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Abstract

Because the prognosis of melanoma is challenging and inaccurate when using current clini-

cal approaches, clinicians are seeking more accurate molecular markers to improve risk

models. Accordingly, we performed a survival analysis on 404 samples from The Cancer

Genome Atlas (TCGA) cohort of skin cutaneous melanoma. Using our recently developed

gene network model, we identified biological signatures that confidently predict the progno-

sis of melanoma (p-value < 10−5). Our model predicted 38 cases as low–risk and 54 cases

as high–risk. The probability of surviving at least 5 years was 64% for low–risk and 14% for

high–risk cases. In particular, we found that the overexpression of specific genes in the

mitotic cell cycle pathway and the underexpression of specific genes in the interferon path-

way are both associated with poor prognosis. We show that our predictive model assesses

the risk more accurately than the traditional Clark staging method. Therefore, our model can

help clinicians design treatment strategies more effectively. Furthermore, our findings shed

light on the biology of melanoma and its prognosis. This is the first in vivo study that demon-

strates the association between the interferon pathway and the prognosis of melanoma.

Introduction

Cutaneous melanoma is a malignancy of melanocytes. It is the most common type of skin can-

cer. The American Cancer Society estimates that over 73,000 new cases were diagnosed in

2015 in the United States and about 10,000 deaths are caused by melanoma each year [1]. The

prognosis of melanoma is highly variable [2]. For instance, the 5–year overall survival rate can

be as high as 97% for stage I and as low as 3% for stage IV [3, 4]. Almost all common treatment

options for melanoma, including surgery, chemotherapy, and radiation therapy, have harmful

and severe side effects. Therefore, it is critical to identify patients who are not at a significant

risk of metastasis and death due to the disease. The predictive power of clinical factors is lim-

ited [3, 5, 6] (e.g., staging based on the tumor size and the number of metastatic sentinel
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lymph nodes [7]), therefore clinicians are seeking more accurate molecular markers to

improve risk models and to avoid unnecessary treatment of low-risk patients [8–10].

Gene expression profile signatures have useful information on the molecular status of cells

and they can predict the prognosis of many cancers [11–14], including melanoma [10, 15–18].

For example, Onken et al. discovered a gene expression prognostic signature that significantly

improved the classification of uveal melanoma compared to traditional staging [15]. That is,

they showed that the deregulation of the LEDA, FZD6, and ENPP2 genes predicts metastatic

death (p-value< 10−4). In the follow–up studies, they extended their test to include 15 genes

[19] and their extended test correctly classified 446 (97%) of the 459 studied cases into low–

risk (i.e., at least 95% chance of 5–year metastasis–free survival) and high–risk (i.e., not more

than 20% chance of 5–year metastasis–free survival) groups [20].

Recently, Gerami et al. performed a meta-analysis on several published genomic analyses of

cutaneous melanoma tumors [15, 21–27]. Based on the gene ontology [28] of the frequently

reported genes, they identified 28 discriminant genes including BAP1, MGP, SPP1, CXCL14,
CLCA2, S100A8, BTG1, SAP130, ARG1, KRT6B, GJA1, ID2, EIF1B, S100A9, CRABP2, KRT14,
ROBO1, RBM23, TACSTD2, DSC1, SPRR1B, TRIM29, AQP3, TYRP1, PPL, LTA4H, and CST6
[4]. They used the expression of these genes to train a generalized linear mixed model with a

radial basis function kernel. The resulting signature classified 268 primary cutaneous mela-

noma tumors into low-risk and high-risk groups, with 5–year disease–free survival rates of

97% and 31%, respectively [4]. This test is commercially available as a diagnostic tool called

DecisionDx-Melanoma [29, 30], but it is not yet recommended by the National Comprehen-

sive Cancer Network [10]. Its benefits to the patients must be confirmed using prospective

clinical trials that include significantly larger cohorts with more representative metastatic char-

acteristics [18, 31].

We hypothesized that there is room for significant improvement in the melanoma prognos-

tic tests through rigid, unbiased, and comprehensive analysis of gene expression profiles [10,

32]. Accordingly, we applied a robust large-scale network analysis to the gene expression data

of 404 samples from The Cancer Genome Atlas (TCGA) cohort of skin cutaneous melanoma

[33]. The aim of our study was to identify the molecular signatures that predict the prognosis

of melanoma and to segregate patients into low–, medium–, and high–risk groups. Our

approach is based on co-expression network analysis, and we use eigengenes as informative

prognostics signatures [34].

