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EXACT BOUNDARY CONTROLLABILITY FOR HIGHER
ORDER NONLINEAR SCHRODINGER EQUATIONS WITH
CONSTANT COEFFICIENTS

JUAN CARLOS CEBALLOS V., RICARDO PAVEZ F.,
OCTAVIO PAULO VERA VILLAGRAN

ABSTRACT. The exact boundary controllability of the higher order nonlinear
Schrédinger equation with constant coefficients on a bounded domain with
various boundary conditions is studied. We derive the exact boundary con-
trollability for this equation for sufficiently small initial and final states.

1. INTRODUCTION
We consider the initial-value problem

iy 4 QUgy + 1BUges + |ul?u =0, x,tcR (L1)

u(z,0) = ug(x) ’
where o, 6 € R, 8 # 0 and u is a complex valued function. The above equation is
a particular case of the equation

iUy + Uy + 1BUgee + Y|u|?u 4 i6|u|?uy + ieuT, =0, x,t€R

u(z,0) = up(x) (1.2)

where «, 3, v, , with 8 # 0 and v is a complex valued function. This equation
was first proposed by Hasegawa and Kodama [I0] as a model for the propagation
of a signal in a fiber optic (see also [13]). The equation can be reduced to
other well known equations. For instance, settinga =1, 8 =€e=~v=01in we
have the semi linear Schrodinger equation, i. e.,

Uy — gy — iyu?u = 0. (1.3)

Ifwelet 8 =~ =0and a = 1in ([1.2]) we obtain the derivative nonlinear Schrodinger
equation

Up — gy — O|ul?uy — eu, = 0. (1.4)
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Letting @« = v = ¢ = 0 in (|1.2), the equation that arises is the complex modified
Korteweg-de Vries equation,

Uy + Buges + 0lulu, = 0. (1.5)

The initial-value problem for the equations , and has been exten-
sively studied, see for instance [T}, 8, [14] [I8], 20} 21 24) 26] and references therein.
In 1992, Laurey [I7] considered the equation and proved local well-posedness
of the initial-value problem associated for data in H*(R) with s > 3/4, and global
well-posedness in H*(R) where s > 1. In 1997, Staffilani [30] established local
well-posedness for data in H*(R) with s > 1/4, improving Laurey’s result. Similar
results were given in [} [7] for where w(t), B(t) are real functions.
For the case of the if we consider the Gauge transformation
2

. a . (13 6]
u(z,t) = ' 57T y(z — ?t’t) = ev(n, €)
where 0 = 15z + iZS—;, n=x— %Qt and & = t, then
3 2
e "] «Q 0 0
Ut :z2§e v—?e vy + e’ ve
2
« 2
Upy = ——elu+ ifc»zeez)?7 + egv,m
9 3
3
« 1
Uprr = —i2—7691) — §a2e‘9vn + iaeevm] + eev,mn.

Replacing in (|1.1)) and considering § = 1(rescaling the equation) we obtain
4
ive + ivppy + V)20 — —adv =0, z,teR
3 o + (0] o7 | (1.6)
v(x,0) = vo(z) = up(x)e™"3
Thus (|1.1)) is reduced to a complex modified Korteweg-de Vries type equation. In
this paper, we consider the boundary control of the Schrédinger equation

Uy + QUgy + 10Uzee + |u|2u + i0u, =0 (1.7)

where a, 3,0 € R, 8 # 0 and u is a complex valued function on the domain (a,b),
t > 0, and with the boundary condition

u(a,t) = ho, u(b,t) =h1, ugla,t)=he, uy(bt)=hs. (1.8)
In this paper we want to study directly the exact boundary controllability problem
for the higher order Schrodinger equation by adapting the method of [2I] which
combines the Hilbert Uniqueness Method (HUM) and multiplier techniques. This
method has been successfully applied to study controllability of wave and plate
equations, Schrodinger and KdV equations (see for instance |11 [8] 91 [T}, 14} (15, [I8],

20, 22 24] and references therein). The first result of this paper concerns boundary
controllability of the higher order linear Schrédinger equation.

Theorem 1.1. Let H} = {w € H?*(0,27) : w(0) = w(27), w'(0) = w'(27)} and
T > 0. Then, for any yo,yr € (Hg)’ (the dual space of Hg), there exist hy €

L?(0,T) (k= 0,1,2) such that the solution y € C([0,T] : (H2)') of the boundary
initial-value higher order Schrédinger equation

Wt + iBYzaz + Wao =0, (2,1) € (0,27) x (0,T); (1.9)
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Oy(2m,t) — hy(0,t) = hi(t), k=0,1,2; (1.10)
y(-,0) =wo (1.11)

satisfies y(., T) = yr.
We see that explicit controls may be given. Unfortunately, the state y is only

known to belong to C([0,T] : (H})') so it seems quite difficult to deduce from
Theorem controllability results for higher order nonlinear Schrédinger equation
).

The second result relates exact boundary controllability for the linear higher
order Schrodinger equation with boundary control on y, at x = L. In this part
a condition on the coefficients o and (3 given by the second and the third order
derivatives that appear in (HSCHROD) is needed. A condition on the length L
of the domain appears.

Theorem 1.2. Let |a| <33, § > 0 and

[k2 + Kkl + 12 .

Then for any T > 0 and L € (0, 4+00)\N, and for any yo,yr € L?(0, L), there exists
h € L*(0,T) such that the mild solutiony € C([0,T] : L*(0,L))NL*(0,T : H*(0, L))
of the system

Wt + 1BYawa + Wae + 10y =0 (1.12)
y(0,t) = y(L,t) =0 (1.13)

Yo (L, t) = h(t) (1.14)

y(z,0) = yo(z) (1.15)

satisfies y(.,T) = yr.

To prove this we use the Hilbert uniqueness method and the multiplier method.
It turns out that the study of (1.12))-(1.15]) as a boundary initial-value problem is
more delicate than the study o— 1.11)), and -because of the extra term y, in
— the observability result holds true if and only if L ¢ /. On the other hand,
the solution y belongs this time to a functional space in which we may give a sense
to the nonlinear term |y|?y in . By means of the Banach Contraction Fixed
Point Theorem and Theorem we get the main result of the paper, that is the

exact boundary controllability of the higher order nonlinear Schrédinger equation
on a bounded domain.

Theorem 1.3. Let |a] < 38,0 >0,T >0 and L > 0. Then, there exists ro > 0
such that for any yo, yr € L*(0, L) with |lyo|lz20.) < 70; |yrllz2(0.) < 70, there
is function y in

C([0,T]: L*(0, L)) N L*([0,T] : H*(0, L)) nW*([0,T] : H2(0,L))  (1.16)
which is a solution of

iy = —(i1BYwwz + Waw + [y|*y +idy,) in D(0,T : H2(0,L)) (1.17)

y(0,.) =0 in L*(0,L) (1.18)

and such that y(.,0) = yo, y(.,T) = yr. If moreover L ¢ N, then in addition, it
is possible to assume that y(L,.) =0 in L*(0,T) and take y,(L,.) in L*(0,T) as a
control function.
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In a forthcoming paper we study the case || > 33 for Theorems [1.2] and
using the Gauge transformation (KdVm described above) and following the same
idea shown here.

This paper is organized as follows: Section 2 outlines briefly the notation and
terminology to be used subsequently and some previous result. Section 3 we derive
from the Hilbert uniqueness method a direct proof of the exact controllability result
for the higher order linear Schrodinger equation. In section 4, we consider another
boundary controllability problem for the higher order linear Schrédinger equation,
in which only the value of the first spatial derivative (at x = L) of the state
function is assumed to be controlled: this boundary initial-value problem is first
shown to admit solutions, later on, an observability result is given and used to
show using the Hilbert uniqueness method the exact boundary controllability for
higher order linear Schrodinger equation with these boundary conditions. Finally, in
section 5, we prove the main result of this paper, that is, the exact local boundary
controllability of the higher order nonlinear Schrédinger equation on a bounded
domain.

2. PRELIMINARIES

For an arbitrary Banach space X, the associated norm will be denoted by || - || x.
If Q = (a,b) is a bounded open interval and k a non-negative integer, we denote by
C*(Q) = C*(a,b) the functions that, along with their first k& ones, are continuous
on [a, b] with the norm
fller@y = sup  [fD(@)]. (2.1)
z€Q,0<5<k
As usual, D(€) is the subspace of C*°(Q) consisting of functions with compact
support in Q. Its dual space D’ is the space of Schwartz distributions on ). For
1 < p < oo, LP(Q) denotes those functions f which are p-power absolutely integrable
on ) with the usual modification n case p = oco. If s > 0 is an integer and
1 < p < o0, WP(Q) is the Sobolev space consisting of those LP(2)-functions
whose first s generalized derivatives lie in L?(2), with the usual norm

1oy = S IFPIE, - (2.2)
k=0

If p = 2 we write H%(Q) for W*2(Q). The notation H*(Q2) is frequent where s is a
positive integer.

