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A STRANGE NON-LOCAL MONOTONE OPERATOR ARISING
IN THE HOMOGENIZATION OF A DIFFUSION EQUATION
WITH DYNAMIC NONLINEAR BOUNDARY CONDITIONS ON
PARTICLES OF CRITICAL SIZE AND ARBITRARY SHAPE

JESUS ILDEFONSO DIAZ, TATIANA A. SHAPOSHNIKOVA, MARIA N. ZUBOVA

ABSTRACT. We characterize the homogenization limit of the solution of a Pois-
son equation in a bounded domain, either periodically perforated or containing
a set of asymmetric periodical small particles and on the boundaries of these
particles a nonlinear dynamic boundary condition holds involving a Holder
nonlinear o(u). We consider the case in which the diameter of the perfora-
tions (or the diameter of particles) is critical in terms of the period of the
structure. As in many other cases concerning critical size, a “strange” non-
linear term arises in the homogenized equation. For this case of asymmetric
critical particles we prove that the effective equation is a semilinear elliptic
equation in which the time arises as a parameter and the nonlinear expression
is given in terms of a nonlocal operator H which is monotone and Lipschitz
continuous on L2(0,T), independently of the regularity of o.

1. INTRODUCTION

The main goal of this article is to extend previous papers in the literature dealing
with the homogenization of a Poisson equation in a bounded domain, which we can
assume either periodically perforated or containing a set of asymmetric periodical
small particles, and on the internal boundaries a nonlinear dynamic boundary con-
dition holds involving a Holder continuous nonlinearity and some small parameters.
In contrast to the case in which the diameter of the perforation (or the diameter
of the particles) is equal to the period of the structure (see, e.g., [I, 29]) when
the involved parameters are in a suitable balance with a “ critical value” of the
diameters then a new (and thus “strange” in the spirit of [8, 22] 23]) nonlocal term
arises in the homogenized equation. That was shown in our previous paper [15]
but merely for the case of a linear boundary condition and for symmetrical balls as
perforations or particles (see also [33] for the case of Lipschitz nonlinear terms and
nonhomogeneous boundary conditions). The more general case (Holder continuous
nonlinear terms and, which is more important, cavities, or particles, of arbitrary
shape) leads to new difficulties which require a different framework: the “strange
term” is now given by a nonlocal monotone operator which, curiously enough,
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regularizes the nonlinearity (for instance, even if the nonlinearity involved in the
dynamic boundary condition is merely Holder continuous the strange operator is
a L?(0,T)-Lipschitz continuous operator. Our results also extend the treatment
made in [I1] for asymmetric particles but with Robin type boundary conditions
(a problem which can be understood as the associate stationary problem associ-
ated with the evolution problem considered in the present paper). We point out
that, in some sense, the assumption on critical values in the relation between size
and distance, giving rise to a different reaction behavior is typical of many pro-
cesses in Nanotechnology. New materials, in particular the so-called “Mechanical
meta-materials” , are built as artificial structures which have mechanical properties
defined by their geometric structure rather than their chemical composition. The
occurrence of “strange terms” in the homogenized equation can be understood as a
similar process to the design of new materials having properties outside the scope
found in Nature.

2. PROBLEM STATEMENT

Let © be a bounded domain in R™, n > 3, with Lipchsiz boundary 992. In the
cube Y = (—1/2,1/2)" consider a subdomain Go, Gy C Y, which, for simplicity,
we assume that is star shaped with respect to a ball Tg C Gy of radius p with
the center at the origin. Out treatment remains valid if Gy has a finite number of
disjoint connect components satisfying the same geometric property (see Remark
5). Let 0B ={x:6'x € B}, >0. Fore >0 let

Q. = {zx €Q:p(x,00) > 2}.

Denote by Z™ the set of all vectors j = (ji,...,Jn) with integer coordinates j;,
1=1,...,n. Consider the set

Ge = Ujer. (a:Go +€j) = UjeTEGga
where T, = {j € Z" Gl c Y =¢eY +¢j,GI NQ. # (}. We assume that
a. = Cpe”, for some v > 1 and Cy > 0. (2.1)
It is easy to see that |Y.| 2 de™™, d = const > 0. Note that

GLcTl, T’

J
8/4CY:'5’

where T7 is the ball in R" of radius r with the center at P/ = &5 (the center of the
cell Y7), C is a positive constant independent on e. We introduce the sets

Q. =Q\G., S.=0G., 09Q.=S.Ud,
QT =0, x(0,T), ST=5.x(0,T), TT=00x(0,T).

The main problem considered in this paper deals with the following case of nonlinear
dynamic boundary conditions

—Azue = f(x,t), (x,t) € QET,
giryatue + al/uE + 5*70-(1%) = 5*79(55’15)7 (I,t) € SsTa
ue(z,t) =0, (z,t) € rt,

ue(x,0) =0, ze€5,,
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where
n

n—2’
v is the unit outward normal to the boundary S, d,u. is the normal derivative of
ue, and, for simplicity in the exposition we assume

fe HY(0,T; L*(), (2.4)
g € L*(0,T;C(Q)). (2.5)

Problem arises in many different contexts (see, e.g., the exposition made
in [3, A5, 20] and their many references). The nonlinear term o(u.) represents, in
some models, the chemical reaction on the boundary of the particles. It is well
known that a relevant choice of this term is the function given by o(u) = oou®,
for some positive constant oy and where a € [0,1] represents the “order of the
chemical reaction” (see, e.g. [10]). Motivated by this, we assume that o is a Holder
continuous function (with a Lipschiz behavior for large values of u), o : R — R is
nondecreasing, ¢(0) = 0, and

lo(s) —o(t)| < Ki|s —t|* + Ka|s —t| Vs,t € R and for some 0 < a <1, (2.6)

v = (2.3)

Here K7, K5 are positive constants.

We recall that a function u. € C([0,7] : L?(S.)) is a strong solution of if
ue € L*(0,T; HY(Q.,09)), du. € L*(0,T; L*(S:)) and o(u:) € L*(0,T; L*(S.)),
such that

e Osusv ds dt + Vu.Vodxdt + 5_7/ o(ue)vdsdt
ST QT ST
€ 5 5 (2.7)
= 5_7/ gvdsdt + fudzdt,
ST QT

for all v € L%(0,T; H'(Q.,09)), and the initial condition u.(z,0) = 0 holds for

x € S.. Here H'(Q.,09) denotes the Hilbeit space obtained as the closure, with

the norm H'(€.), of the set of all ¢ € C°°(Q) such that ¢ = 0 in a neighborhood

of 9. Notice that if we denote by H'/2(S., Q) to the space of traces on S. of a
function from H'(Q.,d), with the norm

Wl ecs.om = b {lwlm@oo :wls, = v},

then strong solutions are more regular than other type of weak solutions satisfying
merely that dyu. € H~Y/2(S.,0Q), where H'/2(S.,09) is the dual of the space
H'Y?(S_,00).

Our first result concerns the existence and uniqueness of strong solutions of
problem under the assumption of Holder continuity on o.

Theorem 2.1. Assume o Hélder continuos as well the rest of the above assump-
tions. Then for any € > 0, problem (2.2) has a unique strong solution, satisfying
the estimates
2 - 2
luellz2 (0,01 00 00)) T € uellT2(0,m02(50)

< K(Hf”iQ(O,T;LQ(Q)) + ||g||i2(0,T;C(§)))’

_ (2.8)
€ 7||3tue||2L2(0,T;L2(se)) < K(Hf”%{l(O,T;LQ(Q)) + HgHiQ(O,T;C(ﬁ))

+ 171838 07,220 + 1912 0 oy )



4 J. L. DfAZ7 T. A. SHAPOSHNIKOVA, M. N. ZUBOVA EJDE-2022/52

where K is a positive constant independent on €, f and g.

The proof of this Theorem will be given below by means of Galerkin expan-
sion arguments. We recall that, by [24], it is well-known the existence of a linear
extension operator P. : H*(Q.,09Q) — HE (), such that

IV(Pu)llL2 ) < KlIVull2n, 1Pl aye) < Kllullae.),

where K > 0 is independent of €. Then, by using the estimate from Theorem [2.1
we conclude that

| Povel L2 0,713 (0)) < K,

as ¢ = 0. Therefore, for some subsequence (still denoted by u.), we have
Pou. — ug, weakly in L*(0,T; H(Q)). (2.9)

The main goal of our research is to characterize the function ug in terms of a
homogenized boundary value problem on €2 for nonlinear terms o assumed to be
in the same class of the existence of solutions. To do that we will argue without
passing by a regularizing of o followed by a passing to the limit in such a process.
This is in contrast with many other papers for related problems (see, e.g. [I1] and
its references).