Materials and Methods

The TCGA Dataset

Several mRNA expression profiling datasets have been produced to study melanoma prognosis

[10, 23, 27, 33, 35–40]. We used the TCGA2STAT package to download gene expression data

from The Cancer Genome Atlas (TCGA) repository [41]. Specifically, we downloaded RNA-

Seq data from the skin cutaneous melanoma cohort of 473 patients [33] and used RPKM val-

ues (i.e., reads per kilobase of transcript per million mapped reads) [42] as a measure of gene

expression. We manually downloaded the corresponding clinical data, including: a) informa-

tion regarding the last status of each case (i.e. whether the event of disease recurrence or pro-

gression occurred), b) the length of the disease–free time period (i.e., the time from the initial

melanoma diagnosis until this event or until the last follow–up date if the event did not occur),

and c) the Clark scale stage of the melanoma, which was determined using clinicopathological

features such as the size, number, and location of metastases [43].

We computed the Spearman’s rank correlation between the disease–free time and gene

expression [44]. Spearman’s rank correlation is more robust than Pearson correlation and it is
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the recommended approach for skewed distributions [45]. For instance, Mukaka showed that

after removal of the outliers, the change in the Spearman’s correlation can be negligible unlike

the Pearson correlation [46]. Consistent with the approach taken by other scholars [47], we

used only the top third of genes (6,834) that were most correlated with the disease–free time in

our network analysis. We considered any progressed or recurred tumor as high risk (n = 263).

In the rest of the tumors, which were not reported to recur during the follow–up period, any

case that had at least five years of follow–up data was considered low-risk (n = 33) [48–51]. All

results presented here can be conveniently reproduced using our supplementary code (S4

File).

Validation datasets

To confirm the findings that we obtained using the TCGA dataset, we validated them using

two independent datasets. Specifically, we used the Leeds melanoma gene expression set 1

[39], which is publicly available through European Molecular Biology Laboratory–European

Bioinformatics Institute (EMBL–EBI, accession number: E-MTAB-4725). For brevity, we refer

to this dataset as LEED in this paper. This cohort comprises whole–genome mRNA expression

of 204 primary melanoma tumors, which are measured using Illumina DASL HT12.4. Kolesni-

kov et al. normalized the gene expression values with quantile method after background cor-

rection. We manually downloaded the gene expression and clinical data from the EMBI–EBI

ArrayExpress database (http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-4725/) [52].

We used the “last follow up” (time) and “viability” (death event) columns from the clinical

data.

We also used a similar cohort that was produced at the Lund University in 2015 [40]. This

dataset is publicly available through EMBL–EBI (accession number: E-GEOD-65904) and also

through Gene Expression Omnibus (GEO) (accession number: GSE65904) [53]. For brevity,

we refer to this dataset as LUND in this paper. Cirenajwis et al. extracted total RNA from 214

fresh–frozen melanoma tumors and performed genome-wide expression profiling using Illu-

mina Human HT-12V4.0 BeadChip arrays. We downloaded the gene expression data using

GEOquery package (Version 2.40.0) [54]. We downloaded the corresponding clinical data

from the EMBI–EBI database (http://www.ebi.ac.uk/arrayexpress/experiments/E-GEOD-

65904/) and used the “disease specific survival” (time) and “disease specific death” (event)

columns.

Gene network analysis

We applied the weighted gene co-expression network analysis (WGCNA) (Version 1.51) to all

473 available samples to build a gene network and to cluster the genes into gene modules (clus-

ters) [55]. Specifically, we used the calculate.beta function with the default parameters

to infer that the soft-thresholding power for network construction was 7. We identified 13

gene modules using the wgcna.one.step function from the Pigengene package [34],

which is a wrapper for the blockwiseModules function, with power = 7 and left the

remaining arguments as defaults. WGCNA could not confidently assign 1,404 genes to any of

the modules, because these genes had little correlation with the other genes. We call the set of

these outlier genes Module 0.

Computing eigengenes

An eigengene of a module is a weighted average of the expression of all the genes in that mod-

ule. These weights are adjusted so that the loss of biological information is minimized [56, 57].

