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Abstract. In this article we consider the infinite semipositone problem−∆u =

λf(u) in Ω, a smooth bounded domain in RN , and u = 0 on ∂Ω, where
f(t) = tq − t−β and 0 < q, β < 1. Using stability analysis we prove the

existence of a connected branch of maximal solutions emanating from infinity.

Under certain additional hypothesis on the extremal solution at λ = Λ we
prove a version of Crandall-Rabinowitz bifurcation theorem which provides a

multiplicity result for λ ∈ (Λ,Λ + ε).

1. Introduction

Consider the infinite semi-positone problem
−∆u = λf(u) in Ω

u > 0 in Ω
u = 0 on ∂Ω.

(1.1)

where f(t) = tq − t−β , 0 < q < 1 and β ∈ (0, 1) and λ a positive parameter. Here
Ω is assumed to be a bounded domain with smooth boundary in RN . Note that
f(0) = −∞ (hence the name infinite semipositone problem) and f is an increasing
concave function in R+. Finding a positive solution for semipositone problems are
always challenging and in fact proving the existence of multiple positive solutions
are even more difficult. The existence of a positive solution for (1.1) when λ large is
studied using sub-super solutions technique in [18]. Later in [10], it was additionally
shown that when λ is large there exists a maximal positive solution for (1.1) which
is in fact bounded below by the distance function d(x, ∂Ω) = inf{|x− y| : y ∈ ∂Ω}.
The aim of this work is to further understand this maximal branch of solution of
(1.1) which emanates from ∞.

Definition 1.1. We say u is a solution of (1.1), if u ∈ C2(Ω) ∩C1
0 (Ω) and u(x) ≥

c d(x, ∂Ω) for some positive constant c = c(λ).

Suppose that ∂Ω is smooth and u is a solution of (Pλ), then the outward normal
derivative ∂u

∂ν (x0) < 0 for all x0 ∈ ∂Ω. Conversely if we assume that ∂u
∂ν

∣∣
∂Ω

< 0
then by the tubular neighbourhood lemma u(x) ≥ c, d(x, ∂Ω) for some c > 0.
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Definition 1.2. Let S = {(λ, uλ) : uλ is a solution to (1.1), as in Definition 1.1}
and let Λ = inf{λ > 0 : (1.1) admits at least one solution}.

Definition 1.3. We say λ∞ =∞ is a bifurcation point at infinity for (1.1) if there
exists a sequence (λn, uλn) ∈ S such that λn → λ∞ and ‖uλn‖ → ∞.

The principal eigenvalue of the linearized operator associated to (1.1) is denoted
by Λ1(λ) and defined as

Λ1(λ) = inf
ϕ∈H1

0 (Ω),‖ϕ‖2=1

(∫
Ω

|∇ϕ|2 − λ
∫

Ω

f ′(u)ϕ2
)
. (1.2)

where u solves (1.1) as in definition 1.1. Since the solution u(x) behaves like d(x)
near ∂Ω, by Hardy’s inequality the term

∫
Ω
f ′(u)ϕ2 make sense. The functional∫

Ω
|∇ϕ|2 − λ

∫
Ω
f ′(u)ϕ2 is bounded below and coercive on the set {ϕ ∈ H1

0 (Ω) :
‖ϕ‖2 = 1} and hence a minimizer exists. Also one can show that Λ1(λ) satisfies the
differential equation −∆ψ − λf ′(u)ψ = Λ1(λ)ψ for some non-negative ψ ∈ H1

0 (Ω).
We say that a solution u of (1.1) is stable if Λ1(λ) is strictly positive. Our main
result is the following theorem.

Theorem 1.4. Assume that Ω is a bounded open set in RN with smooth boundary
and consider the infinite semipositone problem (1.1) −∆u = λ(uq − u−β) in Ω for
0 < q, β < 1 and u = 0 on ∂Ω.

(a) There exists a Λ ∈ (0,∞) and for all λ > Λ, there exists a maximal positive
solution uλ solving (1.1). And ‖uλ‖∞ → ∞ as λ → ∞, i.e. λ∞ is a
bifurcation point at infinity. Also if λ ∈ (0,Λ), the problem (1.1) does not
admit any positive solution.

(b) The maximal solution uλ is stable for all λ > Λ.
(c) There exists an unbounded connected branch C of solutions of (1.1) em-

anating from (∞,∞) consisting of the maximal solution uλ. The map
(Λ,∞) 3 λ→ uλ is of class C2 in R× Ce(Ω).

We prove results (a) and (b) in Section 2 (see Theorems 2.1 and 2.5). We intro-
duce the operator A and the space Ce(Ω) in section 3 and prove the differentiability
of the map A (in fact we prove A is a C2 map) in the Appendix. Using the stability
analysis and smoothness of the map A we prove (c) in Theorem 3.3. Existence of a
positive solution for large λ for similar problems are well studied in literature. For
example Shi-Yao[21] and Hernández et al. [16] consider the semipositone problem
of the type −∆u = λuq − u−β with Dirichlet boundary condition in an arbitrary
smooth domain Ω and establish the existence of positive solution bounded below
by the distance function using sub-super solution techniques. We also use similar
techniques to prove the existence of solution for large λ, but here in this work we
additionally show that the maximal solution curve λ→ uλ is in fact smooth. Also
see [19, 9, 14] for related problems where they prove stability results for infinite
semipositone problems. In [2] the authors discuss a bifurcation phenomenon for
semipositone problems (f(0) ∈ (−∞, 0)) depending on the behaviour of f(t) at
infinity, i.e. depending on if f is sublinear, superlinear or asymptotically linear at
infinity. Positive solutions curves of concave semipositone problems are also studied
in [8] and [7].

