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CONSTANTS IN THE OSCILLATION THEORY OF HIGHER
ORDER STURM-LIOUVILLE DIFFERENTIAL EQUATIONS

ONDŘEJ DOŠLÝ

Abstract. We find the the exact value of a constant in some oscillation cri-

teria for the higher order Sturm-Liouville differential equation

(−1)n(tαy(n))(n) = q(t)y.

We also study some general aspects in the oscillation theory of this equation.

1. Introduction

In this paper we study the oscillatory properties of the higher order Sturm-
Liouville differential equations

(−1)n(tαy(n))(n) = q(t)y. (1.1)

A typical phenomenon of the application of the variational principle in the oscilla-
tion theory of Sturm-Liouville differential equations is that there is a gap between
constants appearing in non-oscillation and oscillation criteria. To explain the situ-
ation, consider the simple second order differential equation

y′′ + q(t)y = 0, q(t) ≥ 0. (1.2)

The variational approach to the investigation of oscillatory properties of (1.2) is
based on the following statement, see [12].

Proposition 1.1. Equation (1.2) is non-oscillatory if and only if there exists T ∈ R
such that for every nontrivial y ∈W 1,2

0 (T,∞)

F(y;T,∞) :=
∫ ∞
T

[
y′2 − q(t)y2

]
dt > 0. (1.3)

Non-oscillation criteria are usually proved using the Wirtinger inequality∫ ∞
T

|M ′(t)|y2(t) dt ≤ 4
∫ ∞
T

M2(t)
|M ′(t)|

y′2(t) dt (1.4)

2000 Mathematics Subject Classification. 34C10.
Key words and phrases. Sturm-Liouville differential equation, variational method,
oscillation and non-oscillation criteria, conditional oscillation.
c©2002 Southwest Texas State University.

Submitted October 25, 2001. Published April 4, 2002.
Supported by Research Project J07/98/143100001 from the Czech Government.

1
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which holds for every y ∈ W 1,2
0 (T,∞), see e.g. [13], here M is a continuously

differentiable function such that M ′(t) 6= 0 for t ≥ T . Using this inequality it is
not difficult to prove that (1.2) is non-oscillatory if

lim
t→∞

t

∫ ∞
t

q(s) ds <
1
4
. (1.5)

Indeed, if (1.5) holds, then for T sufficiently large and any nontrivial y ∈W 1,2
0 (T,∞)

(using integration by parts, the Cauchy inequality and (1.4) with M(t) = t−1) we
have ∫ ∞

T

q(t)y2 dt ≤ −y2

∫ ∞
t

q(s) ds
∣∣∣∞
T

+ 2
∫ ∞
t

|y||y′|1
t
t
(∫ ∞

t

q(s) ds
)
dt

<
1
2

(∫ ∞
T

y′2 dt
)1/2(y2

t2
dt
)1/2

≤
∫ ∞
T

y′2 dt.

If we want to establish an oscillation criterion for (1.2), we need to show that for
every T there exists a nontrivial y ∈ W 1,2

0 (T,∞) such that F(y;T,∞) ≤ 0. This
function we construct as follows. Let T be arbitrary, T < t1 < t2 < t3, and define

y =



0 t ≤ T,
t−T
t1−T T ≤ t ≤ t1,
1 t1 ≤ t ≤ t2,
t3−t
t3−t2 t2 ≤ t ≤ t3,
0 t ≥ t3.

Then (using the fact that q(t) ≥ 0)

F(y;T,∞) ≤ 1
t1 − T

−
∫ t2

t1

q(t) dt+
1

t3 − t2

=
1

t1 − T

[
1− (t1 − T )

∫ t2

t1

q(t) dt+
t1 − T
t3 − t2

]
.

Hence, if

lim
t→∞

t

∫ ∞
t

q(s) ds > 1, (1.6)

it is not difficult to see that F(y;T,∞) < 0 if t1 < t2 < t3 are sufficiently large,
i. e. (1.6) is a sufficient condition for oscillation of (1.2).

