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RESONANCES GENERATED BY ANALYTIC SINGULARITIES
ON THE DENSITY OF STATES MEASURE FOR PERTURBED
PERIODIC SCHRODINGER OPERATORS

HAMADI BAKLOUTI, MAHER MNIF

ABSTRACT. We consider a perturbation of a periodic Shrédinger operator Py
by a potential W (hz), (h \, 0). We study singularities of the density of states
measure and we obtain lower bound for the counting function of resonances.

1. INTRODUCTION

In this paper we present a lower bound for the counting function of resonances
for the perturbed periodic Shrédinger operator

P(h)y=Py+W(hy) , Po=—-A0+V (h\,0).
Here V is C*° function, real valued and T'-periodic with respect to a lattice I' =
@I ,Ze; in R™. The potential W is real valued and satisfies the hypothesis
(H1) There exist positive constants a and C such that W extends analytically to

[(a) :={z € C": [S(2)| < a(R(2))}
and
W (2)| < C(z)~", uniformly on z € T'(a), N > n, (1.1)

where (z) = (14 |2z|?)'/2. Here R(z), 3(z) denote respectively the real part
and the imaginary part of z.
Let T = @}, Ze; be the dual lattice of I', where {e}}}_; is the basis satisfying
(ej,er) = 2mdjp. Set B = {x = Y0  tje;, t; € [-1/2,1/2[}, and E* = {z =
doi—itiel, tp € [-1/2,1/2[}. We use the usual flat metrics on T := R"/T" and
T* := R"/T'*, when we integrate or do local considerations we identify T (resp.
T*) with E (resp. E*).
For k € R™, we define the operator P, on L?(T) by

Py == (D, + k)? + V(y).

Let A1 (k) < X\a(k) < ... be the Floquet eigenvalues of P, (enumerated according to
their multiplicities). It is well known (see [4]) that A\,(k) are continuous functions
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of k for any fixed p. Moreover A,(k) is an analytic function in k near any point
ko € T*, where A,(ko) is a simple eigenvalue of Py, .

We consider the self-adjoint operator Py = —A + V(y) on L*(R™) with domain
H?(R"). By Bloch-Floquet theory, it is known that

0(Py) = 0ac(Po) = Up>1A,,  where A, = A\, (T7).

Let us introduce the density of states measure

1
p(N) == / dk. 1.2
) (2m)n g (REE*; Ay (k)<A} (1-2)

Since the spectrum of P, is absolutely continuous, the measure p is absolutely
continuous with respect to the Lebesgue measure d\. Therefore, the density of
states % of Py, is locally integrable.

For f € C§°(R), we set

(o f) = / FW (@) — FO)de, (1.3)

"
1
) = (e 2 L. LU0V 426 — SOy ldeak, 1

Proposition 1.1 ([1]). The functionals operators w and p are distributions of order
< 1. Moreover, in D'(R), we have

w=dp* p. (1.5)

Definition 1.2. We say that A € o(P) is a simple energy level if it is a simple
eigenvalue of Py, for every k € F(A\) :={k € T*; A\ € o(Py)}.

We use also the following hypothesis

(H2) There exists an open bounded interval I such that for all A € I and all kg €

R™/T* with A,(ko) = A, the eigenvalue A, (ko) is simple and dipA, (ko) # 0.

We use sing supp, (w) for analytic singular support of w. Under assumptions (H1)

and (H2) in [2] it was proved that if E € singsupp,(w) N I then for every h-

independent complex neighborhood 2 of E, there exist hg = h(2) > 0 sufficiently
small and C = C(Q2) > 0 large enough such that for h €]0, h|,

#{z€Q;z€ ResP(h)} > Coh™™.

This result is based on the trace formula in the periodic case [2] [5].

Since for w, the analytic singular support of w depends on both sing supp, (1)
and sing supp, (dp). The question is to find some criteria to determine if ey = A, (ko)
belongs to the singsupp, (dp).

If eg = A\p(ko) is a simple eigenvalue in a neighborhood of kg then A,(k) is a
smooth function there. Moreover if eg is non critical then eg is not in the analytic
singular support of p (see Lemma [2.T)).