In Section 4, existence of a non-negative weak solution at λ = Λ is proved using
a limiting argument (see Proposition 4.1). We conclude our paper by proving the
following result.



EJDE-2018/178 POSITIVE SOLUTION CURVES 3

Theorem 1.5. Either of the following two alternatives hold:
(a) The extremal solution uΛ(x) does not belong to the interior of Ce(Ω), or
(b) The point λ = Λ is a bifurcation point, i.e. there exists a C2 curve (λ(s), u(s)) ∈
S where s ∈ (−ε, ε) with λ(0) = Λ, λ′(0) = 0, λ′′(0) < 0 and u(0) = uΛ.

To the best of our knowledge a complete bifurcation diagram for semipositone
problem is understood in either of the following two situations: (a) in case of f(0) =
−∞ and dimension N = 1 (see [17]) or (b) in case of strictly semipositone problems,
i.e. −∞ < f(0) < 0 in a ball (see [6]). In the latter work the results were obtained
by using shooting methods for ODE as any positive solution for a semipositone
problem in a ball is known to be radially symmetric. In Theorem 1.5 we make an
attempt to understand the bifurcation curve in arbitrary domain Ω under certain
additional hypothesis on extremal function uΛ. The second alternative gives a
precise description of the bifurcation branch at λ = Λ. At least in dimension N = 1
and β ∈ (0, 1

2 ), it is clear from [17, Theorem 2] that the first case does not arise.
The second alternative also suggests the existence of multiple positive solutions for
(1.1) when λ ∈ (Λ,Λ + ε) for some ε > 0. In fact the solution in the lower branch
(the non-maximal solution) is also bounded below by c̃(λ)d(x, ∂Ω). It is expected
that the solutions exhibit a ”free boundary” condition(i.e. a non negative solution
becomes zero in a set of positive measure) beyond Λ + ε.

2. Stability analysis

Theorem 2.1. There exists a Λ ∈ (0,∞) and for all λ > Λ, there exists a positive
function uλ solving (1.1) as defined in 1.1. In fact, the function uλ is the maximal
solution for (1.1).

Proof. For λ large enough the existence of a positive solution bounded below by
d(x, ∂Ω) is obtained in Section 5 of [10] for more general nonlinear function f .
Here we briefly explain the sub and supersolution to be chosen for our particular
nonlinearity f(t) = tq − t−β . Following the lines of proof of [10, Example 5.6]

we define ψ = λr(φ1 + φ
2

1+β
1 ), where φ1 is the first eigenfunction of −∆, and

1 < r < 1
1−q+ε is chosen so that −∆ψ ≤ λ(ψq − ψ−β). We define a super-solution

φ = vλ where
−∆vλ = λvqλ in Ω, vλ = 0 on ∂Ω. (2.1)

Then we know that vλ = λ
1

1−q v1 and hence for large λ we have ψ ≤ φ. Now by
[10, Theorem 5.5] there exists a maximal solution uλ in the ordered interval [ψ, φ].
Thus the solution is bounded below by ψ and hence

uλ(x) ≥ ψ = λr(φ1 + φ
1

1+β
1 ), i.e. ‖uλ‖∞ →∞ as λ→∞. (2.2)

Suppose u is a solution of (1.1). Then, −∆u ≤ λuq and by comparison [20,
Lemma 2.2] u ≤ vλ. Thus the uλ that we constructed via sub-super solution is
in fact the maximal positive solution of (1.1). Now define Λ = inf{λ > 0 : (Pλ)
admits at least one solution}. Next we claim that

0 < Λ <∞. (2.3)

Clearly from our previous discussion Λ < ∞. We shall now prove that Λ > 0.
Suppose on the contrary that Λ = 0, then there exists a sequence (λm, uλm) ∈ S
and λm → 0. By comparison Lemma we have 0 < uλm ≤ vλm . Therefore for large



4 R. DHANYA EJDE-2018/178

m, since vλm = λ
1

1−q
m v1 we have 0 < uλm < 1 and −∆uλm = λm(uqλm − u

−β
λm

) < 0.
This leads to a contradiction, since by maximum principle any such solution uλm
has to be necessarily negative and hence Λ > 0.

Next we claim that for any λ > Λ there exists at least one solution for (1.1).
Fix λ > Λ, then by definition there exists a λ′ ∈ (Λ, λ) such that (1.1) with λ = λ′

admits at least one solution which we call ψ. Note that we do not claim ψ is a
sub-solution for (1.1), but still we prove that there exists a uλ > ψ solving (1.1).
Clearly, ψ < vλ′ < vλ =: u0. Let

−∆u1 = λ(uq0 − u
−β
0 ) in Ω

u1 = 0 on ∂Ω.

By the standard weak comparison principle for the functions in W 2,p(Ω) we obtain
u1 < u0. We claim that ψ < u1 < u0. In fact,

−∆(u1 − ψ) = λf(u0)− λ′f(ψ) ≥ λf(ψ)− λ′f(ψ)

=
(λ− λ′

λ′

)
λ′f(ψ) = −∆(δψ)

where δ = (λ − λ′)/λ′ > 0. Thus once again by comparison method we prove the
claim. Iteratively if we define the sequence

−∆un+1 = λ(uqn − u−βn ) in Ω
un+1 = 0 on ∂Ω.

by mathematical induction we can easily prove that

ψ < · · · ≤ un+1 ≤ un ≤ · · ·u1 < u0.