Now we see the gap between the constants 1
4 in (1.5) and 1 in (1.6) obtained

by variational method. On the other hand, the application of the so-called Ric-
cati technique, based on the relationship between non-oscillation of (1.2) and the
solvability of the Riccati equation

w′ + q(t) + w2 = 0,

then reveals that the “correct” constant is 1
4 in the sense that using this method it

is possible to show that (1.2) is oscillatory provided the limit in (1.6) is > 1
4 , see e.

g. [15].
The above described fact that the variational method gives a gap between con-

stants in oscillation and non-oscillation criteria appears also in the oscillation theory
of higher order Sturm-Liouville equations, examples are given in the next section.
In contrast to the second order equations, the Riccati technique is not developed
properly for higher order equations, so the open problem is what is the “correct”
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constant for (non)oscillation of the investigated differential equation. The aim of
this paper is to show that a suitable modification of the variational method enables
to detect a correct oscillation constant and to remove this gap. It turns out, simi-
larly as in the second order case, that this constant is the constant in non-oscillation
criteria obtained using inequality (1.4).

This paper is organized as follows. In the next section we recall the relationship
between higher order Sturm-Liouville equations and linear Hamiltonian systems,
we also recall some known (non)oscillation criteria for Sturm-Liouville equations.
Section 3 contains the main results of the paper, new oscillation criteria for (1.1).
In the last section we discuss some general aspects of the used approach to the
oscillation theory of Sturm-Liouville equations.

2. Auxiliary results

We start this section with the basic oscillatory properties of higher order Sturm-
Liouville differential equation

L(y) :=
n∑
k=0

(−1)k
(
rk(t)y(k)

)(k) = 0, rn(t) > 0. (2.1)

Oscillatory properties of this equation can be investigated within the scope of the
oscillation theory of linear Hamiltonian systems (further LHS)

x′ = A(t)x+B(t)u, u′ = C(t)x−AT (t)u, (2.2)

where A,B,C are n × n matrices with B,C symmetric. Indeed, if y is a solution
of (2.1) and we set

x =


y
y′

...
y(n−1)

 , u =


(−1)n−1(rny(n))(n−1) + · · ·+ r1y

′

...
−(rny(n))′ + rn−1y

(n−1)

rny
(n)

 ,

then (x, u) solves (2.2) with A,B,C given by

B(t) = diag{0, . . . , 0, r−1
n (t)}, C(t) = diag{r0(t), . . . , rn−1(t)},

A = Ai,j =
{

1, if j = i+ 1, i = 1, . . . , n− 1,
0, elsewhere.

In this case we say that the solution (x, u) of (2.2) is generated by the solution y of
(2.1). Moreover, if y1, . . . , yn are solutions of (2.1) and the columns of the matrix
solution (X,U) of (2.2) are generated by the solutions y1, . . . , yn, we say that the
solution (X,U) is generated by the solutions y1, . . . , yn.

Recall that two different points t1, t2 are said to be conjugate relative to system
(2.2) if there exists a nontrivial solution (x, u) of this system such that x(t1) = 0 =
x(t2). Consequently, by the above mentioned relationship between (2.1) and (2.2),
these points are conjugate relative to (2.1) if there exists a nontrivial solution y of
this equation such that y(i)(t1) = 0 = y(i)(t2), i = 0, 1, . . . , n − 1. System (2.2)
(and hence also equation (2.1)) is said to be oscillatory if for every T ∈ R there
exists a pair of points t1, t2 ∈ [T,∞) which are conjugate relative to (2.2) (relative
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to (2.1)), in the opposite case (2.2) (or (2.1)) is said to be nonoscillatory. If w is a
positive function, the equation

L(y) = w(t)y (2.3)

with the non-oscillatory operator L given by (2.1) is said to be conditionally oscil-
latory if there exists λ0 > 0 such that (2.3) with λw(t) instead of w(t) is oscillatory
for λ > λ0 and non-oscillatory for λ < λ0. The constant λ0 is called the oscillation
constant of (2.3).

