
Electronic Journal of Differential Equations, Vol. 2019 (2019), No. 27, pp. 1–12.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

EXISTENCE OF MULTIPLE BREATHERS FOR DISCRETE
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Abstract. In this article we study discrete nonlinear Schrödinger equations
without periodicity assumptions. We show the existence of multiple solutions

of the form une−iωt (called breathers) by using Clark’s Theorem in critical

point theory.

1. Introduction

The discrete nonlinear Schrödinger (DNLS) equation is one of the most impor-
tant inherently discrete models. DNLS equations play a crucial role in the modeling
of a great variety of phenomena, ranging from solid state and condensed matter
physics to biology [7, 8, 9]. For example, they have been successfully applied to
the modeling of localized pulse propagation optical fibers and wave guides, to the
study of energy relaxation in solids, to the behavior of amorphous material, to the
modeling of self-trapping of vibrational energy in proteins or studies related to the
denaturation of the DNA double strand [16].

Below N, Z and R denote the sets of all natural numbers, integers and real
numbers respectively. For a, b ∈ Z, we define Z(a) = {a, a + 1, . . . }, Z(a, b) =
{a, a+ 1, . . . , b} when a < b.

This article considers the DNLS equation

iψ̇n = −∆ψn + εnψn − fn(ψn), n ∈ Z, (1.1)

where ∆ψn = ψn+1+ψn−1−2ψn is discrete Laplacian operator, εn is real valued for
each n ∈ Z, fn ∈ C(R,R), fn(0) = 0 and the nonlinearity fn(u) is gauge invariant;
that is,

f(eiθu) = eiθf(u), θ ∈ R. (1.2)

We consider special solutions to (1.1) called breathers. They have the form

ψn = une
−iωt ,

where ω ∈ R is the temporal frequency. Note that ψn is real valued for each n ∈ Z, is
spatially localized, is time-periodic, and decays to zero at infinity: lim|n|→∞ ψn = 0.
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Then (1.1) becomes

−∆un + εnun − ωun = fn(un), n ∈ Z, (1.3)

lim
|n|→∞

un = 0 . (1.4)

Actually, our methods allow us to consider the more general equation

∆k(pn−k∆kun−k) + (−1)kqnun = (−1)kfn(un), k ∈ Z(1), n ∈ Z, (1.5)

with the same boundary condition (1.4). Here, ∆ is the forward difference operator
[26] ∆un = un+1 − un, ∆kun = ∆(∆k−1un), pn and qn are real valued for each
n ∈ Z. When k = 1, pn ≡ 1 and qn ≡ εn−ω, we obtain (1.3). Naturally, if we look
for breathers of (1.1), we just need to get the solutions of (1.5) satisfying (1.4).

Peil and Peterson [21] in 1994 studied the asymptotic behavior of solutions of
2kth-order difference equation

k∑
i=0

∆i(ri(n− i)∆iu(n− i)) = 0 (1.6)

with ri(n) ≡ 0 for 1 ≤ i ≤ k−1. In 1998, Anderson [1] considered (1.6) for n ∈ Z(a),
and obtained a formulation of generalized zeros and (k, k)-disconjugacy for (1.6).
Cai, Yu [2] in 2007 have obtained some criteria for the existence of periodic solutions
of the following difference equation

∆k(rn−k∆kun−k) + f(n, un) = 0. (1.7)

In 2011, Chen and Tang [4] established some new existence criteria to guarantee
the 2kth-order nonlinear difference equation

∆k(rn−k∆kun−k) + q(n)u(n) = f(n, un+k, . . . , un, . . . , un−k) (1.8)

has at least one or infinitely many homoclinic solutions.
In the past decade, the existence of breathers of the DNLS equations has drawn

a great deal of interest [14, 15, 17, 18, 19, 20, 27]. The existence for the periodic
DNLS equations with superlinear nonlinearity and with saturable nonlinearity has
been studied [17, 18, 19, 20]. And the existence results of breathers of the DNLS
equations without periodicity assumptions were established in [14, 15, 27]. As for
the existence of the homoclinic orbits of nonlinear Schrödinger equations, we refer
to [6, 23, 24]. When the nonlinear term is subquadratic at infinity, as far as the
authors are aware, the results on the breathers of (1.5) obtained in the literature
are very scarce. The main purpose of this paper is to establish some existence
criteria to guarantee that (1.5) has at least multiple breathers by using the critical
point theory. The motivation for the present work stems from the recent papers
[3, 6, 13, 25].