3. STATEMENT OF MAIN RESULTS

In the case of pure Robin type boundary conditions, f(z,t) = f(x), and when
the diameter of the perforation (or the diameter of the particles) is equal to the
period of the structure (y =1 in (2.3))), it can be proved (see [10]) that u, satisfies
a semilinear equation of the type —Lug+ Co(ug) = f(z) in Q, for a suitable second
order elliptic linear operator L and a suitable constant C' > 0. As mentioned before
we are interested in the characterization of uy when the critical size condition
holds in presence of dynamic nonlinear boundary conditions. A “strange term”
(replacing the above nonlinear term Co(x, ug)) arises in the homogenized semilinear
equation satisfied by ug, in the spirit of the series of previous works for different type
of boundary conditions (see, e.g., [8, [0 19, 22} 23] and the monograph [I4]). When
Gy is a symmetric ball, it was shown in [I5], [33] that this strange term is nonlocal
in time and contains some memory expressions. In this paper we will consider the
general asymmetric case on Gy and we will prove that the correspondent strange
term is now given by a monotone operator H : L(0,T) — L?(0,T). As a matter of
facts, we will apply this operator to functions which are also x—dependent, where
x € §2, but concerning the operator H the variable x plays the role of a parameter,
so that we can also understand that the above mentioned monotone operator can
be understood as H : L2(0,T; L*(Q)) — L?(0,T; L3(Q)). To be more precise, for
any function ¢ € L2(0,T;L?*(Q)), we define the value of H[¢] by its pointwise
application, for a.e. (z,t) € Q x (0,T):

H[g](z,t) = d(z,t)Ag, — . 6V@¢(x7y,t)dsy, (3.1)
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where Wy (z,y, t) satisfies the Go-capacity type exterior nonlinear auxiliary problem
Ay, =0, R™\Gyx(0,7),
CoOrwy + 0wy + Coo(we) = Cog(x,t) + ¢z, 1)0yk(y), 0Go x (0,T),
Wy(x,y,0) =0, y e Gy,
we(x,y,t) =0, |y| = +oo, t € (0,T),

(3.2)

with x(y) the standard Go-capacity exterior problem
Ayr(y) =0, yeR"\ Go,
k(y) =1, y € IGo, (3.3)
k(y) =0, [yl = +o0,
and where A\g, is the capacity of the set Gg given by

AGy, = Ovk(y)dsy.
lel
Notice that we are denoting by y to the variable in the domain R \ Gy and that
function wy(z,y,t) depends, in a crucial way, not only of the values of ¢(¢,-) but

also of the data Gy, o and g, so that, a more significative notation for this operator
H{[¢] would be

H[¢] = HGo,o,g[¢]~
Nevertheless, for the sake of simplicity in the notation, we avoid such a sophisticated
notation. Notice that in the definition of H[¢] the variable z € Q plays the role of
a parameter (since the partial differential problems and are formulated
in terms of the y € R™ \ Gy variable).

We point out that although x(y) = 1 on 0Gy (and then there is no direct
influence of k on the definition of operator H), the y—decay of x(y) allows a better
manageability of the function wy(x,y,t). We shall prove in later that the problem
has a unique weak solution and that H[¢] € L2(0,T;L?(f2)) for any ¢ €
L?(0,T; L?(Q)). As a matter of fact, we shall prove that H is Lipschitz continuous
operator, independently of the regularity of o.

Remark 3.1. When Gy is a ball, Go = {|y| < 1} (which we will also denote as
Go = T7), then r(y) = |y|> ™ and the solution of problem (3.2)) is explicitly given
as

- He(x,t

w¢(x?y7t) = §|EL2)’

where Hy(x,t) for any « € €2 is the unique solution of nonlinear Cauchy problem

n—2 n—2
OHy + "My + 0(Hy) = ——0(x.t) + g(a,1),
Mo+~ Mo o(He) o d(x,t) + g(z,t) (3.4)

H¢($, 0) =0.

where H, is the unique solution (according to [5]) of the Cauchy problem associated
with the maximal monotone graph given through function o. A similar expression
can be also found for the case o = o(x, ¢), when x € € is taken as a parameter. In
the linear case o(¢) = A, for some \ > 0, we obtain

Ho(a,1) = / t(”g 20(2,5) + g(x,)) exp{ (1 +

0

"2\ s))ds.
0
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Therefore, H¢](z,t) = (n — 2)w, (d(z,t) — Hy(, 1)), with w, = [0T}|, the area of
the unit sphere.

In Section 7 we shall prove some properties of the “strange operator” H: it is a
monotone operator (see Theorem 9), in the sense that for any ¢1, ¢ € L2(0,T),

T
| e~ miga)on - ga)a > 0. (35)
0
We will prove also that H satisfies the growth relation (Theorem [6.5))

IH[@]l| 22 0,7y < K(I6llz20.7) + 19l 220,1)), (3.6)

for any ¢ € L?(0,T) and that, in addition, H is a Lipschiz continuous operator on
L?(0,T), in the sense that

IH[¢1] — Hlgo]||2(0,7) < Kl[d1 — D2l 12(0,1)- (3.7)

for any ¢1,¢2 € L?(0,T) and for a suitable constant K > 0. In addition, H is a
Lipschiz continuous operator on L?(0,7T) with respect to g , i.e.

H[¢g,] — H[bg, ]l 20,7y < Kllg1 — 92l £2(0,7)- (3.8)

It will be very useful to get a stronger regularity on the operator H[¢] under
some more regularity on the datum g on the boundary:

g € L*0,T;Wh>(Q)), (3.9)
i.e, there exists L € L?(0,T) with L(¢) > 0 such that
lg(x1,t) — g(wa,t)| < L(t)|w1 — 22|, V1,22 € Q, and for ae. t € (0,7). (3.10)

Remember that by Rademacher’s theorem W1°°(Q2) = Lip(£2). This will be used
as an intermediate step of the proof of the main result concerning of the function

ug defined in ([2.9).

Theorem 3.2. Let n > 3, a. = Coe?, v = "5, and assume (2.6). Let u. be
the strong solution of problem (2.2)). Then the function ug € L?(0,T; H}()) is

the unique weak solution of the family of problems (depending on the parameter
te(0,7)),

—Agug(z,t) + Cf*Hug) (z,t) = f(z,t), x€Qte(0,T),

(3.11)
uo(x,t) =0, ze€dQte(0,T),

with H[up](x,t) defined by the nonlocal operator (3.1) for a.e. x € Q.

The proof of this theorem follows the master lines of the so called “Tartar’s oscil-
lating test functions method” (see, e.g., [28]), nevertheless many quite sophisticated
variants must be introduced for its application to the problem under consideration.
We send the reader to the general exposition made in the monograph [I4] for several
different problems.
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4. PROOF OF THEOREM

As usual, we can prove the uniqueness of the strong solution of (2.2)) using the
integral identity in the definition of solution and then applying the monotonicity of
the function o.

For proving the existence, we consider the auxiliary problem

5815’“‘2 - Aug = f(xat)v (xvt) € QZ?
710l + 0ul + e Vo (uld) = e Vg(x,t), (z,t) € ST,
ul(z,t) =0, (x,t)eTT, (4.1)
ul(x,0) =0, x€Q.,
ul(r,0) =0, z€S.,

where § > 0 is a small parameter. We use the Galerkin method to prove the exis-

tence of weak solution of this problem. By a weak solution we mean a function u$

in L2(0,T; HY(Q.,09)), with ou® € L?(0,T; H~(Q.,08)),

ol € L2(0,T; H-Y2(S.,09)), ud(x,0) = 0 for z € Q, ud(x,0) = 0, €
Se, and such that the following integral identity holds for any test function v €
L?(0,T; HY(Q.,09)),

T
5/ (Bul, v dt + e~ 7/ (O, v)s.dt + [ VulVvdxdt
0 QT

- / / o ds dt (4.2)
28774 /S g(z, t)v(z,t) dsdt—l—/vada:dt.

Here, we have denoted by (-, ). and (-, -)s. the duality relations between the spaces
HY(Q.,09) and H~1(Q.,09), and H'/2(S.,00) and H~/2(S_,09), respectively.

In fact, we will prove that the solution of is more regular. Namely, ul is
a strong solution in the sense that uS € C([0,T]; L*(.)), ud € C([0,T); L*(S.)),
ud € L2(0,T; H' (Q,09)), 0wl € L*(0,T; L*(9.)), Ol € L*(0,T; L*(S.)),
ud(z,0) =0, if x € Q. U S. and the integral identity

1) &,uiv dz dt + Vung drdt+e7 8tugv ds dt
Qf QT sr

+e77 /ST o(ud)vds dt (4.3)
= 5_7/ glx, t)o(z,t)dsdt + fodxdt
s QT

holds for any function v € L2(0,T; H(Q., 052)).
We introduce the space H? = L?(9.) x L?(S.) with the scalar product

((U, a)a (Ua m)Hg = 5(“7 U)LQ(QE) + 577(a7 5)L2(SE)'

Let V. = {(u,uls,) : u € H'(Q,00)}, where u|s, is the trace of function
u € HY(Q.,090) on S.. On V. we introduce the norm

||(U,U}SE)H\2/€ = HU”%P(Qs,Bﬂ) + ”v’SEH%Il/?(SE,BQ)'
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It is easy to see that V; is a reflexive separable Banach space dense in the space
Hf, so that the linear span of the basis is dense in V;. In H1/2(s€,aQ) we use
the following norm [|[v]| g1/2(s. 00) = nf{llgllm . 00) : g|55 = v}. We denote by
{(wl, w™ | s, °_ the orthonormal basis for the space H?, so that the linear span
of the this basis is dense in V..