A conjoined basis (X,U) of (2.2) (i.e. a matrix solution of this system with
n × n matrices X,U satisfying XT (t)U(t) = UT (t)X(t) and rank (XT , UT )T = n)
is said to be the principal solution of (2.2) if X(t) is nonsingular for large t and for
any other conjoined basis (X̄, Ū) such that the (constant) matrix X̄TU − ŪTX is
nonsingular limt→∞ X̄−1(t)X(t) = 0 holds. The last limit equals zero if and only if

lim
t→∞

(∫ t

X−1(s)B(s)XT−1(s) ds
)−1

= 0, (2.4)

see [14]. A principal solution of (2.2) is determined uniquely up to a right multiple
by a constant nonsingular n × n matrix. If (X,U) is the principal solution, any
conjoined basis (X̄, Ū) such that the matrix XT Ū − UT X̄ is nonsingular is said
to be a nonprincipal solution of (2.2). Solutions y1, . . . , yn of (2.1) are said to
form the principal (non-principal) system of solutions if the solution (X,U) of the
associated linear Hamiltonian system generated by y1, . . . , yn is a principal (non-
principal) solution.

Besides the definition of oscillation and non-oscillation of (2.1) by means of the
concept of conjugate points, we will use another definition of oscillation and non-
oscillation of linear differential equations introduced by Nehari, see [2, Chap. III].
A linear differential equation

y(n) + qn−1(x)y(n−1) + · · ·+ q0(x)y = 0 (2.5)

is said to be disconjugate on an interval I in the sense of Nehari (shortly N -
disconjugate) if any nontrivial solution of (2.5) has at most n− 1 zeros on I, every
zero point counted according to its multiplicity. Equation (2.5) is said to be N -
non-oscillatory if there exists T ∈ R such that (2.5) is N -disconjugate on (T,∞).

Now we recall some known oscillation and non-oscillation criteria for higher order
Sturm-Liouville differential equations.

Proposition 2.1 ([3]). Suppose that equation (2.1) is N-nonoscillatory, y1, . . . , yn,
ỹ1, . . . , ỹn are its principal and nonprincipal systems of solutions, respectively. De-
note by (X,U) and (X̃, Ũ) the matrix solutions of the associated LHS generated by
these systems of solutions. The equation

L(y) = q(t)y (2.6)

is oscillatory provided there exists c = (c1, . . . , cn)T ∈ Rn such that one of the
following conditions is satisfied:

(i) ∫ ∞
q(t)(c1y1(t) + · · ·+ cny(t))2 dt =∞,
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(ii)

lim
t→∞

∫∞
t
q(s)(c1y1(s) + · · ·+ cny(s))2 ds

cT
(∫ t

X−1(s)B(s)XT−1 ds
)−1

c
> 1,

where B(t) = diag
{

0, . . . , 0, 1
rn(t)

}
,

(iii)

lim
t→∞

∫ t
q(s)(c1ỹ1(s) + · · ·+ cnỹ(s))2 ds

cT
(∫ t

X̃−1(s)B(s)X̃T−1 ds
)−1

c
> 1.

In the next theorem we specify general conditions of Proposition 2.1 to some
special N -nonoscillatory differential operators. The oscillation constants appearing
in the parts (i) and (ii) of the next theorem were computed in [6] for the Sturm-
Liouville difference equation

(−1)n∆n
(
k(α)∆nyk

)
= qkyk+n, k(α) :=

Γ(k + 1)
Γ(k + 1− α)

,

but the method used there directly extends to differential equations, see also [10, 11].

Proposition 2.2. Equation (1.1) is oscillatory provided one of the following con-
ditions is satisfied.

(i) α 6∈ {1, 3, . . . , 2n− 1}, m ∈ {0, . . . , n− 1}, α < 2n− 1 and

lim
t→∞

t2n−1−α−2m

∫ ∞
t

q(s)s2m ds

> µn,α,m :=
[(n−m− 1)!

∏m−1
j=0 (2n− 1− α− j)]2

2n− 2m− 1− α
, (2.7)

(ii) α 6∈ {1, 3, . . . , 2n− 1}, m ∈ {0, . . . , n− 1}, α > 2m+ 1,

lim
t→∞

t2m+1−α
∫ t

1

q(s)s2(n−m−1) ds

> ξn,α,m :=
[(n−m− 1)!

