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RESONANCES GENERATED BY ANALYTIC SINGULARITIES
ON THE DENSITY OF STATES MEASURE FOR PERTURBED

PERIODIC SCHRÖDINGER OPERATORS

HAMADI BAKLOUTI, MAHER MNIF

Abstract. We consider a perturbation of a periodic Shrödinger operator P0

by a potential W (hx), (h↘ 0). We study singularities of the density of states

measure and we obtain lower bound for the counting function of resonances.

1. Introduction

In this paper we present a lower bound for the counting function of resonances
for the perturbed periodic Shrödinger operator

P (h) = P0 +W (hy) , P0 = −4+V (h↘ 0).

Here V is C∞ function, real valued and Γ-periodic with respect to a lattice Γ =
⊕n

i=1Zei in Rn. The potential W is real valued and satisfies the hypothesis
(H1) There exist positive constants a and C such that W extends analytically to

Γ(a) := {z ∈ Cn : |=(z)| ≤ a〈<(z)〉}

and

|W (z)| ≤ C〈z〉−N , uniformly on z ∈ Γ(a), N > n, (1.1)

where 〈z〉 = (1+ |z|2)1/2. Here <(z), =(z) denote respectively the real part
and the imaginary part of z.

Let Γ∗ = ⊕n
i=1Ze

∗
i be the dual lattice of Γ, where {e∗j}n

j=1 is the basis satisfying
(ej , e

∗
k) = 2πδjk. Set E = {x =

∑n
j=1 tjej , tj ∈ [−1/2, 1/2[}, and E∗ = {x =∑n

j=1 tje
∗
j , tj ∈ [−1/2, 1/2[}. We use the usual flat metrics on T := Rn/Γ and

T∗ := Rn/Γ∗, when we integrate or do local considerations we identify T (resp.
T∗) with E (resp. E∗).

For k ∈ Rn, we define the operator Pk on L2(T) by

Pk := (Dy + k)2 + V (y).

Let λ1(k) ≤ λ2(k) ≤ . . . be the Floquet eigenvalues of Pk (enumerated according to
their multiplicities). It is well known (see [4]) that λp(k) are continuous functions
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of k for any fixed p. Moreover λp(k) is an analytic function in k near any point
k0 ∈ T ∗, where λp(k0) is a simple eigenvalue of Pk0 .

We consider the self-adjoint operator P0 = −∆ + V (y) on L2(Rn) with domain
H2(Rn). By Bloch-Floquet theory, it is known that

σ(P0) = σac(P0) = ∪p≥1Λp, where Λp = λp(T∗).

Let us introduce the density of states measure

ρ(λ) :=
1

(2π)n

∑
p≥1

∫
{k∈E∗; λp(k)≤λ}

dk. (1.2)

Since the spectrum of P0 is absolutely continuous, the measure ρ is absolutely
continuous with respect to the Lebesgue measure dλ. Therefore, the density of
states dρ

dλ of P0, is locally integrable.
For f ∈ C∞0 (R), we set

〈µ, f〉 =
∫

[f(W (x))− f(0)]dx, (1.3)

〈ω, f〉 =
1

(2π)n

∑
j

∫
E∗

∫
Rn

x

[f(W (x) + λj(k))− f(λj(k))]dx dk, (1.4)

Proposition 1.1 ([1]). The functionals operators ω and µ are distributions of order
≤ 1. Moreover, in D′(R), we have

ω = dρ ∗ µ. (1.5)

Definition 1.2. We say that λ ∈ σ(P0) is a simple energy level if it is a simple
eigenvalue of Pk, for every k ∈ F (λ) := {k ∈ T∗;λ ∈ σ(Pk)}.

We use also the following hypothesis
(H2) There exists an open bounded interval I such that for all λ ∈ I and all k0 ∈

Rn/Γ∗ with λp(k0) = λ, the eigenvalue λp(k0) is simple and dkλp(k0) 6= 0.
We use sing suppa(ω) for analytic singular support of ω. Under assumptions (H1)
and (H2) in [2] it was proved that if E ∈ sing suppa(ω) ∩ I then for every h-
independent complex neighborhood Ω of E, there exist h0 = h(Ω) > 0 sufficiently
small and C = C(Ω) > 0 large enough such that for h ∈]0, h0[,

#{z ∈ Ω; z ∈ ResP (h)} ≥ CΩh
−n.