Let Fn(u) =
∫ u

0
fn(t)dt, t ∈ R. Our main results are the following theorems.

For the next theorem we use the following hypotheses:
(H1) fn(u) is odd in u and

• for any n ∈ Z, p := infn∈Z pn > 0;
• for any Z, q := infn∈Z qn > 0;

(H2) for each n ∈ Z, there exist two constants 1 < ν1 < ν2 < 2 and two functions
a, b ∈ l

2
2−ν1 (Z, [0,+∞)) such that

|Fn(u)| ≤ an|u|ν1 , |u| ≤ 1,
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|Fn(u)| ≤ bn|u|ν2 , |u| > 1;

(H3) for each n ∈ Z, there exist two constants K, c > 0 and a function d ∈
l

2
2−ν1 (Z, [0,+∞)) such that

|fn(u)| ≤ Kdn|u|ν1−1, |u| ≤ c;

(H4) there exist two constants 1 < ν3 < 2, η > 0 and a set M ⊂ Z with m > 0
elements such that

Fn(u) ≥ η|u|ν3 , n ∈M, |u| ≤ 1.

Theorem 1.1. Under assumptions (H1)–(H4), equation (1.5) has at least m dis-
tinct pairs of nontrivial solutions satisfying (1.4).

Corollary 1.2. Suppose that (H1)–(H4) and the following hypotheses are satisfied:

(H5) Fn(u) = enϕ(u), where ϕ ∈ C1(R,R) and e ∈ l
2

2−ν1 (Z, [0,+∞)), 1 < ν1 < 2
is a constant, such that en > 0 for all n ∈ {n1, n2, . . . , nk} ⊂ Z;

(H6) there exist four positive constants θ1, θ2, ν2 ∈ [ν1, 2) and 1 < ν3 < 2 such
that

θ2|u|ν3 ≤ ϕ(u) ≤ θ1|u|ν1 , |u| ≤ 1,

0 < ϕ(u) ≤ θ1|u|ν2 , |u| > 1.

Then (1.5) has at least m distinct pairs of nontrivial solutions satisfying (1.4).

As it is well known, critical point theory is a powerful tool to deal with the
homoclinic solutions of differential equations [10, 11, 12, 13] and is used to study
homoclinic solutions of discrete systems in recent years [3, 4, 5, 25, 28]. The main
idea is to transfer the problem of solutions in E (defined in Section 2) of (1.5) into
that of critical points of the corresponding functional.

2. Preliminaries

To apply the critical point theory, we establish the variational framework corre-
sponding to (1.3) and give some lemmas which will be of fundamental importance
in proving our main results. We start by some basic notation.

Let S be the vector space of real sequences of the form

u = (. . . , u−n, . . . , u−1, u0, u1, . . . , un, . . . ) = {un}+∞n=−∞,

namely S = {{un} : un ∈ R, n ∈ Z}. Define

E =
{
u ∈ S :

+∞∑
n=−∞

[pn−1(∆kun−1)2 + qnu
2
n] < +∞

}
.

This space is a Hilbert space with the inner product

〈u, v〉 =
+∞∑

n=−∞
(pn−1∆kun−1∆kvn−1 + qnunvn), ∀u, v ∈ E, (2.1)

and the corresponding norm

‖u‖ =
( +∞∑
n=−∞

[
pn−1(∆kun−1)2 + qnu

2
n

])1/2

, ∀u ∈ E. (2.2)
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On the other hand, we define the space of real sequences,

ls =
{
u ∈ S : ‖u‖s =

( +∞∑
n=−∞

|un|s
)1/s

< +∞
}
, 1 ≤ s < +∞, (2.3)

with ‖u‖∞ = supn∈Z |un| when s = +∞.
Since u ∈ E, it follows that lim|n|→∞ |un| = 0. Hence, there exists n∗ ∈ Z such

that
‖u‖∞ = |un∗ | = max

n∈Z
|un|.

By (H1) and (2.2), we have

‖u‖2 ≥
∑
n∈Z

qnu
2
n ≥ q

∑
n∈Z

u2
n ≥ q‖u‖2∞.