∏m−1
j=0 (α−m− 1− j)]2

α− 2m− 1
, (2.8)

(iii) α ∈ {1, 3, . . . , 2n− 1}, m = 2n−1−α
2 ,

lim
t→∞

lg t
(∫ ∞

t

q(s)s2m ds
)
> ρn,m := [m!(n−m− 1)!]2. (2.9)

Nonoscillatory counterparts of oscillation criteria of the previous theorem read
as follows. The proofs of these statements can be found in [1, 12, 13].

Proposition 2.3. Let q+(t) := max{0, q(t)} denotes the nonnegative part of q.
Equation (1.1) is nonoscillatory provided one of the following conditions is satisfied.

(i) α 6∈ {1, 3, . . . , 2n− 1}, α < 2n− 1, m ∈ {0, . . . , n− 1} and

lim
t→∞

t2n−1−α−2m

∫ ∞
t

q+(s)s2m ds < νn,α,m :=

∏n−1
j=0 (2n− α− 1− j)2

4n(2n− α− 1− 2m)
, (2.10)
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(ii) α 6∈ {1, 3, . . . , 2n− 1}, m ∈ {0, . . . , n− 1}, α > 2m− 1,

lim
t→∞

t2m+1−α
(∫ t

1

q+(s)s2(n−m−1) ds

)
< ζn,α,m :=

∏n−1
j=0 (2n− α− 1− j)2

4n(α− 2m+ 1)
,

(2.11)

(iii) α ∈ {1, 3, . . . , 2n− 1}, m = 2n−1−α
2 and

lim
t→∞

lg t
∫ ∞
t

q+(s)s2m ds <
ρn,m

4
=

[(n− 1−m)!m!]2

4
. (2.12)

Comparing Propositions 2.2, 2.3 we see the gap between constants in oscillation
and non-oscillation criteria. For example, if n = 2, α = 0 and m = 0, by the
previous propositions the fourth order equation

y(IV ) = q(t)y (2.13)

is oscillatory provided

lim
t→∞

t3
∫ ∞
t

q(s) ds > 12

and non-oscillatory if

lim
t→∞

t3
∫ ∞
t

q(s) ds <
3
16
.

If the last limit lies in the interval ( 3
16 , 12), Propositions 2.2,2.3 give no information

about oscillatory nature of (2.13). Moreover, if q(t) = γ
t4 , by Propositions 2.2,2.3

the Euler equation

y(IV ) =
γ

t4
y (2.14)

is oscillatory if γ > 36 and nonoscillatory if γ < 9
16 . Since it is known that (2.14)

is actually oscillatory if and only if γ ≤ 9
16 , this leads to the conjecture that the

“correct” oscillation constant is the constant appearing in non-oscillation criteria.
In this paper we show that it is really the case. In particular, as a consequence of
a general result, we get that (2.13) is oscillatory if limt→∞ t3 ∫∞t q(s) ds > 3

16 .
We finish this section with a statement which we need to treat the exceptional

case α ∈ {1, 3, . . . , 2n− 1}.
Proposition 2.4 ([8]). Suppose that q(t) ≥ 0 for large t, α ∈ {1, 3, . . . , 2n − 1},
m := 2n−1−α

2 and ρn,m := [(n− 1−m)!m!]2. If∫ ∞ (
q(t)− ρn,m

4t2n−α lg2 t

)
t2n−1−α lg t dt =∞ (2.15)

then equation (1.1) is oscillatory.

