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ABSTRACT

Due to inherent limitations in performance, Java was not considered a suitable

platform for for scalable high-performance computing (HPC) for a long time.

The scenario is changing because of the development of frameworks like Hadoop,

Spark and Fast-MPJ. In spite of the increase in usage, achieving high

performance with Java is not trivial. High performance in Java relies on libraries

providing explicit threads or relying on runnable-like interfaces for distributed

programming. In this thesis, we develop an autotuning framework for JVM that

manages multiple objective functions including execution time, power

consumption, energy and perfomance-per-watt. The framework searches the

combined space of JIT optimization sequences and di�erent classes of JVM

runtime parameters. To discover good con�gurations more quickly, the

framework implements novel heuristic search algorithms. To reduce the size of

the search space machine-learning based pruning techniques are used. Evaluation

on recommender system workloads show that signi�cant improvements in both

performance and power can be gained by �ne-tuning JVM runitme parameters.
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I. INTRODUCTION

High Performance in JVM

It has been while Java in High Performance Computing (HPC) was not

promoted because of its performance. The scenario is improving through some

projects such as Java Fast Sockets (Taboada et al., 2008), Fast-MPJ (Taboada

et al., 2012), MPJ Express (Baker et al., 2006) that aim to facilitate fast

message-passing without JNI (Gordon, 1998) overhead. Hadoop (White, 2012)

and Spark (Karau et al., 2015) have been very instrumental in this rise. These

e�cient features combined with the ease of programmability have made Java

more popular in the HPC world. HPC applications built in Java are being

increasingly used in other �elds such as data mining, machine learning, particle

physics, bioinformatics, and �nance.

In spite of the increase in usage, achieving high performance with Java is not

trivial. As a whole, the compiler has to map the total constructs to speci�c

architectures. Hence achieving better runtime performance of HPC applications

built over compilers such as JVMs requires further e�orts.

Auto-Tuning

In order to make the compilers e�ective for HPC applications, di�erent

methodologies have been implemented by either manually or automatically to

achieve the improvement of running time. Manual JVM system optimization is

quite di�cult due to the complexity of di�erent combination of JVM parameters.

There is an additional set of things to tune: the runtime parameters i.e. the

garbage collector settings. Although HotSpot JIT (Paleczny et al., 2001) is quite

smart and sophisticated to make some intelligent autotuning, it is still di�cult to

deduce the best optimization sequence for improved runtime performance. This

hindrance drives us to research JVM auto-tuning process to �nd the best
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parameters to maximize the performance in HPC. Auto-tuning techniques have

been extensively investigated by researchers in the performance and computation

for the last few decades. Still it remains a challenging task due to the

individuality of the algorithm.

Now-a-days the application developers are now investing signi�cant time to tune

their codes for the current systems. To improve the code parts, the tuning

process has been applied to accumulate data and identify the pivotal code

regions. In spite of a number of autotuning researches throughout the world, still

relatively few scopes have been achieved. Actually, the algorithms and data

structures are not enough to boost the program performance. Rather, coding and

compiler parameters also play an important role in alter. The parameters

including frequency and size of messages, minimum number of iterations are

required for parallel execution of a loop. There are other pivotal machine

parameters such as cache size,memory bandwidth, communication costs and

overhead which may also make an impact. Furthermore, some of the parameters

must be reassessed for di�erent machine porting.

Multi-objective tuning

In the performance tuning world, our goal is to improve energy and running time

using di�erent techniques such as source-level optimizations done by manually or

automatically. Earlier, the developers were concerned with their running time

complexity of their applications. From the algorithmic point of view, they also

used to focus on memory space. For unmanaged languages, a lot of works have

been standardized for this purpose since a long time. But these are not strongly

found in modern languages like Java, C# etc. Because of intensity of workload

performance, there has not been much work. But as time passed on and the

energy also becomes pivotal item like performance, the �ne-tuning optimization

parameters are going to be more demanding. But this process is quite complex

and time consuming because we need to deal with all the combinations of
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optimization parameters. To mitigate this time-consuming problem, we need a

method to reduce the search space. Although the method is quite smart and

sophisticated in some extends, still it is quite tough to explain the best

optimization sequence.

Contribution of this Thesis

Considering all these issues, we propose an autotuning framework for JVM. The

autotuning process generates combination of the �ags for the next set of

optimizations and iterates until satisfactory performance is achieved. The

proposed framework encompasses features like minimize power, execution time,

energy and executing time at a power capacity etc. The space optimization

sequences is large which makes exhaustive search infeasible. To discover good

sequences more quickly, this framework will implement di�erent heuristic search

algorithms. To reduce the size of the search space, the framework will employ

machine-learning based pruning techniques, including identifying groups of

optimizations with negative interaction and positive interaction. The proposed

framework is evaluated with real-world data sets for recommender system

framewok named Lenskit (Ekstrand et al., 2011). Additionally, we will evaluate

the e�ciency of the proposed framework on a set of Java benchmark suites.

Overview of the Next Chapters

In Chapter II relevant studies of di�erent auto-tuning methods are presented and

describes the variety of ideas and technologies used by researchers. In

Chapter III, we also categorize the total number of �ags and choose the pivotal

�ags which are fully mentioned. Here, we also present a detailed discussion on

the proposed design and implementation of the multi-objective tuning method.