This result is based on the trace formula in the periodic case [2, 5].
Since (1.5) for ω, the analytic singular support of ω depends on both sing suppa(µ)

and sing suppa(dρ). The question is to find some criteria to determine if e0 = λp(k0)
belongs to the sing suppa(dρ).

If e0 = λp(k0) is a simple eigenvalue in a neighborhood of k0 then λp(k) is a
smooth function there. Moreover if e0 is non critical then e0 is not in the analytic
singular support of ρ (see Lemma 2.1).

The distribution ρ can be singular for a variety of reasons. If e0 = λp(k0) is
a critical value, we expect in general that e0 will belong to the analytic singular
support of ρ. Multiple eigenvalues can also give rise to analytic singularities of
ρ. We recall that, the case when e0 = λp(k0) is a non-degenerate extremum was
studied by Dimassi and Mnif in [1]. They studied also the case of bands crossing
when n = 2.
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In this paper we are interested to more general situations. We first study the
case when e0 = λp(k0) is a non-degenerate critical point and we prove that in
this situation e0 belongs to the analytic singular support of ρ. We note that this
result generalizes the case when e0 is a non-degenerate extremum point established
in [1, Theorem 1]. In the case when e0 is a degenerate critical point one gives a
positive answer to the question if e0 is an extremum. This result encloses the case
of finite number of extremum at the same level. Finally we look for resonances near
a singularity of ρ generated by bands crossing at e0. This study is devoted to the
case n = 3.

The paper is presented as follows: Section 2: Lower bound of the number of
resonances near a critical non-degenerate point. Section 3: Lower bound of the
number of resonances near a degenerate critical point. Section 4: Lower bound of
the number of resonances near a conic singularity of the density of states.

2. Lower bound of the number of resonances near a critical
non-degenerate point

Let O be an open bounded set in Rn with analytic boundary almost every where,
and let U be a complex neighborhood of O. Let x → ϕ(x) be analytic on U and
real valued for all x in O. Let us introduce the real function

I(e) :=
∫
{x∈O, ϕ(x)≤e}

dx.

Lemma 2.1 ([3]). If ∇ϕ(x) 6= 0 near every x ∈ Σe0 := {x ∈ O : ϕ(x) = e0} and if
the sets ∂O and Σe0 intersect transversely, then I(e) is analytic near e0.

The next lemma generalizes the result in [1, Lemma 2], where the authors con-
sider the case of non-degenerate extremum.

Lemma 2.2. If ϕ has a non-degenerate critical point at x0 with ϕ(x0) = e0 and if
∇ϕ(x) 6= 0 for all x ∈ Σe0\{x0}, then there exists an open interval J neighborhood
of e0, such that I(e) is analytic on J\{e0} and has a C2 singularity at e0.

Proof. Under the assumption ∇ϕ(x) 6= 0 for all x ∈ Σe0\{x0} and since ϕ has a
non-degenerate critical point at x0 there exists an open interval J neighborhood
of e0 such that for all e ∈ J\{e0} we have ∇ϕ(x) 6= 0 near every x ∈ Σe := {x ∈
O : ϕ(x) = e}. Hence by Lemma 2.1 I(e) is analytic on J\{e0}. One now studies
the behavior of I at e0. Let (k, n− k) be the signature of the hessian form of ϕ at
x0. The case k = 0 or k = n corresponds to e0 non-degenerate extremum which
is studied in [1]. Here we focus our study on the case of saddle point. By Morse
lemma, for all ε > 0 small enough, there exist a neighborhood Ω of x0 and a local
analytic diffeomorphism D : Ω → B(0, ε) such that

Iε(e) :=
∫
{x∈Ω, ϕ(x)≤e}

dx =
∫
{x∈B(0,ε),

Pk
i=1 x2

i−
Pn

i=k+1 x2
i≤e−e0}

Jac(D−1(x))dx.