We used principal component analysis (PCA) to compute eigengenes. First, we balanced the
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number of high–risk and low–risk cases using oversampling so that both groups had compara-

ble representatives in the analysis. Specifically, we repeated the data of each high–risk and

low–risk case 6 times and 45 times, respectively. This approach provided us with 1,485 and

1,578 samples from each group, respectively. Oversampling was necessary for computing

the eigengene of a module. Because an eigengene is the first principal component of the

module, it would be biased towards the high–risk group, which has around eight times more

samples than the low–risk group. Oversampling resolves this issue. Then, we applied the

moduleEigengenes() function from the WGCNA package to the oversampled data. This

function computed the first principal component of each module, which maximized the

explained variance, thus ensuring a minimum loss of biological information. We used the

project.eigen function from the Pigengene package (Version 0.99.23) to infer the values

of eigengenes for all of the 473 samples in the TCGA, the 204 samples in the LEEDS, and the

214 samples in the LUNDS datasets (S1 File) [34].

Survival analysis

We used the 14 inferred eigengenes as covariates (prognostic features), and we included only

the 404 samples for which the final status and the survival time were available. We used the

glmnet() function from the glmnet package (Version 2.0-5) [58] to perform a penalized

Cox regression analysis [59, 60]. We set α = 1 to use the least absolute shrinkage and selection

operator (Lasso) [61]. The Lasso, also known as L1 regularization, enforces most of the coeffi-

cients of the covariates (eigengenes) in the Cox proportional hazards model to be zero.

Thereby, it identifies the modules that are the most associated with survival.

To evaluate the significance of the selected modules in predicting the survival time, we

fitted an accelerated failure time (AFT) model to the selected eigengenes [62]. We used the

survreg function from the survival package (Version 2.39-4) [63], set the Weibull distribu-

tion with scale = 1 as the baseline hazard function, and used the default values for the rest of

the parameters. We used the fitted accelerated failure time model to predict the survival time

of each sample. We chose two thresholds for the predicted values that maximized the precision

of low– and high–risk predictions. The samples that had a predicted survival time between the

two thresholds were considered medium–risk. We used the survfit function to obtain a

Kaplan-Meier survival curve for each of the risk groups [64]. We used the survdiff function

to test whether the survival curves that correspond to high–risk and low–risk groups differ sig-

nificantly. This function computed the log-rank p-value of the corresponding Mantel-Haens-

zel test [65].

Cross–validation

We performed 5–fold cross–validation to confirm that the selection of the modules by the

penalized Cox regression is robust with respect to choosing the samples. We used all of the 14

eigengenes corresponding to the modules that were identified by our gene network analysis.

We did not recompute the modules or eigengenes, instead, we repeated the penalized Cox

regression model as follows. There were 404 samples for which the final status and the survival

time were available. We randomly divided these 404 samples into five divisions. These divi-

sions had an almost equal size and equal number of high–risk samples. We set aside one divi-

sion and performed a penalized Cox regression analysis on the rest of the samples using all 14

eigengenes. We recorded the selected modules and repeated this procedure five times. We ran

this experiment 10 times with different seeds and counted the frequency of the selected mod-

ules in each run (S2 File). On average, the three most frequent modules were selected 4.9, 4.8,
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and 4.2 times, respectively. In contrast, all other modules were selected 0.6 times or less, on

average.

Results

Using coexpression network analysis, we identified 13 modules of highly coexpressed genes.

The size of thees modules ranges from 48 to 2,247 genes with a mean of 418, a median of 88,

and a standard deviation of 629 (S1 Fig). We computed an eigengene for each module, which

summarizes the biological information of the module into one value per sample. We used

these eigengenes as biological signatures (features) to perform a survival analysis.

The penalized Cox regression consistently selected three modules as the most associated

modules with disease–free survival (Methods). These three gene modules include the outlier
module (with 1,404 genes, ME0), the ninth largest module (with 58 genes, ME9), and the

twelfth largest module (with 52 genes, ME12) (S3 File). The outlier module consists of genes

that have too small a correlation with other genes to be included in any of the modules. Hyper-

geometric tests revealed that the other two selected modules are associated with the mitotic cell
cycle and the interferon (IFN) pathway, respectively [66] (S2 Fig). That is, 15 (29%) of the 58

genes in the larger module are members of the Reactome mitotic cell cycle pathway, which has

454 genes (adjusted p-value < 10−9) [67]. These genes include AURKB, CCNE1, CDCA8,
CDK4, CENPO, GINS2, H2AFZ, LIG1, PKMYT1, PLK1, PTTG1, SKA1, TUBA1B, TUBA1C,
and TYMS. According to the Cox model, overexpression of these genes is associated with poor

prognosis, which is expected [68, 69].