The distribution p can be singular for a variety of reasons. If ey = A,(ko) is
a critical value, we expect in general that eg will belong to the analytic singular
support of p. Multiple eigenvalues can also give rise to analytic singularities of
p. We recall that, the case when ey = A,(ko) is a non-degenerate extremum was
studied by Dimassi and Mnif in [I]. They studied also the case of bands crossing
when n = 2.
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In this paper we are interested to more general situations. We first study the
case when ey = A,(ko) is a non-degenerate critical point and we prove that in
this situation eg belongs to the analytic singular support of p. We note that this
result generalizes the case when e is a non-degenerate extremum point established
in [IL Theorem 1]. In the case when e is a degenerate critical point one gives a
positive answer to the question if eg is an extremum. This result encloses the case
of finite number of extremum at the same level. Finally we look for resonances near
a singularity of p generated by bands crossing at eg. This study is devoted to the
case n = 3.

The paper is presented as follows: Section 2: Lower bound of the number of
resonances near a critical non-degenerate point. Section 3: Lower bound of the
number of resonances near a degenerate critical point. Section 4: Lower bound of
the number of resonances near a conic singularity of the density of states.

2. LOWER BOUND OF THE NUMBER OF RESONANCES NEAR A CRITICAL
NON-DEGENERATE POINT

Let O be an open bounded set in R™ with analytic boundary almost every where,
and let U be a complex neighborhood of O. Let x — ¢(x) be analytic on U and
real valued for all x in O. Let us introduce the real function

I(e) := / dzx.
{z€0, p(x)<e}

Lemma 2.1 ([3]). If Vo(x) # 0 near every x € L., :={x € O : p(x) = e} and if
the sets 0O and 3., intersect transversely, then I(e) is analytic near eg.

The next lemma generalizes the result in [I, Lemma 2], where the authors con-
sider the case of non-degenerate extremum.

Lemma 2.2. If ¢ has a non-degenerate critical point at xo with p(xg) = ey and if
Vo(x) #0 for all x € e \{zo}, then there exists an open interval J neighborhood
of e, such that I(e) is analytic on J\{eo} and has a C? singularity at €.

Proof. Under the assumption Vp(z) # 0 for all x € ¥, \{zo} and since ¢ has a
non-degenerate critical point at xy there exists an open interval J neighborhood
of ey such that for all e € J\{eg} we have V() # 0 near every z € X, := {x €
O : p(x) = e}. Hence by Lemma I(e) is analytic on J\{eg}. One now studies
the behavior of I at eg. Let (k,n — k) be the signature of the hessian form of ¢ at
9. The case k = 0 or k = n corresponds to ey non-degenerate extremum which
is studied in [I]. Here we focus our study on the case of saddle point. By Morse
lemma, for all € > 0 small enough, there exist a neighborhood 2 of xy and a local
analytic diffeomorphism D : Q — B(0, ¢) such that

I.(e) ::/ dx:/ Jac(D™*(z))dz.
{2€Q, p(x)<e} {z€B(0,6), Yooy 2f =X i g4y @i <e—eo}
We introduce the notation: z = (X4, X_) with X, = (a1,...,2%) and X_ =
(Tht1s-- - Tn). Bre={X € R¥ 1 || X|| <€}
Up to an analytic correction of I.(e), we can suppose that

Ie(e)f/ Jac(D™(x))dz.
{o=(X4,X_)€Br,eXBn—k,e, p_y £ =211 27 <e—en}

i=1 %5
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Let x = ey and E = (e — eg) /€2, we have
I(e)=€¢"J(¢, E)

Jac(D ™t (ey))dy.

= "
~/{y—(Y+>Y)€Bk,1 X Bk, 15 2oy Y =D 1 YESEY
To prove that I. has a C? singularity at ey we prove that J(e, .) has a C? singularity
at = 0. On the other hand, we can see that for E small enough, J(., F) is analytic
near ¢ = 0. Therefore, it is sufficient to prove that £ = 0 is a C? singularity for
J(0,.). We have
2n/2
J(0,E)

dy.