Then we present experimental results as well as analyses in Chapter IV. Finally,

Chapter V consists of the concluding remarks and future work.
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II. RELATED WORK

JVM Tuning

Many JVM optimization strategies have been proposed which are also

sophisticated in some extends. (Fernando et al.) has been improved by all kinds

of parameters and options supported by the JVM and can be speci�ed at the

time the Java runtime environment is started. The strategy behind auto-tuner is

to classify the JVM �ags into a �ag hierarchy tree structure to resolve the

dependency among the JVM �ags. Open-tuner framework automates the

combination of JVM �ags in OpenJDK HotSpot VM. (Jayasena et al., 2015)

show that enabling the HotSpot auto-tuner to search through the con�guration

space with the support of the �ag hierarchy helps it to converge to a local

optimum more aggressively where without this, it takes more time to output the

same level of performance improvement for a given benchmark. Here, the

Compilation Rate of the Tuned con�guration shows a signi�cant improvement

over the default con�guration. (Jantz and Kulkarni, 2013a) examines the

properties of single-tier and multi-tier JIT compilation strategies that can enable

existing and future VMs to realize the best program performance on modern

machines. The compilers aggressively compile more program methods quickly

and signi�cantly bene�ts program performance especially for slower JIT

compilers. In a nutshell, it proves that a tiered compilation policy, although

complex to implement, greatly alleviates the more impact and early JIT

compilation of programs on modern machines. (Singer et al., 2011) propose

MRJ, a MapReduce Java framework for multi-core architectures. Using memory

management autotuning techniques based on machine learning the authors have

achieved MRJ performance within 10 percent of optimal on 75 percent of

benchmark tests. Michael (Jantz and Kulkarni, 2013b) examine the phase

selection related behavior of optimizations, and assessing and improving the
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e�ectiveness of existing heuristic solutions. They try to minimize the compilation

overhead using parallel computing resources in modern multiprocessors. The

authors modi�ed the HotSpot compiler to provide command-line �ags for most

optimization phases, and factored out the analysis calculation so that it is

computed regardless of the optimization setting. The goal of e�ective phase

selection is to �nd and disable optimizations with negative e�ects for each

program region. Basically the previous papers try to mitigate the compilation

load and try to maximize performance using JVM hierarchy, parallel processing

technique. However, our work leads to the multiple classes of JVM parameters

where the �nal destination is to optimize multiple objectives using machine

learning models. Here, power and execution time will also be considered to

address our work improvement.

Energy E�ciency

Now-a-days, energy e�ciency is also a burning factor in the development world.

(Vega et al., 2012) has proposed to make proper placement of threads to

decrease power consumption. Power aware scheduling has been applied with

deadline constraints in (Kim et al., 2007) which is applicable for multicore

systems (Bautista et al., 2008). The multicore system also focuses resource

scheduling (Merkel et al., 2010) and variation-aware application scheduling

(Teodorescu and Torrellas, 2008). Besides, (Curtis-Maury et al., 2008) have

proposed prediction models to gain energy e�ciency which has also been

introduced in (Contreras and Martonosi, 2005).

Statistical Model

A number of models have been approached in auto-tuning world. Single-run

feedback and mvc design is used in (Huang et al., 2005). Based on input

sensitivity, there are some autotuning algorithmic choices (Ding et al., 2015).

Milepost GCC (Fursin et al., 2011) has been proposed as the �rst

5



publicly-available open-source machine learning-based compiler. The tuning

framework has been developed to predict the optimal con�guration which

perform one percent of the best performance of any single con�guration for the

same set of applications (Liao et al., 2009).
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III. JTUNER FRAMEWORK

Overview

Here, our framework will calculate multi-objects like power, time from each Java

command using advanced options �ag. Gathering all the combinations, we can

make a statement which �ag combination will be the most optimized one.

Java Virtual Machine

A Java Virtual Machine (JVM) is a virtual computing device by which a

computer can run a Java program. Its instance is an implementation of a process

that converts java program into java bytecode. And its implementation is a

computer program of such a speci�cation that omits implementation details that

are not essential to ensure interoperability. That means it discards those which

are necessarily constrain implementers. Having a single speci�cation ensures all

implementations are inter-operable. Java program can be run only inside some

implementations of the abstract speci�cation of JVM. To run a sample Java

program, we also need to have Java Runtime Environment (JRE). JRE includes a

JVM implementation along with Java Class Library implementation. Java

Development Kit (JDK) is the superclass of JRE which contains tools for the

programmers.
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Figure III.1: JVM Architecture Diagram

The above �gure describes JVM architectural diagram. Firstly, the classloader

loads the class �le of a sample java program. Then the method area stores the

per-class structure for the methods. The structures are allocated in 'Heap' data

area. Stack stores local variables and partial results. Each stack has been created

at the same time as thread.

PC register contains the address of JVM instruction being executed. Finally,

native method stacks contain all the native methods in the application.

From JVM memory, it goes to execution engine which contains a virtual

processor, interpreter to read bytecode stream and Just-In-Time compiler to

improve the performance. Then it goes to JNI(Java Native Interface) where it

enables Java code running in a JVM and be called by native applications and

native method libraries written in other languages such as C,C++ and assembly.

Category of JVM Flags

The java command supports a wide range of options that can be divided into the

following categories:

8



1 Standard Options

2 Non-Standard Options

3 Advanced Runtime Options

4 Advanced JIT Compiler Options

5 Advanced Serviceability Options

6 Advanced Garbage Collection Options

Standard options for the JVM are used for checking the version of JRE, setting

the classpath. Non-standard options not guaranteed for all JVM

implementations and change according to the subjects.

Advanced options for tuning speci�c areas of the Java HotSpot need privileged

access to con�gure any parameter. For our proposed framework, we will consider

advanced options only due to its ability of tuning JVM environment. Initially we

would consider Boolean options which are used to either enable or disable a

feature that is enabled by default. Boolean -XX options are enabled using the

plus sign (-XX:+OptionName) and disabled using the minus sign

(-XX:-OptionName).

The chosen �ags

In our work, we have considered only boolean �ags. In case of standard options,

we haven't found any �ag which can make any impact in performance part as all

the �ags are used for general actions. This is also applicable for non-standard

options. In the advanced runtime options, advanced JIT and Garbage are the

primary means of tuning the performance of the JVM which has been focus here.