- lls =1l - 1 (ap) - (2.3)
For s > 1, Hi((a,b)) is the closed linear subspace of H*((a, b)) of functions f such
that f(a) = f'(a) = --- = f*(a) = 0. H_(Q) is the set of real-valued functions

f defined on Q such that, for each ¢ € D(Q), pf € H*(2). This space is equipped
with the weakest topology such that all of the mapping f — ¢f, for ¢ € D(Q),
are continuous from H*(Q) into H .(©2). With this topology, Hi () is a Fréchet
space. If X is a Banach space, T' a positive real number and 1 < p < +o0, we will
denote by LP(0,T; X) the Banach space of all measurable functions v : (0,7) — X,

such that ¢ — ||u()||x is in LP(0,T"), with the norm

T 1/p
fullorioron = (| Iu(®l dz) " i 1< p < toc,
0
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and if p = oo, then
[ull Loy x) = sup Jullx.
0<t<
Similarly, if k is a positive integer, then C*¥(0,7 : X) denote the space of all
continuous functions u : [0,7] — X, such that their derivatives up to the k order

exist and are continuous.
For notation, we write d = 0/0x, 0y = 9/0t and u; = 0Ju = & u/0x’.

Definition. For k = {2, 3}, we define the space
diu diu
k_ k . ;
H, = {u € H”(0,2m) : dxj(o) = dmj(27r) for0<j<k-— 1}

We remark that H*(0,27) denotes the classical Sobolev space on the interval (0, 27).
Definition. For n € Z, let the n-th Fourier coefficient of u € L?(0, 27),
1 2 )

u(n) = %/0 e~ " u(x) dx (2.4)

Lemma 2.1. For n € Z, we have
1 2

Sl = o= [ fulw) ds (2.
nez 2m 0

The proof of the above lemma is straightforward. We remark that for k = 2
(similarly for k& = 3) we have

Fn 1 o —inT 1 2
u(n) = 2 ), e " u(x) dr = —ﬁa u(z)

then —n?u(n) = 0%*u(n). Applying |- | and squaring we obtain [n2[i(n)[?]? =

|6%1(n)|* where by applying Y, ., and using (2.2) it follows that
1 2
S AP = 3 Pam) P = 5 / 0Pu(a)|? do < oo.

ne”Z neZ

Hence, we have that for all u € L?(0,27), k € {2,3}

u € HZ’f if and only if Z[nk|ﬂ(n)|2]2 < 00, (2.6)
ne”Z

and the Sobolev norm

ko pom , . 11/2 k - 1/2
oz = [3 [ 07u@P dz] =[S 10l 0r
j=070 j=0
reduces to

1/2
[l % 0,27) = [Z(l +n’ 4.+ nzk)m(n)ﬂ for u € H;f. (2.7)
neZ

In what follows, the Hilbert space H;f is endowed with the norm ||ul| g (g 25)-
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Lemma 2.2 (Ingham’s Inequality [12]). Assume the strictly increasing sequence
{ Ak trez of real numbers satisfies the “gap” condition Agy1 — A\, > 7, for allk € Z,
for some v > 0. Then, for all T > 2w/~ there are two positive constants Cy,Cy
depending only on v and T such that

T o)
CU(Tv) Y. |ak|2s/ | > ake™ |de < Co(Ty) Y lar* (28)
k=—o0 0 k=—o00 k=—o00

for every complex sequence (ax)rez € 12, where
2T 472

Ci(T,v)="—(1——=—=)>0,
1(T,7) 7r( T2’y?> (2.9)
8T 472 '
T,~)=—
Co(T, ) = —( +T272)>0

and 12 is the Hilbert space of square summable sequences, sequences {ax} such that
D ken lax|* < oo.

Finally, we denote by ¢, a generic constant, not necessarily the same at each
occasion, which depends in an increasing way on the indicated quantities.

3. EXACT BOUNDARY CONTROLLABILITY OF THE HIGHER ORDER LINEAR
SCHRODINGER EQUATION BY MEANS OF CONTROL ON DATA [0%y(.,t)]3™ FOR
k=0,1,2

For simplicity, in this section, we restrict ourselves to the case where the space
domain [0, L] is [0, 27]; although Theorem holds for arbitrary L > 0.

Lemma 3.1. Let A denote the operator Au = (—B9% + iad?)u on the domain
D(A) = H} C L*(0,2m). Then A generates a strongly continuous unitary group
(S(t))ter on L%(0,2m).

Proof. Let A: D(A) C L%(0,2m) — L*(0,27) such that u — Au = —38%u+iad*u.
We have
(Au,v) = (—B0%u + iad?u, v)

= —B3(0%u,v) + ia(0*u, v)

= B(u, *v) + ialu, 0%v)

= (u, BO*v) + (u, —iad*v)

= (u, —(—B0%v + iad*v))

= (u, —Av)

then A* = —A. Hence, by the Stone theorem [25], A is the infinitesimal generator
of a unitary group of class Cy (all groups of class Cj are strongly continuous) on
L?(0,27). O

Definition. Let T > 0. For up = >
the uncontrolled problem
du+ BOPu —iad*u=0, z¢c (0,2m), t € R;
OFu(0,t) = 0Fu(2m,t), k=0,1,2; (3.1)
u(.,T) =ur(.)

nez Cn€™ € L*(0,27), the mild solution of
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is given by
u(zx,t) = Z cnei(B"B_a"Q)(t_T)Hm (3.2)
ne”Z

Remark 3.2. Let u(x,t) =, o, U(n,t)e"", then
= 3 el @n'—an =Ty tna]

nez
In fact,
Opu(z,t) Zafu n,t)e inw
neL

O*u(x,t) = Z:(m)2 (n,t)e"* = — Zn a(n,t)e™

nez neL
PPu(z,t) = Z(m)?’ (n,t)e™® = ZZTL a(n,t)e™®,

nez nez

hence, if u is the solution of ( ﬂ, we obtain

Z@tunt ine zBZn (n,t) m“—i—zaZnunt) nr _ ).
ne’ nez neZ
Multiplying by e~*(m € Z) and integrating over = € (0, 27) we obtain

27
> oiii(n, t) —i(Bn® — an®)i(n, t) / etn=me gy — ),

neEZ 0

27 .
/ piln—m)a g, _ 0, ifn#m
0 2w, ifn=m

we have that > ., 9;u(n,t) —i(Bn® — an®)u(n,t) = 0, then dyu(n,t) — i(Bn® —
an?)t(n,t) = 0 where

Using that

Oy [ —i(Bn’®—am )tA(n t)} = 0.
Integrating over ¢ € [0, T yields
i(n,t) = T(n, 0)e (P —on®)t

and applying ), ., we obtain

nT

multiplying by e

u(a,t) =Y d(n,t)e™”

nez

= Z (n, O)ei[(ﬁnafanZ)Hnr]
nez

= 3 i, 0)¢H P ~an )T l(3n —an®)(¢=T) nal
ne.

= 3 O —ant) =T ine.
nez

where ¢, = 1(n,0)e!Bn’ = )T and y(z,T) = up = > ez Cn€

For the rest of this article, v will denote the solution of (3.1]) associated with wr.
We show the following result for the non-homogeneous problem.
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Theorem 3.3. Let H2 = {w € H?*(0,27) : w(0) = w(27),w'(0) = w'(27)} and
T > 0. Then for any yo, yr € (Hg)' (the dual space of Hg), there exist hy €
L?(0,T) (k= 0,1,2) such that the solution y € C([0,T) : (H2)') of the boundary
initial-value higher order Schrédinger equation
Oy + PO%y —iad®y =0, (z,t) € (0,27) x (0,T);
O*y(2m,t) — 9% y(0,t) = hy(t), k=0,1,2; (3.3)
y('7 O) =Yo
satisfies y(., T) = yr.
Remark 3.4. Given yo € (H?)', hy € L*(0,T) (k = 0,1,2), we want to find
y such that it satisfies (3.3). We first prove that (3.3) admits a unique solution

y € C([0,T] : (H})) in a certain sense, and this solution is the classical one
whenever y € D(A), and hy(k =0, 1,2) are smooth enough and vanish at 0.