Thanks to the lower and upper bound of the sequence {un}, we have have un ∈
C1,γ

0 (Ω) ∩ C2(Ω) (see [10, Theorem 5.2] and [13]). Hence the sequence {un} is
bounded say in H1

0 (Ω) and if we define uλ = limn→∞ un, then uλ is the maximal
solution of (1.1). �

Our next aim is to prove that the principal eigenvalue of the linearized operator
about the maximal solution uλ is positive. As a first step towards it we prove the
following proposition.

Proposition 2.2. The maximal solution uλ is semi-stable or the principal eigen-
value of the linearized operator

Λ1(λ) = inf
ϕ∈H1

0 (Ω),‖ϕ‖2=1

(∫
Ω

|∇ϕ|2 − λ
∫

Ω

f ′(uλ)ϕ2
)
≥ 0 .

Proof. For a fixed λ > Λ we consider the ε-approximate regular problem

−∆w = λ
(
(w + ε)q − (w + ε)−β)

)
in Ω,

w > 0 in Ω,
w = 0 on ∂Ω.

(2.4)

Let
−∆vελ = λ(vελ + ε)q in Ω vελ > 0 in Ω; vελ = 0 on ∂Ω.

It is easy to check that vελ exists and vελ < vλ, Note that uλ and vελ are respectively
sub and super solutions of (2.4) and by standard monotone iteration there exists a
wε ∈ [uλ, vλ] solving (2.4). In fact wε is the maximal solution of (2.4). By Hopf’s
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maximum principle for some θ1 > 0 we have wε(x) + θ1d(x, ∂Ω) ≤ vελ. Next we
observe that the sequence {wε} is bounded independent of ε since∫

Ω

|∇wε|2 ≤ λ
∫

Ω

(wε + 1)q+1 ≤ λ
∫

Ω

(vλ + 1)q+1 <∞.

Clearly wε converges to some function w̃ which is a weak solution of (1.1) and
uλ ≤ w̃ ≤ vελ. Since uλ is the maximal solution of (1.1) we must have

lim
ε→0

wε = uλ. (2.5)

Let us write fε(t) = (t+ ε)q − (t+ ε)−β .
Claim: Λε1(λ) = infϕ∈H1

0 (Ω),‖ϕ‖2=1

(∫
Ω
|∇ϕ|2 − λ

∫
Ω
f ′ε(wε)ϕ

2
)
≥ 0. On the con-

trary suppose that Λε1(λ) < 0 and ϕε ∈ H1
0 (Ω) be the associated non-negative

eigenfunction of
−∆ϕε − λf ′ε(wε)ϕε = Λε1(λ)ϕε.

We will show that (wε + θϕε) is a sub solution of (2.4). For a non-negative ϕ ∈
H1

0 (Ω), ∫
Ω

∇(wε + θϕε)∇ϕ− λ
∫

Ω

fε(wε + θϕε)ϕ

= λ

∫
Ω

fε(wε)ϕ− fε(wε + θϕe)ϕ+ θf ′ε(wε)ϕεϕ+ θΛε1(λ)
∫

Ω

ϕϕe

= o(θ) + θΛε1(Λ)
∫

Ω

ϕϕε

Choosing θ > 0 small enough we have (wε + θϕε) is a sub-solution of (2.4). If
required we may choose θ smaller so that wε(x) + θϕε ≤ vελ. Thus wε + θϕε and vελ
forms an ordered pair of sub and super solution of (2.4) and we obtain a solution
w̃ε ∈ [wε + θϕε, vλ] of (2.4). This contradicts the fact that wε is the maximal
solution of (2.4) and hence the claim is verified. Thus for every ϕ ∈ H1

0 (Ω) such
that ‖ϕ‖2 = 1, ∫

Ω

|∇ϕ|2 − λ
∫

Ω

f ′ε(wε)ϕ
2 ≥ 0.

Now passing through the limit using (2.5) and Hardy’s inequality we obtain that
Λ1(λ) ≥ 0. �

Proposition 2.3. The semi-stable solution of (1.1) is unique.

Proof. Let uλ be the maximal solution of (1.1) and vλ be any other solution of
(1.1). We know that uλ is semi-stable by Proposition 2.2 and assume that vλ is
also semi-stable. Then ∫

Ω

|∇w|2 ≥ λ
∫

Ω

f ′(vλ)w2

for all w ∈ H1
0 (Ω). In particular,∫

Ω

|∇(uλ − vλ)|2 ≥ λ
∫

Ω

f ′(vλ)(uλ − vλ)2. (2.6)

Since vλ and uλ are both the solutions of (1.1)∫
Ω

|∇(uλ − vλ)|2 = λ

∫
Ω

(f(uλ)− f(vλ))(uλ − vλ). (2.7)
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Combining the above two equations we have∫
Ω

{f(uλ)− f(vλ)− f ′(vλ)(uλ − vλ)}(uλ − vλ) ≥ 0.

Since uλ is the maximal solution this implies∫
{uλ>vλ}

{f(uλ)− f(vλ)− f ′(vλ)(uλ − vλ)} (uλ − vλ) ≥ 0.

Since f is strictly concave the above integral is strictly negative if the Lebesgue
measure of the set {x : uλ(x) > vλ(x)} is non-zero. Thus uλ ≡ vλ, or the semi-
stable solution is unique. �

Next we shall prove our main result of this section, the maximal uλ is stable.
We consider here a different approximate problem (2.8) for a parameter θ < 0.

