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POSITIVE SOLUTION CURVES OF AN INFINITE
SEMIPOSITONE PROBLEM

RAJENDRAN DHANYA

Communicated by Ratnasingham Shivagi

ABSTRACT. In this article we consider the infinite semipositone problem —Awu =
Af(u) in ©, a smooth bounded domain in RY, and v = 0 on 9Q, where
ft) =t —t% and 0 < ¢, B < 1. Using stability analysis we prove the
existence of a connected branch of maximal solutions emanating from infinity.
Under certain additional hypothesis on the extremal solution at A = A we
prove a version of Crandall-Rabinowitz bifurcation theorem which provides a
multiplicity result for A € (A, A +¢€).

1. INTRODUCTION

Consider the infinite semi-positone problem
—Au=Af(u) inQ
u>0 in (1.1)
u=0 on 0.

where f(t) =t7 —t7%, 0 < ¢g<1and 8 € (0,1) and A a positive parameter. Here
Q is assumed to be a bounded domain with smooth boundary in RY. Note that
f(0) = —co (hence the name infinite semipositone problem) and f is an increasing
concave function in R™. Finding a positive solution for semipositone problems are
always challenging and in fact proving the existence of multiple positive solutions
are even more difficult. The existence of a positive solution for when ) large is
studied using sub-super solutions technique in [I§]. Later in [I0], it was additionally
shown that when ) is large there exists a maximal positive solution for which
is in fact bounded below by the distance function d(z,d) = inf{|x — y| : y € 90N}.
The aim of this work is to further understand this maximal branch of solution of
(1.1)) which emanates from co.

Definition 1.1. We say u is a solution of (L.1)), if u € C?(Q) N C3(Q) and u(z) >
cd(x,00) for some positive constant ¢ = ¢(A).

Suppose that 0 is smooth and u is a solution of (Py), then the outward normal
derivative g—ﬁ(aco) < 0 for all zp € 012. Conversely if we assume that %L‘m <0

then by the tubular neighbourhood lemma u(x) > ¢, d(z, 99) for some ¢ > 0.
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Definition 1.2. Let S = {(A,uy) : uy is a solution to (1.1, as in Definition [1.1]}
and let A = inf{A > 0: (L.1) admits at least one solution}.

Definition 1.3. We say A, = oo is a bifurcation point at infinity for (1.1)) if there
exists a sequence (A,,uy, ) € S such that A\, — Ay and |Juy, || — oco.

The principal eigenvalue of the linearized operator associated to (|1.1)) is denoted
by A1(A) and defined as

my= et ([ 9eR=a [ ), (1.2)

eEH (), [l¢ll2=1

where u solves as in definition Since the solution u(x) behaves like d(x)
near 02, by Hardy’s inequality the term [, f/(u)¢® make sense. The functional
Jo IVel> = X [, f'(u)@? is bounded below and coercive on the set {¢ € Hg(Q) :
llell2 = 1} and hence a minimizer exists. Also one can show that A () satisfies the
differential equation —Ayp — Af’(u)) = A1(A\)9 for some non-negative ¢ € H}(Q).
We say that a solution u of is stable if Aj()) is strictly positive. Our main
result is the following theorem.

Theorem 1.4. Assume that Q is a bounded open set in R with smooth boundary
and consider the infinite semipositone problem (L.1) —Au = \(u? —u=?) in Q for
0<q,B<1andu=0 on 0N.

(a) There exists a A € (0,00) and for all X\ > A, there exists a mazimal positive
solution uy solving [L.1). And |[ur]eoc — 00 as A — oo, ie. A is a
bifurcation point at infinity. Also if X € (0,A), the problem does not
admit any positive solution.

(b) The mazimal solution wy is stable for all A > A.

(¢) There exists an unbounded connected branch C of solutions of em-
anating from (00,00) consisting of the mazimal solution wy. The map
(A,00) 2 X — uy is of class C? in R x C.(Q).