Lemma 3.5. (1) Assume that hy € C3([0,T)) = {h € C*([0,T] : C) : h(0) = 0}
and yo € H3. Then there exists a unique solution y € C([0,T] : H*(0,2m)) N
C'([0,T] : L*(0,2m)) of B.3). Moreover, for any ur € HY and any t € [0,T] we
have

27
/ u(z, t)y(x,t) dx
0
. / w(z, 0)jo@) da — (3 — i) / 92u(0, 5)o(s) ds (3.4)
0 0

¢ ¢
+ ,6/ 0u(0, s)h1(s) ds + / (0, s)(Bha(s) + iahy(s)) ds.
0 0
(2) Forur € H2, we C([0,T] : H}) and 8*u(0,.) makes sense in L*(0,T).

p7
(3) Assume now that yo € (H2)" and hy, € L*(0,T)(k = 0,1,2). Then, there exists

a unique y € C([0,T] : (H})') such that for all ur € HZ and for all t € [0,T],
(u(e ), y(8)) 2 (rizy

= <u('a0)7y0>H§><(H§)’ - (B- ioz)/o 9%u(0, s)ho(s) ds (3.5)

+6/0 0u(0, s)h1(s) ds +/O u(0, s)(Bha(s) +iahi(s)) ds

Proof. (1) Let ¢; € C*°([0,27])(i = 0,1,2) be such that
1, i=k

¢ (0)=0 and ¢>§’“>(2w>{0 L
, ) .

V;lfe consider the change of function z(z,t) = 3"7_ [hi(t) ¢ () + (S ()yo) (@) +y(z, )],
then
2(2m, 1) — 2(0,8) = > hi(t)$i(2m) + (S(t)yo) (27) + y (27, 1)
=0
2

=3 hi(®)6:(0) + (S()y0) (0) + (0, 2)
1=0

= —ho(t) + (S()yo) (2m) = (S(1)y0)(0) + y(2m, ) — y(0,t)
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= —ho(t) + (S(t)yo) (2m) — (S(t)y0)(0) + ho(?)
= (S(t)yo)(2m) — (5(t)y0)(0)

using that yo € Hy we obtain z(2m,t) = 2(0,t). The other initial conditions are
calculated in a similar way. Hence, this change of the function yields an equivalent
problem to (3.3): Find z such that

Oz + Pz —iad?*z = f(,t)

=3 [H®i(e) + Bri0)6” (@) — iahi()6? ()

=0
ok z(2m,t) = 92(0,t), k=0,1,2
2(,0)=0

Since f € C([0,T] : L?*(0,2m)), this non-homogeneous problem admits a unique
solution (see [25]), z € C([0,T] : H3) N C*([0,T] : L*(0,2n)). This proves the first
assertion in (1).

Let ur 6 H3 then u € C([0,T] : H3) N C*([0,T] : L*(0,27)). Multiplying the
equation ((3.1] by 7 and integrating in = € [0,27] and ¢ € [0, 7] we have

2m 2m 2m
// audxds—i—ﬁ// 7[0%u] dxds—za// 7[0%u] dx ds = 0.

Each term is treated separately. Integrating by parts,

t 2w
/ / y|0su] dx ds
0 Jo
2 27 27
:/ y(z, t)u (xt)dw—/ y(x, de:C—// Osyudx ds,
0

B//% 0% dmds_ﬁ/ho )[0°u(0, 5)] ds—ﬁ/m )[0u(0, 5] ds

2m
—|—ﬂ/0 hg(s)u(O,s)ds—/O ; [0%Y]udx ds

t 2m
- ia/ / 7[0%u] dx ds
0 Jo

t t t pom
= —ia/ ho(s)[0%u(0, )] ds + ia/ hi(s)u(0, s) ds — ia/ [0%F|udx ds .
0 0 Jo

0
Therefore,

/027r y(z,t) u(z,t) de — /0277 y(z,0)u(z,0) dx — /Ot /OQﬁ[asy]udx ds

+3 /0 Fo(3)[0%u(0, )] ds — 3 /0 7 (8)[0u(0, 5)| ds + 3 /O ha(s) u(0, ) ds

—t23*uxs—iat732ussiatsuss
| [ enudeas—io [ R@otu.s)ds+io [ TGu(.s) d

t  p2mw
—ioz/ [0*Fludrds =0,
0o Jo
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where

2
/ u(z, t)y(x,t) de
0
- / (@, 0o (@) dz — (5 — ia) / [02u(0, 5)]o(s) ds
0 0

+ ,6’/0 [0u(0, s)]h1(s) ds + /0 u(0, s)(Bha(s) + iahi(s)) ds.

Result (1) follows.
Now, we proof (2). By (3.2)), for ¢1,t2 € [0,T]

u(z,t1) = Z cnei(ﬁng_o‘”z)(tl_m“m,
nez
u(z, ta) = Z cnei(’B"g*a”Q)(trT)“"w;
nez
hence
u(x,t1) — u(z, ta)
— Z cnei(ﬁng—anzﬁ(ez‘(ﬁnS—an2)t1 _ ei(ﬁna—an%tz)einy
nez
From (2.3), if upr € H? then Y, ., [ncn|*> < oo and Y, oy |nee|? < co. Using
Lebesgue’s Theorem [27],
u(z, t1) — u(z,ta)] = 3 |(n? + n)e, (P ant)t _ gilPn’—an®ita))
ne”Z

which approaches 0 as t; — 5. We conclude that u € C([0,T] : H7). Hence u(0,.),
ou(0, ) exist in C([0,T]) € L*(0,T). The same argument shows that if up € H},
ue C([0,T] : HY) and

2

0*u(0,t) = Z ( — nzcne*iw"g*a"z)T)ei(ﬁnsf‘”ﬁ)t. (3.7)
nez

The sum in (3.7) makes sense in L?(0,T) wherever Y, _,(n?|c,|)? < oo, that is,
ur € Hg. From now on, 6%u(0,.) denotes for uy € Hg, the sum in (3.7). O

Remark 3.6. The linear map ur — 92u(0,.) is continuous since

a3 ) T
H Z (n2cne—l(6n3_an2)T)el(ﬁn?’_anQ)tH S ([7] + 1) Z[n2|cn|]2 (38)
nez 27 neZ

where [x] denotes the integral part of a real number z. Identifying L?(0, 27) with its
dual by means of the conjugate linear map y + (., ) 2(0,2x), we have the following
dense and compact embedding (see [23])

H? — L*(0,2m) < (L*(0,2n))" — (H})". (3.9)
Moreover,
2m
(u, y) 2 x 2y = (U Y) 12(0,27) :/0 uy du (3.10)
for u € H? and y € L?(0,2m). Then
(u(, ), y(1) 2 x (rr2)
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= (ul )bz — (5= i) [ [0Pu(0, )] ds

+5 /0 0u(0, s)hn(s) ds + /O w(0, $)(Fha(s) T+ i (3)) ds

for hy, € C3([0,T]) (k = 0,1,2) and yo,up € HJ. Since H} is dense in H7, using
(2), we see that also is true for ur € Hg.
Definition.For yo € (H?)" and hy € L*(0,T) (k = 0,1,2), we define a weak
solution of as a function y € C([0,T] : (H2)') such that holds for all
up € H? and all t € [0, 7.
Claim. For ¢t fixed in [0, 7], defines y(t) € (H})" in a unique manner.

In fact, from the proof of (2) the map = : Hg — C, ur — Z(ur), given by

E(ur) = —(B - ia)/ ho(s)[0%u(0, )] ds + ﬁ/o B (s)[0u(0, 5)] ds

[}

+/O (Bha(s) — iah (5))u(0, 5) ds

is a continuous linear form. On the other hand, the map ® : Hg — Hg with
ur — P(ur) = u(.,t) is an automorphism of the Hilbert space, hence, for each
t €[0,T], y(t) is uniquely defined in (H2)'. Moreover, for t € [0,T7,

ly@llazy =  sup  [ul.,t),y(t)|

u(.,t
‘(a H%,

= sSup |<u("0)7y0>H;4,><(H§)/ - (ﬁ - Za)/o [82'“(0,3)]%0[3

a8l <1

+ ﬂ/o [0u(0, )]h1(s) ds + /0 u(0, 8)(Bha(s) + iahi(s)) ds|

< sup [(u(.,0),y0) m2x(m2y|
()3 <1

+(Bl+la)  sup / o(3)[6%u(0, 5] ds

ot <1
)l 2 <

+18]  sup / 7 () [0u(0, 5)]] ds

(-0l <1

t P P
+ sup / |(Bha(s) —iahi(s))u(0, s)|ds
lu( )l zz<1 /0

< osup a0l azy llyoll az
(D)l pr3 <1 ’ '

+ (18] + |af) o S 1ho(#)l 2(0,7) 10%(0, )] L2 (0,7
w(.,t Hg*

+168]  sup  ||hi(®)llz20,1) [|0w(0, ) |20, 1)
()l <1
+  sup  [(Bha(s) —iahi(s))llL20,7)|w(0, )| 2 (0,7)

lu(8) 12 <1
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< C(HZJO”(Hg)’ +[lhollz20,1) + [P llz20,1) + ||h2||L2(07T))

where ¢ is a positive constant which does not depend on t or on yg, ho, hi1, hs.
Since

y € C([0,T): L*(0,2m)) € C([0,T] : (Hp)") (3.11)
for y € H and (ho, h1,hg) € [C3([0,T])]?, and since H3 is dense in L?(0,T) and
C3(]0,T7) is dense in L*(0, L), it follows from (3.11)) that y € C([0,T] : (H2)").
Lemma 3.7 (Observability result). Let T > 0. There exist positive numbers C{ ,
C3 such that for every up € H?

