u(1− v), and g∗y(u, v) =

∂g∗

∂y
(u, v) = (1− v)2 .

(3-3)
Calculation of the bifurcation function yields

B(r) =

∫ 2π
0

(p̄(r cos t, r sin t) cos t+ q̄(r cos t, r sin t) sin t)dt

=
3∑
i=1

ri
i∑
k=0

(Rik1 ai−k,k +R
ik
2 bi−k,k),

with

Rik1 =

∫ 2π
0

cosi−k+1 t(sin t− r)k(1− 2r2 + r sin t)

(1− r sin t)i+k
dt

Rik2 =

∫ 2π
0

cosi−k t(sin t− r)k+1

(1− r sin t)i+k−1
dt.

(3-4)

For computational reasons, the expression of B(r) is better expressed as

B(r) = (R̄1 + R̄2 + R̄3), (3-5)
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with

R̄1 =r(a10R
10
1 + a01R

11
1 + b10R

10
2 + b01R

11
2 ) ,

R̄2 =r
2(a20R

20
1 + a11R

21
1 + a02R

22
1 + b20R

20
2 + b11R

21
2 + b02R

22
2 )

R̄3 =r
3(a30R

30
1 + a21R

31
1 + a12R

32
1 + a03R

33
1 + b30R

30
2 + b21R

31
2

+ b12R
32
2 + b03R

33
2 ).

(3-6)

Results from the theory of Residues were used to derive Equation (3-6). The powers
of cos t are odd in the cases

(i, k) ∈

{
{(2, 0); (3, 1); (1, 1); (2, 2); (3, 3)} , for Rik1
{(1, 0); (2, 1); (3, 0); (3, 2)} , for Rik2 ,

(3-7)

yielding zero integrals. Thus, we concentrate on the computation of Rikl with even
powers of cosine, that is,

(i, k) ∈

{
{(1, 0); (2, 1); (3, 0); (3, 2)} for Rij1

{(2, 0), (3, 1), (1, 1), (2, 2), (3, 3)} for Rij2 .
(3-8)

The integrals Rik1 and R
ik
2 are rational functions of sin t. Through the change of

variable sin t = 1
2i

(
z − 1

z

)
, these integrals consist of terms of the form

T hn =
2n−h

rni1+h+n

∫
C

a(z)

b(z)
dz, (3-9)

with

a(z) =zn−h−1(z2 − 1)h (a polynomial in z of degree N = n+ h− 1),

b(z) =(z − z1)
n(z − z2)

n (a polynomial in z of degree M = 2n)

=(z2 − 2ρiz − 1)n,

(3-10)

and z1,2 = ∓(
√
1− ρ2 + ρi) with ρ = 1/r. We may therefore apply the following

well-known lemma, [3].

Lemma 3.1. Let a(z) =
∑N
k=0 akz

N−k and b(z) =
∑N
k=0 bkz

N−k be polynomials
in z of respective degrees N and M , with a0 6= 0, b0 6= 0. Let C be a simple closed
contour enclosing all zeros of b(z). Then∫

C

a(z)

b(z)
dz =

{
2iπ a0

b0
, if M −N = 1 ,

0, if M −N ≥ 2 .
(3-11)

This lemma implies that

T hn =

{
2π(−r)−n, if n = h,

0, if n ≥ h+ 1.
(3-12)

For the remaining cases, corresponding to n < (h+ 1), we use the fact that∫
C

F1(z)dz = 2iπRes
z=0
(
1

z2
F1

(
1

z

)
) =

(1− z2)h

zh+1−n(z2 − 2iρz − 1)n
, (3-13)

with F1(z) =
a(z)
b(z)
. Thus z = 0 is a pole of order m = h + 1 − n. The residue at

this pole is computed by means of classical residue techniques. We then prove the
following theorem.
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Theorem 3.2. Define A0 and A2 by

A2 = 4a10 + 4b01 + 2b20 − 15a30 + 4b21 + a11 and

A0 = 2a10 + 2b01 + 4b20 + 2b02 − 8a11 − 18a30 − 6b21 − 2a12 .

From γ0, a periodic trajectory in the period annulus of the non-linear isochrone
(K0), one continuous family of limit cycles bifurcates in the direction of the cubic
perturbation (p, q) if and only if the coefficients satisfy the condition A0A2 < 0.
When this condition is met, this family emerges exactly from the real simple positive
root of the quadratic function

Λ(r) := A0 +A2r
2.

Moreover, at most one such family of limit cycles emerge for fixed (p, q).

Proof. Computation of the previous integrals in (3-9) yields

T hn =

{
2π(−r)−n, if (n, h) ∈ {(1, 1); (3, 3); (5, 5)} ,

0, if (n, h) ∈ {(1, 0); (3, 0); (3, 1); (3, 2); (5, 0); (5, 1); (5, 2); (5, 3); (5, 4)} .
(3-14)

and, respectively, for (n, h) ∈ {(1, 2); (1, 3); (3, 4); (3, 5)}, we have

T 21 =
−2π

r2
; T 31 = (−2π)

2 − r2

r3
; T 43 =

−6π

r4
; T 53 = π

(24− r2)

r5
. (3-15)

Thus,

B(r) =
(
R̄1 + R̄2 + R̄3

)
= (π/ξ)

(
A2r

2 +A0
)
, (3-16)

with

A2 =4a10 + 4b01 + 2b20 − 15a30 + 4b21 + a11 and

A0 =2a10 + 2b01 + 4b20 + 2b02 − 8a11 − 18a30 − 6b21 − 2a12 .
(3-17)

The branch points of periodic orbits are the positive roots of the quadratic function
Λ(r) := A2r

2 +A0 = 0. Hence the result. �

Concluding remarks. The integral B(r) is the first variation of the displacement
function with respect to the bifurcation parameter, and its simple zeros are the
branch points of periodic orbits. If it vanishes identically the higher variations have
to be computed and analyzed. How many variations are sufficient to make the final
conclusions about the limit cycles is highly nontrivial. That is the core content
of Bautin’s result for quadratic systems that inspired [1]. Moreover, we wish to
emphasize here that the method of Isochrone Reduction, described above, might be
applied with much success to various isochronous strata (e.g. quadratic, symmetric
cubic, Hamiltonian isochrones) and in the more general case of Darboux linearizable
systems. To our knowledge it is the first application of Darboux linearization of
isochronous centers to the study of bifurcations of limit cycles.
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