Printing log data or assembly code or any diagonstic output will increase the

running time. So, we have discarded as follows:

LogCompilation

PrintAssembly
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PrintCompilation

PrintInlining

Table III.1: Advance JIT Flags

AggressiveOpts UseCondCardMark

BackgroundCompilation Inline

DoEscapeAnalysis UseSuperWord

UseCodeCacheFlushing UseAES

Advanced Garbage: For printing options, the �ags in table III.2 have been

discarded.

Table III.2: Discarded Flags

G1PrintHeapRegions PrintAdaptiveSizePolicy

PrintGCApplicationConcurrentTime PrintGC

PrintGCApplicationStoppedTime PrintGCDateStamps

PrintStringDeduplicationStatistics PrintGCDetails

PrintGCTaskTimeStamps PrintGCTimeStamps

PrintTenuringDistribution

Changing the default values of the parameters in III.3 makes a hindrance of the

computation so that the application can't be run properly:
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Table III.3: Discarded Flags

AggressiveHeap DisableExplicitGC

UseAdaptiveSizePolicy UseSerialGC

ParallelRefProcEnabled UseG1GC

UseConcMarkSweepGC UseStringDeduplication

UseParallelOldGC UseParNewGC

ExplicitGCInvokesConcurrent

Table III.4: Advance Garbage Flags

AlwaysPreTouch ParallelRefProcEnabledUseParallelGC

CMSClassUnloadingEnabled ScavengeBeforeFullGC UseSHM

CMSScavengeBeforeRemark UseGCOverheadLimit UseTLAB

UseCMSInitiatingOccupancyOnly DisableExplicitGC UseNUMA

ExplicitGCInvokesConcurrentAndUnloadsClasses

11



Table III.5: HotSpot JVM Flags

BlockLayoutByFrequency LoopUnswitching UseLoopPredicate

BlockLayoutRotateLoops PartialPeelLoop UseSuperWord

RangeCheckElimination DoEscapeAnalysis AggressiveOpts

BackgroundCompilation ReassociateInvariants SplitIfBlocks

OptmizeStringConcat UseCondCardMark Inline

UseCodeCacheFlushing UseAESIntrinsics UseAES

EliminateAllocations

Search Space Construction

The architectural diagram is as follows:

Figure III.2: Architecture Diagram

The search space of combination of JVM parameters is going to be large which

will take huge time to compute the total process. Based on the heuristic search,

we will reduce some combinations. Here, our algorithm will deal with that

machine learning model which can detect negative interaction among

optimizations and e�ace from the search �eld. After removing the negative
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interactions, clustering will be applied and also some other similar techniques.

Heuristic Search

In previous work, it has been shown that choice of the search algorithm has tiny

e�ect on autotuning performance (Qasem and Kennedy, 2006). Here, random

search simply samples the JVM �ags to a �xed number of times which has been

found to be more e�ective eventually than exhaustive search. For this reason, we

decided to implement simulated annealing and random search to generate the

output of sequence bit for tuning part.

Top-Most Independent Probability

Here, we have selected k best values and then counted how many times each bit

appears in those k sequences. Then we include in the �nal sequence only those

bits that appear more than m times.

Independent Identical probability

We have implemented a statistical technique like IID (Agakov et al., 2006).

These techniques can be used to determine the probability of a bit being turned

on in a "good" sequence. Here, we have created the �nal sequence by selecting

bits that have a probability > X. PSEAT already has IID implemented in it. The

input to this will be a tab delimited �le where the �rst n columns correspond to

the n bits and the last column will has the speedup. The number of rows will be

the instances searched.

Statistical Modeling

Linear Regression

Linear regression is an approach for modeling the relationship between a

dependent variable y and independent variables. Here, the relationships are
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modeled using predictor functions where unknown model parameters are

estimated from the data. Most commonly, the conditional mean is assumed to be

an a�ne function of independent variables. According to the rule, we can make

the output of speedup/powerup is the relation of JVM �ags.

Decision Tree

A decision tree is a �owchart-like structure where each node represents a test on

an attribute, and each branch represents the outcome of the test and each leaf

node represents a class label. The paths from root to leaf represent classi�cation

rules. A decision tree and the closely related diagram are used as a visual and

analytical decision support tool. Using decision tree, we also make an

relationship between JVM �ags.

Analysis and Recommendation

As we mentioned earlier, we have used a number of processes to make the

analysis and the recommended �ags based on that. Most of the HPC applications

do not make any user interface. (Burtscher et al., 2010) has developed

PerfExpert which is such a tool that combines a simple user interface with a

sophisticated analysis engine to identify core, socket and node-level performance

bottlenecks in each important procedure. Here, we also have developed a GUI

application that allows performance engineers and programmers to inspect and

analyze the data in an intuitive manner. Furthermore, this application also

provides recommendations about optimizations to the user.
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Figure III.3: JVM Tuning GUI

The application is divided into three parts. First part is used to extract data

from the jtuner framework and generate the optimize output �le. Let's take a

look at the 1st part:

Figure III.4: Data Setup Panel

Firstly, you have to browse the folder path where two folders named "Time" and

"Energy" should be there. The output �les of the JTuner framework will be

stored in the corresponding folder. The output �le of the JTuner framework

should be named in such a way that it should have workload
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name,Time/Energy,number of iteration of tuner,the algorithm name,category of

jvm �ag. Then, you have to browse the standard excel benchmark �le where all

the default values of time and power consumption of each workload will be saved.