We prove results (a) and (b) in Section 2 (see Theorems and [2.5)). We intro-
duce the operator A and the space C,(Q) in section 3 and prove the differentiability
of the map A (in fact we prove A is a C? map) in the Appendix. Using the stability
analysis and smoothness of the map A we prove (¢) in Theorem Existence of a
positive solution for large A for similar problems are well studied in literature. For
example Shi-Yao[2I] and Herndndez et al. [16] consider the semipositone problem
of the type —Au = Au? — v~# with Dirichlet boundary condition in an arbitrary
smooth domain ) and establish the existence of positive solution bounded below
by the distance function using sub-super solution techniques. We also use similar
techniques to prove the existence of solution for large A, but here in this work we
additionally show that the maximal solution curve A — wu) is in fact smooth. Also
see [19, @ [T4] for related problems where they prove stability results for infinite
semipositone problems. In [2] the authors discuss a bifurcation phenomenon for
semipositone problems (f(0) € (—o00,0)) depending on the behaviour of f(t) at
infinity, i.e. depending on if f is sublinear, superlinear or asymptotically linear at
infinity. Positive solutions curves of concave semipositone problems are also studied
in [8] and [7].

In Section 4, existence of a non-negative weak solution at A = A is proved using
a limiting argument (see Proposition . We conclude our paper by proving the
following result.
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Theorem 1.5. FEither of the following two alternatives hold:

(a) The extremal solution up(x) does not belong to the interior of Ce(S2), or
(b) The point A = A is a bifurcation point, i.e. there exists a C* curve (\(s),u(s)) €
S where s € (—e, €) with A(0) = A, M'(0) =0, X' (0) <0 and u(0) = uy.

To the best of our knowledge a complete bifurcation diagram for semipositone
problem is understood in either of the following two situations: (a) in case of f(0) =
—oo and dimension N = 1 (see [I7]) or (b) in case of strictly semipositone problems,
i.e. —00 < f(0) < 0 in a ball (see [6]). In the latter work the results were obtained
by using shooting methods for ODE as any positive solution for a semipositone
problem in a ball is known to be radially symmetric. In Theorem we make an
attempt to understand the bifurcation curve in arbitrary domain €2 under certain
additional hypothesis on extremal function us. The second alternative gives a
precise description of the bifurcation branch at A = A. At least in dimension NV =1
and 8 € (0, %), it is clear from [I7, Theorem 2] that the first case does not arise.
The second alternative also suggests the existence of multiple positive solutions for
when A € (A, A + ¢) for some ¢ > 0. In fact the solution in the lower branch
(the non-maximal solution) is also bounded below by ¢(A)d(x,99). It is expected
that the solutions exhibit a ”free boundary” condition(i.e. a non negative solution
becomes zero in a set of positive measure) beyond A + €.

2. STABILITY ANALYSIS

Theorem 2.1. There exists a A € (0,00) and for all X\ > A, there exists a positive
function uy solving (1.1) as defined in . In fact, the function uy is the maximal

solution for (1.1)).

Proof. For A large enough the existence of a positive solution bounded below by

d(x,090) is obtained in Section 5 of [I0] for more general nonlinear function f.

Here we briefly explain the sub and supersolution to be chosen for our particular

nonlinearity f(t) = t? — t~?. Following the lines of proof of [10, Example 5.6]
2

we define 1 = A\'(¢1 + &, 7)), where ¢; is the first eigenfunction of —A, and
l<r< 1%%6 is chosen so that —Aw < (1?7 — 1p~8). We define a super-solution
¢ = vy where

—Avy =X in Q, vy =0on N (2.1)
Then we know that vy = AT v1 and hence for large A we have ¢ < ¢. Now by

[10, Theorem 5.5] there exists a maximal solution uy in the ordered interval [i, ¢].
Thus the solution is bounded below by 1 and hence

_1
ur(z) > =N(d1+¢;%7), ie |Jur]low — 00 as A — oo. (2.2)

Suppose u is a solution of . Then, —Au < Au? and by comparison [20]
Lemma 2.2] u < vy. Thus the uy that we constructed via sub-super solution is
in fact the maximal positive solution of (L.I). Now define A = inf{\A > 0 : (P))
admits at least one solution}. Next we claim that

0<A < oo (2.3)

Clearly from our previous discussion A < co. We shall now prove that A > 0.
Suppose on the contrary that A = 0, then there exists a sequence (Ap,,uy,,) € S
and \,, — 0. By comparison Lemma we have 0 < uy_, < vy, . Therefore for large
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1
m, since vy, = Am “v1 we have 0 < uy,, < 1and —Auy, = Ap(uf — u;f) < 0.
This leads to a contradiction, since by maximum principle any such solution w)
has to be necessarily negative and hence A > 0.