\/| det(Hess(go) (IO)‘ {y=(Y4,Y_)EBi 1 XBpn_k,1, 3", Y= ik ViSE}
Using polar coordinates we get

J(0,E) =C, r’fflrgfkfldrldrg,
{0<r1<1,0<r2<1,r?—r3<E}
where .
oo 22 Vol(Skfl) Vol(S"*kfl)
! V] det(Hess(p) (o)
For £ > 0,

J(OvE) = fr(E)

VvVE ,1 1 1
— C’n[/ / r]f_lrg_k_ldrgdrl —|—/ / r]f_lrg_k_ldrgdrl]
0 0 VE J\/r?—E
n—k
1

VPt - B
—C [ Iy — &) 2 k-1
_C"[k(n—k) —|—/1 ri tdrq].

n—=k
For F < 0, we write
J(0,E) := fi(E) = cn/ R Ry dry
{0<r:1<1, 0<r2<1 r%erfE}

In the same way as above we obtain

k
2

vV—E (. 2
rs + FE ke
fl(E):—Cn/ 2+ B)2 - S kg,
1

Computing the second derivatives, we get for n > 4: If n — k # 2, then

d?f, n—k—2

gz V) =~ 4n—4) "
If k # 2, then

d?f, k—2

a2V = "A(n—4)
If n — k=2, then

d2fr d2fl Cn
T2 (0)=0 an e (0) 1
If £ =2, then
d2fr Cn d2fl

dE2():7T and @(0):
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So, for all n > 4, we have
d2fr d2fl
a5 0 7 g2 O
On the other hand, for n < 4: If n — k # 2, then

&>y

EILHOI+ dE? (E) = oc.
If k # 2, then
a* fi
CliEy =
Bo- dEQ( ) =0
If k=2and n—k =2, then
d f, 1 d? f, 1
gz V=7 wd gm0 =7
Hence, for all n, J(0,.) has a C? singularity at 0. O

The following result is a consequence of Lemma Lemma [2.2] and the repre-

sentation (1.2) of p.

Lemma 2.3. Let eg be a simple eigenvalue of Py. We assume that:
(i) There exist ig and ko such that A, (ko) = eg, Vi, (ko) = 0.
(il) VA, (k) # 0, for all k € /\i_ol({eo}), k # ko and Vi(k) # 0 for all k €
A ({ea}), i # do-
Then there exists an open interval J neighborhood of eq such that the density of
states measure p is analytic on J\{eo} and has a C? singularity at eq.

Therefore, by [2, Theorem 1.6], we obtain the following result.

Theorem 2.4. Let ey and J be as in Lemma I satisfying (H2) and let E €
(eo+sing supp, (1)) NI be such that (E—supp(p)) C J. Then for all h-independent
complex neighborhood Q0 of E, there exist hg = h(Q) > 0 sufficiently small and
C = C(9Q) > 0 such that for h €]0, hol,

#{z € Q;z € ResP(h)} > Cqh™™.

3. LOWER BOUND FOR THE NUMBER OF RESONANCES NEAR A DEGENERATE
CRITICAL POINT

Let K be a compact set in R™, we consider C'(K,R) the space of continuous real
functions on K, with the norm ||¢||cc = sup,ex |@(x)|. Let us introduce the real
valued function H. : C(K,R) — R,

0 dz .
{z€K, p(x)<e}
Lemma 3.1. Let ¢ € C(K,R) such that o= ({e}) is a finite set. H,. is continuous
at .

Proof. Without loss of generality, we can take ¢! ({e}) reduced to {zo}. Let e > 0,
by the continuity of ¢ on K and the fact that p(x) # e for all z € K. = K\B(xo,€)
which is a compact set, we have the statement:

There exists a(e) > 0 such that |p(x) — €| > a(e), for all x € K. (3.1)
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Let ¢ € C(K,R) be such that
a(e)

o~ llo < 2 (32
We denote:
K _={zeK:px)<eln{zeK: :¢y()<e}
K_i={zeK:p)<etn{recK:¢(x)>e}
Ki_={zeK:p(x)>etn{zeK: :¢(zx)<e}.
We have:
H.(p) = Vol(K_ )+ Vol(K_ ;)
He(p) = Vol(K_ _) + Vol(K4 ).
Then
He(p) = He(t) = VOI(K_+) — Vol(K; ).
By and , we have
K iNK.=0 and K;_nNK.=0,
hence
K_ 4 C B(zg,e) and Ky _ C B(xg,e).
Then
Vol(K_ 4) <2 and Vol(K; _)<2e.
Finally we get [He(p) — He ()| < 4e. O