Let us apply the Galerkin method to prove the existence of a weak solution
to the problem ([2.2). Let us start by showing the existence of (ul™, ‘5m| s.

C(]0,T); Vz), such that 8t( om % m’ )€ L?(0,T; H?) and

(8t(ug’m, Ug’m |Sa) ’LU ’LUl |S H? + (Vug’m, Vwé)LQ(QE,OQ)

+€_AY(O' ué’m|s )LZ(S ) (44)
=& gaw’S L2(S <f7 )Lzﬂ)a
where [ =1,...,m, and
(ug’m 5’m|sa)(x,0) =0. (4.5)

We look for (ul™, 6m|s in the form

)= Zcfr(t)(wévwgsg)
=1

The coefficients C, | = 1,...,m, are found as solutions of the system 7
which is a Cauchy problem for a system of nonlinear ordinary differential equations
on CL. By well known results, this problem has a unique global solution defined on
the whole time-interval [0, T]. Notice that although ¢ is merely Hélder continuous,
the uniqueness of solution is consequence of the monotonicity assumption made on

o. From (4.4) we obtain

6 T
*||U "(a, T)||L2(Q ) + - HU ($77)||2L2(sg) +/0 ||Vug’m||2L2(QE)dt

+s‘7/ / Yud™ ds dt

=€ 7/ (g, ud™ )L2(S5)dt+/ (f ud™) 2. dt.
0 0

Using that o(u)u > 0, and applying Friedrich’s inequality we obtain

Jm

(ue

5||U§’m(xa7')||%2(95)+577\|Ug’m(x77)||2L2(55)+/ ||Vug’m||2L2(QE)dt
0 (4.6)

< K(If1220.1:020)) + HQHiQ(O,T;C@)) + 5‘7/0 ||Ug’m|\2L2(sE)dta

where the constant K depends only on the domain ). From Gronwall’s lemma we
deduce the explicit estimate

e eSSSUP[O T] ||U5’m|\%2(s ) S K202 @) T 190020 re@y) (47

Using (4.6 and (| we have

T
sm , 6,m 2 o,m |2
ess sup ul"" ug + / Vuy 20 dt
[0,7] H( ‘Se)HHg 0 || ||L (Qe) (4.8)

< K(”f”%ﬁ(O,T;LZ(Q)) + ||g||i2(0,T;C(ﬁ)))'
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Similarly, by multiplying by 9;ul™ we obtain
5 [ 10 gyt 4= [ 10 e e+ IV )
+e77 /T/S o (ud™)Oud™ ds dt (4.9)
0 <

:/ / forud™ dxdtJre*”’/ / gz, 1)0ud™ ds dt.
0 JQ. 0 JS.

Thanks to (2.4) we have

/ / o™ dx dt = —/ / O fud™ da dt +/ f(x, m)ud™ (2, 7)dz. (4.10)
0 JQ. 0 JQ. Qe
Using assumption (2.6) on o, and applying the Holder inequality, we obtain
e / / (o (U™ |yt ds dit
0o Js.
< Cpe [ o™ syt + 57 [ 10" g
0. o, (4.11)
< Cl,gsﬂ/ / [ud™ > dsdt + Cweﬂ/ [ud™ |72 . dt
0o Js. 0
+,8€_’Y/ ||8tug’m\|%2(sg)dt
0
Then, applying again Holder inequality, we have

T T @
e—v/ / |u§’m|2adsdt§5"y</ / 2 drde) 5.
0 JS. 0 JSe

< KE’Y(Ot—l) (E_’Y /T/ |U§’m|2 ds dt)ag'y(l—a) (412)
0 JS.

< K(”f”%g(O,T,LQ(Q)) + ||g||§g(0,T,C(§)))7

where the constant K does not depend on f and g, on m,d,e.

From 7 and we conclude that
e " /T/ |0(ug’m)||8tug’m\dsdt
0 Se
< Ko (U B0z + 1 32 0mzzan) + 191250 ro@y  (413)
191 mom) + 05 [ 10 s,y

where § is an arbitrary positive constant. Setting 8 = 1/2, from (4.9), (4.10),
(4.13]), we obtain

T T
5 [ 10 gyt + 7 [0 st + esssuproy [V g,

< K(Hf”%Il(O,T;L?(Q)) + ||gHiZ(O’T;C(§)) + £ 0.7:22(0)) + ”9”%%(01;0@)))'
(4.14)



10 J. L. DfAZ7 T. A. SHAPOSHNIKOVA, M. N. ZUBOVA EJDE-2022/52

Consequently, from and ([(4.14), we derive that there exists a subsequence such
that as m — oo,
ul™ =l weakly in L*(0,T; H' (Q.,09)),
dpul™ — 9yul,  weakly in L(0,T; L?(S.)),
Q™ — dyul,  weakly in L2(0,T; L?(Q)),
ud™ = ul, in L2(0,T; L*(S.)).

From (4.4) we deduce that u satisfies the integral identity

T T T
5/ / 8tug¢dmdt+5_7/ / 8tug¢dsdt+/ / VulVeda dt
0 Qe 0 Se 0 JQ.

T
+5’7/0 /S o(ud)p ds dt (4.15)

_57/()T/gag(m’t)¢d8dt+/oT/s25 fodadt,

where ¢ is an arbitrary test function in L2(0,T; H*(Qe, 09)). Let us estimate the
limit value of the term =7 fOT Jo. o(ul™)¢dsdt, as m — co. By using the Holder
continuity of o (2.6) we have

T
s*vlzl jQ£|o<u§””>o<ué>n¢|dsdt

T T
< K(a‘”/ / ™ — 4||¢| ds dt +5-V/ / ™ — u%|%|¢| ds dt)
0 Js. 0 Js. (4.16)

a1

—20fe), 5, §
< K(5 T [lud™ = || T2 00,112 (5.))

7" — e oriaacsan ) 19l e oriaas.),

Thus as m — oo the right hand side of (4.16)) tends to zero. For the solution u® we
have similar estimates to the ones given in (4.8) and (4.14)

T
5,6 2 5112
ess su Ug, U + Vu dt
by 108, ] ) A V|20 1)

< K(Hf”%"’(O,T;L%Q)) + Hg”i"’(O,T;C(ﬁ)))’

T T
qéuadﬁmmw+e”4 1012 s, + esssuppo 2y 19 |22,

< K (1B o220 + 19120,y + 1 130,220 (4.18)

ol o r.om):
Thus, for every € > 0 there is exist some subsequence § — 0 such that
ul — u.  weakly in L2(0,T; H (Q., 09)),
5‘tug — Oyue, weakly in L?(0,T; L*(S.)),
ul = u. in L*(0,T; L*(S.)).
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Taking into account (4.18)) we find that

T
5/ / oulpdrdt — 0, &—0.
0 Qe

Hence, passing to the limit in (4.2) we obtain that w. is a strong solution to the
problem (2.2]) and the estimate (2.8)) holds.

5. AUXILIARY Gg—CAPACITY PROBLEMS TO ADAPT THE GLOBAL TEST FUNCTION

The first step of our adaptation of the master lines of the “oscillating test func-
tions method” consists in to replace the weak formulation of the problem by a
kind of “very weak formulation” thanks to the monotonicity in L2(S.) of the
operator given, formally by u. — O,u. (see, e.g. [I7, 2I] and, more precisely,
[B, Lemma 4.1]). By applying [6] (see also [2I, Théoréme 8.4]) we know that
ue € L2(0,T; HY(Qc,09)) is a weak solution of problem if and only if for any
regular test function, for instance, ¢ € L*(0,T; H(Q) N C(Q)) N HY(0,T;C(Q)),
we have

e _ _
/ / Ord(P — ue) dsdt + or VoV(p — ue)dadt

+e” 'Y/ / (¢ —ue)dsdt (5.1)
> flop—ue)dxdt + e~ 7/ / o — ue) detflé‘ o (x, O)||L2(S)
QT

The second step of our adaptation of this very general set of ideas constituting
the “oscillating test functions method” consists in modifying, in a suitable way,
any test function (which will be used to check the homogenized equation satisfied
by the weak limit function ug(x,t) obtained in Theorem to a different family
of test functions better adapted to problem : the new set of “oscillating test
functions” . This step is rather involved and should be carried out in a very sharp
way accordingly the problem under consideration. To this purpose, it is useful to
simplify the properties satisfied by the departing test function. In our case, it will
be enough to consider the given potential test function of the form

o(z,t) = p(x)n(t), where p € C*(Q) and n € H'(0,T). (5.2)

As mentioned in the introduction, the identification of the “strange term” oper-
ator H[¢] defined by will use the Gy-capacity type exterior nonlinear problem
given by which we will consider in the next Section. It turns out that it is
convenient to approximate the problem by a set of auxiliary capacity problems
which are sharply adapted to the starting spatial domain . = Q\ G.: thus, this
other set of auxiliary problems will depend on the parameter € and are built in terms

of the cell reference set Y. We recall that we assumed that GZ C Téa cT1’ 21 C Y7,

where T7 is the ball in R™ of radius 7 with the center at P/ = ¢j (the center of
the cell Y7), C is a positive constant independent on €. Then, for every j € T. we
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consider the auxiliary problem

Awg¢:0 xeTf/4\G € (0,7),
€ Vﬁtw€¢+8 w? Lo =€ Ta(o(PLt) —wl )
=& (0rp(PLt) — g(PL,t), x€dGL, te(0,T), (5.3)

wg’(ﬁ(x,t) =0, z¢€ 6T]/4, € (0,7),
’u}g@(x,()) = ¢(P?,0), x€dGI.