Thus,
q‖u‖2∞ ≤ q‖u‖22 ≤ ‖u‖2. (2.4)

For a function f : Z→ R and a ∈ R, we define

Z(fn ≥ a) = {n ∈ Z : fn ≥ a}, Z(fn ≤ a) = {n ∈ Z : fn ≤ a}.

For u ∈ E, we define the functional J on E as follows

J(u) :=
1
2

+∞∑
n=−∞

[
pn−1(∆kun−1)2 + qnu

2
n

]
−

+∞∑
n=−∞

Fn(un)

=
1
2
‖u‖2 −

+∞∑
n=−∞

Fn(un) .

(2.5)

Now we can prove that J ∈ C1(E,R).
Firstly, we can prove that J : E → R. For any u ∈ E, there exists an integer

D > 0 such that |un| < 1 for |n| > D. By (H2), (2.4) and Hölder inequality, we
have ∑

|n|>D

|Fn(un)| ≤
∑
|n|>D

an|un|ν1

≤
( ∑
|n|>D

|an|
2

2−ν1

)(2−ν1)/2( ∑
|n|>D

u2
n

)ν1/2
≤ q−ν1‖a‖(2−ν1)/2‖u‖ν1 ,

which implies that J : E → R.
Secondly, we can prove that J ∈ C1(E,R). Let u(j) → u in E. For any ε ∈

(0,√q), we can choose an integer Dε such that[ ∑
|n|>Dε

(
pn−1|∆ku

(j)
n−1|2 + qn|u(j)

n |2
)]1/2

< ε, j ∈ N, (2.6)

[ ∑
|n|>Dε

(
pn−1|∆kun−1|2 + qn|un|2

)]1/2
< ε. (2.7)

For sufficient large j, by (H3), (2.4)-(2.7), and Hölder inequality, we have

|〈J ′(u(j))− J ′(u), v〉|
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≤
∣∣∣ +∞∑
n=−∞

[pn−1(|∆kun−1|p−2∆kun−1 − |∆kvn−1|p−2∆kvn−1)∆kvn−1

+ qn(|un|p−2un − |vn|p−2vn)vn]
∣∣∣+

+∞∑
n=−∞

|[fn(u(j)
n )− fn(un)]vn|

≤ |〈u(j) − u, v〉|+
+∞∑

n=−∞
|fn(u(j)

n )− fn(un)||vn|

≤ ‖u(j) − u‖‖v‖+
∑
|n|≤Dε

|fn(u(j)
n )− fn(un)||vn|+

∑
|n|>Dε

[|fn(u(j)
n )|+ |fn(un)|]|vn|

≤ ‖u(j) − u‖‖v‖+
∑
|n|≤Dε

|fn(u(j)
n )− fn(un)||vn|

+K
∑
|n|>Dε

dn[|u(j)
n |ν1−1 + |un|ν1−1]|vn|

≤ o(1) +Kq−1/2
( ∑
|n|>Dε

|dn|
2

2−ν1

) 2−ν1
2
( ∑
|n|>Dε

(u(j)
n )2

) ν1−1
2 ‖v‖

+Kq−1/2
( ∑
|n|>Dε

|dn|
2

2−ν1

) 2−ν1
2
( ∑
|n|>Dε

u2
n

) ν1−1
2 ‖v‖

≤ o(1) + 2Kq−ν1/2‖d‖ 2
2−ν1
‖v‖εν1−1, ∀v ∈ E,

which implies that J ∈ C1(E,R).
For the derivative of J we have the formula

〈J ′(u), v〉 =
+∞∑

n=−∞
[(−1)kpn−1∆kun−1∆kvn−1 + qnunvn − fn(un)vn], (2.8)

for all u, v ∈ E. Finally, the critical points of J in E are solutions of (1.5) satisfying
(1.4).

For u, v ∈ E, there exists an integer D1 > 0 such that |un|+|vn| < 1 for |n| > D1.
For any sequence {θn}n∈Z with |θn| < 1, n ∈ Z and any number h ∈ (0, 1), it follows
from (H3) and (2.4) that