The smaller module (ME12) has 52 genes. Interestingly, 16 (31%) of these genes are mem-

bers of the Reactome interferon signaling pathway, which has 158 genes (adjusted p-

value < 10−21). The genes in the overlap include DDX58, EIF2AK2, GBP3, HERC5, IFIT1,
IFIT2, IFIT3, OAS1, OAS2, OAS3, PSMB8, SP100, STAT1, UBE2L6, USP18, and XAF1. Our

model indicates that the relatively higher expression of these genes is associated with a good

prognosis in melanoma. Our in silico overrepresentation analysis showed that type I interferon
signaling pathway (Gene Ontology accession number: 60337 [28]), which includes 63 genes, is

the biological processes that has a significant overlap with this gene set. Specifically, the overlap

consists of 12 genes, which is 75 times more than expected (p-value = 10−15) [70]. This module

is very stable with respect to selection of samples. To confirm this, we reconstructed the coex-

pression network 10 times using only 426 (90%) randomly selected samples. All of the result-

ing networks had a similar module, i.e., mean and median of the Jaccard [71] (Tanimoto [72])

similarity were 0.92 and 0.93, respectively.

To further validate the association of these three selected modules with melanoma progno-

sis, we fitted an accelerated failure time (AFT) model to the corresponding eigengenes, and

classified the patients into low–, medium–, and high–risk groups (Methods) [62]. We com-

pared the Kaplan-Meier (KM) curves of these groups [64] (Fig 1). Our AFT model predicted

that 38 cases were low–risk. These cases had a significantly higher survival rate than the 54

cases that were predicted to be high–risk (log-rank p-value< 8 × 10−6 [73]). For instance, the

probability of surviving for at least five years was 0.64 for low–risk and 0.14 for high–risk cases.

Excluding the interferon module has a negative impact on the statistical power and the p-value

(Fig 1). Specifically, while the number of cases in the predicted low–risk group does not

increase dramatically (i.e., two cases, only 5% improvement), the number of predicted high–

risk cases decreases considerably to 35 (i.e., 35% decline). That is, using the interferon pathway

module, the model can identify more high–risk cases without sacrificing the accuracy.

As expected, the cases that were predicted to be high–risk had generally more advanced dis-

ease according to the traditional Clark scale stage of melanoma (Table 1). In particular, the
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majority of the high–risk cases were in stage IV or V (36 cases, 66%). In contrast, only 13

(35%) of the low–risk cases were in stage IV or V. Interestingly, 6 (46%) of these 13 cases were

disease–free for more than eight years, which indicates that, for these cases, the Clark scale

staging is less accurate than our predictions. Also, 7 cases had stage I, II, or III melanoma, but

they were classified as high–risk by our model. Only 2 (29%) of these cases survived more than

2 years.

To further validate the association between the interferon module and melanoma progno-

sis, we used the LEEDS and LUND gene expression datasets, which include 204 and 214

melanoma samples, respectively. We inferred the eigengenes and fitted an AFT model to the

eigengenes to classify the samples into low–, medium–, and high–risk groups in each dataset

Table 1. The distribution of melanoma Clark stages in each risk group. Also, the percentage of each stage class in each risk group is shown. The low–

risk group is enriched in patients at stages III and IV. The high–risk group is enriched in patients at stages IV and V.

Stage I

(%)

II

(%)

III

(%)

IV

(%)

V

(%)

Unknown

(%)

Total

Low–risk 0

(0)

1

(3)

11

(29)

12

(32)

1

(3)

13

(34)

38

Medium–risk 4

(1)

16

(5)

54

(17)

105

(34)

37

(12)

96

(31)

312

High–risk 1

(2)

0

(0)

6

(11)

24

(44)

12

(22)

11

(20)