Notice that, again, a more exact notation would be

Wep = Wei,g,Gor

to indicate the important dependence of w ¢ With respect also to the datum g and
Gy, but we drop such a sophisticated notatlon for the sake of simplicity. In the
next Section we will study the asymptotic resemblance among the solutions uf"S ®
of this new problem and the solutions wg(x,y,t) of the Gy-capacity type exterior
nonlinear problem given by .

To study problem (5.3) we start by introducing the type of solutions we will
consider in this paper' A functlon w! . is astrong solution of problem (|5.3|) if w6 @ €

C([0,T); L*(0GY)), w! ¢ € L*(0,T; Hl(TJ 4\GJ)) &gwg@ € LQ(O,T;Lz(aGJ)) and
the following integral identity holds for any test function ¢ € L?(0,T; H'(T? /4 \
GL,01 ),

T _ T _
5*7/ Oy’ 1/;dsdt+/ / _ Vw! Vidxdt
0 JoGli =0 o J1!, ,\ci =0

T
—e /O /m o(o(P,t) — wl ;)i ds dt (5.4)
T . .
_ E—w/ (Db (PI,t) — g(PI ) ds dt.
0 oleA

Theorem 5.1. Assume o Hélder continuous satisfying (2.6). Then, for any given
test function ¢(z,t) of the form (5.2), problem (5.3) has a unique strong solution
wg@ and the following estimates hold

lw ’¢’”L2 0,T;H (T, \GL,0T! )
< Koe"(

677”5}11);

+ € ’Y”wa ¢)||L2 0 TL2(8GJ))

||¢HL2(0,T;C(5)) + HgHLz(O’T;C(ﬁ))%
2

¢|‘L2(0,T;L2<acj))

< Koo (16122 0.0 + 190220 z:cy + 1001200 )

100 om0 + 19033 0 rciam) + e 100 ?),

n+2 2
L ([ P I e X

where the positive constant Kq is independent on ¢, g and €.
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Proof. As usual, the uniqueness of the strong solution of the problem (5.3)) can be
derived from the integral identity by using the monotonicity of the function o. In
order to prove the existence of solutions satisfying the above mentioned estimates,

let us introduce the functions ¢ = ¢(PJ, t)d (x), where i € C( 5/4) Pi(z) =
if x € Téaa and Yl(z) = 0if z € TJ/4 \ T2Ca ) |V¢J| < Cyazl, O is a positive
constant. Then, we make the change of unknowns w‘E 6= ’ua ot wg, and thus, it is

easy to see that wg ¢ is a strong solution of the problem (j5.3) if and only if vg o I8
a strong solution to the new problem

Ao(vly+92)=0, zeTI, \GL te(0,T),
e 0!, + 0, (vl + 1) —eTo(—vl )
= g(P!,t), x€dGI, te(0,T), (5.5)
vg,d)(%t) =0, z¢€ (’9T€]/4, € (0,7),
vl (2,00 =0, x€dGl.

To prove that problem ([5.5) has a strong solution, we consider the approximate
auxiliary problem

002 — MY = AYL . we T, \GL te(0.T),
e 0% + 0, (2% + 9 ) — e Va(—v2))
— —cg(Pit), x€dG, te(0,T),
vl (,t) =0, x€dT’ Y tE€(0,7),
vgf#(x,()) =0, = ETJ/4\G

vg:é(x, 0)=0, z¢cdGi.

(5.6)

The proof of the existence of solution of problem (5.6) can be obtained by a
Galerkin method as in Theorem If we denote by {(w!, m} agi)ts M =

1,2,..., the orthonormal basis for the space H® = LZ(T] \Gj) x L*(0GY),

then we find the Galerkin approximations (vggl, vl o) € C([0,T);V2), where

6 m
VI = {(“’“‘agg) € H)lu € HY(T /4\6” 8Tg/4)} such that at( €¢, vy aGZ) €
L?(0,T; H?). Using similar considerations as in the proof of Theorem- we obtain
the following estimates

— 2
L o el ot R 0 S
< K= (1012 0 1.y + 19120 mio@y )

(5.7)
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|0l 312

.
L2(0,T:L2 (T3, \G]))+€ ”atv

||L2 0,T;L2(9GL))

F IV, o

(5.8)
2 2
gw(ﬁg@”w 1108122 0. ey + 19125 0.

+ 19128 0 ey + 19120 ey )

where the constant K does not depend on ¢, ¢,g. From the estimates (5.7)), (5.8)
it follows that for some subsequence {m},

6 £l 67 3 . j i
Ui =g 3#’ weakly in L*(0, T} Hl(TEJ/4 \ G2)),

Ol = Bl weakly in L*(0,T5 LA(T2), \ GD)),
W00 =2 in L0, T3 LA(TY), \ G)),
5tv€:¢* - @Uaj(z, weakly in LQ(Q’T;LQ(aGg))’
as mg — oo and U&,é is a strong Solution of the problem and the similar
estimates hold for the limit function v . So for fixed € > 0 by some subsequence
{vgy’j} as &' — 0,

vg(;g N 1)6 e weakly in L2(0 T; H' (T]/4 \ G 6T€J/4))

at’U ' N (“)tv weakly mn L2 (07 T; L2 (8G§))7
in L?(0,7; L*(0GY)).

J‘aci — v} ¢‘6GJ

Taking into account that ¢’ fo f N\GL 5}1} ’Jw dzdt — 0, as ' — 0, we obtain

that v/ ! 4 is a strong solution of the problem . From estimates , and
applying the Friederich inequality, we obtain the estimates in the Theorem- ([

In the following Section we will need some stronger regularity estimates on uzs ®
which we prove now.

Theorem 5.2. As a matter of facts, wg s € LC’°((Tj/4 \CTé) x (0,T)) and we have

esssup ;. |w€¢\ <2 Jnax |¢(m t) |—|—2/ max|g(ac t)|dt. (5.9)
€ [0

L \GD)%(0,T)

Proof. We introduce the function hi, = ¢(PIt) fo s)ds. Then hj
is a strong solution of the problem

AW, =0, ze Tg/4\G7', t e (0,7),
t
e V0L 4+ 0N 4+ a(h], —|—/ g(P? s)ds) =0, x€0GI, tec(0,T),
0

. } t .
h;d):aﬁ(ngt)—/Og(Pg,s)ds, xec')T/4, € (0,7),

hl ,(2,0)=0, z€dGL.
(5.10)
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T
We set K = maxg, (o 71 |0(z,t)| + Jo maxg |g(z,t)|dt. Then

(hl,—K)" e L*(0,T;H' (TJ/4\GJ oT? )

and taking it as test function in the corresponding integral identity associated with

problem ([5.10) we obtain

+ 12
0 = K e sy + [ IV, = KR,

+e” 7/ / / g(x,s)ds)(hgd)— K)Tdsdt = 0.
aG1 0 ’

Using that hE ot fo x,8)ds > 0 on the set where h] > K and since o is non-
decreasing we obtain

(5.11)

_ t
o(hl, —|—/ g(x,s)ds) > 0.

0
Thus on the left hand side of (5.11)) we have a sum of nonnegative terms which is

equal to zero. So we conclude that (hj —K)T=0ae. x€ Tj/4\Gg and t € (0,7).

Arguing in a similar way we obtain also that (h + K)~ = 0. Hence we obtain
the statement of Theorem 5.2 O

6. Go-CAPACITY FOR THE EXTERIOR PROBLEM

Now, in this section, we will prove the existence and uniqueness of wy(x,y,t)
solution of exterior problem , mentioned in the Introduction, by assuming
g € L?*(0,T;C(Q)), and for a general test function ¢ € L?(0,T; L?(2)).

To define the notion of strong solution of problem , we denote by 91 the
set of functions w € C°(R™ \ Gy) such that w(y) = 0 for y € R" \Tg, for some
ball T9, such that Gy C Th. We denote by M the closure of M with the norm
[wlam = Vwll L2 @)

By applying Hardy inequality on the rings T \TT%O and making R — oo, we
arrive to the following well-known result.