+∞∑
n=−∞

|fn(un + θnvn)vn|

=
∑
|n|≤D1

|fn(un + θnvn)vn|+
∑
|n|>D1

|fn(un + θnvn)vn|

≤
∑
|n|≤D1

|fn(un + θnvn)||vn|+
∑
|n|>D1

|fn(un + θnvn)||vn|

≤
∑
|n|≤D1

max
|x|≤‖u‖∞+‖v‖∞

|fn(xn)||vn|+K
∑
|n|>D1

dn|un + vn|ν1−1|vn|

≤
∑
|n|>D1

max
|x|≤‖u‖∞+‖v‖∞

|fn(xn)||vn|+K
∑
|n|>D1

dn(|un|ν1−1 + |vn|ν1−1)|vn|
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≤
∑
|n|≤D1

max
|x|≤‖u‖∞+‖v‖∞

|fn(xn)||vn|+K
( ∑
|n|>D1

d2
n|un|2(ν1−1)

)1/2( ∑
|n|>D1

v2
n

)1/2

+K
( ∑
|n|>D1

d2
n|vn|2(ν1−1)

)1/2( ∑
|n|>D1

v2
n

)1/2

≤
∑
|n|≤D1

max
|x|≤‖u‖∞+‖v‖∞

|fn(xn)||vn|

+Kq−1/2
( ∑
|n|>D1

|dn|
2

2−ν1

) 2−ν1
2
( ∑
|n|>D1

u2
n

) ν1−1
2 ‖v‖

+Kq−1/2
( ∑
|n|>D1

|dn|
2

2−ν1

) 2−ν1
2
( ∑
|n|>D1

v2
n

) ν1−1
2 ‖v‖

≤
∑
|n|≤D1

max
|x|≤‖u‖∞+‖v‖∞

|fn(xn)||vn|+Kq−ν1/2‖d‖ 2
2−ν1

(‖u‖ν1−1 + ‖v‖ν1−1)‖v‖

< +∞.

Combining this with (2.5), we have

〈J ′(u), v〉 = lim
h→0+

J(u+ hv)− J(u)
h

= lim
h→0+

1
h

{‖u+ hv‖2 − ‖u‖2

2
−

+∞∑
n=−∞

[Fn(un + hvn)− Fn(un)]
}

= lim
h→0+

[
〈u, v〉+

h‖v‖2

2
−

+∞∑
n=−∞

F ′n(un + θnhvn)vn
]

= 〈u, v〉 −
+∞∑

n=−∞
fn(un)vn

=
+∞∑

n=−∞
[pn−1∆kun−1∆kvn−1 + qnunvn − fn(un)vn],

which implies (2.8). Using

∆kun−1 =
k∑
i=0

(−1)i
(
k

i

)
u(n+ k − i− 1),

we can compute the partial derivative as

∂J(u)
∂un

= (−1)k∆k(pn−k∆kun−k) + qnun − fn(un), k ∈ Z(1), n ∈ Z.

Thus, the critical points of J in E are solutions of (1.5) satisfying (1.4).
Let E be a real Banach space, J ∈ C1(E,R), i.e., J is a continuously Fréchet-

differentiable functional defined on E. J is said to satisfy the Palais-Smale condition
((PS) condition for short) if any sequence {un} ⊂ E for which {J(un)} is bounded
and J ′(un)→ 0, as n→∞, possesses a convergent subsequence in E.

Let Bρ denote the open ball in E about 0 of radius ρ and let ∂Bρ denote its
boundary.
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Lemma 2.1 (Clark’s Theorem [22]). Let E be a Banach space and J ∈ C1(E,R)
with J even. Suppose that J satisfies the (PS) condition, J(0) = 0 and

(1) there is a set Ẽ ⊂ E such that Ẽ is homeomorphic to Sk−1 by an odd map,
supẼ J < 0,

then J possesses at least k distinct pairs of critical points.

Lemma 2.2. Suppose that (H1)–(H4) are satisfied. Then J is bounded from below.

Proof. It follows from (2.4), (2.5), (H2) and Hölder inequality that

J(u) =
1
2
‖u‖2 −

+∞∑
n=−∞

Fn(un)

≥ 1
2
‖u‖2 −

∑
Z(|un|≤1)

Fn(un)−
∑

Z(|un|>1)

Fn(un)

≥ 1
2
‖u‖2 −

∑
Z(|un|≤1)

an|un|ν1 −
∑

Z(|un|>1)

bn|un|ν2

≥ 1
2
‖u‖2 −

( ∑
Z(|un|≤1)

|an|
2

2−ν1

) 2−ν1
2
( ∑

Z(|un|≤1)

|un|2
)ν1/2

−
( ∑

Z(|un|>1)

|bn|
2

2−ν1

) 2−ν1
2

(
∑

Z(|un|>1)

|un|
2ν2
ν1 )ν1/2

≥ 1
2
‖u‖2 − q−ν1/2(

∑
Z(|un|≤1)

|an|
2

2−ν1 )
2−ν1

2 ‖u‖ν1

−
( ∑

Z(|un|>1)

|bn|
2

2−ν1

) 2−ν1
2
( ∑

Z(|un|>1)

|un|
2(ν2−ν1)