Definition 3.2. Let O be an open bounded set in R”, and let ¢ a function in
C>*(0O,R). We say that ¢ has an isolated local minimum (resp. maximum) of
order p € N* at xg € O, if the Taylor expansion of ¢ near z is as follows

n
o(x +x0) = p(z0) + Z ot + Z aex? + O(|z|*P*1)
=1 oe()lol=p
with o; > 0, a, > 0 (resp. o; <0, a, <0). 0 = (01,...,0,) € (N)", 227 denotes

2
2% ... 22 and |o| =01 + - + o

We now return to the real valued function I(e) := f{zeow(z)
in section 2. Let H denote the Heaviside function.

<o} dx introduced

Lemma 3.3. Suppose that ¢ has an isolated local extremum of order p € N* at .
If Vo(x) # 0 for all x € X \{zo}, then

(i) If eo is a minimum,
I(e) = g(e — eo) + H(e — e)(e — e0) ¥ (C + R(e)) (3-3)

with C' > 0, lim._,., R(e) =0 and g analytic function.
(i) If eg is a mazimum,

I(e) = gle — eq) + H(eo — €)(eo — €)% (C + R(e)) (3.4)
with C > 0, lim.—,, R(e) =0 and g analytic function.



EJDE-2006/60 RESONANCES GENERATED BY ANALYTIC SINGULARITIES 7

Proof. (i) We note that if eg is a minimum for ¢ then there exists e > 0 such that
w(x 4+ x0) > e for all x € B(0,¢). We write

I(e) :/ dax+/ dx.
{0€B(0,0), w()<e} {2€O\B(0,¢), p(z)<e}

By Lemma the second term in the right-hand side is analytic near eg. Let:

I(e) := / dz.
{e€B(0,6), p(z)<e}

For e < eg, I.(e) = 0. For e > ¢j, we can write
p(x0 + ) = eq + Dap() + O(|jz[P*)
with ,

n
2 2 : 2
Dgp(.r) = E Oéi$2-p + A5 7.
i=1

g€(N)™;|o|=p
Up to € > 0, we have for all x € B(0,¢),

1
Oz )] < 5 Dap(a).
Hence
Je i ={x € B(0,¢) : p(x +x0) < e} C{x € B(0,¢) : Dap(z) <2(e—ep)}
Since a, > 0 for all o, we have
Je C {z € B(0,¢) : Zaix?p <2(e—eg)} C B(0,c(e — Go)ﬁ)

i=1
with ¢ > 0. Therefore,

Ie(e) = dl‘

/{zEB(O,e)ﬂB(O,c(e—eg)le )ip(zo+z)<e}

Up to reduce e — ey, we can suppose that ¢(e — eo)ﬁ < €. Then we get

L(e) = / 1 dz.
{2€B(0,c(e—e0) 2P ):p(wo-+u)<e}

By the scaling = (e — eo)ﬁy, we get
() = (e~ ) | 1
{y€B(0,¢): D2y (y)+(e—eo) 2P e (y)<1}

with ¥, bounded on B(0,¢) uniformly on e near ey. By Lemma we get, for
e > ep,

dy,

I(e) = (e — eo)? dy + R(e))

.
{y€B(0,c):D2p(y)<1}
with lim._,., R(e) = 0. O

By Lemma and the representation (1.2]) of p we obtain the following result.

Lemma 3.4. Let eg be a simple eigenvalue of Py. We assume that

(i) There exist ig and ko such that A, (ko) = ep.
(i) eg is an isolated local extremum of order p for A, .
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(i) Vi, (k) # 0, for all k € >\Z-_01(80)7 k # ko. Moreover V;(k) # 0, for all
ke X ' ({eo}), i # do.
Then there exists an open interval J such that the density of states measures has

the representation ([3.3)), (3-4) in lemmal[3.3

Therefore, by [2, Theorem 1.6], we have the following result.