54

Total 5 17 71 141 50 120 404

doi:10.1371/journal.pone.0170025.t001

Fig 1. Kaplan–Meier survival curves. The p-values indicate that the difference between the low–risk group (green) and the high–risk group (red) is

statistically significant. Using all the three modules, which are associated with the interferon pathway, mitotic cell cycle, and outliers; results in a better p-

value (a) compared to a model without the interferon pathway (b). The orange horizontal lines indicate that both models have similar accuracies. However,

including the interferon pathway improves the p-value, because more samples are classified in total (i.e., 38 low–risk plus 54 high–risk cases in (a),

compared to 40 low–risk plus 35 high–risk cases in (b)).

doi:10.1371/journal.pone.0170025.g001
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(Methods). Similar to the analysis on TCGA dataset, we used the three eigengenes correspond-

ing to the outlier, mitotic cell cycle and interferon pathway modules.

Our AFT model predicted 96 cases in the LUND dataset to be low–risk and 45 cases to be

high–risk. The predicted low–risk group had a significantly higher survival rate than the high–

risk group (log-rank p-value 2 × 10−3, S3a Fig). Excluding the interferon pathway module from

the AFT model resulted in reducing the number of predicted low–risk to 49 cases and pre-

dicted high–risk to 25 cases, and also, a less significant p-value (3 × 10−2). That is, without the

interferon pathway, the number of predicted low– and high–risk samples would be reduced by

almost half leaving 67 (33%) more samples in the medium–risk group. This shows the neces-

sity of the interferon pathway module in predicting the prognosis. The results in the LEEDS

dataset followed a similar pattern. Specifically, excluding the interferon pathway module from

the AFT model resulted in reducing the number of predicted low–risk samples from 34 cases

to 31 cases while slightly decreasing the number of predicted high–risk samples from 29 to 28.

Nevertheless, the log-rank p-value increased by almost two orders of magnitude, from 9 × 10−6

to 7 × 10−4, indicating that the prediction of survival is less accurate without the interferon
pathway module (S3c and S3d Fig).

Discussion

Predicting the prognosis of melanoma is clinically useful and important [10]. To date, most of

the studies that aim at predicting melanoma survival based on gene expression have been lim-

ited in their number of genes, number of samples, or their follow–up time [4, 15–27, 30, 74].

We performed gene network analysis on 470 melanoma cases to extend the previous studies

and to identify novel prognostic signatures.

This is the first study to show that the underexpression of specific genes from the interferon

pathway in melanoma tissues is a sign of poor prognosis. The role of the interferon pathway in

other cancers were studied by others [75–80]. In general, defects in interferon signaling results

in dysfunction of the immune system [81]. However, its association with melanoma was previ-

ously shown only in vitro [81–84].

Interestingly, our interferon module has 17 genes in common with the 274 genes that Hoek

et al. reported to be downregulated in melanoma cell lines [82]. This is a significant overlap (p-

value of the hypergeometric test< 10−19). Similarly, the list of the top 25 genes that Critchley

et al. reported to be differentially expressed in peripheral blood mononuclear cell (PBMC)

samples of melanoma patients has a significant overlap with our interferon module (13 genes,

p-value < 10−27). Compared to in vitro experiments, our analysis provides much stronger evi-

dence for the role of the interferon pathway in melanoma, because our study is based on the

survival analysis of a relatively large cohort of patients with an extended follow–up time. The

total number of patients classified as low–risk or high–risk increases from 75 to 92 (a 23%

improvement) when we include the interferon module in our predictive model. This improve-

ment, as well as the decrease in p-value, indicate that the information in the interferon path-

way is essential for predicting the prognosis.

However, functional studies will be needed to determine the mechanism and impact of the

interferon pathway on melanoma prognosis. One challenge in designing such a study is possi-

bly the relatively low number of samples that could be associated with the genes in the inter-

feron module. For example, in our study on the 404 TCGA cases, including these genes in the

predictive model led to classification of only 17 (4%) more cases. Therefore, a follow-up func-

tional study most likely needs to investigate at least hundreds of samples in order to include a

few samples that are associated with the interferon pathway.
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The probability of surviving for at least five years is 0.64 and 0.14 for our predicted low–risk

and high–risk groups, respectively. The accuracy of our predictive model is comparable with

previous studies on skin cutaneous melanoma that were based on gene expression [10]. For

instance, Sivendran et al. developed a log-rank Mantel–Cox test based on a 21-gene expression

signature and ulceration [74]. Their test is less specific than ours in predicting long-term

poor prognosis. That is, they tested 48 patients and reported that the probability of surviving

for at least five years was 60% and 35% for their predicted low–risk and high–risk groups,

respectively.