O lur 0,2 < 100, L2 0,y + 1060, ) Z20 7y + 10%u(0, )220,

< Cg||UTH12qg(o,27r) (342
Proof. In L?(0,T) we have that
u(0,t) = Z cnei(ﬁngfo‘"z)(th)
nez
ou(0,t) = Zincnei(ﬁng_anz)(t_T)
nez
0*u(0,t) = Z —n2¢,el(An’—an®)(t=T)
nez
Hence
[w(0, ) 17207y + [18w(0, )] Z 20,y + 10%u(0, )] Z 20,7
< (] +1) 0+ 0% 4 e (3.13)

ne
<Cy ||UT||%{5(0,27r) for ur € Hy,
where C7 = ([£] +1). To prove the left inequality we first take 77 € (0,T) and
v >27/T". Let N € N* be such that
neZ, |n|> N = [B(n+1)° - an+ 1) — [Br - an’] > .

T

By Ingham’s inequality [I2] there exists ¢7" > 0 such that for all sequences (an)nez

in 12(Z),
, T , 2
> |an|2§cT/ ‘ > a4, €' o=\ gy (3.14)
0
\

[n|>N n|>N
Let Z, = Span(e™*) for n € Z and Z = @,cz2, C H}. We define a semi-norm p
in Z by: Yu € Z,

p(u) = (Ju(0)]* + 10u(0)* + |0*u(0)*) "/

= (1 + | i) + | 3 —taenf)

neL nez nez
(For uw € Z, u(n) = 0 for |n| large enough).
Let ur € Z N (B <nZn)t, that is, ¢, = 0 for |n| < N or for |n| large enough.
Using and we have

T
Jurliizozmy = 30 (L4 +nten << [ pluCPa (310
n>N
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Since T' > T”, it follows from ([3.13)), (3.16]) and a result by Komornik (see [14]) that
there exists a constant C{ > 0 such that for all ur in Z,

T
CTlur I oam < [ a0

= [u(0, 20,7 + 10u(0, )20 1) + 0°u(0, )72 (0.7
and the result follows. O

(3.17)

We remark that by a density argument we obtain the left inequality in (3.12]) in
the general case (up € H7).

Proof of Theorem[3.3. Without loss of generality we may assume that yo = 0. In
fact, if yo, yr € (H})', if there exist hy € L?(0,T) (k = 0,1,2) such that the
weak solution y of and y(.,0) = 0 satisfies y(.,T) = yr — S(T)yo, then
yr = S(T)yo + y(.,t) is the weak solution of with the same control functions
and its such that y(.,T") = yr. In what follows we assume that yo = 0. For ur € Hg
we let A: H? — (H2),
ur = A(UT) =Y.

where y is the weak solution of and hi(k = 0,1,2) are chosen the following
way:

ho) = ﬁ%(o,w, D) = %&L(O,t),
Fa () = i%u(o, £) + i%é)u(o, )

As above u stands for the solutions of (3.1)) associated with uz. Clearly A : Hﬁ —
(Hz)' is a conjugate linear continuous map. Moreover

T
(ur, AMur)) m2x 2y =/ (lu(0, )] + [9u(0, 8)[* + |0%u(0,1)|?) dt
0
2 C?”“T‘@Ig(o,mr)'

By Lemmas [3.5|and [3.7] it follows from Lax-Milgram’s Theorem (see [34]) that A is
invertible. Then the theorem follows. u

Remark 3.8. If T = 27, Lemma is trivial. Indeed, for any ur € H7,

lurlFra0.2m) = 1000, )72 0,22y + 10u(0, )72 (0,20 + 1072(0, ) 1220 2 -
4. EXACT BOUNDARY CONTROLLABILITY OF THE HIGHER ORDER LINEAR
SCHRODINGER EQUATION BY MEANS OF THE CONTROL Jy(L,t)

We consider now, the scalar space R. In this section, L stands for some positive
number. We shall prove the controllability in L?(0, L) of

Oy + O3y —iad*y + 00y =0
y(0,t) =y(L,t) =0
dy(L,t) = h(t)

y(-,0) =wo
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where h € L?(0,T) stands for the control function. More precisely we shall prove
that, for any L > 0, T > 0, yo, yr € L?(0, L) there exists h € L?(0,T) such that a
mild solution

y e C([0,T): L*(0,L)) N L*(0,T : H'(0, L)) N H*(0,T : H~2(0, L)) (4.2)

of (4.1)) which verifies the equation (4.1]) in D’(0,7 : H=2(0, L)) and yo in L?(0, L)
may be found such that y(.,T) = yr.
We begin by showing the well-posedness of the initial-value homogeneous prob-
lem with |a| < 30
Ay + O3y — iad*y + 60y = 0
y(0,t) =y(L,t) =0

4.3
Oy(L,t) =0 (4:3)
y(,0) = o
Let A denote the operator Aw = —pw"” + iaw” — dw’ on the (dense) domain

D(A) C L?(0, L), defined by
D(A) ={w e H3*(0,L) : w(0) = w(L) = w'(L) = 0}

Lemma 4.1. Operator A generates a strongly continuous semigroup of contractions
on L*(0,L).

Proof. A is closed. Let w € D(A). Then
Re(w, Aw) 20,1,

L
= Re/ [—Bw" +ioaw” — dw'|w(z) dx

L
—Re ﬂ/ " dx—|—za/ w’w(z)de —§ w(x)dac]
0
Each term is treated separately. Integrating by parts,
g 1
| @) ds = o)
0
L L
/ w” (z)w(z) dz = —/ [w'(2))? dz
0 0
Then
. 1
Re(w, Aw)2(0,1) = [ "0)2<0 if B> g|a|
hence, A is dissipative. It can be seen that A*(w) = pw" —icw” +dw’ with domain

D(A) = {w € H0,L) : w(0) = w(L) = w/(0) = 0} so that

/ . 1
Re(w,A*w)Lz(O,L) = *ﬁ[w (L)]2 < 0, lfﬂ > §|OL|

2

and A* is dissipative. Hence, by the Lumer-Phillips Theorem, A is the infinitesimal
generator of a Cy semigroup of contractions on L?(0, L). The result follows. (]

We denote by (S(t)):>0 the semi-group of contractions associated with A, and we
let H denote the Banach space C([0,T] : L2(0, L)) N L%([0,T) : H(0, L)) endowed
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with the norm

T ) 1/2
ol = sup Ol + (| 1ot )

te[0,T) (4.4)

= Ssup ||y(~7t)||L2(O,L) + ”y('at)HLQ(O,T:Hl(O,L))~
t€[0,T]

Using the multiplier method, we get useful estimates for the mild solutions of (4.3]).