We introduce the notation: x = (X+, X−) with X+ = (x1, . . . , xk) and X− =
(xk+1, . . . , xn). Bk,ε = {X ∈ Rk : ‖X‖ < ε}.

Up to an analytic correction of Iε(e), we can suppose that

Iε(e) =
∫
{x=(X+,X−)∈Bk,ε×Bn−k,ε,

Pk
i=1 x2

i−
Pn

i=k+1 x2
i≤e−e0}

Jac(D−1(x))dx.
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Let x = εy and E = (e− e0)/ε2, we have

Iε(e) = εnJ(ε, E)

:= εn
∫
{y=(Y+,Y−)∈Bk,1×Bn−k,1,

Pk
i=1 y2

i−
Pn

i=k+1 y2
i≤E}

Jac(D−1(εy))dy.

To prove that Iε has a C2 singularity at e0 we prove that J(ε, .) has a C2 singularity
at E = 0. On the other hand, we can see that for E small enough, J(., E) is analytic
near ε = 0. Therefore, it is sufficient to prove that E = 0 is a C2 singularity for
J(0, .). We have

J(0, E) =
2n/2√

|det(Hess(ϕ)(x0)|

∫
{y=(Y+,Y−)∈Bk,1×Bn−k,1,

Pk
i=1 y2

i−
Pn

i=k+1 y2
i≤E}

dy.

Using polar coordinates we get

J(0, E) = Cn

∫
{0≤r1≤1, 0≤r2≤1, r2

1−r2
2≤E}

rk−1
1 rn−k−1

2 dr1dr2,

where

Cn =
2

n
2 Vol(Sk−1) Vol(Sn−k−1)√

|det(Hess(ϕ)(x0)|
For E > 0,

J(0, E) := fr(E)

= Cn[
∫ √

E

0

∫ 1

0

rk−1
1 rn−k−1

2 dr2dr1 +
∫ 1

√
E

∫ 1

√
r2
1−E

rk−1
1 rn−k−1

2 dr2dr1]

= Cn[
1

k(n− k)
+

∫ √
E

1

(r21 − E)
n−k

2

n− k
rk−1
1 dr1].

For E < 0, we write

J(0, E) := fl(E) = Cn

∫
{0≤r1≤1 , 0≤r2≤1 ; r2

2≥r2
1−E}

rk−1
1 rn−k−1

2 dr1dr2 .

In the same way as above we obtain

fl(E) = −Cn

∫ √
−E

1

(r22 + E)
k
2

k
rn−k−1
2 dr2.

Computing the second derivatives, we get for n > 4: If n− k 6= 2, then

d2fr

dE2
(0) = −Cn

n− k − 2
4(n− 4)

.

If k 6= 2, then
d2fl

dE2
(0) = Cn

k − 2
4(n− 4)

.

If n− k = 2, then
d2fr

dE2
(0) = 0 and

d2fl

dE2
(0) =

Cn

4
.

If k = 2, then
d2fr

dE2
(0) = −Cn

4
and

d2fl

dE2
(0) = 0.
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So, for all n > 4, we have
d2fr

dE2
(0) 6= d2fl

dE2
(0).

On the other hand, for n ≤ 4: If n− k 6= 2, then

lim
E→0+

d2fr

dE2
(E) = ∞ .

If k 6= 2, then

lim
E→0−

d2fl

dE2
(E) = ∞ .

If k = 2 and n− k = 2, then

d2fr

dE2
(0) = −1

4
and

d2fl

dE2
(0) =

1
4
.

Hence, for all n, J(0, .) has a C2 singularity at 0. �

The following result is a consequence of Lemma 2.1, Lemma 2.2 and the repre-
sentation (1.2) of ρ.

Lemma 2.3. Let e0 be a simple eigenvalue of P0. We assume that:
(i) There exist i0 and k0 such that λi0(k0) = e0, ∇λi0(k0) = 0.
(ii) ∇λi0(k) 6= 0, for all k ∈ λ−1

i0
({e0}), k 6= k0 and ∇λi(k) 6= 0 for all k ∈

λ−1
i ({e0}), i 6= i0.