Next we claim that for any A > A there exists at least one solution for .
Fix A > A, then by definition there exists a A’ € (A, \) such that with A = X
admits at least one solution which we call ). Note that we do not claim ¥ is a
sub-solution for , but still we prove that there exists a uy > 1 solving .
Clearly, ¥ < vy < vy =: ug. Let

—Auy = Aul —uy”) inQ
u; =0 on ON.

m m

m

By the standard weak comparison principle for the functions in W?2?(Q) we obtain
u1 < ug. We claim that ¢ < u; < ug. In fact,

—A(uy — ) = Af(uo) — N f() = Af(¥) = XN f(¥)
A—=N
= (557 )VF@) = —A@w)
where 6 = (A — X')/X > 0. Thus once again by comparison method we prove the
claim. Iteratively if we define the sequence

~Atpyr = ANud —u;?) inQ

Up+1 =0 on 0.

by mathematical induction we can easily prove that
< Supyr Sup <ccug < .

Thanks to the lower and upper bound of the sequence {u,}, we have have u,, €
Cy7 () N C%(Q) (see [10, Theorem 5.2] and [13]). Hence the sequence {u,} is
bounded say in H}(Q) and if we define uy = lim,,_, Uy, then uy is the maximal

solution of (|1.1J). O

Our next aim is to prove that the principal eigenvalue of the linearized operator
about the maximal solution u) is positive. As a first step towards it we prove the
following proposition.

Proposition 2.2. The maximal solution uy is semi-stable or the principal eigen-
value of the linearized operator

M= it (96 [ fanet) zo.
peH (), llell2=1 \ Jq Q
Proof. For a fixed A > A we consider the e-approximate regular problem
—Aw=A((w+e)?—(w+e) ") inQ,
w>0 1in £, (2.4)
w=0 on JN.
Let
—Av =A(v5+€)?7inQ v >0inQ; o5 =0 on N
It is easy to check that v§ exists and v§ < vy, Note that uy and v§ are respectively

sub and super solutions of (2.4) and by standard monotone iteration there exists a
We € [uy,vy] solving (2.4). In fact we is the maximal solution of (2.4). By Hopf’s



EJDE-2018/178 POSITIVE SOLUTION CURVES 5

maximum principle for some #; > 0 we have w.(z) + 61d(z,0Q) < v§. Next we
observe that the sequence {w,} is bounded independent of e since

/ |Vw|? < A/ (we + 1)1 < A/ (vx + 1) < 0.
Q Q Q

Clearly w,. converges to some function @ which is a weak solution of ([1.1)) and
uy < w < vf. Since uy is the maximal solution of (|1.1)) we must have

liH(l) We = Uy. (2.5)

Let us write fc(t) = (t +¢€)7 — (t + €)=
Claim: A{(A\) = inf e i) pl=1 (Jo [VOI* = A [ fi(we)p?) > 0. On the con-

trary suppose that A§(\) < 0 and ¢, € H{ () be the associated non-negative
eigenfunction of

—Ape = Afl(we)pe = AT (N pe
We will show that (w. + 0¢) is a sub solution of (2.4). For a non-negative ¢ €
Hi(Q),

[ Vw000V - [ fulwe o000

Q Q

= /\/ fe(we)w - fe(we + 9‘106)@ + 9fé(we)90e€0 =+ 9Ai(>\) / PPe
Q Q

— o(6) + 0A(A) /Q oo

Choosing 6 > 0 small enough we have (w, + fy.) is a sub-solution of (2.4).

required we may choose 6 smaller so that wc(x) + ¢, < v§. Thus we + 0y, and v§
forms an ordered pair of sub and super solution of and we obtain a solution
We € [we + Ope,vy] of . This contradicts the fact that w,. is the maximal
solution of and hence the claim is verified. Thus for every ¢ € H}(Q) such

that ||¢|l2 = 1,
/WP A/f we)g? > 0.

Now passlng through the limit using and Hardy’s inequality we obtain that
Ai(A) > 0. O

Proposition 2.3. The semi-stable solution of (1.1) is unique.

Proof. Let uy be the maximal solution of (1.1)) and vy be any other solution of
(1.1)). We know that uy is semi-stable by Proposition and assume that vy is

also semi-stable. Then
/|Vw|2 > )\/ f(vy)w?
Q Q

for all w € H}(Q). In particular,

/ IV (1x — )2 > /\/ F(03)(tx — 13)2 (2.6)
Q Q

Since vy and uy are both the solutions of (1.1

[ 19 = u0)P =2 [ () = o)) s~ o) )
Q Q
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Combining the above two equations we have

/Q (F ) = F0r) — F'(on) (i — 0)}(aix — 3) > 0.