Lemma 4.2. Let |o| < 36. Then

(1) The map yo € L*(0, L) — S(-)yo € H is continuous.
(2) For yo € L2(0,L), 9y(0,.) makes sense in L?(0,L), and for all yo €

L?(0,L),
10y(, )l 20,1 < llvollz20,1) (4.5)
1
[ THS(')yO||%2((O,T)><(O,L)) + 110y(0, 7201 (4.6)

Proof. (1) For yg € L*(0, L) we write y the mild solution S(-)yo of (Rz). By Lemma
y € C([0,T] : L*(0, L)) and

lyllco,m:2200,2)) < llvollz20,1) (4.7)

To see that y € L?(0,T : H?(0, L)) we first assume that y € D(A). Let £ = £(x,t) €
C*>([0,T] x [0, L]). Then, multiplying the equation (4.3)) by iy we have

&G0y + iG>y + alyd®y + 67Oy = 0
—iydyy — iyd*y + alyd*y — i6&ydy = 0

(applying conjugates). Subtracting, integrating over x € (0, L) and using straight-
forward calculus, we obtain

L L L I
iat/ 5|y|2dx*i/ Br&lyl® deriﬂ/ Sﬂagydx+i/6’/ Eyd’yda
0 0 0 o

L L L
—l—a/ 502y do — a/ Eyd*yda — i&/ 8§|y|2 dx = 0.
0 0 0

Each term is treated separately. Integrating by parts
L L L
| oty = [ orepoyac 2 [ atlouf dz - c0.njoy(0. 0
0 0 0
L
+/ £0yd*y dx
0
L L L L
§y33§d3::/ 82§y5‘yd3:—|—/ 35\3y|2dx—/ £0yo°*y dx,
0 0 0 0
L L L
| eoryar—— | osgoyds - [ cioypa
0 0 0

L L L
/ eyoPyde = — / deydy dr — / €10y |? du
0 0 0

Then

L L L L
i@t/ §|y|2dx—i/ 8t§|y|2dx+iﬁ/ 82§yaydx+2iﬁ/ 0¢|0y|* dx
0 0 0 0
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L L L
—i3¢(0,1)|0y(0,1)* + zﬂ/ EOyd*y dx + w/ D?¢ydy dx + w/ 0¢|0y|* dx
0 0 0
L L L L
— iﬂ/ oY’y dx — a/ O&yoy dx — a/ £|oy)? dx + / 0&ydy dx
0 0 0 0

L L
+/ £|8y|2dx—i5/ Otlyl*dr =0.
0 0

Hence,
L L L L
o0 [ oo~ [ oty o is [ 0oy do+3i5 | ocloyf da
0 0 0 0
L L
B0, )9y (0, ) Qialm/ gy du — m/ DEly2 dz = 0.
0 0
Thus

L L L L
at/ E\y|2dx—/ 8t§|y|2dx—ﬂ/ 835|y|2da:+35/ €|y |* dx
0 0 0 0
L
- 6(0.0/09(0. =5 | aeluf? do
0
L
=2« Im/ 0&ydy dx
0

L L
<lal [ ogluf do-+1al | ocloyl da.
0 0

where
L L L L

o / lyl? di + / 36 — |af0¢]0y[? da — / Ortlyl? dz — 8 / elyl? du
0 0 0 0 (48)

L L
- B5(0.0/0y(0.0) =5 [ oglydo~la| [ atluf? do <.
0 0
Choosing &(x,t) = x leads to
L L L
o [ alyPde+ [ 35— lalloy s~ G+ Jal) [P de <0,
0 0 0

Integrating over ¢ € [0,7] we obtain

L T L
/ x|y|2dx+[3ﬂf|a|]/ / |8y|2dxdt
0 0 0
T L L
§(6+|a|)/ / |y|2d:cdt+/ olyol? dz
0 0 0
T L L
§(5+|a|)/ / |y|2dxdt+L/ lyol? da.
0 0 0

Using that |a| < 33, the second and the third terms in the left hand on the above
equation are positive, thus we obtain

(36 — |04H||ay‘|%2(o,T:L2(o,L))
< (o] + |a|)||y||2L2(07T:L2(O,L)) + LHZ‘JO||2L2(0,L)]’
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where
2
||83/||L2(0,T:L2(0,L))

1 (4.9)
< — (|0 2 . L 2 .
= BA ) (8] + laDllyl7200,7:L2(0,0)) + ||y0||L2(O,L)}

Then, using (4.7)),
1

1/2
Iyl om0 < [T+ Ga=iap 08 +1ahT + 2] ol

(4.10)
(8] +38)T + L] 2 llyoll 12(0.1)

(36— lal)
By the density of D(A) in L?(0, L) the result extends to arbitrary yo € L?(0, L).
(2) We also assume yg € D(A) and taking £(z,¢) = 1 in (4.8)), we get

L L L
ﬂ@wﬁfg/wﬁmf/lwm§/\www (4.11)
0 0 0

On the other hand the choice &(x,t) =T — t yields

<

L L
@/(T—wmam+/’WFw—ﬁ@—wwmmm2sa (4.12)
0 0

Integrating over ¢ € [0, 7] we have

L L L L
1 [CwPdot [ [TPdede—p [ - oloyo.0Pat<o.
0 0 0 0

Hence

L ) 1 L L ) ﬂ L )
| wPar< g [ [ wPdsar- 5 [ @ - vjoyo.of e
0 0 0 0

1 L L L
<3 [ [ wPdzares [ joyo.0pa
T 0 0 0

By (4.12) there exists a unique continuous (linear) extension of the map yo €
D(A) — 9y(0,.) € L?(0,T) to the whole space L?(0,L). In what follows we also
will denote by dy(0,.) the value of this map at any yo € L?(0,L). It is trivial to

see that (4.12) and (4.13)) are true for any yo € L?(0, L). O
Lemma 4.3 (Observability result). Let |a| < 33, § > 0 and

B k2 + Kkl +12) .

Then, for all L € (0,+00)\N, for all T > 0, there exists C = C(L,T) > 0 such
that for all yo € L*(0, L),

llyollz2(0,y < C [|0y(0, )lz2(0,1)- (4.15)

Proof. (By contradiction) If the statement is false, there exists a sequence (y§)n>0 €
L?(0, L) such that ||y||r2(0,2) = 1 for any n, but [|0y™(0,.)||z2¢07) — 0 as n —
oo, where y® = S(-)yy. Using have that {y"} is bounded in L?(0,7T :
H?(0,L)) (— L*(0,T : H*(0,L) ). On the other hand,

O™ = —(BI*y"™ —iad*y™ + 50y™) is bounded in L*(0,T : H2(0,L)). (4.16)

(4.13)
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But H'(0,L) < L2(0,L) — H~2(0,L), then from Lions-Aubin’s Theorem (see
[23]), the set {y"} is relatively compact in L*(0,T : L*(0,L)). Without loss
of generality, we may assume that the sequence {y"} is convergent in L?(0,7 :
L?(0,L)). We infer from that {yp} is a Cauchy sequence in L?(0,7T). Let
yo = lim,_oy§ and y = S(-)yo. By Lemma dy™(0,.) — 9y(0,.) in L2(0,T).
Thus, ||yollz2(0,z) = 1 and 9y(0,.) = 0, but such function does not exist because of
the following lemma. O

Lemma 4.4. For T > 0 let Fr denote the space of the initial states yo € L?(0, L)
such that the mild solution y = S(-)yo of ([4.3) satisfies dy(0,.) = 0 in L2(0,T).
Then, for L € (0,00)\N, Fr = {0}, for all T > 0.

Proof. Tt is obvious that if T' < T’ then Fp C Frp.

Claim. For any T > 0, Fr is a finite-dimensional vector space. In fact, if {y{'} is
a sequence in the unit ball Bx, = {y € Fr : ||yllz2(0,z) < 1} the same argument
as above shows that there exist a convergent subsequence. Since the unit ball is
compact, by the Riesz Theorem (see [27]) Fr is finite dimensional and the claim
follows.

Let 77 > 0 be given. To prove that Fp» = {0}, it is sufficient to find 0 < T < T”
such that Fr = {0}. Since the map T + dim(Fr)nen is non-increasing, there exist
T,e > 0 such that T < T + ¢ < T’ and dim Fr = dim Fry., where we obtain that
Fo=FrforT <t <T+e Lety € Fr,y=S5()yo and 0 < t < €. Since
S(T)(S(t)yo) = S(T+ t)yo for 0 <7 < T and yg € Fro., we see that

S(t)yo — yo
t
Let My = {g = S(T)g0 : 0 < 7 < T,4 € Fr} C C([0,T] : L?(0,L)). Since
y€ HY0, T +¢: H2(0, L)),

t+) —
lim y(t+-) -y
t—0t t

On the other hand, by (4.17), y(ttﬂ € Mrp for 0 < t < € and M is closed in
L2(0,T : H=%(0, L)), since dim Mz < oco. It follows that y' € C([0,7] : L%(0, L))
and y € C1([0,T] : L?(0, L)). Hence, we may write

€ Fr (4.17)

=y in L?(0,T: H2(0,L)). (4.18)

y(0) = Tim S =Yo 4 pag gy
t—0+
Then
yo € D(A), Alyo) =y/(0) € Fr and 9y(0,.) € C([0,T)). (4.19)
Hence,

dyo o _

If Fr # {0}, the map yo € CFr — A(yo) € CFr (where CFr denote the complexi-
fication of Fr) has at least one eigenvalue, thus there exist A € C, yo € H3(0, L)\{0}
such that