−∆z = λ
(
zq − z−β + θ)

)
in Ω,

z > 0 in Ω,
z = 0 on ∂Ω.

(2.8)

Lemma 2.4. For each θ ∈ (θ0, 0) there exists a function zθ which is a maximal
solution of (2.8). If θ < θ′ then zθ ≤ zθ′ and zθ 6= zθ′ .

Proof. Fix a λ ∈ (Λ,∞) and choose λ′ ∈ (Λ, λ). Let

−∆Vλ = λ in Ω; Vλ = 0 in ∂Ω

and uλ be the maximal solution of (1.1). Define zε = λ
λ′uλ′ − εVλ. Then for some

positive constants C1, C2

zε − uλ′ =
(λ− λ′

λ′

)
uλ′ − εVλ ≥ (C1 − εC2) d(x, ∂Ω).

If we choose 0 < ε < |θ0| for some small θ0 < 0, we have zε > uλ′ . For all θ ∈ (θ0, 0)
define

zθ =
λ

λ′
uλ′ + θVλ. (2.9)

Then −∆zθ = λ(uqλ′−u
−β
λ′ +θ) ≤ λ(zqθ−z

−β
θ +θ) and hence a sub solution of (2.8).

It is easy to check that zθ = vλ is a super solution of (2.8) for all θ < 0. Since
uλ′ < vλ′

zθ − zθ =
λ

λ′
uλ′ + θVλ − vλ <

λ

λ′
vλ′ − vλ =

( λ
λ′

(λ′)
1

1−q − λ
1

1−q

)
v1 < 0.

Thus there exists a solution zθ of (2.8) in between the ordered pair [zθ, zθ]. As before
using comparison lemma one can easily observe that zθ is the maximal solution of
(2.8). Now let θ < θ′ and zθ, zθ′ be the maximal solutions of (2.8) and (2.8) with
θ = θ′ respectively. Then

−∆zθ ≤ λ(zqθ − z
−β
θ + θ′) and zθ ≤ zθ′ .

Since zθ′ is the maximal solution of (2.8) with θ = θ′ we conclude that zθ ≤ zθ′ . �

Theorem 2.5. The maximal solution uλ of (1.1) is stable.
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Proof. Let Λθ1(λ) denote the principal eigenvalue of (2.8). Repeating the calcula-
tions of Proposition 2.2 we can show that Λθ1(λ) ≥ 0. If θ1 < θ2 using the strict
concavity of f and Lemma 2.4 we have for all ϕ ∈ H1

0 (Ω), ‖ϕ‖2 = 1,∫
Ω

|∇ϕ|2 − λ
∫

Ω

f ′(zθ1)ϕ2 <

∫
Ω

|∇ϕ|2 − λ
∫

Ω

f ′(zθ2)ϕ2.

Since infϕ∈H1
0 (Ω)

∫
Ω
|∇ϕ|2 − λ

∫
Ω
f ′(zθ)ϕ2 is attained, we have Λθ11 (λ) < Λθ21 (λ).

Observe that zθ → uλ as θ → 0− and limθ→0− Λθ1(λ) = Λ1(λ). Thus

Λ1(λ) > Λθ1(λ) ≥ 0

which is the main result. �

3. Bifurcation analysis

In the previous section we have shown that for each λ > Λ there exists a maximal
solution for (1.1). In this section we try to understand this maximal branch of
solution using bifurcation theory. For λ > Λ, consider the function uλ′ which is
a solution of (1.1) with λ = λ′ for some λ′ ∈ [Λ, λ) and vλ as in (2.1). To ease
notation we omit the subscript λ and denote ψ = ψλ = uλ′ and φ = φλ = vλ, then
clearly ψ < φ. Let

Cλ = {u ∈ C0(Ω) : ψ ≤ u ≤ φ}. (3.1)
For each u ∈ Cλ there exists w ∈ C1

0 (Ω) ∩ C2(Ω) which is a solution of

−∆w = λf(u) in Ω, w = 0 on ∂Ω. (3.2)

The existence of w ∈ W 2,p(Ω) easily follows from the lower estimate on u and
the regularity of w by [13] (see Section 5 of [10] for the details). Since we would
repeatedly use the regularity result of Gui-Lin [13], for the sake of completeness we
quote the result below.

Theorem 3.1 (Gui-Lin [13, Prop. 3.4]). Let Ω be a bounded Lipschitz domain in
Rn, and suppose u ∈ C2(Ω) ∩ C(Ω) satisfies

|∆u(x)| ≤Md(x)−β and |u(x)| ≤Md(x)α

for some positive constants M,α. Then there exists some γ ∈ (0, 1) depending upon
β and α such that ‖u‖C1,γ(Ω) ≤ C(M,α, β).

We can in fact prove that the solution w of (3.2) belongs to Cλ. One can observe
that w ≤ φ since φ is a supersolution of (3.2). It is not clear if ψ is a sub solution
of (3.2) or not. But still by the specific choice of ψ we can show that

−∆(w − ψ) = λf(u)− λ′g(ψ) ≥ λ− λ′

λ′
(−∆ψ) (3.3)

Since λ′ < λ it follows that w > ψ and hence w ∈ Cλ. For a fixed λ ∈ (Λ,∞) we
define the map

A:Cλ → Cλ is defined as A(u) = w if w is a solution of (3.2). (3.4)

We aim to employ the well known abstract setting of bifurcation theory to prove
the existence of a connected branch of solutions. If we consider the map A:Cλ → Cλ
it is not possible to use the implicit function theorem since the set Cλ ⊂ C0(Ω) has
empty interior. Hence we introduce the space Ce(Ω) as in [1] and consider the set
Cλ with the topology induced from Ce(Ω) in which Cλ has nonempty interior.
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Let e ∈ C2(Ω) denote the unique positive solution of

−∆e = 1 in Ω
e = 0 on ∂Ω.