Then there exists an open interval J neighborhood of e0 such that the density of
states measure ρ is analytic on J\{e0} and has a C2 singularity at e0.

Therefore, by [2, Theorem 1.6], we obtain the following result.

Theorem 2.4. Let e0 and J be as in Lemma 2.3, I satisfying (H2) and let E ∈
(e0 +sing suppa(µ))∩I be such that (E−supp(µ)) ⊂ J . Then for all h-independent
complex neighborhood Ω of E, there exist h0 = h(Ω) > 0 sufficiently small and
C = C(Ω) > 0 such that for h ∈]0, h0[,

#{z ∈ Ω; z ∈ ResP (h)} ≥ CΩh
−n.

3. Lower bound for the number of resonances near a degenerate
critical point

Let K be a compact set in Rn, we consider C(K,R) the space of continuous real
functions on K, with the norm ‖ϕ‖∞ = supx∈K |ϕ(x)|. Let us introduce the real
valued function He : C(K,R) → R,

ϕ 7→
∫
{x∈K, ϕ(x)≤e}

dx .

Lemma 3.1. Let ϕ ∈ C(K,R) such that ϕ−1({e}) is a finite set. He is continuous
at ϕ.

Proof. Without loss of generality, we can take ϕ−1({e}) reduced to {x0}. Let ε > 0,
by the continuity of ϕ on K and the fact that ϕ(x) 6= e for all x ∈ Kε = K\B(x0, ε)
which is a compact set, we have the statement:

There exists α(ε) > 0 such that |ϕ(x)− e| > α(ε), for all x ∈ Kε. (3.1)
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Let ψ ∈ C(K,R) be such that

‖ϕ− ψ‖∞ <
α(ε)
2
. (3.2)

We denote:

K−,− = {x ∈ K : ϕ(x) ≤ e} ∩ {x ∈ K : ψ(x) ≤ e}
K−,+ = {x ∈ K : ϕ(x) ≤ e} ∩ {x ∈ K : ψ(x) > e}
K+,− = {x ∈ K : ϕ(x) > e} ∩ {x ∈ K : ψ(x) ≤ e}.

We have:

He(ϕ) = Vol(K−,−) + Vol(K−,+)

He(ψ) = Vol(K−,−) + Vol(K+,−).

Then
He(ϕ)−He(ψ) = Vol(K−,+)−Vol(K+,−).

By (3.1) and (3.2), we have

K−,+ ∩Kε = ∅ and K+,− ∩Kε = ∅,

hence
K−,+ ⊂ B(x0, ε) and K+,− ⊂ B(x0, ε).

Then
Vol(K−,+) ≤ 2ε and Vol(K+,−) ≤ 2ε.

Finally we get |He(ϕ)−He(ψ)| ≤ 4ε. �

Definition 3.2. Let O be an open bounded set in Rn, and let ϕ a function in
C∞(O,R). We say that ϕ has an isolated local minimum (resp. maximum) of
order p ∈ N∗ at x0 ∈ O, if the Taylor expansion of ϕ near x0 is as follows

ϕ(x+ x0) = ϕ(x0) +
n∑

i=1

αix
2p
i +

∑
σ∈(N)n;|σ|=p

aσx
2σ +O(|x|2p+1)

with αi > 0, aσ ≥ 0 (resp. αi < 0, aσ ≤ 0). σ = (σ1, . . . , σn) ∈ (N)n, x2σ denotes
x2σ1

1 . . . x2σn
n and |σ| = σ1 + · · ·+ σn.

We now return to the real valued function I(e) :=
∫
{x∈O:ϕ(x)≤e} dx introduced

in section 2. Let H denote the Heaviside function.