Ayo = =By’ +iayg — i6yoyo(0) = yo(L) = y5(0) = yo(L) = 0. (4.20)
We prove in the following Lemma that this does not hold if L € N. |
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Lemma 4.5. Let |o| < 33, L € (0,400) and
I\ € C, Iy € H*(0,L)\{0} such that
Ayo + By — iayg + 0y = 0, (4.21)
10(0) = yo(L) = y,(0) =0,
Then is satisfied if and only if L € N.
Proof. Let yo € (K), we denote by u € H?(R) its prolongation by 0; i. e.,
R
Then
Au+ Bu”" —iau” + §u’ = Byg (0)d — nyi (L)dr,  in D'(R), (4.22)
where §,, denotes the Dirac measure at xy. Is easy to see that is equivalent

to the existence of complex numbers p,n, A (with (1, n) # (0,0)) and of a function
u € H?(R) with compact support in [—L, L] such that

A+ Bu” —iou” + 6u' =ndy — pudr,  in D'(R). (4.23)
Taking Fourier transform we have
(A + B(i6)° — ia(i€)* + 6(i€))u(§) = n — pe™ ™%
hence setting A = —ip, we obtain
P . n— pe
)= s —se s
Using Paley-Wiener’s theorem (see [27]) and the usual characterization of H?(RR)

functions by means of their Fourier transform, we see that (4.21)) is equivalent to
the existence of p € C and (5, u) € C*\{(0,0)} such that the map

[ m—pe
10=5eae—5e 4]

iLg

satisfies

(1) f is an entire function in C

(2) [ lFOPQ+]?)?dE < oo

(3) Forall £ € C, |f(&)| < C(1+¢])Nel!™El for some positive constants C, N.
Since the roots of 7 — ue "¢ are simple unless = = 0, (1) holds provided that
the roots of 3¢3 — ag? — 6€ + p are simple, and the roots of n — pe™*<. We have
that if (1) holds, then (2) and (3) are satisfied. It follows that (4.21)) is equivalent
to the existence of complex number p, ug and of positive integers k, [, m, and n
such that, if we set

2 2 2
u1=uo+kf7 uz:u1+lf:uo+(k+l)f
we have 5 )
«
& - 552 - B§+ Bp = (&= po)(€ — p1) (€ — p2)
that is
«
Mo + p1 + p2 = 3
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0
Hop1 + pop2 + pape = —B,
1
Hop1f2 = P -
B

Straightforward calculus leads to

[k2 4+ Kl + 12
L=2np T
™\ BBt az

1| 27
= - 2k +1
=3 |5 - @40,
27 2w
p = Buo(po + kf)(uo + (k + l>f)-
Hence, (4.21)) is satisfied if and only if L € /. This complete the proof of Lemmas
L3 (L3 and I3 :

Remark 4.6. For L € N, if p is given as above and yo (with Reyo # 0) is as in

[@.21) with A\ = —ip, then y(x,t) = Re(e~Plyq(x)) is a nontrivial smooth solution
of (4.3)) such that 0y(0,.) = 0. Thus, the result in Lemma . holds if and only if

LénN.

The goal of the following lemma is to define in a certain weak sense a solution
of the non-homogeneous problem (Ry).

Lemma 4.7. Let || < 38. There exists a unique linear continuous map II :
L2(0,L) x L*(0,T) — H such that, for yo € D(A) and h € C*([0,T]) with h(0) =
I(yo, h) is the unique classical solution of (4.1)).
Proof. We assume here that yo € D(A) and h € C3([0,7]) = {h € C?([0,T] : R) :
h(0) = 0}. Let ¢ € C°°(]0,L]) be such that ¢(0) = ¢(L) = 0 and ¢'(L) = —1.
Then the change of function z(z,t) = y(z,t) — (S(t)yo)(x) + h(t)p(z) transforms
into
iz + B0z — iad®z + 060z = b (t)p(z) + h(t )[ ¢ —iad" + 64" = f(x,t)
2(0,1) = 2(L,t) =
0z(L,t) =0
2(,0) =

Using Lemma and that f € C([0, T] : L*(0, L)), we obtain that there exists a
unique solution (see [25]) for the non-homogeneous problem z € C([0,T] : D(A)) N
CY([0,T] : L*(0,L)) of (4.24). Hence, for smooth data yo € D(A), h € CZ([0,1]),
(4.1) admits a unique classical solution

y € C([0,T): H*(0,L)) nC*([0,T] : L*(0, L)).

On the other hand, we assume that yo € D(A), h € C3([0,T]). Let & = &(x,t) €
C*>(]0,T] x [0,L]). From equation (4.1) we have (multiplying by 7)

10y + 1803y + ad*y + iy = 0. (4.25)
Multiplying by £y we obtain
€Yy + iBEYO°y + akyd®y + i6EYdy = 0,
—ilydy — iBEyd’y + alyd®y — i6ydy = 0,

)

(4.24)
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(applying conjugate). Subtracting and integrating over = € [0, L] we obtain
L L L I
Z'@f/ lyl* dz — l/ D€ ly|* dz + z’ﬁ/ y0*y de + z’ﬁ/ ¢yo*y d
0 0 0 0
+a/ £ya2ydx—o¢/ §y82§da:—z'6/ 8§|y|2dg; = 0.
0 0 0

Each term is treated separately. Integrating by parts
L L L
/ Gy de = / 0*¢yoy dx + 2/ 0¢|0y|? dx
0 0 0
L
LD - €0.0/050.0 + [ oy
0
L L L L
/ yd3yde = / D*Eyoy dx + / €10y |* dx — / £0yo°*y dx,
0 0 0 0
L L L
| oryar—— | osgoyas - [ cloypa
0 0 0

L L L
| eworydo =~ [ocoyac— [ doufdo.
0 0 0

Then
L L L L
i@t/ ly)? da:—i/ 8t§|y\2dx+iﬁ/ 82§y8ydm+2i6/ o¢|0y|? dx
0 0 0 0
L L
+BEL OO ~ i00.0000.0F +35 | coyoPyda+is [ oeyoyds
0 0
L L L L
+iﬂ/ 6§|6y|2dx—zﬂ/ gayadex—a/ 6§y8yda:—oz/ £|oy)? dx
0 0 0 0

L L L
+/ 8£yaydx+/ £|8y\2dx—i5/ A|y|?dr =0.
0 0 0

Hence,
L L L L

i, / €yl do — i / rtlyl? d + i / O€0(|y|?) do + 3i / 9€|0y|? d
0 0 0 0

L L
1 BE(L, )R — iBE(0, D]y(0, )] — 2iaTm / dEgdy du — i / Ot|y|? da
0 0
=0.
Thus

L L L L
2 _ 2 _ 3 2 2
6t/0 Ely|” dx /0 O€|y|* dx ﬂ/o 0”&yl dx+3ﬂ/0 0&|0y|* dx
L
+ BE(LMO = 30010900~ [ oelyP da

L L L
=2 Im/ 0yoy dx < |a|/ Ot |y|* dx + |a|/ o¢|oy|? dx
0 0 0
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where

L L L L
2 o 2 _ 2 i 3 2
o / ElyP de + / 136 — |a[)0€]0y[? de / Butlyl? dz — B / eyl du

T BEL D) — BEO, 1)]dy(0,8) — & / O€ly[? de — |of / OEly|? da < 0.