Since uy is the maximal solution this implies
[ ) = ) = ) = o)} - 02) 20,
{u,\>v/\}

Since f is strictly concave the above integral is strictly negative if the Lebesgue
measure of the set {z : ux(z) > vx(z)} is non-zero. Thus uy = vy, or the semi-
stable solution is unique. O

Next we shall prove our main result of this section, the maximal u) is stable.
We consider here a different approximate problem (2.8)) for a parameter 6 < 0.

—Az=A(27 - 2P 4 9)) inQ,
z>0 in{, (2.8)
z=0 on 0.

Lemma 2.4. For each 0 € (09,0) there exists a function zg which is a mazimal
solution of (2.8). If 6 < 0" then zg < z¢: and zg # 2o -

Proof. Fix a A € (A, 00) and choose A" € (A, \). Let
7AVA:>\iHQ; V)\:OiHaQ

and u) be the maximal solution of (1.1f). Define z, = %u;« — €V. Then for some
positive constants Cy, Co

A=
Ze — Uy = ( Y )u,\f — €V > (Cy — eCy) d(z, 09).

If we choose 0 < € < || for some small y < 0, we have z, > uy,. For all § € (6y,0)
define

A
Zg = yyux + OV. (2.9)

Then —Azy = Aul, —u}/” +6) < A28 —z,” +6) and hence a sub solution of (2-§).
It is easy to check that Zg = vy is a super solution of (2.8)) for all # < 0. Since
Uy < vy
A A A o 1
2o — Z0 = VN +0Vy —u\ < VUN T U= (y(x\')lﬂz - /\1*4)111 < 0.

Thus there exists a solution zg of (2.8)) in between the ordered pair [z4,Zg]. As before
using comparison lemma one can easily observe that zy is the maximal solution of
(2.8). Now let 6 < 0" and zp, zp- be the maximal solutions of (2.8)) and ([2.8) with
0 = 6’ respectively. Then

—Azg < Nz — z;ﬁ +60) and 2z < Zp.
Since zps is the maximal solution of (2.8 with 8 = 6’ we conclude that zg < zg:. O

Theorem 2.5. The mazimal solution uy of (1.1)) is stable.
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Proof. Let AY(\) denote the principal eigenvalue of (2.8). Repeating the calcula-
tions of Proposition [2.2] we can show that Af()\) > 0. If 01 < 6 using the strict
concavity of f and Lemma . we have for all ¢ € H}(Q), |l¢ll2 =1,

L ool =x [ 7ot < [ 1968 =2 [ Fenn)e?

Since inf e () o [Vel? = A [ f/(20)¢” is attained, we have A (N < A2 (N).
Observe that zg — uy as § — 0~ and limg_q- AY(\) = A;(A). Thus

Ar(2) > A{(A) 2 0

which is the main result. (I

3. BIFURCATION ANALYSIS

In the previous section we have shown that for each A > A there exists a maximal
solution for . In this section we try to understand this maximal branch of
solution using bifurcation theory. For A > A, consider the function wuy, which is
a solution of with A = X for some X € [A,A) and vy as in (2.1). To ease
notation we omit the subscript A and denote ¢ = ¥y = uy and ¢ = ¢ = vy, then
clearly ¥ < ¢. Let

Cr={ueCo(Q) 9 <u<g} (3.1)
For each u € Cy there exists w € C¢(Q) N C?(2) which is a solution of
—Aw = Af(u) in 2, w =0 on 9. (3.2)

The existence of w € W?2P(Q) easily follows from the lower estimate on u and
the regularity of w by [13] (see Section 5 of [I0] for the details). Since we would
repeatedly use the regularity result of Gui-Lin [I3], for the sake of completeness we
quote the result below.

Theorem 3.1 (Gui-Lin [I3, Prop. 3.4]). Let Q be a bounded Lipschitz domain in
R™, and suppose u € C?(2) N C(Q) satisfies

|Au(z)| < Md(x)™"  and |u(z)| < Md(z)®

for some positive constants M, . Then there exists some vy € (0,1) depending upon
B and o such that [[ul|c1.~ gy < C(M, o, B).