Then e(x) > 0 in Ω, ∂e
∂ν < 0 on ∂Ω and thus e(x) ≥ kd(x, ∂Ω) for some constant

k > 0. Ce(Ω) is the set of functions in u ∈ C0(Ω) such that −te ≤ u ≤ te for some
t ≥ 0. Ce(Ω) equipped with ‖u‖e = inf{t > 0 : −te ≤ u ≤ te} is a Banach space.
Also the following continuous embedding holds:

C1
0 (Ω) ↪→ Ce(Ω) ↪→ C0(Ω).

Further Ce(Ω) is an ordered Banach space(OBS) whose positive cone Pe = {u ∈
Ce(Ω) : u(x) ≥ 0} is normal and has non empty interior. In particular the interior
of Pe consists of all those functions u ∈ C(Ω) with t1e ≤ u ≤ t2e for some t1, t2 > 0.
Define

Mλ = {u ∈ Ce(Ω) : ψ ≤ u ≤ φ} (3.5)

Using the lower and upper bounds for ψ and φ in terms of d(x,Ω) we find that set
theoretically Cλ is same as Mλ. But topologically they are different and in fact
Mλ has non empty interior which we denote by Uλ where

Uλ = {u ∈Mλ : ψ + t1e ≤ u ≤ φ− t2e for some t1, t2 > 0}. (3.6)

By definition the set Uλ is open and we denote the restriction of the map A to Uλ
as A itself. From (3.4) A maps Uλ to Cλ. In the next proposition we prove that A
maps Uλ to itself and it is a C2 map.

Proposition 3.2. The map A:Uλ → Uλ is twice continuously differentiable. The
map A′(u):Ce(Ω)→ Ce(Ω) is continuous linear and compact.

Proof. Let u ∈ Uλ, i.e there exists some t1, t2 > 0 such that ψ + t1e ≤ u ≤ φ− t2e
and let A(u) = w. Then −∆(w − φ) < 0 in Ω and w − φ = 0 on ∂Ω, and by Hopf
Maximum principle there exists a t̃2 > 0 for which w ≤ φ− t̃2e. From our previous
discussion (3.3) if we take t̃1 = λ−λ′

λ we find w ≥ ψ + t̃1e. Thus A maps Uλ into
itself. Proof of the smoothness of the map A and the compactness of A′(u) is much
technical and we shall give the details in the Appendix. �

Next we shall treat λ as a variable and define the map A:(Λ,∞) × Uλ → Uλ as
A(λ, u) = w if w is a solution of

−∆w = λf(u) in Ω, w = 0 on ∂Ω. (3.7)

Fix λ1, λ2 such that Λ < λ1 < λ2 < ∞. Then for all λ ∈ [λ1, λ2] we can in fact
fix the indexed set Uλ independent of λ in the following way. By the definition of
Λ there exists a λ′ ∈ [Λ, λ1) and (1.1) with λ = λ′ is solvable. Let ψ = uλ′ and
φ = vλ2 and letMλ and Uλ defined as before in (3.5) and (3.6) for this choice of ψ
and φ. Now Uλ is independent of λ for all λ ∈ [λ1, λ2]. For this particular choice
of U = Uλ we can prove that the map A is C2 in λ and u variable in (λ1, λ2)× U .

Theorem 3.3. There exists a connected branch of positive maximal solutions of
(1.1) bifurcating from λ∞ =∞.

Proof. Fix an open interval I ⊂ (Λ,∞) and I compactly contained in (Λ,∞). Let
I = (λ1, λ2) and ψ = uλ′ and φ = vλ2 as before. Thus for all λ ∈ I we define
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M = {u ∈ Ce(Ω) : ψ ≤ u ≤ φ} and U to be the interior of M. Consider the map
F :I × U → U defined as

F (λ, u) = u−A(λ, u). (3.8)

Clearly the zeroes of F are the solutions of (1.1) and F (λ, uλ) = 0 where uλ is the
maximal solution of (1.1). Note that F :I × U → U is a C2 map and ∂uF (λ, u) =
I − ∂uA(λ, u) is a compact perturbation of identity. Fix λ0 ∈ I and let u0 = uλ0

be the maximal solution of (1.1) with λ = λ0, then F (λ0, u0) = 0. From Theorem
2.5 we know that u0 is a stable solution and hence ∂uF (λ0, u0) is one-one. Now by
Fredholm alternative it is onto as well. Thus the linear map ∂uF (λ0, u0) is bijective
and continuous, hence by open mapping theorem ∂uF (λ0, u0) has a continuous
inverse. Now we can apply implicit function theorem around (λ0, u0) and deduce
that there exists a C2 curve (λ, u(λ)) ∈ (λ0 − ε, λ0 + ε)×U such that the set of all
solutions of F (λ, u) = 0 in a neighbourhood of (λ0, u0) is given by (λ, u(λ)). Note
that this u(λ) may be different from the maximal solution uλ.