Lemma 3.3. Suppose that ϕ has an isolated local extremum of order p ∈ N∗ at x0.
If ∇ϕ(x) 6= 0 for all x ∈ Σe0\{x0}, then

(i) If e0 is a minimum,

I(e) = g(e− e0) +H(e− e0)(e− e0)
n
2p (C +R(e)) (3.3)

with C > 0, lime→e0 R(e) = 0 and g analytic function.
(ii) If e0 is a maximum,

I(e) = g(e− e0) +H(e0 − e)(e0 − e)
n
2p (C +R(e)) (3.4)

with C > 0, lime→e0 R(e) = 0 and g analytic function.
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Proof. (i) We note that if e0 is a minimum for ϕ then there exists ε > 0 such that
ϕ(x+ x0) ≥ e0 for all x ∈ B(0, ε). We write

I(e) =
∫
{x∈B(0,ε), ϕ(x)≤e}

dx+
∫
{x∈O\B(0,ε), ϕ(x)≤e}

dx.

By Lemma 2.1, the second term in the right-hand side is analytic near e0. Let:

Iε(e) :=
∫
{x∈B(0,ε), ϕ(x)≤e}

dx.

For e < e0, Iε(e) = 0. For e > e0, we can write

ϕ(x0 + x) = e0 +D2p(x) +O(|x|2p+1)

with ,

D2p(x) =
n∑

i=1

αix
2p
i +

∑
σ∈(N)n;|σ|=p

aσx
2σ.

Up to ε > 0, we have for all x ∈ B(0, ε),

|O(|x|2p+1)| ≤ 1
2
D2p(x).

Hence

Je := {x ∈ B(0, ε) : ϕ(x+ x0) ≤ e} ⊂ {x ∈ B(0, ε) : D2p(x) ≤ 2(e− e0)}

Since aσ ≥ 0 for all σ, we have

Je ⊂ {x ∈ B(0, ε) :
n∑

i=1

αix
2p
i ≤ 2(e− e0)} ⊂ B(0, c(e− e0)

1
2p )

with c > 0. Therefore,

Iε(e) =
∫
{x∈B(0,ε)∩B(0,c(e−e0)

1
2p ):ϕ(x0+x)≤e}

dx.

Up to reduce e− e0, we can suppose that c(e− e0)
1
2p < ε. Then we get

Iε(e) =
∫
{x∈B(0,c(e−e0)

1
2p ):ϕ(x0+x)≤e}

dx.

By the scaling x = (e− e0)
1
2p y, we get

Iε(e) = (e− e0)
n
2p

∫
{y∈B(0,c):D2p(y)+(e−e0)

1
2p Ψe(y)≤1}

dy,

with Ψe bounded on B(0, c) uniformly on e near e0. By Lemma 3.1, we get, for
e > e0,

Iε(e) = (e− e0)
n
2p (

∫
{y∈B(0,c):D2p(y)≤1}

dy +R(e))

with lime→e0 R(e) = 0. �

By Lemma 3.3 and the representation (1.2) of ρ we obtain the following result.

Lemma 3.4. Let e0 be a simple eigenvalue of P0. We assume that
(i) There exist i0 and k0 such that λi0(k0) = e0.
(ii) e0 is an isolated local extremum of order p for λi0 .
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(iii) ∇λi0(k) 6= 0, for all k ∈ λ−1
i0

(e0), k 6= k0. Moreover ∇λi(k) 6= 0, for all
k ∈ λ−1

i ({e0}), i 6= i0.
Then there exists an open interval J such that the density of states measures has
the representation (3.3), (3.4) in lemma 3.3.

Therefore, by [2, Theorem 1.6], we have the following result.

Theorem 3.5. Let e0 and J be as in Lemma 3.4, I satisfying (H2) and let E ∈
(e0 +sing suppa(µ))∩I be such that (E−supp(µ)) ⊂ J . Then for all h-independent
complex neighborhood Ω of E, there exist h0 = h(Ω) > 0 sufficiently small and
C = C(Ω) > 0 such that for h ∈]0, h0[,

#{z ∈ Ω; z ∈ ResP (h)} ≥ CΩh
−n.

Remark 3.6. The hypothesis (iii) in Lemma 3.4, implies that the (λi) have no
more critical point at the e0 level other than λi0 ’s one at k0. In the following
lemmas we consider the case of finite number of extrema at the same level. For
simplicity we state these lemmas for only two extrema.

By Lemma 3.3 and the representation (2) of ρ, we have the following result.