Integrating over ¢ € [0,7] we have

L t L t L
/ el de + / / 136 — |al)0€0y[? da ds — / / Oytly[? du ds
0 0 0 0 0

t L t
— 3¢ly|>dxd L, s)|h(s)|*d
@// £yl “+ﬁ/0 £(L, )|h(s)|? ds
5 / £(0,%)|0y(0, 5)[2 ds (4.27)
0

t L t oL
- 5/ / Ot|y|* dr ds — |af / / Ot|y|* dx ds
0 Jo 0 Jo

L
< [ €0l d.
0
Choosing &(z,t) = —1 leads to

L t t L
/ \y|2d:c—ﬂ/ |h<s>|2ds+ﬂ/ |ay<o,s>|2ds§/ ol d,
0 0 0 0

Iyl 22 0.1y + BlIOYO, NZ20.7) < I90llE20,0) + BlIAIL20.1)-

where

. 1/2
Setting [[(yo, M)l = [0l 0.2, + BlIRlIZz 0.0] 2, we get

lylleo,r:r200,2)) < [[(yo, Al (4.28)
which yields
Iyllz20,71x(0,2)) < VT [l (o, B)I- (4.29)
Now, we take {(z,t) =z, and t = T in (4.27)

L T L
.12 d 36 — |a|]|0y|? dx dt
/Ox|y<w ) w+//[5 )|y do

+/6’L/ (s)]*ds — & / / |y|2d:17dtf|a|/ / ly|? da dt
S/ $|y0| d.’L’,
0

L T L
.12 d 358 — |a|]|0y|? dx dt
/0x|y<m ) m+//[ﬁ )|y de

_/ny0| d:c—ﬂL/ Ih(s)ds + ( 5+\a|/ / |2 da dt
6+\a|/ / |y\2dxdt+L</ |y0|2dm+ﬂ/ \st)

= (8 + laDlylZ2 0.1 0.y + L(I1%0lIZ2 0,2y + BlIAIIL20.1))

where
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= (0 +[aDTll(yo, M)II* + L(II(yo, h)II?)
= [(6 + o) + L[| (yo, R)|* -

Then -
o —lall [ [ 1oy dede < (6 + )T + 0.
where o
ol aamc0.m [l I (4.30)
Adding and and using the fact that |a| < 38 we obtain
Wz rm o < [ 2 e o. w (431)

Using (#.28)) and (4.31]), and the density of D(A) in L?(0, L) and of CZ([0,7]) in
L?(0,T), we see that the linear map (yo,h) € D(A) x C3([0,T]) — y € H may be
extended in a unique manner to the whole space L2(0,T) x L?(0, L) to give a linear
map IT: L2(0,T) x L?(0,L) ~ H. O
Remark 4.8. (a) For yo € L*(0,L) and h € L*(0,T), the weak solution I1(yo, h)
is solution of (A1) in D'(0,T : H=2(0,L)). Moreover, T(yy,h)(.,0) = yo and
U(yo, h)(., T) are well-defined in L*(0, L), since I(yo, h) € C([0,T] : L*(0, L)).
(b) (yo,0) = S(-)yo, hence, (yo,0) = S(-)yo + (0, h).

To apply the Hilbert uniqueness method, we need some observability result con-

cerning the following backward well-posed homogeneous problem: For || < 38 and

6>0
Oyu + B3 u — iad*u + 60u = 0,

u(0,t) = u(L,t) =0,
ou(0,t) =0,
w(T,0) = up(z).
The change of variables 77" — t and ( = L — = transform into and
vice-versa. Using Lemmas and we readily get the following result.

Lemma 4.9. [Observability result] Let L,T > 0, |a] < 38 and § > 0. For any
ur € L*(0, L) the mild solution of belongs to H, the function Ou(L,.) makes
sense in L?(0,T). If moreover, L ¢ N, there exists a constant C = C(L,T) > 0
such that for any ur € L?(0, L) we have that

l0u(L, ) 20,7y < llurllz20,1) < C |0w(L, )| L2(0,1)- (4.33)

It remains to apply the Hilbert uniqueness method.

(4.32)

Theorem 4.10. Let |a] < 353, 6 > 0 and

k2 + kl +12)
366 + a2

Then, for any T > 0 and L € (0,+00)\N, and for any yo, yr € L*(0,L), there

exists h € L2(0,T) such that the mild solution y € C([0,T] : L*(0,L)) N L*(0,T :
H'(0,L)) of

N ={2r3 tk,l € N*}.

vy + B3y — iad?*y + 60y = 0 (4.34)
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y(0,t) =y(L,T) =0 (4.35)
dy(L,t) = h(t) (4.36)
y(z,0) = yo(z) (4.37)

satisfies y(., T) = yr.

Proof. By Remark [4.§] (b) we may assume, without loss of generality, that gy = 0.
(see the proof of Theorem [3.3)) Let (up,h) € C°(0,L) x C(0, L), let u (resp. y)
be the classical solution of (4.34))-(4.37)) (resp. (R1)). Multiplying (4.34)) by u and

integrating over = € [0, L] we have

L L L L
/ uOpy dx + 5/ udy dx — ia/ ud?y dx + 5/ udy dx =0 (4.38)
0 0 0 0

Each term is treated separately. Integrating by parts,

L L L
/ ulpy dx = 3t/ uy dxr — / Oyuy dzx,
0 0 0

L L
/ udy dx = —ou(L, t)h(t) — / Dy du,
0 0

L L
/ ud*y dr = / Duy dz,
0 0

L L
/ uly dx = —/ Ouy dx .
0 0
Then in (4.38]) we obtain
L L L
8t/ uydr — / Opuy dx — BOu(L, t)h(t) — ﬂ/ Duy dx
0 0 0

L L
—ia/ 82uydx—5/ Juydx =0
0 0

where

L L
ﬁt/ uy dx — BOu(L, t)h(t) = —2ia/ Oudy dx
0 0 (4.39)

L L
<o |ou|? dx + |« |0y|? d .
0 0

Integrating over ¢ € [0, 7] and using that yo = 0 we obtain
L
| ur@te.)ds
0
T T L T 4L
< g/ ou(L, h(t) di + |a|/ / Ouf? da dt + \a|/ / 0y|? da dt
0 o Jo o Jo

By a density argument we see that holds for uy € L?(0, L) and h € L*(0,T).
Let A denote the linear continuous map A : L?(0,L) ~ L%*(0,L) with ur —
A(ur) = y(.,T) and y standing for the solution of associated with the data
h(.) = ou(L,.) € L*(0,T). Tt follows and by Lemma [£.9] that

(A(ur),ur)r2(0,L) = [0u(L, 72000y = C 2 llurlliz(o.1):

(4.40)
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Therefore, by Lax-Milgram’s theorem (see [34]), A is invertible. The proof is com-
plete. ([

Remark 4.11. When yo = 0, the Hilbert uniqueness method yields u, a linear
continuous selection of the control, namely the map To : L?(0, L) — L%(0,T) with
yr — Do(yr) = Ou(L,.) where u denotes the solution of (4.32)) associated with
ur = Ail(yT).

5. EXACT BOUNDARY CONTROLLABILITY FOR A HIGHER ORDER NONLINEAR

SCHRODINGER EQUATION WITH CONSTANT COEFFICIENTS ON A BOUNDED
DOMAIN

In this section we prove that the following boundary-control system (for |«| < 38
and 6 > 0)
vy + BOPy — iad*y —ily|*y + 60y =0
y(0,2) =y(L,t) =0
dy(L,t) = h(t), h e L2(0,T)
y('7 0) =Yo
is exactly controllable in a neighborhood of the null state. More precisely we show
that for any L > 0 and 7" > 0 there exists a radius ry > 0 such that for every
vo,yr € L?(0,L) with lvollL2(0,0) < 70, llyrllL2(0,0) < 70 We may find y € H =
C([0,T] : L3(0, L)) N L?(0, T : H'(0, L)) such that
(1) 0y = —(BO3y — iad*y — ily|>y + Oy) in D'(0, T : H=2(0, L)).
(2) y(70) = Yo, y(»T) =yr.
Remark 5.1. For y € H, dy € L?(0,T : L*(0,L)), 8%y € L?(0,T : H~%(0,L)),
and |y|*y € L' (0,7 : L?(0, L)). Hence,
dy = —(80%y — iad®y — ily|*y + 80y) € L1(0,T : H~*(0, L));
i. e, ye WhH(0,T: H2(0,L)).

To solve (5.1)), we write y = S(¢)yo + y1 + y2 where (S(¢));>0 denotes the semi-
group associated with the operator A of section 4, y; and y, are respectively solu-
tions of the two nonhomogeneous problems:

A1 + BO*y1 — iadyy + 60y = 0
y1(07t) = yl(Lat) =0
Oy1(L,t) = h(t)
y1(-0) =wo

(5.1)

(5.2)

and
Oy + BOys — iad?ys + 60y = f

y2(07t) = y2(L’t) =0
ayg(L,t) =0
yg(.,O) =0.
In (5.3) we have the set f = —|y|?y. Let 'y : h € L?(0,T) — y; € H be the map

which associates the weak solution of (5.2]) with h. By Lemma ['; is a linear
continuous map.