We can in fact prove that the solution w of (3.2)) belongs to Cy. One can observe
that w < ¢ since ¢ is a supersolution of (3.2)). It is not clear if ¥ is a sub solution
of (3.2)) or not. But still by the specific choice of ¥ we can show that

A ) = M) - Ng(w) 2 2K (-ap) (33)

Since A < A it follows that w > 1 and hence w € Cy. For a fixed A € (A, 00) we
define the map

A:Cyx — Cy is defined as A(u) = w if w is a solution of (3.2]). (3.4)

We aim to employ the well known abstract setting of bifurcation theory to prove
the existence of a connected branch of solutions. If we consider the map A:C) — C,
it is not possible to use the implicit function theorem since the set Cx C Co(Q) has
empty interior. Hence we introduce the space C,(f2) as in [1] and consider the set
Cx with the topology induced from C,(f2) in which Cy has nonempty interior.
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Let e € C?(2) denote the unique positive solution of
—Ae=1 inQ
e=0 on 0.

Then e(x) > 0 in Q, % < 0 on 0N and thus e(x) > kd(x,0%) for some constant
k> 0. Ce() is the set of functions in u € Cp(Q) such that —te < u < te for some
t > 0. C.(Q) equipped with [|ul|. = inf{t > 0: —te < u < te} is a Banach space.
Also the following continuous embedding holds:

C'é (ﬁ) s Ce(ﬁ) s Co(ﬁ).

Further C,(2) is an ordered Banach space(OBS) whose positive cone P, = {u €
Ce(Q) : u(z) > 0} is normal and has non empty interior. In particular the interior
of P, consists of all those functions u € C(Q) with t;e < u < tye for some ty,ts > 0.
Define

My={ueC.(Q) :¢<u<g} (3.5)
Using the lower and upper bounds for ¥ and ¢ in terms of d(z, Q) we find that set
theoretically Cy is same as M. But topologically they are different and in fact
M has non empty interior which we denote by Uy where

Uy ={ue My : Y +tie <u< ¢ —tae for some ty,ty > 0}. (3.6)

By definition the set U, is open and we denote the restriction of the map A to U),
as A itself. From (3.4) A maps Uy to Cy. In the next proposition we prove that A
maps Uy to itself and it is a C? map.

Proposition 3.2. The map AUy — Uy is twice continuously differentiable. The
map A'(u):Ce(2) — C() is continuous linear and compact.

Proof. Let u € Uy, i.e there exists some t1,t; > 0 such that ¥ +t1e < u < ¢ — tqe
and let A(u) = w. Then —A(w — ¢) < 0in Q and w — ¢ = 0 on 912, and by Hopf
Maximum principle there exists a fo > 0 for which w < ¢ — f3e. From our previous
discussion if we take #; = )‘*Tx we find w > 1 + te. Thus A maps U, into
itself. Proof of the smoothness of the map A and the compactness of A’(u) is much
technical and we shall give the details in the Appendix. ([

Next we shall treat A\ as a variable and define the map A:(A, 00) x Uy — Uy as
AN\ u) = w if w is a solution of

—Aw=Af(u) in Q, w =0 on 9N. (3.7)

Fix A1, A2 such that A < Ay < Ay < 0o. Then for all A € [A1, A2] we can in fact
fix the indexed set U independent of A in the following way. By the definition of
A there exists a X' € [A, A1) and with A = X is solvable. Let ¢ = uy and
¢ = vy, and let M and U, defined as before in and for this choice of
and ¢. Now U, is independent of A for all A € [A1, Az]. For this particular choice
of U = Uy we can prove that the map A is C? in X and u variable in (A1, \2) x U.

Theorem 3.3. There exists a connected branch of positive maximal solutions of

(1.1) bifurcating from Aoo = 0.

Proof. Fix an open interval I C (A, o00) and I compactly contained in (A, 00). Let
I = (A, A2) and ¥ = uy and ¢ = vy, as before. Thus for all A € I we define
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M ={u € Ce(Q): 1 <u< ¢} and U to be the interior of M. Consider the map
F:I xU — U defined as

F\u) =u— A\ u). (3.8)
Clearly the zeroes of F' are the solutions of and F(A,uy) = 0 where uy is the
maximal solution of (L.I)). Note that F:I x U — U is a C* map and 9, F(\, u) =
I — 9,A()\ u) is a compact perturbation of identity. Fix Ag € I and let ug = uy,
be the maximal solution of with A = Ao, then F'(A\g,ug) = 0. From Theorem
we know that ug is a stable solution and hence 9, F (Ao, ug) is one-one. Now by
Fredholm alternative it is onto as well. Thus the linear map 9, F (Ao, ug) is bijective
and continuous, hence by open mapping theorem 0, F (Ao, up) has a continuous
inverse. Now we can apply implicit function theorem around (Ao, ug) and deduce
that there exists a C? curve (A, u()\)) € (Ao — €, Ao + €) x U such that the set of all
solutions of F(A,u) = 0 in a neighbourhood of (Ag, up) is given by (A, u())). Note
that this u(\) may be different from the maximal solution wy.