Then we need to input the excel �le name in the second textbox and generate

the excel �le using the default values. Pressing 'insert data to �le' button gives

us the optimized output of each �le of time and energy folder and goes to the

corresponding row of the excel �le. The �le should be displayed as follows:

Figure III.5: Sample Excel File

Now in the second part, we have to deal two algorithms named Top-Most

Independent Probability (TIP) and Independent Identical Probability (IID).
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Figure III.6: Algorithm Panel

Here, the input �elds are the two probabilities that will be considered as good

and bad accuracy and also the number of cases for TIP algorithm. Pressing 'TIP'

button will return the recommended �ags for best and worst cases based on the

previous dataset panel measurement and �ag type. And pressing 'IID' button

will also return the same stu�s.

In the third panel, the diagram is as follows:

Figure III.7: Algorithm Panel

Here, we will get outputs for two statistical models named as Linear Regression

and Decision Tree using weka (Holmes et al., 1994). Before getting the linear

regression value, we have to generate linear regression weka �le from the selected

folder based on the selected measurement and �ag type. After generating weka

�le(.ar� extension), we will get the �nal linear regression output from the .ar�

�le. The same approach will also be applicable for decision tree generation.
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IV. EXPERIMENTAL RESULTS

In order to measure the validity of the design qualitatively and quantitatively, it

has to be tested with several experiments. This chapter explains the

environments and setup of the testing design. It starts with a description of a

system to run and to test the program. The reason behind all these tuning is to

obtain better speedup and powerup. And the equations for these variables are as

follows:

speedup = time using customized �ags / time with default con�guration of �ags

powerup = power using customized �ags / power with default con�guration of

�ags

Environment and Setup

The prototype system is developed using the GNU Compiler Collection and shell

script under linux server. This system has 32,64 bit con�guration support at

2.4GHz with 32K L1 cache. Besides, the JTuner application is implemented on

Java SDK 8.

Basic Matrix Computation analysis

Initially we have run our jtuner framework on basic matrix operations which are

matrix add,multiply,transpose and vector multiply. To run these operations on

our framework, we �rst need to create a make�le and test.conf �le. In the

make�le �le, we need to write the command which measures time/energy. The

command is like as follows:

get_primary.sh -m time -- java (TUNEFLAGS) -cp . MatrixAdd > perf.pseat

The sample test.conf �le is as follows:

ONLINE

MIN
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MFLOPS

350

The above command will give us the computation time of MatrixAdd operation

command. We can also get the power value using pwr in lieu of time. The output

will be stored in perf.pseat �le. TUNEFLAGS will return the di�erent

combination of �ags from the framework using random search or simulated

annealing algorithm. In the test.conf �le, the number of iterations will be

stored. Here, the number is 350. We also have got all the results for other

algorithms such as matrix multiply,transpose and vector multiply like the same

ways.

Benchmark Con�guration

After the initial small test is done, we have gone through our framework in large

scale such as java benchmarks. For testing purpose, we have chosen SPECjvm

and DaCapo benchmarks.

Table IV.1: SPECjvm Benchmarks

startup.helloworld startup.crypto.signverify startup.scimark.sparse

startup.compiler.compiler startup.mpegaudio startup.serial

startup.compiler.sun�ow startup.scimark.�t startup.sun�ow

startup.compress startup.scimark.lu startup.xml.transform

startup.crypto.aes startup.scimark.montecarlo startup.xml.validation

startup.crypto.rsa startup.scimark.sor compiler.compiler

We have run our jtuner framework on SPECjvm benchmark where we have

taken 18 workloads. To run these operations on our framework, we �rst need to

create a make�le and test.conf �le. In the make�le �le, we need to write the
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command which measures time/energy. The command is like as follows:

get_primary.sh -m time -- java (TUNEFLAGS) -cp . compiler.compiler > perf.pseat

The sample test.conf �le is as follows:

ONLINE

MIN

MFLOPS

350

The above command will give us the computation time of

startup.compiler.compiler workload command. We can also get the power value

using pwr in lieu of time. The output will be stored in perf.pseat �le.

TUNEFLAGS will return the di�erent combination of �ags from the framework

using random search or simulated annealing algorithm. In the test.conf �le,

the number of iterations will be stored. Here, the number is 350. We also have

got all the results for other workloads like the previous way.

We have run our jtuner framework on DaCapo benchmark where we have taken

all 14 workloads.

Table IV.2: DaCapo Benchmarks

avrora batik eclipse fop h2

jython luindex lusearch pmd sun�ow

tomcat tradebeans tradesoap xalan

To run these operations on our framework, we �rst need to create a makefile

and test.conf �le. In the makefile �le, we need to write the command which

measures time/energy. The command is like as follows:

get_primary.sh -m time -- java (TUNEFLAGS) -cp . avrora > perf.pseat

The sample test.conf �le is as follows:

ONLINE
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MIN

MFLOPS

350

The above command will give us the computation time of avrora workload

command. We can also get the power value using pwr in lieu of time. The output

will be stored in perf.pseat �le. TUNEFLAGS will return the di�erent

combination of �ags from the framework using random search or simulated

annealing algorithm. In the test.conf �le, the number of iterations will be stored.

Here, the number is 350. We also have got all the results for other workloads like

the previous way.

Lenskit Con�guration

Besides java benchmarks, we have also made some computations with

recommendation tool Lenskit. For the testing purpose, we have used 3 di�erent

Lenskit workloads. They are : sweepFunkSVDML1M,sweepItemItemML1M and

evaluateCommonML1M. sweepFunkSVDML1M task generates result for funkSVD

algorithm (Koren, 2008), sweepItemItemML1M for item-item collaborative �lter

algorithm (?). Finally, evaluateCommonML1M produces result for the combination

of the algorithms including personalized mean, user-user collaborative �ltering

(Sneha and Varma, 2015), item-item collaborative �ltering (?) and funkSVD

(Koren, 2008) algorithm. Here, all the tasks deal with 1M movielens (Lam and

Herlocker, 2012) data.