(5.3)

Lemma 5.2. For |a| < 383, we have
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(1) If y € L*(0,T : H*(0,L)), |yl*y € L*(0,T : L*(0,L)) and the map y
ly|?y is continuous.
(2) For f € LY0,T : L%*(0,L)) the mild solution y2 of (5.3) belong to H.
Moreover the linear map s : f — yo is continuous.
We remark that for f € L'(0,7 : L?(0, L)) the mild solution yo of (5.3)) is given
by

t

ya (., t) = S(t—s)f(.,s)ds

0
Proof of Lemmal[5.2 (1) Let y,z € L*(0,T : H*(0,L)). Let H; be the norm of the
Sobolev embedding H'(0, L) — L?(0, L). We have
ylPy — 12172 = (ly1> = |21*)y + |21 (y — 2) = (Jyl = [2D)(ly| + 12Dy + 121> (y — 2);
hence
lyPy — 12172 = |lyl = |21yl + [2D]y| + |2*|y — =]
<ly = 2|(|lyl + 2Dyl + 2|y — 2|.
Applying the triangular inequality and Holder’s inequality,

T
I

lyPy = 1212l L2 (0,720, 1)) S/O (v = 2)C DIyl + 12Dyl L2 0,2) dt

T
+ / 2RI = 2)(o0)] 2oz dt
T
< / W2 0.2l 0,00l = 2) s Dl 2o 5
T
+ / 1202 .00 | (0 = ) D) 20,2

T
<, / 1 = 2)(8)l| 220,z dt
0

<Hall(y — 2) ()20, 7:110,1))-
(5.4)
Choosing z = 0 yields |y|?y € L*(0,T : L*(0,L)), and (5.4) with z tending to y
gives the continuity of the map |y|%y.
(2) Since
1110,5(8)S(t = 8)f (. )l z20,2) < IF (s 8)lz2(0,2),
using Lebesgue’s Theorem, the mild solution yo(.,t) = fot S(t—s)f(.,t)ds belongs
to C([0,T] : L*(0, L)). Moreover, for every t € [0,T],

t
ly2(-s )|l L2 (0,1) S/ (s $)llL2c0,2) ds < || fllz1o,7:L2(0,1)) (5.5)
0

so the linear map f € LY(0,T : L*(0, L)) — yo € C([0,T] : L*(0, L)) is continuous.
To show that this map is well-defined and continuous from L'(0,7 : L?(0, L)) into
L?(0,T : H*(0,L)), it is clearly sufficient to prove that there exists ¢z > 0 such
that for for all f € C1([0,T]: L?(0, L)),

10y2l2(0,myx (0,2)) < 2|l fllzr(o,1:02(0,1))
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In fact, multiplying by iz,
i17,0¢y2 + iB2G50°y2 + aay0%ys + 027,02 = iaT, f,
—izy201y — iBxy20°Yy + awy20°Yy — i03y207y = —izys f
(applying conjugate). Subtracting and integrating over x € [0, L] we have

L L L
104 / z|ys|? dx + iﬁ/ 2Ty 0%yo da + iﬁ/ 1Y20°Y, dx
0 0 0
L L L
+ a/ 270y dx — a/ 2Yy20%7, dx — 15/ |y2|? dx
0 0 0

L
:2iRe/ Yo f dx .
0

Each term is treated separately. Integrating by parts,
L L L
| amtuedn=2 [ o do [ s0yaom d,
0 0 0

L L L
/ scyga?’yz dx = / |8y2|2 dx — / x0Y207, dz
0 0 0

L L L
/ xy282y2 dr = 7/ Yo0ya dx — / x\3y2|2 dx
0 0 0

L L L
/ 2920y dz = — / 1207 dr / £]0ya|? da
0 0 0

Then

L L L L
i@t/ x|y2|2dm+3zﬂ/ \6y2|2dx—2ioz/ o 0Yyo dx—ié/ |y2|? da
0 0 0 0

L
:2iRe/ Yy f dx
0
or
L L L L
ﬁt/ x|y2|2dx+3ﬁ/ |8y2|2dac—2a/ yQ[8yg]dx—5/ \y2|2dx
0 0 0 0
L
:QiRe/ xYs f dx .
0
Hence
L L
o [ aluaf do 35 | ol ds
0 0
L L L
:2iRe/ Q@Qfdsc—i-/ |y2|2dx+2oz/ Uo|Oy2] dx
0 0 0
L L L L
<2 [Caluallflde 46 [l do+lal [P+ lal [0yl da.
0 0 0 0
Thus

L L
& / olyal? dz + / (38 — |a])| Oyl da
0 0
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L L
sz/awmﬂM+u&+mn/\mFm.
0 0

Integrating over ¢ € [0,7] we obtain

L T L
/ m|y2|2dﬂc+/ / (36 — |a])| Oy ? da dt
0 0 0
T L T L L
§2/ / x\y2|\f|dxdt+(|6|+|a|)/ / \y2|2d:cdt+/ 2lyosl? dz .
0 0 0 0 0

Using (5.5 the result follows. O

Theorem 5.3. Let |a] < 38,5 >0, T >0 and L > 0. Then, there exists o > 0
such that for any yo, yr € L*(0, L) with [lyollz20.) < 70; |yrllz2(0.0) < 70, there
exists

y € C([0,T]): L*(0, L)) N L*(0,T : H'(0, L)) n W'Y (0, T : H2(0,L))  (5.6)
solution of

10y = —(i30%y + ad*y + |y|*y +i6dy) in D'(0,T : H2(0,L)) (5.7)
y(0,.) =0 in L*(0,T) (5.8)

such that y(.,0) = yo, y(.,T) = yr. Moreover, if L ¢ N, then in addition it can
be assumed that y(L,.) = 0 in L?(0,T) and take dy(L,.) in L?(0,T) as control
function.

Proof. We first assume that L ¢ N. We show that for T > 0 there exists 79 > 0
small enough such that if ||yol|z2(0,2) < 70, |[yrllL2(0,0) < 70, the state yr may be
reached from yg for a higher order nonlinear Schrodinger equation. Let yq, yr be
states in L?(0, L) such that [|yo|r2(0,0) < 7, |lyrllr20,0) < 7, 7 > 0 to be chosen
later. Let © : L2(0,T : H(0, L)) +— H, defined by

O(y) = S()yo + (T1 o To)(yr — S(T)yo + La(lyPy)(, 7)) + T2 (~|yl*y)

where I'j is well-defined in Remark I'; and I'y are defined in this section. © is
well-defined and continuous by Lemmas [£.2] [£.7, and Remark [£.11] We have that
each fixed point of © verifies inD'(0,T : H2(0,L)) and u(.,T) = yr. To prove
the existence of a fixed-point for © we apply the Banach contraction fixed-point
theorem to the restriction of © to some closed ball B(0, R) in L*(0,7 : H'(0, L))
(R will be chosen later). We need that

6(B(0, R)) € B(0, R), (5.9)
305 €]0,1[Vy, 2 € B0, R) :  [[O(y) — O(2)] < Cslly — =]I, (5.10)
where || - || stands for the norm L?(0,7 : H'(0,L)). Let k1 (resp. ka,k}) denotes

the norm of I'y (resp. 'y, T'3) as a map from L?(0,T)(resp. L' (0,7 : L?(0, L)) into
L?(0,T : H*(0,L)) (vesp. L*(0,T : H'(0,L)), C([0,T] : L*(0,L))), and  denote

the norm of Ty as a map from L?(0, L) into L?(0, L). Set x3 = ,/%. Let
y,z € L*(0,T : H*(0,L)). Assume that |ly|| < R, ||z| < R. Then by (4.10) and
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(6+38)T +

01 < | 2 ol
+rnllyrlizon + lnlson + SO ID +mCillE
< Cy (ko + kr1KY)R? 4+ (2kK1 + K3)r.
Hence, we have the first condition on R and 7 :
C(ky + kr1ky)R? 4 (2kk1 + K3)r < R. (5.12)

Now write
O(y) — O(2) = Ia(|2|*2 — [y[’y) + (T1 o To) (T2(ly*y — |2I*2) (. T)).  (5.13)
Therefore, by ,

16(y) — O(2)|| = 2C1 (k2 + kK1) Rlly — 2| (5.14)
Condition (5.9) will hold provided that
2C1 (k2 + kKk1K5)R < 1. (5.15)

Let R be some positive number verifying . Then holds true if we take
r = R/(2(2kkK1 + K3)). Setting

_ 1

4C (26K + K3) (Ko + KK1KD)
we see that r — rg as R — 1/(2C) (k2 + kk1K3)). It follows that if |[yollz2(0,2) <
ro every yr with [[yr|z2(0,0y < 7o may be reached by a solution of the higher
order nonlinear Schrédinger equation coming from yg. The proof of the theorem is
completed when L ¢ N. If now L € N, it is sufficient to consider some L > L such
that L ¢ N and to apply the theorem to the functions 7o, yr € LZ(O,E), where
Y0, yr denote the prolongations by zero of the given states 9o,y € L?(0, L), and
then to restrict the solution ¥ to the domain (0,7 x (0, L). The proof follows. O

To

b
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