Lemma 6.1. Let Gy C R™, n > 3, be a smooth bounded domain, star-shaped with
respect to a ball T, TH C Go. Then there exist a constant Ko, only dependent of
n, such that

[l Pty < Kallwle, Vo e M. (6.1)
R™"\Go

By a strong solution to we mean a function wg(z,y,t) such that for a.e.
€ Q, wy € C([0,T]; L*(0Gy)), wg € L*(0,T; M) and dyw, € L?(0,T; L2(9Gy)),
Wy (x,y,0) = 0 for y € Gy, and the following integral identity holds for any test
function v € L?(0,T; M):

T T T
/ / VwgVudydt + Co / Orwgv dsdt + Cy / / o(we)vdsdt
0 “\Gio 0 0Go 0 9Go

T
= / ¢(x,t) Oy Kkvudsdt.
0 aGo
(6.2)
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Theorem 6.2. Assume o is Holder continuous satisfying (2.6) and let g belong to
L?(0,T;C(Q)) and ¢ belong to L*(0,T; L*(2)). Then problem (3.2)) has a unique
strong solution and for a.e. x € Q) the following estimates hold

lWellc(jo,11:2(0c0)) + 1Well L2 (0,501
< K(lo(, @)|Iz20,1) + lg(- @)

106 20 m:12060) < K (66 2) 20y + 9 @20,

+ 160, D) E20.) + 9 D201 )

L2(O,T))7

(6.3)

In addition, if we define
w¢(z,y,t) - /{(y)d)(m,t) - {E¢(xay>t)a (64)

with k(y) solution of standard Go-capacity exterior problem (3.3) then, for a.e.
x € ), we have

T 2
/0 ( oc 6VU)¢(.Z', y?t)dsv) dt < K("qb(vx)H%Q([LT) + ||g<'7x)||%2(07T))a (65)
0
where the positive constant K does not depend on ¢ and g.

Proof. 1t is a simple variation of the proof of Theorem (with f =0 and Q =
R"™\ Gp). Notice that the application of the Hardy inequality allows to extend
the conclusion to this spatial domain even if it is unbounded. Then, for instance,
the uniqueness results, once again, from the monotonicity of the operator mentioned
in the proof of Theorem (3.2} Estimate is consequence of the corresponding
estimate . In addition, since wgy is a strong solution, we have

Oywe(z,y,t)ds = / VwyVEdy

8Go R™\Go

—ow.t) [ kP~ [ VaVedy
R\ Gy R\ Gy
— 6z, )Aay — / V@, Vkdy.
R"\Go

From here we obtain
2
([ weds) <203, 62 (w.1) + 2|30,
G,

Therefore,

T 2
L ([ dwata.ois) de < 258, (6.0 + 150 )
0]

Applying estimate of (6.3)) we obtain (6.5)). O

Later, we will need some continuous dependence of w, with respect to ¢.

Theorem 6.3. Assume o is Holder continuous satisfying (2.6), and let ¢1, ¢2 blong
to L2(0,T; L3(2)). Then, for a.e. x € , we have the following estimates

[Wg, — We, [l (f0,11:L2(8G0)) + 1Wg, — We,llL2(0,75Mm)

< K||[¢1 — ¢2] (@) 22(0,7)- (6.6)
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0k, — Oy, || L2(0,7:L2(000))

< K(H[dﬁ = 2], @) 20,1y + N1 — ¢2]('793)||%2(0,T))a
T 2
[ ([ @wo, ~tuwsds) e < Klion = - 0oy, (67
0 0Go

where the constant K is independent on function g.
Proof. We set v = wg, — Wge,. Then v is a solution of the problem
Ay =0, yeR"\G, te(0,T),
Codyv + 0yv + Co(o(Wy, ) — 0(Wy,))
= (¢1(x,t) — ¢a(x,t))0,k(y), y € Gy, te (0,T), (6.8)
v(y,z,0) =0, y € IGy,
v—=0, |yl — oo,

for a.e. z € Q. Now we can argue as in the proof of Theorem and we obtain,
for a.e. x € Q,

ol zov0 + s 1906 o < K191 = 62y (69)
esssup,epo, 1) | Vo(t, )”Lz @n\ay T 1001172 0 7.2 (560 6.10)
6.10
< K (1161~ 822 Eacoiry + 161 — 6ol ) B )-
Taking into account that
Oy (we, — wg,)ds
Gy
:/ ~ V(wg, —wg,)Vkdy
R"\Go
—Aa (Ga(a.t) — da(w.0) — [ (g, ~ ) Ty,
]R"\Gg
and using estimate we obtain (6.7)). O

As in [I1} Lemma 4.6] we have a priori estimate for the solutions of problem
(3.2) on the interior of the set R™ \ Gy.

Theorem 6.4. Assume that ¢(z,t) = ¥(z)n(t), ¥(z) € C=(Q), n € CL([0,T)),
QT =Qx (0,T). Then, a.e. t € (0,T), x €

Ry~ 2K(max |p(z, ) |+f0 maxg |g(z,t)|dt)

|@¢($7yat)| = n—2 ’ (611>
|yl
for ally € R™\ Gy, and for y > 2Ry, Ry = maxyeac, |yl,
K (maxsr |¢(x, 1) + [ maxg |g(z, t)|dt)
|Vywe(z,y,t)| < cal Jo ¢ : (6.12)

ly[*—1

where wy is defined by (6.4) and K is a positive constant only dependent on n.
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Proof. Let wy be defined by (6.4), i.e. Wy = ¢(x,t)k(y) — wy. Then wy is a strong
solution of the problem

Aywy, =0, yeR"\ Gy, t€(0,7),
CoOwe + Oywy — Coo (P — wy)
= —Cog(z,t) + CoOrp(z,t), y € 0Gq, t € (0,T), (6.13)
we(x,9,0) = ¢(x,0), y € G,
we =0, |yl = oo.
We consider the sequence of solutions {wy g} to the problems
Aywyr =0, yeTp\Go, te(0,T),
CoOrwe.r + Opwy r — Coo (¢ — we r)
= —Cog(z,t) + Codip(z,t), y€ Gy, te(0,T), (6.14)
we,r(7,y,0) = ¢(z,0), y € IGo,
we r(Z,y,t) =0, y€ 8T§, te (0,7).
Arguing as in the proof of the estimate in Theorem |5 . we find that

lwg,r| < Ko =2_max \¢xt|+2/ max|ga:t)|dt
Qx[0,7]

Using the maximum principle, we derive the estimate

KoR .
lwy.r| < » fl ==, yeTH\ Gy, te(0,1). (6.15)

We define

0. >R te(.T).
Noting that Wy r € L?(0,7;M) and taking into account that Wy g — wy in
L?(0,T; M) as R — oo, we deduce the estimate

KyRy
|’U)¢| = | ‘n 2"

{w(z,’R, Yy e TI% \Gio,t S (0,T)7
¢,R —

From here we obtain (6.11]). Using the inequality (6.11]) and the mean-value theorem
for the harmonic function 9y, we(x,y,t), i = 1,...,n, on a ball we obtain estimate
(6.12]). O

As the previous regularity result we have the following.

Theorem 6.5. Assume (3.9). Let wy(x1,y,t) be the weak solution to the problem
(3.2). Then for any x1,x5 € Q,

[We (21, ) — We (w2, -, ) L2 0,7m) < K{|21 — 22| + ||6(21, ) — b2, ) ||L2(0,7) }-

Proof. The function wg(z1,y,t) — We(z2,y,t) satisfies the following problem
A’y(ﬂjqﬁ(xhyat) w¢(x27yv )) 7 yERn\GO,
COat(ﬂ)v¢(xlay7t) 7{[)¢(x27ya )) (w¢(x1,y, ) {Dti)(x%yat))
)

+CO( (@¢($1»yat)) —O'(’IF17¢(.’E27y, ) )
= Co(g(x1,t) — g(w2,1)) + (¢(21, 1) — dx2,1))0uk(y), y € Gy,
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’[EdS(xhyvO) - {lv)(p(l‘g,y,O) = 07 S 8G07
{E¢(xlay,t) - {E¢(x23yat) — 03 |y| — 00.

From the definition of weak solution for this problem we deduce that

t
/ / o VB 1,.0) T, 1) Pl
n O

C . _
+ 5 | @@y, t) = Dy (wa,y, 1) Pds
9Go

19

e / /6 GO(am(xl,y,t)) — (@2, 9, 1)) (@p (1,9, £) — Tog a2, 9, 1)) ds dr

_Co/ /OGO g(x1,t) — g(z2, ) (We(x1,y,t) — We(x2,y,t)) dsdr
/ / d(x1,t) — @(22,1))0uk(y) (We (21, t) — We(z2,y,t)) dsdr.
8G

Using the monotonicity of o, (3.9) and the Gronwall’s lemma we obtain the con-

clusion of the Theorem.

O

The following result shows that the solution wy(x, y,t) has a Lipschitz continuous

dependence on function g without requiring the assumption (3.9)).

Theorem 6.6. Let {Ei(x, y,t), ifzg(x, y,t) be the weak solutions to the problem (3.2)

corresponding to the boundary data g,g € L*(0,T;C(Q)). Then for a.e. x € Q,

”{Z)i(xv * ) - IE;(I, K ')||L2(0,T;M) < KHg(gj’ ) - E]\(x’ ')||L2(0,T)'

Proof. The function w}(z,y,t) — @g(x, y, t) satisfies the problem

Ay (@ (2, y,t) — @ (x,y,t) =0, yeR"\ G,
Codh (W) (x,y, t) — WY (2, 1)) + 0, (@ (2, y. 1) — T (x,y,1))
+ Co(o (@ (1) — (@) (x,.1)))
= Co(g(z,t) —g(z,t)) y € IGo,

Wy(x1,y,0) — We(z2,y,0) =0, =€ IGy,
B (1,,t) — W (22,5,1) = 0, |y — .