To run these operations on our framework, we �rst need to create a makefile

and test.conf �le in the lenskit folder. In the make�le �le, we need to write the

command which measures time/energy.

The command is like as follows:

get_primary.sh -m pwr -- ./gradlew evaluateCommonML1M -PuseEvalCache=false -Plenskit.jvmArgs='(TUNEFLAGS)' > perf.pseat

The sample test.conf �le is as follows:

ONLINE
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MIN

MFLOPS

350

The above command will give us the computation power of

evaluateCommonML1M task command. We can also get the time value using

time in lieu of pwr. We also need to pass '-PuseEvalCache=false' to Gradle when

you run it, to disable LensKit's evaluator cache. The output will be stored in

perf.pseat �le. TUNEFLAGS will return the di�erent combination of �ags from

the framework using random search or simulated annealing algorithm. In the

test.conf �le, the number of iterations will be stored. Here, the number is 350.

We also have got all the results for other workloads like the previous way.

Test Result of Matrix Computation

(a) Speed Up for di�erent Iterations (b) Power Up for di�erent Iterations

Figure IV.1: Matrix Analysis

In a nutshell, both the speedup and powerup performs better than the standard

value. Here, X-axis represents the number of iteration for tuning and Y-axis

represents the average speedup/powerup of each JVM �ag category. If we take a

deep look at the both the graphs, we have found that advanced garbage �ags

perform better for both speedup and powerup. And combined �ags also perform

overall which means that all the �ags can also give us a good performance

besides with the individual �ag categories.
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(a) HotSpot JVM Flags (b) Advanced Garbage Flags

(c) Advanced JIT Flags (d) Combined Flags

Figure IV.2: Time Analysis For Matrix Tasks

The above �gure represents the speedup of the proposed �ag categories for

di�erent iteration. Here, X-axis represents the number of iteration that we have

used in our jtuner framework and Y-axis represents the speedup of each matrix

operation. Here, all the speedup result is greater than 1.0 which means all the

matrix operations perform better than the default con�guration. And after 150

iterations, the optimized value for each �ag category is quite steady.
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(a) HotSpot JVM Flags (b) Advanced Garbage Flags

(c) Advanced JIT Flags (d) Combined Flags

Figure IV.3: Power Analysis For Matrix Tasks

The above �gure represents the powerup of the proposed �ag categories for

di�erent iteration. Here, X-axis represents the number of iteration that we have

used in our jtuner framework and Y-axis represents the speedup of each matrix

operation. Here, all the speedup result is greater than 1.0 which means all the

matrix operations perform better than the default con�guration. And after 150

iterations, the optimized value for each �ag category is quite steady.

Advanced Garbage �ag:

Time:

TIP:

Best Case:

CMSClassUnloadingEnabled UseNUMA

CMSScavengeBeforeRemark UseSHM

DisableExplicitGC
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Worst Case:

CMSClassUnloadingEnabled ScavengeBeforeFullGC

CMSScavengeBeforeRemark UseCMSInitiaitingOccupancyOnly

IID:

Best Case:

UseSHM

Worst Case:

AlwaysPreTouch UseNUMA

DisableExplicitGC UseParallelGC

Linear Regression:

Time=0.039 * UseCMSInitiatingOccupancyOnly + 0.0538 * UseSHM + 0.0534 *

UseTLAB + 1.264

Power:

TIP:

Best Case:

AlwaysPreTouch DisableExplicitGC

CMSClassUnloadingEnabled UseTLAB

UseGCOverheadLimit UseParallelGC

Worst Case:
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AlwaysPreTouch UseNUMA

UseGCOverheadLimit UseSHM

UseCMSInitiatingOccupancyOnly

Linear Regression:

Power = 0.0268 * ScavengeBeforeFullGC=false +0.0262 * UseParallelGC=true

+0.9576

B. Advanced JIT �ags:

Time:

TIP:

Best Case:

AggressiveOpts Inline

DoEscapeAnalysis UseAES

BackgroundCompilation

IID:

Best Case:

BackgroundCompilation Inline

Linear Regression:

Time=0.0346 * BackgroundCompilation + 0.0999 * Inline

Power:

TIP:

Best Case:

UseAES Inline
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Worst Case:

DoEscapeAnalysis UseAES

Linear Regression:

Power =0.0353 * AggressiveOpts=false +0.0236 * BackgroundCompilation=false

+0.9381

C. HotSpot JVM Flags:

Power:

TIP:

Best Case:

DoEscapeAnalysis SplitIfBlocks

OptimizeStringConcat UseAESIntrinsics

UseCodeCacheFlushing

Worst Case:

BlockLayoutRotateLoops LoopUnswitching

RangeCheckElimination SplitIfBlocks

OptimizeStringConcat UseAES

UseCodeCacheFlushing

IID:

Worst Case:

BackgroundCompilation

Linear Regression:
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Power =0.0208 * Inline =true +0.0222 * LoopUnswitching =false +0.0202 *

SplitIfBlocks =true +0.0335 * BackgroundCompilation =false + 0.0217 *

OptimizeStringConcat =false +0.0244 * UseAES =false +0.8936

Time:

TIP:

Best Case:

BlockLayoutRotateLoops Inline

LoopUnswitching PartialPeelLoop

BackgroundCompilation SplitIfBlocks

OptimizeStringConcat UseCodeCacheFlushing

Worst Case:

RangeCheckElimination Inline

ReassociateInvariants UseCondCardMark

BackgroundCompilation

IID:

Best Case:

AggressiveOpts Inline

Linear Regression:

Time=0.1092 * Inline + 0.0408 * SplitIfBlocks + 0.0605 *

BackgoundCompilation + 0.0619 * UseAESIntrinsics + 1.1058

Combined Flags:

Time = 0.0487 * AlwaysPreTouch=false + 0.0411 *

CMSScavengeBeforeRemark=false + 0.0348 * ScavengeBeforeFullGC=true +
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0.0518 * UseCMSInitiatingOccupancyOnly=false +0.0491 * UseParallelGC=true

+0.0551 * UseAES=false +0.0357 * UseCondCardMark=false +0.0603 *

UnlockDiagnosticVMOptions=false + 0.3992

Power =0.0289 * AlwaysPreTouch=true +0.0194 *

ExplicitGCInvokesConcurrentAndUnloadsClasses=false +0.019 *

ParallelRefProcEnabled=true +0.0238 * UseCMSInitiatingOccupancyOnly=true

+0.0232 * Inline=true +0.0185 * ReassociateInvariants=false +0.0214 *

BackgroundCompilation=false +0.8961

Test Result of SPECjvm Benchmark

(a) Speed Up for di�erent Iterations (b) Power Up for di�erent Iterations

Figure IV.4: SPECjvm Analysis

In a nutshell, both the speedup and powerup performs better than the result

without tuning. Here, X-axis represents the number of iteration for tuning and

Y-axis represents the average speedup/powerup of each JVM �ag category. If we

take a deep look at the both the graphs, we have found that advanced garbage

�ags perform relatively best in speedup case but performs slightly bad than

other categories for powerup. And combined �ags also perform overall which

means that all the �ags can also give us a good performance besides with the

individual �ag categories.
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(a) HotSpot JVM Flags (b) Advanced Garbage Flags

(c) Advanced JIT Flags (d) Combined Flags

Figure IV.5: Time Analysis For SPECjvm Tasks

The above �gure represents the speedup of the proposed �ag categories for

di�erent iteration. Here, X-axis represents the number of iteration that we have

used in our jtuner framework and Y-axis represents the speedup of each

workload. Here, all the speedup result is greater than 1.0 except

startup.helloworld workload which means all the SPECjvm workloads perform

better than the default con�guration. Actually, startup.xml.transform workload

speedup is almost double for all cases.
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(a) HotSpot JVM Flags (b) Advanced Garbage Flags

(c) Advanced JIT Flags (d) Combined Flags

Figure IV.6: Power Analysis For SPECjvm Tasks

The above �gure represents the powerup of the proposed �ag categories for

di�erent iteration. Here, X-axis represents the number of iteration that we have

used in our jtuner framework and Y-axis represents the speedup of each

workload. Here, all the powerup result is greater than 1.0 except

startup.helloworld workload which means all the SPECjvm workloads perform

better than the default con�guration. And after 150 iterations, the optimized

value for each �ag category is quite steady.

Advanced Garbage �ag: Time:

TIP:

Best Case:

CMSClassUnloadingEnabled UseNUMA UseParallelGC UseTLAB

IID: Best Case:

UseParallelGC UseTLAB

Worst Case:
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UseGCOverheadLimit UseSHM

Linear Regression:

Time=0.3966 * CMSClassUnloadingEnabled=true +0.4218 *

DisableExplicitGC=false +0.4905 * UseParallelGC=true +1.4635

Power:

TIP:

Best Case:

UseParallelGC CMSScavengeBeforeRemark

DisableExplicitGC UseSHM

ExplicitGCInvokesConcurrentAndUnloadsClasses

IID:

Best Case:

UseParallelGC CMSClassUnloadingEnabled

ScavengeBeforeFullGC UseSHM

ExplicitGCInvokesConcurrentAndUnloadsClasses

Worst Case:

UseCMSInitiatingOccupancyOnly

Linear Regression:

Power = 0.0246 * ExplicitGCInvokesConcurrentAndUnloadsClasses=true

+1.0244

B. Advanced JIT �ags:

Time:
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TIP:

Best Case:

UseSuperWord Inline

BackgroundCompilation

IID:

Best Case:

BackgroundCompilation UseCondCardMark

Worst Case:

UseCodeCacheFlushing

Power:

TIP:

Best Case:

UseCondCardMark AggressiveOpts

DoEscapeAnalysis Inline

Worst Case:

UseCondCardMark

Linear Regression:

Power = 0.0803 * BackgroundCompilation=false +0.0229 *

DoEscapeAnalysis=false +0.0226 * Inline=true +1.0162

C. HotSpot JVM Flags:
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Time:

TIP:

Best Case:

BackgroundCompilation UseSuperWord

BlockLayoutRotateLoops Inline

UseLoopPredicate EliminateAllocations

IID:

Best Case:

BackgroundCompilation DoEscapeAnalysis

BlockLayoutRotateLoops EliminateAllocations

Worst Case:

BlockLayoutRotateLoops

Power:

TIP:

Best Case:

OptimizeStringConcat UseCodeCacheFlushing

DoEscapeAnalysis AggressiveOpts

RangeCheckElimination Inline

IID:

Best Case:
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BackgroundCompilation BlockLayoutRotateLoops

DoEscapeAnalysis EliminateAllocations

OptimizeStringConcat UseSuperWord

UseCondCardMark LoopUnswitching

Worst Case:

AggressiveOpts OptimizeStringConcat

BlockLayoutRotateLoops UseAES

UseAESInstrinsics ReassociateInvariants

Linear Regression:

Time=0.404 * SplitIfBlocks =false +0.3808 * UseCondCardMark=true +1.6094

Test Result of DaCapo Benchmark

(a) Speed Up for di�erent Iterations (b) Power Up for di�erent Iterations

Figure IV.7: DaCapo Analysis

In a nutshell, both the speedup and powerup performs better than the result

without tuning. Here, X-axis represents the number of iteration for tuning and

Y-axis represents the average speedup/powerup of each JVM �ag category. If we

take a deep look at the both the graphs, we have found that advanced garbage

�ags perform relatively best in speedup case but performs slightly bad than
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other categories for powerup. And combined �ags also perform overall which

means that all the �ags can also give us a good performance besides with the

individual �ag categories.