ν1 |un|2
)ν1/2

≥ 1
2
‖u‖2 − q−ν1/2‖a‖ 2

2−ν1
‖u‖ν1 − ‖b‖ 2

2−ν1
‖u‖ν2−ν1∞ ‖u‖ν12

≥ 1
2
‖u‖2 − q−ν1/2‖a‖ 2

2−ν1
‖u‖ν1 − q−

ν2
2 ‖b‖ 2

2−ν1
‖u‖ν2 .

(2.9)

From 1 < ν1 < ν2 < 2 and (2.9) it follows that J(u)→ +∞ as u→ +∞. Thus, J
is bounded from below. The proof is complete. �

Lemma 2.3. Under conditions (H1)–(H4), functional J satisfies the (PS) condi-
tion.

Proof. Let {u(j)}j∈N ⊂ E be such that {J(u(j))}j∈N is bounded and J ′(u(j)) → 0
as j →∞. It follows from (H3) and (2.9) that there exists a constant K1 such that

‖u(j)‖∞ ≤ q−1/2‖u(j)‖ ≤ K1. (2.10)

So passing to a subsequence if necessary, it can be assumed that u(j) ⇀ u(0) in E.
It is easy to verify that u(j)

n converges to u(0)
n pointwise for all n ∈ Z; that is,

lim
j→∞

u(j)
n = u(0)

n , ∀n ∈ Z. (2.11)

Combining this with (2.10), we have

‖u(0)‖∞ ≤ K1. (2.12)
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For any given ε > 0, by (H3), we can choose an integer D2 > 0 such that( ∑
|n|>D2

|dn|
2−ν1

2

) 2
2−ν1

< ε. (2.13)

It follows from (2.12) and the continuity of fn(u) on u that there exists j0 ∈ N such
that

D2∑
n=−D2

|fn(u(j)
n )− fn(u(0)

n )||u(j)
n − u(0)

n | < ε, j ≥ j0. (2.14)

On the other hand, it follows from (H3), (2.10), (2.12)-(2.14) and Hölder inequality
that ∑

|n|≥D2

|fn(u(j)
n )− fn(u(0)

n )| |u(j)
n − u(0)

n |

≤
∑
|n|≥D2

(
|fn(u(j)

n )|+ |fn(u(0)
n )|

)(
|u(j)
n |+ |u(0)

n |
)

≤ K
∑
|n|≥D2

dn

(
|u(j)
n |ν1−1 + |u(0)

n |ν1−1
)(
|u(j)
n |+ |u(0)

n |
)

≤ 2K
∑
|n|≥D2

dn

(
|u(j)
n |ν1 + |u(0)

n |ν1
)

≤ 2K
( ∑
|n|>D2

|dn|
2−ν1

2

) 2
2−ν1

( +∞∑
n=−∞

|u(j)
n |2 +

+∞∑
n=−∞

|u(0)
n |2

)ν1/2
≤ 2Kq−ν1/2

(
‖u(j)‖2 + ‖u(0)‖2

)ν1/2
ε

≤ 2Kq−ν1/2
(
qK2

1 + ‖u(0)‖2
)ν1/2

ε.

Since ε is arbitrary, we obtain
+∞∑

n=−∞

∣∣fn(u(j)
n )− fn(u(0)

n )
∣∣ ∣∣u(j)

n − u(0)
n

∣∣→ 0, j →∞. (2.15)

From (2.2), (2.4) and (2.8) it follows that

〈J ′(u(j))− J ′(u(0)), u(j) − u(0)〉

= ‖u(j) − u(0)‖2 −
+∞∑

n=−∞

(
fn(u(j)

n )− fn(u(0)
n )
)

(u(j) − u(0)).

Therefore, we have

‖u(j) − u(0)‖2 ≤ 〈J ′(u(j))− J ′(u(0)), u(j) − u(0)〉

+
+∞∑

n=−∞

(
fn(u(j)

n )− fn(u(0)
n )
)

(u(j) − u(0)).