If we can show that λ 7−→ uλ (where uλ is the maximal solution) is continuous
then by the uniqueness of the solution near (λ0, u0) we have a u(λ) = uλ. On the
contrary suppose λ 7−→ uλ is not continuous at λ0. i.e. there exists a sequence
λn → λ0 such that uλn 6→ u0. One can use Hardy’s inequality to prove that {uλn}
is bounded in H1

0 (Ω) and hence up to a sub sequence uλn ⇀ ũ in H1
0 (Ω). It is

also easy to check that ũ is a solution of (Pλ0). Since u0 is the maximal solution of
(Pλ0) we have

ũ ≤ u0 and ũ 6= u0. (3.9)

On the other hand we have u(λn)→ u0 and u(λn) ≤ uλn . Taking limit as n→∞ we
find u0 ≤ ũ which contradicts (3.9). We have now u(λ) = uλ and hence by implicit
function theorem λ→ uλ is a C2 map which completes the proof of theorem. �

Remark 3.4. The smoothness of the map λ → uλ for λ ∈ (Λ,∞) is completely
determined by the smoothness of the operator A. We can in fact prove that the
map is infinitely many times differentiable, hence λ→ uλ is a C∞ map.

The proof of our main result now follows from Theorem 2.1, equations (2.2),
(2.3), Theorems 2.5, 3.3 and Remark 3.4.

4. Bifurcation analysis at λ = Λ

Proposition 4.1. There exists a non-negative solution uΛ solving (1.1) with λ = Λ
in the weak sense. The Lebesgue measure of the set {x : uΛ(x) = 0} is zero.

Proof. Let {un} denote the sequence of maximal solutions of (Pλn) where λn ↓ Λ
and λn < λ. If v denote the solution of (2.1) for λ = λ, we have 0 < un+1 ≤ un ≤ v
and ∫

Ω

|∇un|2 = λn

∫
Ω

(uq+1
n − u1−β

n ) ≤ λn
∫

Ω

uq+1
n ≤ λ

∫
Ω

vq+1. (4.1)

Thus the sequence {un} is bounded in H1
0 (Ω) and denote the weak limit of un as

uΛ := lim
n→∞

un. (4.2)

We will show that uΛ is in fact a solution of (1.1) with λ = Λ in the weak sense.
As a first step we shall prove that {x ∈ Ω : uΛ(x) = 0} has Lebesgue measure zero.
Let φ1 be the first eigenfunction of −∆ and γ ∈ (0, 1), ε > 0. Consider the function
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ψ = (φ1 + ε)γ − εγ ∈ H1
0 (Ω). Then from a direct computation we find −∆ψ ≥ 0

and hence < −∆un, ψ >H1
0 (Ω)×H−1(Ω)≥ 0 which implies

λn

∫
Ω

(uqn − u−βn )ψ ≥ 0. (4.3)

Thus ∫
Ω

u−βn ((φ1 + ε)γ − εγ) ≤
∫

Ω

uqn((φ1 + ε)γ − εγ).

Now letting ε → 0 and γ → 0 we have
∫

Ω
u−βn ≤

∫
Ω
uqn ≤

∫
Ω
vq < ∞. Once again

using Fatou’s lemma, ∫
Ω

u−βΛ <∞ (4.4)

which in turn implies {x ∈ Ω : uΛ(x) = 0} is of Lebesgue measure zero. Now we
will prove that uΛ is a weak solution of (1.1) with λ = Λ. We have∫

Ω

∇un∇ϕ = λn

∫
Ω

(uqn − u−βn )ϕ for all ϕ ∈ C∞c (Ω).

The only difficulty arises while passing through the limit in the term involving u−βn .
But note that u−βn |ϕ| ≤ u

−β
Λ ‖ϕ‖∞ ∈ L1(Ω) and by dominated convergence theorem

uΛ is a weak solution of (1.1) with λ = Λ. �

Next we shall discuss a sufficient condition that ensures the existence of multiple
solutions for (1.1). We make a crucial assumption that the non-negative solution
uΛ belongs to Ce(Ω) and is bounded below by cd(x, ∂Ω) for some c > 0. By the
above assumption uΛ is positive and it can be shown that the (1.1) with λ = Λ
admits a unique positive solution. Indeed, if ũΛ is another positive solution of
(1.1) with λ = Λ then we can show that a convex combination of uΛ and ũΛ is a
positive solution of (1.1) with λ = λ′ for some λ′ < Λ which is impossible (see [19,
Proposition 5] for details). Now the uniqueness in the class of positive solutions
imply that uΛ is maximal and by Proposition 2.2, Λ1(Λ) = 0. Indeed, since uΛ

is maximal it is clear that Λ1(Λ) ≥ 0. Suppose Λ1(Λ) > 0, then implicit function
theorem would guarantee the existence of a positive solution for some λ < Λ which
would contradict the definition of Λ. Next we shall prove a local bifurcation result
of Crandall-Rabinowitz [3] for an infinite semipositone problem. Similar ideas of the
proof were used in [4, 11] when the authors studied a positone convex non-linearity.

Lemma 4.2. The solutions of F (λ, u) = 0 near (Λ, uΛ) are described by a curve
(λ(s), u(s)) = (Λ + τ(s), uΛ + sφΛ + x(s)) where s → (τ(s), x(s)) ∈ R × Ce(Ω) is
a continuously differentiable function near s = 0 with τ(0) = τ ′(0) = 0, τ ′′(0) > 0
and x(0) = x′(0) = 0. Moreover τ is of class C2 near 0.

Proof. Consider the map F (λ, u) and the Gateaux derivative of F at (Λ, uΛ).
Clearly ∂λF (Λ, uΛ) = −∂λA(Λ, uΛ) = −uΛ

Λ . Now consider the null space of the
linear operator ∂uF (Λ, uΛ). Since Λ1(Λ) = 0, there exists a φΛ ∈ H1

0 (Ω) such that

−∆φΛ = Λf ′(uΛ)φΛ in Ω,
φΛ = 0 on ∂Ω.