(a) HotSpot JVM Flags (b) Advanced Garbage Flags

(c) Advanced JIT Flags (d) Combined Flags

Figure IV.8: Time Analysis For DaCapo Tasks

The above �gure represents the speedup of the proposed �ag categories for

di�erent iteration. Here, X-axis represents the number of iteration that we have

used in our jtuner framework and Y-axis represents the speedup of each

workload. Here, we have discarded the speedup for tradebean and tradesoap as

these never show better result than default one. On the other hand,

luindex,sun�ow and tomcat workloads perform around 20-40% better than our

benchmark value.
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(a) HotSpot JVM Flags (b) Advanced Garbage Flags

(c) Advanced JIT Flags (d) Combined Flags

Figure IV.9: Power Analysis For DaCapo Tasks

The above �gure represents the powerup of the proposed �ag categories for

di�erent iteration. Here, X-axis represents the number of iteration that we have

used in our jtuner framework and Y-axis represents the speedup of each

workload. Here, we have discarded the powerup for tradebean and tradesoap as

these never show better result than default one. On the other hand, batik,

eclipse, h2, jython, luindex and sun�ow workloads perform around 40-50% better

than our benchmark value.

A. Advance Garbage Flags:

TIP

Best Case:

ExplicitGCInvokesConcurrentAndUnloadsClasses UseSHM

CMSScavengeBeforeRemark UseParallelGC

Worst Case:

IID:

Best Case:
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UseParallelGC UseTLAB

Worst Case:

DisableExplicitGC

Linear Regression

Time=0.0784 * UseTLAB=true +0.8994

Power

TIP:

Best Case:

UseTLAB

UseGCOverheadLimit UseNUMA

ExplicitGCInvokesConcurrentAndUnloadsClasses

Worst Case:

CMSScavengeBeforeRemark DisableExplicitGC

IID:

Worst Case:

CMSScavengeBeforeRemark

Linear Regression:

Power = 0.014 * ExplicitGCInvokesConcurrentAndUnloadsClasses=false +

0.0116 * ScavengeBeforeFullGC=false +0.0112 * UseNUMA=false +0.0385 *

UseParallelGC=false +1.0767
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B. Advanced JIT �ags:

TIP

Best Case:

UseCodeCacheFlushing Inline

BackgroundCompilation

Worst Case:

UseSuperWord

IID

Best Case:

BackgroundCompilation

Linear Regression:

Time=0.0749 * AggressiveOpts=false +0.2739 * BackgroundCompilation=true

+0.1367 * Inline=false +0.6505

Power:

TIP

Best Case:

Inline

IID:

Worst Case:

BackgroundCompilation
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Linear Regression:

Power =0.3889 * BackgroundCompilation=false +0.0232 * Inline=false +1.1502

C. Hotspot JVM �ags

Time

TIP:

Best Case:

UseCodeCacheFlushing Inline

DoEscapoAnalysis OptimizeStringConcat

BackgroundCompilation UseAESIntrinsics

IID:

Best Case:

BackgroundCompilation UseCondCardMark

Linear Regression:

Time=0.0671 * DoEscapeAnalysis =false +0.0866 * EliminateAllocations =true

+0.0856 * Inline =false +0.0769 * PartialPeelLoop =true +0.0833 *

UseLoopPredicate =false +0.0987 * UseSuperWord =false +0.2354 *

BackgroundCompilation =true +0.522

Power

TIP:

Best Case:

BlockLayoutByFrequency ReassociateInvariants

DoEscapoAnalysis UseAESIntrinsics

UseCondCardMark

Worst Case:
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SplitIfBlocks

IID:

Best Case:

BlockLayoutByFrequency

Worst Case:

BackgroundCompilation

Linear Regression:

Power =0.0122 * LoopUnswitching =true +0.025 * PartialPeelLoop =false

+0.0184 * AggressiveOpts =false +0.4122 * BackgroundCompilation =false

+0.017 * UseAES =false +0.0121 * UseCondCardMark=false +1.1298

Test Result of Lenskit tool

(a) Speed Up for di�erent Iterations (b) Power Up for di�erent Iterations

Figure IV.10: Lenskit Analysis

In a nutshell, both the speedup and powerup performs better than the result

without tuning. Here, X-axis represents the number of iteration for tuning and

Y-axis represents the average speedup/powerup of each JVM �ag category. If we

take a deep look at the both the graphs, we have found that combined �ags
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perform relatively best in speedup case but jvm �ags performs better for

powerup. And combined �ags also perform overall which means that all the �ags

can also give us a good performance besides with the individual �ag categories.

(a) HotSpot JVM Flags (b) Advanced Garbage Flags

(c) Advanced JIT Flags (d) Combined Flags

Figure IV.11: Time Analysis For Lenskit Tasks

The above �gure represents the speedup of the proposed �ag categories for

di�erent iteration. Here, X-axis represents the number of iteration that we have

used in our jtuner framework and Y-axis represents the speedup of each

workload. Here, all three workloads perform around 25-35% better than our

benchmark value.

42



(a) HotSpot JVM Flags (b) Advanced Garbage Flags

(c) Advanced JIT Flags (d) Combined Flags

Figure IV.12: Power Analysis For Lenskit Tasks

The above �gure represents the powerup of the proposed �ag categories for

di�erent iteration. Here, X-axis represents the number of iteration that we have

used in our jtuner framework and Y-axis represents the speedup of each

workload. Here, all three workloads perform around 5-10% better than our

benchmark value.