Lemma 3.7. Let e0 be a simple eigenvalue of P0. We assume that:
(i) There exist i1 and k1, i2 and k2 such that λi1(k1) = λi2(k2) = e0.
(ii) λi1 (resp. λi2) has an isolated local minimum at the e0 level of order p1

(resp. p2) at k1 (resp. k2).
(iii) The λi have no more critical points at the e0 level other than λi1 ’s one at

k1 and λi2 ’s one at k2.
Then there exists an open interval J such that the density of states measures has
the representation

ρ(e) = g(e− e0) +H(e− e0)(e− e0)
n
2p (C +R(e)),

with C > 0, lime→e0 R(e) = 0, g analytic function and p = max(p1, p2).

Lemma 3.8. Let e0 be a simple eigenvalue of P0. We assume that:
(i) There exist i1 and k1, i2 and k2 such that λi1(k1) = λi2(k2) = e0.
(ii) λi1 (resp. λi2) has an isolated local minimum (resp. maximum) at the e0

level of order p1 (resp. p2) at k1 (resp. k2). Moreover if p1 = p2 then we
assume that n

2p1
/∈ N.

(iii) The λi have no more critical points in the e0 level other than λi1 ’s one at
k1 and λi2 ’s one at k2.

Then there exists an open interval J such that the density of states measures has
the representation

ρ(e) = g(e−e0)+H(e−e0)(e−e0)
n

2p1 (C1+R1(e))+H(e0−e)(e0−e)
n

2p2 (C2+R2(e))

with C1 > 0, C2 > 0 , lime→e0 R1(e) = lime→e0 R2(e) = 0 and g analytic function.

Therefore, by [2, Theorem 1.6], we have the following theorem.

Theorem 3.9. Let e0 and J be as in Lemma 3.7 or Lemma 3.8, I satisfying (H2)
and let E ∈ (e0 + sing uppa(µ)) ∩ I be such that (E − supp(µ)) ⊂ J . Then for all
h-independent complex neighborhood Ω of E, there exist h0 = h(Ω) > 0 sufficiently
small and C = C(Ω) > 0 such that for h ∈]0, h0[,

#{z ∈ Ω; z ∈ ResP (h)} ≥ CΩh
−n.
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4. Lower bound of the number of resonances near a conic
singularity of the density of states

In this section we study resonances near a singularity of ρ(λ) generated by a
bands crossing. We assume that λj is a double eigenvalues

λj−1(k0) < λj(k0) = e0 = λj+1(k0) < λj+2(k0)

and that for all k 6= k0 such that λi(k) = e0, λi(k) is simple and ∇λi(k) 6= 0.
Since Pk is analytic in k, this implies that for |k−k0| ≤ δ (with δ small enough),

the span V (k), of the eigenvectors of Pk corresponding to eigenvalues in the set
{e : |e − e0| ≤ δ} has a basis ψj(x, k), ψj+1(x, k), which is orthonormal and real
analytic in k. The restriction of Pk to V (k) has the matrix(

α(k) b(k)
b(k) β(k)

)
,

which can be written as(
a(k) + c(k) b1(k)− ib2(k)
b1(k) + ib2(k) a(k)− c(k)

)
,

where a(k) = (α(k) + β(k))/2, c(k) = (α(k)− β(k))/2, b1(k) and b2(k) are real
valued. Next the periodic potential is assumed to have the symmetry V (x) =
V (−x). This symmetry is typical of metals. This symmetry forces b(k) to be real
valued (i.e., b2(k) = 0). Consequently, near k0 we have

Ej(k) = a(k)−
√
c2(k) + b2(k), Ej+1(k) = a(k) +

√
c2(k) + b2(k).

The case n = 2 is treated in [1]. We consider here the case n = 3. We assume that
∇b(k0),∇c(k0) are independent and

‖∇b,ca(k0)‖ < 1 (4.1)

Nedelec in [2] section 6 studied singularity of volumes of matrix problem in some
equivalent situations. She gets C∞ singularities. Following the same method we
get a more precise result.

Lemma 4.1. We assume that a/{b=c=0} is non-degenerate at e0. Then, there exist
f and g, analytic near e0, such that

ρ(e) = f(e− e0) +H(e− e0)g(
√
e− e0), (4.2)

with g(.) 6= 0.