From the definition of weak solution for this problem (taking ﬁg(x, Y, ) —Eg(am Y, 1)

as test function) we obtain

t
/ / \?\Vy(@i(x,y,T) _wi(l',y,T))dedT
"\Go

Co - )
+ — w(x,y, wd(zx,y,t)|°ds
o CX DR ]
+C / / (2,9, 7)) — (@0 (2, y, )@ (@, y,7) — @, y, 7)) ds dr
0Gy

- C’o/ /ac;o z,7) = g(@, 7)) (Wi (z,y,7) *@g(x,yﬁ))dsdr,
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Then, using the monotonicity of o, Friedrich’s inequality and the Gronwall’s lemma
we obtain the conclusion of the Theorem. ([
7. PROPERTIES OF THE OPERATOR H]¢)

By applying the results of previous sections we obtain different properties on the

operator H[¢] defined by (3.1).
Theorem 7.1. Assumeg € L*(0,T; L*(2)). Then, for a.e. xz € ,

[HIEI(, o)Lz 0,m) < K(0C )20,y + 9 ) L200,1))- (7.1)
Moreover, for ¢1,¢2 € L?(0,T; L*(Q)) and for a.e. x € Q we have
| (H[p1] — H[da]) (-, )| 220,7) < Kl (61 — 82) (- @)l L2(0,7)- (7.2)

Proof. By taking in the integral identity for w, as a test function the solution of
problem ({3.3)) we obtain

&,wqus :/ Vy@ngIidy.
9Go R"\Gio
So, we have
H[¢|(z,t) = Ag d(, t) — / VY, @, Vkdy.
R"\Go
Applying estimate (6.3) we obtain

[H[o]( @)l 220,y < K (|65 @) [ 220,1) + [19( @) | L2(0,7))5
where K is independent from ¢(-,z) and g(-,x). To obtain the inequality (7.2)) we
note that

aﬂ({ﬁ¢1 - @¢2)d8 = / v({zjqﬁl - ’&7432)V’€dy'

8Go R™\Go

From here we conclude that

H{gn) ~ Hos] = (61 D, — [ (o, — ) Ty

Applying we obtain (7.2)). O

Remark 7.2. Note that if Gy is a ball, as in Remark [3.1] and H is a solution of the
Cauchy problem (3.4), then we can prove, in a different way, that independently
of the regularity of o, the function A is Lipcshitz continuous. Indeed, for any
b1, 02 € L?(0,T) we have

n—2

0oy — o) + "o (Hay = M) + (0(Ha) = 0(Har)) = "5 (01— ).

Multiplying this equality by (Hg, —He, ), integrating on (0, ¢) and using the mono-
tonicity property of o, we obtain

e [ (01 = 620040, ~ Hou)ir

Applying the Gronwall’s Lemma, we conclude that

(rHlDl (l‘,t) - 7‘[¢2 (xat))Q <

I[Bla%mw — He,| < Kll¢1 — 2l L2(0,1)-
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Remark 7.3. If we consider the similar problem for Robin type boundary condi-
tions (see [I5]), then, if Gy is a ball, the new nonlinear term in the homogenized
problem must solve the functional equation

Co

H= —H = .
Ao (u )y A n72>0

Setting V = u — H, we derive the equation
Ao(V)+V =u.

Let us consider the difference of two equalities Ao(V1)+ Vi) = ug and Ao (Vo) + Vo =
Ug, 1.€.

Mo(V1) —o(V2)) + Vi = Va = uy — ua.
Multiplying this equality by Vi — V5, and using the monotonicity of o, we obtain
the Lipschitz continuity of V.

Theorem 7.4. For any ¢1(x,t), p2(x,t), defined a.e. in Q x (0,T) such that for
a.e. v € Q, ¢;(x,-) € L?(0,T), for a.e. x € Q, i = 1,2, we have

T
/O (Hign](z, ) — Hlgo] (2, 1)) (d1(2,t) — p2(x, t))dt = 0. (7.3)

Proof. By denseness, without loss of generality we can assume that ¢;(z,:) €
C*([0,T]), i = 1,2. We consider wg,, wy,. Then ws, — wy, is a weak solution
to the problem

Ay(wg, —wg,) =0, yeR™\ Gy,
CoO(wg, — we,) + Oy (we, — we, )
= Colo(d1 —wg,) — 0(P2 — we,))
= Co0i(d1 — ¢2), y € 0Go, t€(0,T),
(wg, — we,)(z,y,0) = ¢1(2,0) — p2(x,0), y € IGo,

Wg, — We, — 0, ‘y| — 00.

Taking wg, —we, as a test function in the integral identity corresponding to notion
of weak solution of problem (7.4}), we obtain

T
Hw¢'1 — We, ||%2(0,T;M) + Co / 8t(w¢1 - w¢2)(w¢1 - w¢2) dsdt
0 0Gy
T
Gy / / (0(61 — wg,) — (o — w,))(wg, — wg,) ds dt (75)
0 090Gy

T
= CO/ 8t(¢1 - ¢2)(w¢1 - w¢2) dsdt.
0 Joaage
From this equality we deduce that

||w¢1 — We, H%Z(O,T;M)

T
+C / 0((wo, — 61) — (w5, — 62)) (g, — d1) — (wg, — b2)) ds i
0 0Go

+ Co/o /3G0(0(</>1 —wg,) — (P2 — we,)) (1 — Wy, ) — (2 — wy,)) ds dt



22 J. 1. DfAZ7 T. A. SHAPOSHNIKOVA, M. N. ZUBOVA EJDE—2022/52
T
=%/ Br((1 — wey) — (B2 — wsn)) (61 — o) ds dt
0 0Go
T
+%/?/ (0(61 — ws,) — (2 — wey)) (b1 — o) dsdt
0 0Gy

T
:A(meHWM%—@Mt

Using that o is monotone we obtain that the left-hand side of last equality is
nonnegative and completes the proof. (I

We obtain a stronger regularity on the operator H[¢] when the boundary datum
g is more regular.
Theorem 7.5. Assume (3.9) and let x1,z2 € Q. Then there exists K > 0 such
that

[H[g)(x1,t) — H[g](z2,t) [ 20,7) < K{|w1 — 22| + [[9(21,t) — d(@2, 1) L2(0,7) }-
Proof. Note that

= (¢(@1,1) — d(x2, 1)) A, +/R o V(wg(z1,y,t) — we(x2,y,t))VE(y) dy.
"G
Applying Theorem to the right-hand side of this equality we obtain the state-
ment of the theorem. O

As in the previous section, we can prove that the operator H[¢] has a Lipschitz
continuous dependence on function g without requiring assumption (3.9)).
Theorem 7.6. Let Hi(x,t),Hg(x,t) be the associate operators corresponding to

the boundary data g,g € L*(0,T;C(Q)). Then there exists K > 0 such that for a.e.
x €,

[Hg (z,-) = Hy(z, )l z20,m) < Kllg(a, ) — gz, )l r20,1) -
Proof. Note that

%uw—@mwz/ V(@ (2, ,1) — T, 9, £)) Vr(y) dy.
R\ Go

Then it suffices to apply Theorem to the right-hand side of this equality to
obtain the statement of the theorem. [l
8. ASYMPTOTIC SIMILARITY BETWEEN THE CAPACITY FUNCTIONS wg s AND

we(PI, =52 1)

The following results give some estimates on the differences of the two types of
capacities functions introduced in previous sections.

_pi
z— P!
Qe

Theorem 8.1. Let v§7¢ = wg)(b —wy (P,

of (6.13)). Then

,t), where wy(x,y,t) is the solution

sup |’UZ’¢| < sup |w¢(Pg, I £ ,t)|. (8.1)
(T2, \GDx(0.T) 0T}, X (0.T) “

Here, ¢(x,t) = (@)(t), with v € C=(Q), n € C1((0,T]).
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The proof of the above theorem can be find in [34].
Theorem 8.2.

—y _

P> velo.1] oz o122 062 + 2 IVl e T, \GY))

JEY: JeEY
(8.2)
< Ke?(max ¢*(z, t) / maxg 2(z,t)dt),
QT
T
< Kt 2 2 .

3 W2l iy < Km0 + /0 max g . 0) ), (8.3
j

where the positive constant K 1is independent of €, ¢ and g.