Since 〈J ′(u(j))− J ′(u(0)), u(j)−u(0)〉 → 0, j →∞. Thus, u(j) → u(0) in E and the
proof of Lemma 2.3 is complete. �
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3. Proofs of the main results

In this section, we shall obtain multiple solutions of (1.5) satisfying (1.4) by
using the critical point theory.

Proof of Theorem 1.1. We have already known that J ∈ C1(E,R), J is bounded
from below and J satisfies the (PS) condition. It is easy to see that J is even and
J(0) = 0. Hence, it suffices to prove that J satisfies the condition (1) of Lemma 2.1.
Assume that Ẽ ⊂ E and u1, u2, . . . , uk are the basis of Ẽ. Let M = {n1, n2, . . . , nk},
n1 < n2 < · · · < nk and for i = 1, 2, . . . , k,

u(i)
n =

{
1, n = ni,

0, n 6= ni,
(3.1)

For u ∈ Ẽ, there exist λi ∈ R, i = 1, 2, . . . , k such that

un =
k∑
i=1

λiu
(i)
n , ∀n ∈ Z. (3.2)

Thus,

‖u‖ν3 =
( +∞∑
n=−∞

|un|ν3
)1/ν3

=
( k∑
i=1

|λi|ν3 |u(i)
n |ν3

)1/ν3
. (3.3)

Since all norms of a finite dimensional normed space are equivalent, there is a
positive constant c1 such that

‖u‖ ≤ c1‖u‖ν3 , ∀u ∈ Ẽ. (3.4)

Set Θ = {u ∈ Ẽ : ‖u‖ = 1}. For u ∈ Θ and τ > 0, it follows from (F2), (2.5)
and (3.2)-(3.4) that

J(τu) =
1
2
‖τu‖2 −

+∞∑
n=−∞

Fn(τun)

≤ τ2

2
‖u‖2 −

k∑
i=1

Fn(τun)

≤ τ2

2
‖u‖2 − ητν3

k∑
i=1

|λi|ν3 |u(i)
n |ν3

=
τ2

2
‖u‖2 − ητν3‖u‖ν3ν3

≤ τ2

2
‖u‖2 − η(

τ

c1
)ν3‖u‖ν3

=
τ2

2
− η(

τ

c1
)ν3 .

Since 1 < ν3 < 2, we can choose τ small enough to ensure that

J(τu) < −ε1 < 0, u ∈ Θ, (3.5)

where ε1 is a positive constant.
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For u ∈ Ẽ, by (3.2), we have

‖u‖2 =
+∞∑

n=−∞
[pn−1(∆kun−1)2 + qnu

2
n]

=
k∑
i=1

λ2
i [pn−1(∆ku

(i)
n−1)2 + qn(u(i)

n )2] := f(λ1, λ2, . . . , λk).

(3.6)

It is easy to see that f(λ1, λ2, . . . , λk) is a positive definite quadratic form. Thus,
there exists an invertible matrix P ∈ Rk×k such that

(x1, x2, . . . , xk)∗ = P (λ1, λ2, . . . , λk)∗, f(λ1, λ2, . . . , λk) =
k∑
i=1

x2
i . (3.7)

Set

Θτ = {τu : u ∈ Θ}, Sk−1 = {(x1, x2, . . . , xk)∗ ∈ Rk :
k∑
i=1

x2
i = 1}.

By (3.6), we have

Θτ =
{ k∑
i=1

λiu
(i) : f(λ1, λ2, . . . , λk) = τ2

}
.

Let φ : Θτ → Sk−1 and

φ(u) = τ−1(x1, x2, . . . , xk)∗, u ∈ Θτ .

It is easy to verify that φ : Θτ → Sk−1 is an odd homeomorphic map. From (3.5)
it follows that

J(u) < −ε1 < 0, u ∈ Θτ .

Therefore, supΘτ J ≤ −ε1 < 0. The condition (1) of Lemma 2.1 holds. By Lemma
2.1, J has at least k distinct pairs of critical points, and so (1.5) has at least k
distinct pairs of nontrivial solutions satisfying (1.4). The desired results follow. �

Proof of Corollary 1.2. It is easy to see that (H5) and (H6) imply (H2). Thus, by
Theorem 1.1, the conclusion of Corollary 1.2 follows. �
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