By the interior regularity results the eigenfunction φΛ ∈ C2(Ω)∩H1
0 (Ω) itself. Now

by [12, Theorem 8.16], the principal eigenvalue Λ1(Λ) is simple and the correspond-
ing eigenfunction φΛ is positive. Hence ker(∂uF (Λ, uΛ)) is one dimensional and is
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spanned by φΛ. We claim that ∂λF (Λ, uΛ) 6∈ ker ∂uF (Λ, uΛ). If so, then for some
constant k we have uΛ = kφΛ. This implies f(uΛ) = kf ′(uΛ)φΛ which is impossible
since RHS is has a constant sign and LHS changes its sign inside Ω and hence that
∂λF (Λ, uΛ) 6∈ ker ∂uF (Λ, uΛ).

Let X be any complement of the span of {φΛ} in Ce(Ω) and the map θ:R×R×
X → Ce(Ω) be defined as

θ(s, τ, x) = F (Λ + τ, uΛ + sφΛ + x)

Then, we claim that ∂τ,xθ(0, 0, 0) = (∂λF (Λ, uΛ), ∂uF (Λ, uΛ)) is an isomorphism
from R×X on to X. Since ∂λF (Λ, uΛ) 6∈ Range ∂uF (Λ, uΛ) the map ∂τ,xθ(0, 0, 0) is
one-one in R×X. Now by Fredholm alternative ∂τ,xθ(0, 0, 0) is also onto. Now by
implicit function theorem there exists an ε > 0 and a C2 function p:(−ε, ε)→ R×X
such that p(s) = (τ(s), x(s)) and θ(s, p(s)) = 0, τ(0) = 0 and x(0) = 0. i.e.,
F (Λ + τ(s), uΛ + sφΛ + x(s)) = 0. Now differentiating with respect to s variable
and evaluating at s = 0, we obtain

∂λF (Λ, uΛ)τ ′(0) + ∂uF (Λ, uΛ)x′(0) = 0.

Since ∂λF (Λ, uΛ) 6∈ Range(∂uF (Λ, uΛ)) we have τ ′(0) = x′(0) = 0. Once again
differentiating F (Λ + τ(s), uΛ + sφΛ + x(s)) we obtain

∂λF (Λ, uΛ)τ ′′(0) + ∂uuF (Λ, uΛ)φ2
Λ + ∂uF (Λ, uΛ)x′′(0) = 0. (4.5)

Let us write the middle term in the above expression as W = ∂uuF (Λ, uΛ)φ2
Λ. Then

one can easily check that

∆W = Λf ′′(uΛ)φ2
Λ in Ω,

W = 0 on ∂Ω.

Since f is concave, by maximum principle W ≥ 0. Now call w = ∂uF (Λ, uΛ)x′′(0)
which by definition is equal to x′′(0)− ∂uA(Λ, uΛ)x′′(0). If w1 = ∂uA(Λ, uΛ)x′′(0)
then w1 solves

−∆w1 = Λf ′(uΛ)x′′(0) in Ω,
w1 = 0 on ∂Ω.

Thus
∫

Ω
∇w1∇φΛ =

∫
Ω

Λf ′(uΛ)x′′(0)φΛ. From the definition of φΛ, we also have∫
Ω
∇w1∇φΛ =

∫
Ω

Λf ′(uΛ)w1φΛ. Thus∫
Ω

Λf ′(uΛ)φΛw = 0.

Now multiplying (4.5) by Λf ′(uΛ)φΛ and integrating over Ω,

−τ ′′(0)
∫

Ω

uΛf
′(uΛ)φΛ +

∫
Ω

WΛf ′(uΛ)φΛ = 0.

We know f is monotonically increasing and φΛ is a non-negative function and
W ≥ 0. Thus τ ′′ ≥ 0 which completes the proof. �

Proof of Theorem 1.5. Suppose that alternative (a) does not hold. Then from the
properties of Ce(Ω) (see Section 3) there exists a constant cΛ > 0 such that uΛ(x) ≥
cΛd(x, ∂Ω). Thus Λ1(Λ) is well defined and is non-negative. Now by the definition
of Λ the principal eigenvalue Λ1(Λ) cannot be positive and hence the proof of
Lemma 4.2 is applicable and which completes the Theorem 1.5. �
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5. Appendix

Proposition 5.1. The map A:Uλ → Uλ is a C2 map.

Proof. Let u ∈ Uλ, i.e. there exists some t1, t2 > 0 such that ψ + t1e ≤ u ≤ φ− t2e
and let A(u) = w. Then −∆(w − φ) < 0 in Ω and w − φ = 0 on ∂Ω, and by Hopf
Maximum principle there exists a t̃2 > 0 for which w ≤ φ− t̃2e. From our previous
discussion (3.3) if we take t̃1 = λ−λ′

λ we find w ≥ ψ + t̃1e. Thus A maps Uλ into
itself.
Step I.A:Uλ → Uλ is continuous. Let h ∈ Ce(Ω) with ‖h‖Ce(Ω) small so that u+h ∈
Uλ and A(u+h) = wh. Then (wh−w) satisfies −∆(wh−w) = λ (f(u+ h)− f(u))
in Ω and wh − w = 0 on ∂Ω. For p ∈ (1, 1

β ) using Lp estimate and dominated
convergence theorem we find

‖wh − w‖W 2,p(Ω) ≤ C‖f(u+ h)− f(u)‖Lp(Ω) → 0 as ‖h‖Ce(Ω) → 0. (5.1)

Now since wh and w belongs to Uλ we have |wh − w| ≤ Cd(x, ∂Ω). Now we can
apply Theorem 3.1 and obtain ‖wh−w‖C1,γ(Ω) is bounded. Thanks to Ascoli-Arzela
theorem and (5.1) we have wh → w in C1

0 (Ω). Finally using the continuity of the
embedding C1

0 (Ω) ↪→ Ce(Ω) we conclude that A:Uλ → Uλ is continuous.