Theorem 3.5. Let eg and J be as in Lemma I satisfying (H2) and let E €
(eo+sing supp, (1)) NI be such that (E—supp(p)) C J. Then for all h-independent
complex neighborhood Q@ of E, there exist hg = h(Q2) > 0 sufficiently small and
C = C(Q) > 0 such that for h €]0, ho|,

#{z € Q;z € ResP(h)} > Cqh™".

Remark 3.6. The hypothesis (iii) in Lemma [3.4, implies that the (\;) have no
more critical point at the ey level other than X;,’s one at ko. In the following
lemmas we consider the case of finite number of extrema at the same level. For
simplicity we state these lemmas for only two extrema.

By Lemma and the representation (2) of p, we have the following result.

Lemma 3.7. Let eg be a simple eigenvalue of Py. We assume that:
(i) There exist i1 and ki, ia and ko such that A;, (k1) = i, (k2) = eo.
(ii) A;, (resp. Ai,) has an isolated local minimum at the ey level of order py
(resp. pa) at ki (resp. k).
(iii) The A; have no more critical points at the ey level other than \;,’s one at
k1 and \;,’s one at k.
Then there exists an open interval J such that the density of states measures has
the representation

ple) = gle —eq) + H(e — eq)(e — €0) % (C + R(e)),
with C > 0, lime_,., R(e) =0, g analytic function and p = max(p1,p2).

Lemma 3.8. Let eg be a simple eigenvalue of Py. We assume that:

(i) There exist i1 and ki, ia and ko such that A;, (k1) = iy (k2) = eo.

(il) Ai; (resp. Aiy) has an isolated local minimum (resp. maximum) at the eg
level of order py (resp. pa) at k1 (resp. ko). Moreover if py = pa then we
assume that 7 ¢ N.

(iii) The \; have no more critical points in the eg level other than A;,’s one at
k1 and X\;,’s one at ks.

Then there exists an open interval J such that the density of states measures has
the representation

n_

p(e) = gle—eo)+H(e—ep)(e—e0) 1 (Cy+Ru(e))+H(eg—e)(en—e€) 2 (Co+ Ra(e))
with C1 >0, C2 >0, lim._,¢, Ri(e) = lim._,., R2(e) =0 and g analytic function.
Therefore, by [2, Theorem 1.6], we have the following theorem.

Theorem 3.9. Let ey and J be as in Lemma or Lemma I satisfying (H2)
and let E € (eg + singupp,(u)) NI be such that (E — supp(u)) C J. Then for all
h-independent complex neighborhood Q of E, there exist hog = h(Q) > 0 sufficiently
small and C = C(2) > 0 such that for h €]0, hol,

#{z € Q;z € ResP(h)} > Cqh™™.
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4. LOWER BOUND OF THE NUMBER OF RESONANCES NEAR A CONIC
SINGULARITY OF THE DENSITY OF STATES

In this section we study resonances near a singularity of p(\) generated by a
bands crossing. We assume that A; is a double eigenvalues

Aj—1(ko) < Aj(ko) = eo = Aj11(ko) < Ajt2(ko)

and that for all k # kg such that \;(k) = eg, A;(k) is simple and VA;(k) # 0.

Since Py, is analytic in k, this implies that for |k — kg| < § (with ¢ small enough),
the span V(k), of the eigenvectors of Py corresponding to eigenvalues in the set
{e : |e — eg| < 6} has a basis ¢;(x, k), ¥j41(x, k), which is orthonormal and real
analytic in k. The restriction of Py to V (k) has the matrix

(5 ).

a(k) +c(k)  bi(k) — iba(k)
(bl(k) +iba(k)  a(k) —c(k) ) ’

where a(k) = (a(k) + B(k))/2, c(k) = (a(k) — B(k))/2, bi(k) and by(k) are real

valued. Next the periodic potential is assumed to have the symmetry V(z) =

V(—z). This symmetry is typical of metals. This symmetry forces b(k) to be real

valued (i.e., ba(k) = 0). Consequently, near ky we have

By (k) = a(k) — /@) + PR),  Ejpa(k) = a(k) + /() + 02(k).
The case n = 2 is treated in [I]. We consider here the case n = 3. We assume that
Vb(ko), Ve(kg) are independent and