Gerami et al. reported that the DecisionDx-Melanoma test [29, 30] classified 268 primary

cutaneous melanoma tumors into low-risk and high-risk groups with at least 5–year disease–

free survival rates of 97% and 31%, respectively [4]. Their low–risk specificity is more than

ours, and their high–risk specificity is less than ours. However, the reported assessment of the

sensitivity and specificity of this test is controversial, because their cohort was not representa-

tive of the general primary melanoma patient population [10, 18]. Our results are not compa-

rable with the results reported by Onken et al. [20], because they studied uveal melanoma,

which is different from skin cutaneous melanoma [85].

One reason underlying the difficulty in assessing the survival rate of melanoma is the rela-

tively high heterogeneity of genetic mutations, which results in subpopulations (clones) that

are resistant to therapy [86–88]. Recently, Tirosh et al. used single-cell sequencing to show that

distinct clones within a tumor can have different gene expression profiles, and therefore, can

interact with their microenvironment differently [89]. Investigation of the genes in our inter-

feron module and the corresponding signaling proteins may reveal how the interactions

between malignant cells and their microenvironments is modulated. For instance, the rela-

tively high expression of type I interferon signaling pathway genes in low–risk melanoma cases

can be associated with antitumor response of the immune system [90]. Future work in this

direction can leverage available techniques for 1) clonal decomposition based on genetic muta-

tions [91–97], and 2) deconvolution of gene expression profiles into signatures that are specific

to a cell-type or tumor clone [98–101].

One limitation of our predictive model for clinical use is the relatively high number of cases

that were classified as medium–risk (312, 77%). This can be addressed by improving the pre-

dictive model in a follow–up study or, alternatively, by using another prognostic test for the

medium–risk cases. Compared to other tests, our predictive model is based on a relatively

large number of genes. This is a double-edged sword. The inclusion of a large number of genes

makes our model robust with respect to random changes in the expression of one or several

genes, which are common due to technical or biological noise. On the other hand, the large

number of genes makes our test difficult to apply in clinical settings. This can be addressed by

excluding the genes that have a relatively smaller contribution to the eigengenes. Specifically, a

greedy algorithm can be used to exclude the genes that have a smaller absolute weight (load-

ing) [102]. Further follow–up experiments on different datasets will be needed to show that

such a modification does not affect the accuracy of the model and to ensure that too many

genes will not be excluded. Nevertheless, follow-up studies can examine the therapeutic value

of the genes identified in our study that have a relatively high contribution to the model, as

well as their upstream genes (S3 File).

Conclusion

We identified a specific set of genes in the interferon pathway that are underexpressed in high–

risk melanoma. This biological signature, together with the overexpression of other genes in the

mitotic cell cycle pathway, predicts the prognosis of melanoma with relatively high accuracy.
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Supporting Information

S1 File. The eigengene values in the TCGA dataset useful for reproducing the results.

(XLS)

S2 File. The frequency of selected modules by 5–fold cross-validation of the penalized Cox

model.

(XLS)

S3 File. The gene lists corresponding to the three selected modules. The gene symbol, Entrez

ID, and the weight of each gene in the corresponding selected module is reported.

(XLS)

S4 File. Supplementary code. Our results can be conveniently reproduced using these R

scripts. Uncompress the tarball file, install the packages mentioned in the settings.R
script, and then source the runall.R script. This code works on Unix (Linux or Mac OS X).

Data will be downloaded from TCGA and the results will be saved in the current directory. A

desktop computer with a 2.8 GHz CPU and 8 GB of memory will reproduce all results in less

than an hour.

(ZIP)

S1 Fig. The distribution of the size of modules.

(PNG)

S2 Fig. The overrepresentation analysis on the selected modules.

(PNG)

S3 Fig. The Kaplan–Meier survival curves for the validation datasets. Colors are similar to

(Fig 1). In the LUND dataset, including the interferon pathway module results in better predic-

tions of the survival time (a) with a more significant p-value of 2 × 10−3 compared to an AFT

model that uses only two modules (b). Similarly, in the LEEDS dataset, the model predicts the

survival rate better when the interferon pathway module is included (c) compared to a model

that uses only two modules (d).

(PNG)
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