Proof. From the Green formulas we have
2 —
/ /Tf E|V1}Z7¢| dzdr + ¢ W/ ) ol yul ,dsdr
70\ 0o Jogs

e / /BGJ J.7) —wl ) — o(¢(PL,7)

— w¢(PJ — PE 77'))) dsdr

_pi ,
/ / T- ¢ s 7OV, ds dr.
a1’ Qg ’

e/4

(8.4)

Taking into account that ¢ is monotone and applying the Green formula, we obtain

/ /T] \Elvv qﬁ‘ dde+ ||v5 ¢||L2(8GJ)
/4

- st i
- P T)Oyvl 4ddT (8.5)

e/4

¢
_/ /j ! va’(bVw(ﬁdxdT—&—/ / ] Ol ywg dsdr.
0o Jri, \T/ 0 Jors

Using the estimate (6.11)) we obtain

M

. x— PJ
|’Ug7¢(1’,t)| < sup |U}¢(P€], = 7t)|
aT?,, %(0,T) Qe

. (8.6)
< K& (max|é(z,1)] + / max |g(z, £)|dt),
QT 0 Q

where K is a constant independent on &, ¢ and g. From we deduce for
X € aTg/s

|0, s¢($07 T;/016| 1‘/ awlve ¢>d$’
Tee (8.7)
< Ke(max|é(, )] + / mae |g(z, £)]dt).
QT 0o Q
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Consequently,

/ / v’ L oW dsdt| < K5"+2(max¢ (z,t) / max g 2(z,t)dt). (8.8)
oT? QT

/8
Applying (6 we obtain, that for x € T 2/ \ 5/8’
. — PJ T
[Vawo(P 2 0] < Kelmax (o, 0)] + [ maxg(e, ).
Qg QT 0 Q
Therefore,
/ / __ V! Vw, da dt|
T /4\ /8

1 , T
<1 / |, Vel Pdzdes ke max ot P + [ maxlg(e, o)),
2Jo T!,,\GL ' QT o 9

From here and (8.4) we obtain the estimate

- _
S T L R N RS

T
< K (max (o, O + [ max|g(a, ) dr).
QT 0 Q

Hence, we obtain (8.2]). The estimate (8.3]) is then obtained from the Friedrichs
inequality. O
9. PROOF OF THEOREM

First step. We start by assuming the additional condition (3.9)) on g. As mentioned
in Section [5] the very weak formulation of problem (2.2)) leads to the inequality

_7/ / Opd(dp — ue) ds dt + V¢V(¢—UE) dx dt

+£_7/ / (¢ —ue)dsdt o)

T
f(¢—u5)dxdt+5"*/0 /S (@, ) (D@, ) — ue(a, 1)) ds dt

>
Qr

1 _
o O] R
for any smooth test function ¢(x,t). By density, we can assume, for instance, that
b(z.t) = ¥()(t), for some v € C3(Q), 1 € C1([0, T]).
Second step. Again, under condition (3.9), we introduce the auxiliary function
wg@(m,t), x € Tg/4 \GL, te(0,T), jeT.,

W57¢(1‘,t) =
0, xGR"\UjeTETEM, € (0,7),

where fwg P is a solution of (5.3)). Using Theorem and the estimates from it we
have that P.W. , € L*(0,T; H}(2)) and P-W, 4 — 0 weakly in L*(0,T; H}(2)) as
e — 0.
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By taking (¢ — W, 4) as a test function in (9.1)), we obtain

= / / 046 — Weg) (& — Wy — uc) ds dt

+ V(gb W, ¢)V(¢ —Wep — UE) dx dt

+e” 7/ / 6) (P — We g —u)dsdt (9.2)
> f(qb Weg —ue)drdt +e~ 7/ / We,o —us)dsdt

1 _
= 2 6, 0) = Weo,0) (s,

Taking into account properties of W, 4(x,t) we obtain

lim /Q 6= Wy o) dodt = /Q H(6—wo)dr (9.3)
hm VoV (p — — ug)dxdt = VoV (p — ug) dx dt. (9.4)
QT QT

Since wg ¢ is associated with the strong solution of problem (|5.3)), we have

— VWE oV —W. 4 —u.)drdt

**Z/ /TJ __ V! V(¢ —w! , — uc)dudt

JEY: /4\GJ ( )
9.5
=77 (06 —wl y) =g+ o(6(PL,1) —wl ,))
B L ¢
—w’ c)dsd — u.) dsdt.
X (¢ —wl 4 — sdt — j;‘://BT] ue) dsdt
Taking into account that as € — 0, we have
L=e a ) —w!
> / |, (@6t 0Pl 0y + (otot 1w
— o(6(PL 1) = wly) = (g(,1) = g(PL,1)) ) (6(w, ) = wl ; — ) dsdt
— 0,

we conclude, that the sum of all integrals over S¢ x (0,7T) tends to zero, as € — 0.
Thus from here and from — we have that ug satisfies the inequality

VoV (¢ — ug) de dt — lim —ug)dsdt
/T 0 e—0 JEZT / /8TJ (9.6)
2/ f((b—Uo)d.’L‘dt.
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Third step. We still assume condition (3.9).To estimate the second term we will
apply the following Lemma.

Lemma 9.1. Assume o is Holder continuous in (2.6). Let H[$](x,t) be the value
of H[¢] given by for regular functions ¢. Then, H[p] € L*(0,T;L*(Q))
and for any sequence {h:}, h. € L*(0,T; H}(Y)), such that h. — h weakly in
L2(0,T; HY(Q)) as e — 0, we have

]Z/ 9, ws (P, 'x;Pg,t)hEdsdt

0Ga
ger. (9.7)

+ 03_2 [ Oywy(z, vy, t)dsy] h(z,t) dx dt‘ — 0,
0Go

as € = 0, where v is the unit outward normal vector to 8TJ/4 (respectively to Gy )

directed along the radius of the ball Ta/4 (respectively to the exterior of Gy ).

The conclusion of this lemma can be obtained by different methods: here we
point out that its proof is an easy variant of [11l Lemma 5.7] (which follows the
main lines of a result of [25]). A detailed proof when o is Lipschitz continuous can
be obtained also thought [33] Lemma 9]. Nevertheless, the adaptation to the more
general case of o Holder continuous is automatic thanks to the estimates given in
Theorem [6.5] of the present paper.

Using Theorem [7.5 and the previous Lemma we obtain

2%2/ /aT (¢ —ue)dsdt

= lim Z / dywy(x ;Pg,t)w — ue)dsdt (9.8)

EHOJGT 3T7 €

=-Cp? / ) H[o](x,t) (¢ — up) dz dt.
From and we conclude that ug satisfies
/ VQSV((;S—uO)dxdt—i—C’g*z/ H[p] (¢ —up) dz: dt > / flop—ug)dxdt, (9.9)
QT QT QT

for any smooth test function ¢(x,t) = ¥(z)n(t), v € C(Q), n € C1[0,T]. By
denseness this inequality holds for any ¢ € L(0,T; H}(2)). Then, applying again
the characterization of solutions given by monotone operators (see [6], or [21I]) we
deduce that ug is a weak solution of problem .

Fourth step. Assuming (3.9 , to characterize the homogenized limit uo it is impor-
tant to prove that under the assumptions of Theorem [5.1] problem (3.11)) has an
unique solution. This is consequence of the following contlnuous dependence re-
sult: if we suppose that up; and w2 are two weak solutions of the problem
corresponding to f1, fo satisfying then, by multiplying by (uo1 — ug,2) the
corresponding equations, by the monotonicity of the operator H[¢](x,t), we obtain

[V (uo1 — UO,2)||L2(O,T;L2(Q)) <|[fi— f2\|%z(QT)~

This proves the uniqueness of solutions and the proof of Theorem [5.1] under the
additional condition (3.9)) ends.
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Fifth step. Given g € L%(0,T;C(2)), let g,, € L?(0,T; W1*(Q)) (i.e., satisfying
(3-9)) such that g,,, — g in L?(0,T;C(2)) and such that
lgml 20,7 0@)) < N9lL20,m0@) +1- (9.10)

By the monotonicity in of the abstract operator associated with problem ([2.2)) (see,
e.g. [3]) we know that if u. , is the solution of problem (2.2)) corresponding to the
boundary data g,,, then

llue — uE,m||2L2(O,T;H1(QE,8Q)) +e 7 lue - Us,m|\2L2(o,T;L2(sE))

< K( (9.11)

2
”g*gmHLz(Q,T;C(ﬁ)))'
By applying the four previous steps to the boundary data g,, we know the existence
of a unique solution g, € L*(0,T; H}(2)) of the family of problems (depending
of the parameter ¢ € (0,T))

*Amuo,m(xvt) + Cg_sz[UO,m](xat) = f(xvt), RS Qat € (OvT)7
uo.m(z,t) =0, ze€dQ,te(0,T),

with H,,[uo](x,t) defined by the nonlocal operator (3.1), corresponding to the

boundary data g,,, for a.e. z € Q. We define ug € L?(0,T; Hi(2)) be the unique

weak solution of the family of problems (depending of the parameter ¢ € (0,7))
associate to the boundary data g € L?(0,T; C(Q)),

—Agug(x,t) + CF *Huo](z,t) = f(x,t), x€Qte(0,T),
up(z,t) =0, x€dQ,te(0,T),

with Hug](x,t) defined by the nonlocal operator (3.1) for a.e. € Q. Note that
ug is well defined for g merely in L2(0,T;C(Q)) (i.e., without requiring condition
(3.9)). Then we have

A(uo = uo,m) = C*[Hluo] — Hin[uo,m]]
= Cg? [Hin[uo] — Hun[uo,m]] + Cg =% [H[uo] — Hyn[uo]] -

(9.12)

(9.13)

As usual, by multiplying by wy — uo,, and applying Poincaré inequality we obtain
that g, — up in L?(0,T; Hi (Q2)) (recall the estimates given in Theorems [7.1| and
and the fact that the corresponding constants are uniform in m). Then, given
g € L*(0,T;C(Q)) and a test function v € L(0,T; H}(Q2)) we have

T
/ /(Pgug—ug)vdxdt
0o Ja
T T
:/ /(Psug fPeug’")vdxdth/ /(Psug’”fufm)vdxdt
0o Ja 0o Ja

T
—|—/ /(ugm—ug)vdxdt
0o Ja
=h+L+1

Thus, we obtain that for any d > 0, and for any £ > 0 there exists a mg € N such
that, for any m > mg, we have
|[I;] <06

(note that mg is independent on ¢ since g,,, — g in L?(0,T;C(Q)), estimate ([9.10)
and the continuous dependence estimate (9.11])). On the other hand, thanks to the
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fourth step, we know that for any § > 0, there exists g > 0 (independent on m)
such that for any € > ¢y, we have

|Iz] <0

(the independence on m of £y comes from the fact that the a priori estimates for

passing to the weak limit in Theorem are only dependent on ||g[/;2( 7.cc@)
and we know the uniform estimate (9.10)). Finally, we know that uf™ — u$ in
L?(0,T; H}(Q)) and thus, for any § > 0, there exists a 79 € N such that, for any
m > mg, we have
[I3] < 0.