IV, ca(ko)|l < 1 (4.1)

Nedelec in [2] section 6 studied singularity of volumes of matrix problem in some
equivalent situations. She gets C'™° singularities. Following the same method we
get a more precise result.

which can be written as

Lemma 4.1. We assume that a/p,—c—o} s non-degenerate at eg. Then, there evist
f and g, analytic near ey, such that

ple) = fle —eo) + H(e—eo)g(Ve —eo), (4.2)
with g(.) # 0.
Proof. Without loss of generality we may assume that eg = 0 and k9 = 0. Let
S = {k € R3;b(k) = c(k) = 0}. Since Vb(kg), Vc(ko) are independent then the
system (Vb(ko), Ve(ko),v) is a basis of R3 for all v # 0 in Ty, S, (where Ty, S
denotes the tangent space of S at kg). Therefore, we can choose as coordinates

g =b(k), yp=c(k), z=uvk

With this change of variables we get

ple) = / J(y, 2)dy dz
{Gw.2)~lyl<e, (v,2)EW)

+ / J(y,z)dydz + h(e)
{G(y,2)+|yl<e, (y,2)eW}
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where J is analytic in W a complex neighborhood of (0,0), G(y, z) = a(k) and h is
analytic near 0.

By polar coordinates y — r(cos(),sin(f)) := rw, W moves into W and we
obtain

p(e) :/ J(rw, z)rdrdwdz
{G(rw,z)—r<e, (r,w,z)EW7 }

+/ J(rw, z)rdr dwdz + h(e)
{G(rw,z)+r<e, (r,w,z)EW1}

—/ J(rw, z)rdrdwdz
{G(rw,z)+r<e, (—r,—w,z)EW7 }

—|—/ J(rw, z)rdrdwdz + h(e)
{G(rw,z)+r<e, (r,w,z)EW1}

In the first integral of the last equation we have use the change (r,w) — (—r, —w).
The assumption that a/(,—.—oy is non-degenerate implies G(0,0) = 0, 9.G(0,0) = 0
and V2G(0,0) # 0. We may assume that V2G(0,0) > 0. Applying Taylor’s formula
to the function y — a(y, z), we get

G(rw,z) = G(0,2) + rG1(r,w, 2),
The condition yields |G| < 1.
Glrw,z) +r=G(0,2) + r(G1(r,w, z) + 1).
The change of variable 7 = r(G1(r,w, z) + 1) leads to

ple) = J1(F,w, z)drdwdz

/{G<0,z>+fge,f<o,wl}

+ / J1 (7w, z)drdwdz + h(e).
{G(0,z)+7<e,7>0,W;1}

Since G(0,0) = 0, 9,G(0,0) = 0 and V2G(0,0) > 0, there exists a(z) such that

G(0,2) = a(z)2z%, with a(0) > 0. Hence,

ple) = Jo (7, w, z)drdwdz

/{22+77§e, 7<0,W2}

+ / Jo (7, w, z)drdwdz + h(e)
{z247<e, 7>0,Ws}

= —/ Jo (T, w, z)drdwdz
{z247<e, W2}
+ 2/ Jo (7, w, z)drdwdz + h(e)
{z2+47<e, 7>0,Wa}

The first integral in the last equation is an analytic function in e near 0. If e < 0
the set {22 +7 < e: 7 > 0, Wa} is empty, then p(e) is reduced to the first integral. If
e > 0 the second integral is a non vanishing function near 0. Moreover this function
is analytic in term of \/e. This yields analytic singularity for p. (]

This lemma and [2, Theorem 1.6] lead to the following theorem.

Theorem 4.2. Let J be an open interval in which (4.2)) is valid. Let I satisfying
(H2) and let E € I N (e + singsupp, (i) be such that (E — supp(p)) C J. Then
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for all h-independent complex neighborhood Q of E, there exist hg = h(2) > 0
sufficiently small and C = C(Q) > 0 such that for h €]0, ho,

#{z € Q;z € ResP(h)} > Cqh™™.
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