If we can show that A — u) (where u) is the maximal solution) is continuous
then by the uniqueness of the solution near (A, ug) we have a u(A) = uy. On the
contrary suppose A —— wu) is not continuous at A\y. i.e. there exists a sequence
An — Ag such that uy, # ug. One can use Hardy’s inequality to prove that {uy, }
is bounded in H{ () and hence up to a sub sequence uy, — @ in H}(Q). It is
also easy to check that @ is a solution of (Py,). Since ug is the maximal solution of
(Py,) we have

4 <wuy and U F# ug. (3.9)
On the other hand we have u(\,,) — uo and u(\,) < uy, . Taking limit asn — oo we

find ug < @ which contradicts (3.9). We have now w(\) = uy and hence by implicit
function theorem A\ — wuy is a C? map which completes the proof of theorem. [

Remark 3.4. The smoothness of the map A — wuy for A € (A, 00) is completely
determined by the smoothness of the operator A. We can in fact prove that the
map is infinitely many times differentiable, hence A — uy is a C'°*° map.

The proof of our main result now follows from Theorem equations (2.2)),
(2.3), Theorems and Remark

4. BIFURCATION ANALYSIS AT A = A

Proposition 4.1. There exists a non-negative solution up solving (L.1)) with A = A
in the weak sense. The Lebesgue measure of the set {x : up(x) = 0} is zero.

Proof. Let {u,} denote the sequence of maximal solutions of (Py,) where A, | A
and A, < \. If 7 denote the solution of (2.1) for A = A, we have 0 < Uptl KUy < T
and

/ |Vu,|? = A\ / (udtt — =Py < N, [ wdtt <X [ Bt (4.1)

Q Q Q Q

Thus the sequence {u,} is bounded in H} () and denote the weak limit of u,, as
up = lim wuy,. (4.2)

We will show that uy is in fact a solution of ([1.1)) with A = A in the weak sense.
As a first step we shall prove that {z € Q : up(x) = 0} has Lebesgue measure zero.
Let ¢1 be the first eigenfunction of —A and v € (0,1),e > 0. Consider the function
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= (¢1+ €)Y — €’ € H}(Q). Then from a direct computation we find —Az) > 0
and hence < —Aup, ¥ >p1(q)xm-1(0)= 0 which implies

ul —y P . .
Thus
/ P (4 €7 — ) < / w8 (4 ) — ).
Q Q

Now letting e — 0 and v — 0 we have [,u,” < [jug < [,7? < co. Once again
using Fatou’s lemma,

/Q uy® < oo (4.4)

which in turn implies {x € Q : up(x) = 0} is of Lebesgue measure zero. Now we
will prove that up is a weak solution of ([1.1)) with A = A. We have

/ Vu,Vop =X\, / (ud —u,P)p for all o € C(Q).
Q Q

The only difficulty arises while passing through the limit in the term involving u.*.

But note that u;, ?|p| < uXﬁHgoHoo € L'(Q) and by dominated convergence theorem
up is a weak solution of (1.1) with A = A. O

Next we shall discuss a sufficient condition that ensures the existence of multiple
solutions for . We make a crucial assumption that the non-negative solution
up belongs to C.(2) and is bounded below by cd(z,99) for some ¢ > 0. By the
above assumption u, is positive and it can be shown that the with A = A
admits a unique positive solution. Indeed, if %, is another positive solution of
with A = A then we can show that a convex combination of us and iy is a
positive solution of with A = X for some A’ < A which is impossible (see [19]
Proposition 5] for details). Now the uniqueness in the class of positive solutions
imply that ua is maximal and by Proposition A1(A) = 0. Indeed, since up
is maximal it is clear that A;(A) > 0. Suppose Aj(A) > 0, then implicit function
theorem would guarantee the existence of a positive solution for some A < A which
would contradict the definition of A. Next we shall prove a local bifurcation result
of Crandall-Rabinowitz [3] for an infinite semipositone problem. Similar ideas of the
proof were used in [4] [T1] when the authors studied a positone convex non-linearity.