In conclusion, for any § > 0, and for any € > ¢y we know that by taking as
intermediate step the approximation of ¢ by g,,, with m > max{mg, Mo}, we
obtain that

T
|/ /(Psug—ug)vdxdt’ < 34,
0o Jo

which implies the weak convergence for a boundary datum g € L?(0,T; C(Q)) and
the proof of Theorem [5.1]is complete.

Remark 9.2. Our treatment remains valid if G is the union of a finite family of
sets GJ', m = 1,2,..., M, satisfying the same geometric properties (especially the
critical size assumption . Indeed, the adaptation of the test function made in
Step 1 of the proof of Theorem [3.2]is local and can be done, separately over disjoint
neighborhoods of the associate GI*, m = 1,2, ..., M. In this way

Eler

M
H[¢|(z,t) = Z H,, [¢](z,t), with Hy,[¢](z,t) = / dywg'(x,y,t)dsy,
m=1

where wj'(y,t) is the corresponding solution of the associate problem (3.2)).

Remark 9.3. If n = 2, a. = eexp(—a?/e?) and u. is a weak solution of the
problem

—Aue = f(z,t), (2,t) € QL
B(e)Orus + dyue + B(e)o(z, us) = Ble)g(z,t), (z,t) € S: x (0,T),
u. =0, (z,t) €0Qx(0,T),
ue(x,0) =0, z€5,,

(9.14)

where 3(¢) = e exp(a?/e?), then, arguing as in [16] the pair (ug, H(up)), defined in
(2.9) and (3.1) respectively, is a weak solution of the problem

—Aug + Z—Z(uo(x,t) — Huo)(z,1)) = f(x,t), (x,t) € QT,
21

2m
O [UO] + OZ2|8G0| [U’O] + 0'(1‘, [UO]) g(x, t) + 042|8G0| U,

(9.15)
ze, te(0,T),

uop(z,t) =0, (z,t) € 00 x (0,7,
Hluo)(z,0) =0, =z €.
Remark 9.4. We point out that although we do not need to justify the existence

of solutions of problem (3.11)), since ug was built by passing to the limit in wu. ,
nevertheless it is useful to analyze some properties of the associated operators since
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they are useful , for instance, to the extension to the case in which f is merely in
LY(0,T; L'(Q)) following, for instance, the abstract results of [7]. The existence
of a weak solution to the problem follows from the monotonicity of H[¢]
understood in the sense of Theorem and the method of monotone operators. If
we introduce the operator A : L2(0,T; H}(Q)) — L?(0,T; H1(Q)) given by

(A(u),v) = VuVudz dt + C’g_g/ Hu|v dx dt,

QT T
then A is a monotone operator, since by Theorem

(Afw)~A(w),u—v) = [
Moreover, A is a coercive operator since

(A(w),u) = /Q (Ve dedt + Gy /Q HEudzdt > [0l 0.1,y

|V(ufv)|2dxdt+061_2/ (H[u]—H[v])(u—v) dz dt > 0.

T T

and hence
(A(u), u)

T2 HUHL2 0.T:HL(Q)) — OO
Hu||L2(O7T;Hé(Q)) (0,T5Hg () )
as ||U||L2(0,T;H3(Q)) — 00.

From (7.1)) we conclude that

T
| [ e dede < Kooy + lolboroa).  ©16)
Using this inequality we obtain
[(A(u),v)| < ||U||L(0,T;H3(Q))HU||L2(0,T;H3(Q)) + (lullz2(0,7:22(9))
+ 19l 20,7522 ) 1Vl 220,75 22 (02))

which proves that A is a nonlinear bounded operator. Notice that this also implies
the existence of a weak solution of (3.11)) even if f € L2(0,T; H=1(£2)) (see [21]).

Remark 9.5. We conjecture that the main result of this paper remains valid when
o :D(0) C R — P(R) is a maximal monotone graph of R? such that o(0) > 0 for
x € Q, as, for instance, o corresponds to the zero-order chemical reactions (a = 0)
or when o represents the case of Signorini type boundary conditions. By adapting
to this framework some abstract results on the Cauchy problem associated with
subdifferential operators (see, e.g., [I7, I8 B] and their references) it is possible
to prove that, for any £ > 0, problem has a unique strong solution and the
following estimate holds

e M|Osuell L2(0,1;2(5.)) + [te | L2(0,7: 51 (00 ,00)) F€ T uell L2 (0,152 (5. )) < K, (9.17)

where K is a constant independent on e. Indeed, such as shown in [I7] and [3],
we know that the operator u. — Odyu. + o(u.) is not only a maximal monotone
operator on L?(S.) (such as it can be deduced from the results of [21]) but, in fact,
it is the subdifferential of the convex function is the subdifferential of the lower
semicontinuous convex and proper function ®; : L?(S.) — R,

S Jo, IVuc|?de — &7 [, f(z t)ue(x)do + [ j(ve(0)) do
Dy (ve) = if u. € Hl(QE,aQ), Ue = Ve, J(Ve) € Ll(SE),

+o0  otherwise,
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for each ¢ € [0, T, where 9j(s) = o(s) for any s in the domain of o. Note that the
t-dependence in ®;(v.) because of the presence of the term f(z,t) satisfying ,
which obviously is independent on v.. Then, problem can be rewritten as a
particular case of an abstract Cauchy problem of the form

d;; +0®(v.) 2 g(.,t) in L*(S.), for t € (0,T),
v:(0) = 0.

Then, since v.(0) = 0 € D(®;), a.e. t € (0,T), and g € L?(0,T; L*(S.)), by [5
Théoréme 3.6] (if @, is time independent) or [30, Theorem 1] we know that the mild
solution v. € C([0,T); L?(S:)) of the Cauchy problem is, in fact, a strong
solution such that dé’f € L*(0,T;L?(S:)) and that the application t — ®;(v.) is
absolutely continuous on [0,7]. It seems possible to generalize all the arguments
used in this paper to get the conclusion of Theorem [5.1] That was carried out
in [I3] for the stationary case associated with by means of an argument of
regularization of o (as to be Lipschitz continuous) and then by passing to the
limit. Notice that all the arguments of the present paper were obtained directly for
the case of ¢ non-Lipschitz continuous but satisfying merely the Holder regularity
condition . The extension to the case ¢ a maximal monotone graph of RZ,
including in particular the case of Signorini type boundary conditions, will be the
object of a separated study.

(9.18)

Remark 9.6. Another possible generalization of the results of this paper concerns
the consideration of nonzero initial conditions in the formulation of problem ([2.2):

—Ague = fa,t), (z,t) € QF,
e 0ue + Opue + e Vo(u) = Vg(a,t), (x,t) € ST,
ue(x,t) =0, (x,t) €7,
us(x,0) = Up(x), x € Se,

(9.19)

for some Uy € H'Y?(S.), Uy # 0. Such as it was pointed out in [I4, Remark
B.2] a new curious “strange phenomenon” arise then: P.u. — U, weakly in
L?(0,T; HY(Q)), in fact U € C([0,T];Hg(£2)), the homogenized equation is ex-
actly of the same type than problem if t > 0 but, in general, U(z,0) # Up(x)
since U(x, 0) solves the modified problem

—AUo(x,0) + Ag(Up(z,0) — Up(z)) = f(z,0), z€Q,

2
Us(,0) =0, €9, (9:-20)

for a suitable constant Ag > 0. The main steps of the proof of this result (getting a
“linear strange term”) were indicated in [I4] (see, for instance, page 12 and notice
that in our case p = 2). To avoid additional technical details we are not developing
this property here. Notice that, in fact, if f(z,0) # 0, and Uy = 0 this “strange
initial datum” arises since ug(x,0) # 0 on €, even if u.(z,0) = 0 on S..

Remark 9.7. We point out that the extension of the results of this paper (with
particles of general shape) to the case in which the diffusion operator is replaced by
a degenerate quasilinear operator, as for instance the p-Laplacian operator A u =
div(]Vu|P~2Vu), remains as an open problem. As a matter of fact, it is already an
open problem for the easier case in which the boundary conditions on the boundary
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of the particles is not dynamic (see Remark 3.17 and Section 4.7.4 of [14]). For the
case of dynamic boundary conditions and particles given by balls see [26].
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