Proof. Without loss of generality we may assume that e0 = 0 and k0 = 0. Let
S = {k ∈ R3; b(k) = c(k) = 0}. Since ∇b(k0), ∇c(k0) are independent then the
system (∇b(k0),∇c(k0), v) is a basis of R3 for all v 6= 0 in Tk0S, (where Tk0S
denotes the tangent space of S at k0). Therefore, we can choose as coordinates

y1 = b(k), y2 = c(k), z = v.k

With this change of variables we get

ρ(e) =
∫
{G(y,z)−|y|≤e, (y,z)∈W}

J(y, z)dy dz

+
∫
{G(y,z)+|y|≤e, (y,z)∈W}

J(y, z)dy dz + h(e)
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where J is analytic in W a complex neighborhood of (0, 0), G(y, z) = a(k) and h is
analytic near 0.

By polar coordinates y → r(cos(θ), sin(θ)) := rω, W moves into W1 and we
obtain

ρ(e) =
∫
{G(rω,z)−r≤e, (r,ω,z)∈W1}

J(rω, z)rdrdωdz

+
∫
{G(rω,z)+r≤e, (r,ω,z)∈W1}

J(rω, z)r dr dω dz + h(e)

= −
∫
{G(rω,z)+r≤e, (−r,−ω,z)∈W1}

J(rω, z)r dr dω dz

+
∫
{G(rω,z)+r≤e, (r,ω,z)∈W1}

J(rω, z)r dr dω dz + h(e)

In the first integral of the last equation we have use the change (r, ω) → (−r,−ω).
The assumption that a/{b=c=0} is non-degenerate implies G(0, 0) = 0, ∂zG(0, 0) = 0
and∇2

zG(0, 0) 6= 0. We may assume that∇2
zG(0, 0) > 0. Applying Taylor’s formula

to the function y → a(y, z), we get

G(rω, z) = G(0, z) + rG1(r, ω, z),

The condition (4.1) yields |G1| < 1.

G(rω, z) + r = G(0, z) + r(G1(r, ω, z) + 1).

The change of variable r̃ = r(G1(r, ω, z) + 1) leads to

ρ(e) = −
∫
{G(0,z)+r̃≤e, r̃<0,W1}

J1(r̃, ω, z)dr̃dωdz

+
∫
{G(0,z)+r̃≤e, r̃>0,W1}

J1(r̃, ω, z)dr̃dωdz + h(e).

Since G(0, 0) = 0, ∂zG(0, 0) = 0 and ∇2
zG(0, 0) > 0, there exists α(z) such that

G(0, z) = α(z)z2, with α(0) > 0. Hence,

ρ(e) = −
∫
{z2+r̃≤e, r̃<0,W2}

J2(r̃, ω, z)dr̃dωdz

+
∫
{z2+r̃≤e, r̃>0,W2}

J2(r̃, ω, z)dr̃dωdz + h(e)

= −
∫
{z2+r̃≤e, W2}

J2(r̃, ω, z)dr̃dωdz

+ 2
∫
{z2+r̃≤e, r̃>0,W2}

J2(r̃, ω, z)dr̃dωdz + h(e)

The first integral in the last equation is an analytic function in e near 0. If e < 0
the set {z2+ r̃ ≤ e : r̃ > 0,W2} is empty, then ρ(e) is reduced to the first integral. If
e > 0 the second integral is a non vanishing function near 0. Moreover this function
is analytic in term of

√
e. This yields analytic singularity for ρ. �

This lemma and [2, Theorem 1.6] lead to the following theorem.

Theorem 4.2. Let J be an open interval in which (4.2) is valid. Let I satisfying
(H2) and let E ∈ I ∩ (e0 + sing suppa(µ)) be such that (E − supp(µ)) ⊂ J . Then
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for all h-independent complex neighborhood Ω of E, there exist h0 = h(Ω) > 0
sufficiently small and C = C(Ω) > 0 such that for h ∈]0, h0[,

#{z ∈ Ω; z ∈ ResP (h)} ≥ CΩh
−n.
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