Lemma 4.2. The solutions of F'(A\,u) = 0 near (A,up) are described by a curve
(A(s),u(s)) = (A+7(s),up + séda + x(s)) where s — (7(s),2(s)) € R x Ce(Q) is
a continuously differentiable function near s = 0 with 7(0) = 7/(0) = 0, 77(0) > 0
and x(0) = 2'(0) = 0. Moreover T is of class C* near 0.
Proof. Consider the map F(\ u) and the Gateaux derivative of F at (A, uy).
Clearly O\F'(A,up) = —Or\A(A,up) = —%. Now consider the null space of the
linear operator 8, F'(A,uy). Since Aj(A) = 0, there exists a ¢pp € H}(Q) such that

—Adn = Af'(up)pa i Q,

oan =0 on 0.

By the interior regularity results the eigenfunction ¢, € C?(Q)NHg () itself. Now

by [12], Theorem 8.16], the principal eigenvalue A (A) is simple and the correspond-
ing eigenfunction ¢, is positive. Hence ker(9, F'(A,up)) is one dimensional and is
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spanned by ¢,. We claim that 9y F (A, up) & ker O, F'(A,up). If so, then for some
constant k we have uy = k¢p. This implies f(up) = kf’(up)pa which is impossible
since RHS is has a constant sign and LHS changes its sign inside {2 and hence that
ONF (A, up) & ker O, F (A, up).

Let X be any complement of the span of {¢5} in C.(Q) and the map 6:R x R x
X — C.(Q) be defined as

0(s,7,2) = F(A+ T,up + spp + )

Then, we claim that 0, ;6(0,0,0) = (Oz\F(A,ua), 0uF (A, up)) is an isomorphism
from Rx X on to X. Since O\F (A, up) & Range 0, F'(A, up) the map 9, ,60(0,0,0) is
one-one in R x X. Now by Fredholm alternative 9, ,60(0,0,0) is also onto. Now by
implicit function theorem there exists an € > 0 and a C? function p:(—¢,€) — Rx X
such that p(s) = (7(s),z(s)) and 0(s,p(s)) = 0, 7(0) = 0 and z(0) = 0. i.e.,
F(A+ 7(s),upn + séa + x(s)) = 0. Now differentiating with respect to s variable
and evaluating at s = 0, we obtain
ONF (A, up)T'(0) + 0, F (A, up)z’(0) = 0.

Since \F(A,up) ¢ Range(0,F(A,up)) we have 7/(0) = 2/(0) = 0. Once again
differentiating F'(A + 7(s), ua + s¢a + z(s)) we obtain

ONE (A, up)7"(0) + Ouu F (A, un) B3 + 0uF (A, up)z” (0) = 0. (4.5)

Let us write the middle term in the above expression as W = 0, F(A, u A)¢/2\~ Then
one can easily check that

AW = Af"(up)pa  in Q,
W =0 on 0f.
Since f is concave, by maximum principle W > 0. Now call w = 9, F (A, up)z"(0)
which by definition is equal to 2" (0) — O, A(A, up)z”(0). If wy = O, A(A, up)x”(0)
then w; solves
—Aw; = Af'(up)z”(0) in £,
w; =0 on 99.

Thus [, VwiVen = [ Af (ua)z”(0)¢a. From the definition of ¢, we also have
Jo VuiVon = [ Af'(up)wiga. Thus

/ Af’(uA)(,zSAw = 0.
Q

Now multiplying (4.5) by Af’(up)éa and integrating over €2,

—7(0) /Q unf(un)dn + /Q WAS (ur)éa = 0.

We know f is monotonically increasing and ¢p is a non-negative function and
W > 0. Thus 7”7 > 0 which completes the proof. O

Proof of Theorem[I.5. Suppose that alternative (a) does not hold. Then from the
properties of C () (see Section 3) there exists a constant ¢y > 0 such that up (z) >
cad(z,0Q). Thus Aq(A) is well defined and is non-negative. Now by the definition
of A the principal eigenvalue Aj(A) cannot be positive and hence the proof of
Lemma [4.2| is applicable and which completes the Theorem (I



12 R. DHANYA EJDE-2018/178

5. APPENDIX
Proposition 5.1. The map AUy — Uy is a C? map.

Proof. Let u € U, i.e. there exists some t1,t3 > 0 such that ¥ +tie < u < ¢ —toe
and let A(u) = w. Then —A(w — ¢) < 0 in Q and w — ¢ = 0 on 99, and by Hopf
Maximum principle there exists a to > 0 for which w < ¢ — fse. From our previous
discussion if we take t; = /\_T’\/ we find w > 1 + t1e. Thus A maps U, into
itself.