A. Advance Garbage Flags:

TIP

Best Case:

UseGCOverheadLimit UseTLAB

CMSClassUnloadingEnabled CMSScavengeBeforeRemark

Worst Case:

AlwaysPreTouch UseParallelGC

UseCMSInitiaitingOccupancyOnly

Linear Regression:
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Time=0.0057 * UseTLAB=false +1.1661

Power

TIP:

Best Case:

AlwaysPreTouch UseTLAB

ParallelRefProcEnabled UseSHM

Worst Case:

ParallelRefProcEnabled UseParallelGC

UseGCOverheadLimit UseSHM

ExplicitGCInvokesConcurrentAndUnloadsClasses

IID:

Best Case:

UseParallelGC UseTLAB

B. Advanced JIT �ags:

TIP

Best Case:

AggressiveOpts UseCondCardMark

BackgroundCompilation UseAES

Worst Case:

AggressiveOpts
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Linear Regression:

Time=0.0067 * AggressiveOpts=true +1.173

Power:

TIP

Best Case:

UseCondCardMark

Worst Case:

UseCondCardMark UseSuperWord UseAES

IID:

Best Case:

UseCondCardMark

Worst Case:

UseAES

Linear Regression:

Power =0.007 * UseAES=false +0.9687

C. Hotspot JVM �ags

Time

TIP:

Best Case:
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RangeCheckElimination DoEscapeAnalysis

BlockLayoutByFrequency BlockLayoutRotateLoops

ReassociateInvariants SplitIfBlocks

BackgroundCompilation OptimizeStringConcat

UseAESInstrinsics UseAES

UseCodeCacheFlushing

Worst Case:

BlockLayoutByFrequency BlockLayoutRotateLoops

EliminateAllocations ReassociateInvariants

IID:

Worst Case:

BlockLayoutRotateLoops LoopUnswitching

BackgroundCompilation PartialPeelLoop

SplitIfBlocks UseLoopPredicate

UseAESIntrinsics UseCondCardMark

Power

TIP:

Best Case:
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BlockLayoutByFrequency ReassociateInvariants

LoopUnswitching PartialPeelLoop

UseCondCardMark UseSuperWord

BackgroundCompilation OptimizeStringConcat

UseCodeCacheFlushing

Worst Case:

BlockLayoutByFrequency BlockLayoutRotateLoops

DoEscapeAnalysis ReassociateInvariants

UseLoopPredicate UseCondCardMark

BackgroundCompilation

IID:

Best Case:

BlockLayoutByFrequency PartialPeelLoop

DoEscapeAnalysis EliminateAllocations

UseAES UseCondCardMark

BackgroundCompilation

Worst Case:

UseSuperWord

Linear Regression:

Power =0.0059 * SplitIfBlocks =false +0.0068 * UseSuperWord =false +0.0051 *

UseCondCardMark=true +0.968
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Algorithms Comparison

After experimenting on all the benchmarks using JVM �ags, we also need to

check which algorithm works best for a benchmark. Here, The speedup and

powerup comparison for matrix operations are as follows:

Measurement TIP IIP Linear Regression

Speedup 1.303234 1.34029 1.26308

Powerup 1.09385 1.038473 1.09125

Comparing with all the cases, linear regression performs best for speedup and

TIP for powerup.

Speedup and Powerup comparison of SPECjvm benchmark:

Measurement TIP IIP Linear Regression

Speedup 1.02333 1.025323 1.01123

Powerup 1.00178 1.0013351 1.0006

In this case, we have gained some speedup and powerup but that amount is not

upto mark as most of the time it takes default time/energy.

Speedup and Powerup comparison of DaCapo benchmark:

Measurement TIP IIP Linear Regression

Speedup 1.093413 1.10268 1.07068

Powerup 1.019626 1.24489 1.23923

Here, IIP generates the best speedup and powerup result in comparison with

other two algorithms.

Speedup and Powerup comparison of Lenskit tool:
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Measurement TIP IIP Linear Regression

Speedup 1.177873 1.078317 1.0

Powerup 1.015254 1.012025 1.0

Here, TIP generates the best speedup and powerup result in comparison with

other two algorithms.

So, after generating result using algorithm prefered JVM �ags, we can say that

IIP works best of all other algorithms. Most of the cases, Linear Regression

doesn't give us more improvement than default one as the regression coe�cient

value of the �ags are not enough. TIP also works well in both speedup and

powerup cases.

Summary

In the experiment section, we have experimented data in di�erent benchmarks.

Here, we consider the iteration number as 350 so that we can identify the

minimum number of autotuning. After all the experiments, we can say that

minimum 150 number of iterations are enough to get the optimized time and

power consumption. As we noted earlier, we have experimented data in di�erent

type of JVM �ags. From the experimental results, we can say that

UseParallelGC and UseTLAB of Advance Garbage �ag category are good for

time consumption and the latter one is also good for power consumption. In case

of JIT �ags, BackgroundCompilation and Inline are good for time and the

former one is good for power consumption.
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V. CONCLUSION AND FUTURE WORK

Conclusion

In this thesis a multi-objective auto-tuner framework is demonstrated which

reliably recommend the �ags for general Java based application. A simple Java

based application to detect these �ags is also described. The empirical evidence

shows that the implemented framework can optimize both time and energy

successfully and make the impact.

Future Work

There is a need to develop an accurate model of JVM �ags which could help

reduce the runtime complexity, and allow the developer to use those �ags based

on a speci�c algorithm. We can use other machine learning models mentioned in

Weka to get di�erent recommended �ags. In our work, the simulated annealing

algorithm should be more heuristic in such a way that one �ag will be enable

depending on its homogeneous �ag. Future work will be needed to integrate

other algorithm such as direct search for more accurate generated output for

JVM �ags. Future work will also be needed to obtain a reliable model of other

integer type of JVM �ags which may be good for more accurate result. A better

model could detect the time and power consumption more precisely, resulting in

better tracking.
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