Step II. The map A:Uλ → Uλ is C1. For a given u ∈ Uλ and h ∈ Ce(Ω) consider
the solution operator z defined as

−∆z = λf ′(u)h in Ω and u = 0 on ∂Ω. (5.2)

Let us denote ξλ ∈ C1
0 (Ω) ∩ C2(Ω) be the unique solution of

−∆ξλ = λξ−βλ in Ω and ξλ = 0 on ∂Ω.

The existence and behaviour of the solution ξλ near ∂Ω is studied in [5]. It is
well known that ξλ ∼ d(x, ∂Ω) and d(x, ∂Ω) ∼ e(x) and thus ξλ ∼ e(x). We can
estimate f ′(u)h in terms of ξλ as

|f ′(u)h| ≤ C0.e(x)−(β+1)|h(x)| ≤
C1‖h‖Ce(Ω)

ξβλ

for some positive constant C1. Thus,

C1‖h‖∆ξλ ≤ −∆z = λf ′(u)h ≤ λC1‖h‖ξ−βλ = −C1‖h‖∆ξλ,

By the comparison principle and since ξλ(x) ∼ e(x) we have for some C > 0,

|z(x)| ≤ C‖h‖Ce(Ω)e(x) (5.3)

Now as in Step I, let wh = A(u+ h) and w = A(u), then using Taylor’s theorem

−∆(wh − w − z) = λf ′′(u+ θh)
h2

2
for some θ(x) ∈ (0, 1).

Since |f ′′(u+ θh)h2| ≤ C‖h‖2
Ce(Ω)

e(x)−β we have

‖wh − w − z
‖h‖Ce(Ω)

‖W 2,p(Ω) ≤ C‖h‖Ce(Ω).

Up to a sub sequence (wh−w−z)/‖h‖Ce(Ω) converges to 0 as ‖h‖Ce(Ω) → 0. It can
be shown that |wh−w− z|/‖h‖Ce(Ω) ≤ Cd(x, ∂Ω) and thus (wh−w− z)/‖h‖Ce(Ω)
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satisfies the assumptions of theorem 3.1. Hence,
wh − w − z
‖h‖Ce(Ω)

is bounded in C1,γ(Ω) (5.4)

Now by using Ascoli-Arzela theorem and continuity of the embedding C1
0 (Ω) ↪→

Ce(Ω) we deduce that wh−w−z
‖h‖Ce(Ω)

→ 0 in Ce(Ω). If we call A′(u)h = z then

‖A(u+ h)−A(u)−A′(u)h‖Ce(Ω) = o(‖h‖).

Now from (5.3) we note that A′(u):Ce(Ω) → Ce(Ω) is a bounded linear map and
hence the map A:Uλ → Uλ is differentiable. It remains to show that A is con-
tinuously differentiable, i.e. u → A′(u) is continuous. Let ũ ∈ Ce(Ω) such that
‖ũ − u‖ < δ and A′(ũ)h = z̃ for some h ∈ Ce(Ω). Using Taylor’s theorem there
exists some θ(x) ∈ [u, ũ] and

|f ′(ũ)− f ′(u)| = λ|f ′′(θ)| |(ũ− u)h| ≤ C0e(x)2

d(x)β+2
δ‖h‖Ce(Ω) ≤

C1δ

ξβ1
‖h‖Ce(Ω)

where the constant C1 is independent of u and ũ. As before estimating −∆(z̃ −
z) from above and below and using maximum principle we have |z̃(x) − z(x)| ≤
Cδ‖h‖e(x). Now taking supremum over ‖h‖Ce(Ω) ≤ 1 we have

‖A′(ũ)−A′(u)‖ ≤ C‖ũ− u‖Ce(Ω)

and thus A is continuously differentiable.
Step III. The map A is C2. Now that we have proved A:Uλ → Uλ is C1, using
the same idea we can prove that A is twice continuously differentiable.In order to
avoid the repetition of the same arguments we skip the details of the proof of step
III. �

From (5.4) of above proposition we know that ‖wh−w−z‖h‖ ‖C1,γ(Ω) is bounded and
similarly ‖wh−w‖h‖ ‖C1,γ is also bounded. So

‖A′(u)h‖C1,γ(Ω) = ‖z‖C1,γ(Ω) ≤ ‖wh − w − z‖C1,γ(Ω) + ‖wh − w‖C1,γ(Ω)

= ‖h‖‖wh − w − z
‖h‖

‖C1,γ(Ω) + ‖h‖‖wh − w
‖h‖

‖C1,γ(Ω)

≤M‖h‖Ce(Ω)

which implies A′(u) ∈ BL(Ce(Ω), C1,γ(Ω)) and hence A′(u):Ce(Ω) → Ce(Ω) is
compact.

Corollary 5.2. A′(u):Ce(Ω)→ Ce(Ω) is continuous linear and compact.
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