Step I. AUy — U, is continuous. Let h € C.(Q) with 17]|c, @) small so that u+h €
Uy and A(u+h) = wp,. Then (wy, —w) satisfies —A(wp, —w) = A (f(u+ h) — f(u))
in Q and wp, —w = 0 on 082 For p € (1, %) using LP estimate and dominated
convergence theorem we find

[wn —wlw2r@) < Clf(uth) = fW)lr@ =0 as|hle@—0  (5.1)

Now since wy, and w belongs to Uy we have |w;, — w| < Cd(z,0). Now we can
apply Theoremand obtain ||wy —w||c1.4 () is bounded. Thanks to Ascoli-Arzela
theorem and we have w;, — w in C}(Q). Finally using the continuity of the
embedding C3(Q) < C.(Q) we conclude that AUy — U, is continuous.

Step II. The map A:Uy — Uy is C. For a given u € Uy and h € C.(2) consider
the solution operator z defined as

—Az=Af'(u)hin Q and w =0 on ON. (5.2)
Let us denote &, € CL(Q2) N C?(Q) be the unique solution of

—A& =257 Q and & =0 on Q.

The existence and behaviour of the solution &, near 02 is studied in [B]. It is
well known that &, ~ d(z,09) and d(z,0Q) ~ e(x) and thus £\ ~ e(z). We can
estimate f’(u)h in terms of £, as
Cillklle @
7' (W] < Co.e@)™ V()| < ”g”[f“”
A

for some positive constant C;. Thus,
CrPAG < —Az = Af'(w)h < AC1[[h]|657 = —Cr|R]| Ay,
By the comparison principle and since &) (z) ~ e(x) we have for some C' > 0,
|2(2)] < Cllhlle, @el@) (5-3)

Now as in Step I, let w, = A(u + h) and w = A(u), then using Taylor’s theorem

2
—A(wp, —w —2) = A" (u+ Oh)% for some f(x) € (0,1).

Since | f"(u + 0h)h?| < C’Hh||20 (ﬁ)e(x)’ﬁ we have
wp —w—z
i w2 < ClAl

||
1le, e

Ce(Q)

Up to a sub sequence (w, —w —z2)/[|h||¢, ) converges to 0 as [[h| ) — 0. It can
be shown that |wy, —w — z|/[|h[| ¢, @) < Cd(z,0Q) and thus (w, —w —2)/[|h][c, )
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satisfies the assumptions of theorem [3.1] Hence,
wp — W

Now by using Ascoli-Arzela theorem and continuity of the embedding C3(Q) —

Ce(Q2) we deduce that ﬁjf};\lcw —= — 0 in C.(Q). If we call A'(u)h = 2 then

[A(u + h) — A(u) = A(u)hllc, @ = o(|]])-

Now from we note that A'(u):Ce(Q) — Ce(Q) is a bounded linear map and
hence the map A:U)x — U, is differentiable. It remains to show that A is con-
tinuously differentiable, i.e. v — A’(u) is continuous. Let @ € C,(f2) such that
l& —ul| < § and A'(a )h = % for some h € C.(Q). Using Taylor’s theorem there
exists some 6(z) € [u,a] and

—Z is bounded in C7(Q) (5.4)

(@) — £(w)] = A7) (i — u)h] < C(Oe)(ﬁﬂﬁll e, < Cg b, @)

where the constant C; is independent of u and @. As before estimating —A(Z
z) from above and below and using maximum principle we have |Z(z) — z(x)|
Cd||hlle(z). Now taking supremum over [|2[|o ) < 1 we have

A" (@) = A'(u)]| < Clli = ull ¢, g,
and thus A is continuously differentiable.

Step III. The map A is C2. Now that we have proved AUy — U, is C', using
the same idea we can prove that A is twice continuously differentiable.In order to
avoid the repetition of the same arguments we skip the details of the proof of step
I11. O

From of above proposition we know that ||W|WHCM(§) is bounded and

similarly ”HTHwHCM is also bounded. So

<

HA/(u)h”clw(ﬁ = ||Z||cl~w(§ < flwn —w— Z”cm@) + flwn — w”cl.w(ﬁ)
w—z wp, — W
= Hh””W”CM@) + ||hH||W||clw(ﬁ)
< M|hllc, @

which implies A’(u) € BL(C.(Q),C17(Q)) and hence A'(u):C.(Q) — C.(Q) is
compact.

Corollary 5.2. A'(u):C.(Q) — C.(2) is continuous linear and compact.
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