3. Oscillation criteria

The next theorem improves oscillation constants in the parts (i), (ii) of Proposi-
tion 2.2 and show that they can be replaced by (less) constants from their nonoscil-
latory counterparts given in Proposition 2.3.
Theorem 3.1. Equation (1.1) is oscillatory provided one of the following two con-
ditions holds:
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(i) α 6∈ {1, 3, . . . , 2n− 1}, α < 2n− 1, m ∈ {0, . . . , n− 1} and

lim
t→∞

t2n−1−α−2m

∫ ∞
t

q(s)s2m ds > νn,α,m =

∏n−1
j=0 (2n− 1− α− 2j)2

4n(2n− α− 1− 2m)
, (3.1)

(ii) α 6∈ {1, 3, . . . , 2n− 1}, m ∈ {0, . . . , n− 1}, α > 2m+ 1, and

lim
t→∞

t2m+1−α
(∫ t

1

q(s)s2(n−m−1) ds
)
> ζn,α,m =

∏n−1
j=0 (2n− α− 1− j)2

4n(α− 2m+ 1)
. (3.2)

Proof. If the limit in (3.1) or (3.2) equals ∞, equation (1.1) is oscillatory by
conditions (2.7) and (2.8) of Proposition 2.2. If these limits are finite (and equal
M), we will use Proposition 2.1, part (i), with

L(y) = (−1)(n)(tαy(n))(n) − γn,α
t2n−α

y, γn,α :=
n−1∏
j=0

(2n− 1− α− j
2

)2

, (3.3)

whereby (1.1) is rewritten into the form

(−1)(n)(tαy(n))(n) − γn,α
t2n−α

y =
(
q(t)− γn,α

t2n−α

)
y. (3.4)

Observe that the solution y = t
2n−1−α

2 of the equation L(y) = 0 with L given by
(3.3) is contained in the principal system of solutions (see [7, 11]) and hence it is
sufficient to show that ∫ ∞ (

q(t)− γn,α
t2n−α

)
t2n−1−α dt =∞.

First consider the case (i). Condition (3.1) implies that there exists ε > 0 and
T ∈ R such that ∫ ∞

t

q(s) ds >
νn,α,m + ε

t2n−1−α−2m

for t ≥ T and hence∫ b

T

t2n−2−α−2m
(∫ ∞

t

q(s)s2m ds
)
dt > (νn,α,m + ε) lg(b/T ).

Using this inequality and integration by parts we have∫ b

T

(
q(t)− γn,α

t2n−α

)
t2n−1−α dt

=
∫ b

T

q(t)t2n−1−α dt− γn,α lg(b/T )

= −t2n−1−α−2m

∫ ∞
t

q(s)s2m ds
∣∣∣b
T

+(2n− 1− α− 2m)
∫ b

T

t2n−2−α−2m

∫ ∞
t

q(s)s2m ds dtγn,α lg(b/T )

> [(2n− 1− α− 2m)(νn,α,m + ε)− γn,α] lg(b/T )

−t2n−1−α−2m

∫ ∞
t

q(s)s2m ds
∣∣∣b
T

= K − b2n−1−α−2m

∫ ∞
b

q(s)s2m ds+ ε lg(b/T )→∞,

as b→∞, where K = T 2n−1−α−2m ∫∞T q(s)s2m ds.
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Concerning the case (ii), (3.2) implies that there exists T ∈ R and ε > 0 such
that ∫ b

T

t2m−α
(∫ t

q(s)s2(n−m−1) ds

)
dt > (ζn,α,m + ε) lg(b/T )

and again using integration by parts∫ b

T

(
q(t)− γn,α

t2n−α

)
t2n−1−α dt

> t2n−1−α
∫ t

1

q(s) ds
∣∣∣b
T

+ [(α− 2n+ 1)(ζn,α,m + ε)− γn,α] lg b→∞

as b→∞. �
In the proof of the following theorem which deals with the “critical” case α ∈

{1, 3, . . . , 2n−1} we need to modify slightly the method used in the previous proof.
This is due to the fact that for critical values of α the equation

(−1)n(tαy(n))(n) =
λ

t2n−α
y (3.5)

is no longer conditionally oscillatory (it is non-oscillatory if and only if λ ≤ 0), this
property (conditional oscillation) has the equation

(−1)n(tαy(n))(n) =
λ

t2n−α lg2 t
y. (3.6)

In contrast to the case α 6∈ {1, 3, . . . , 2n − 1}, we do not know a solution of (3.6)
(like y = t(2n−1−α)/2 in case of (3.5)). This fact requires also the sign restriction on
the function q in Proposition 2.4 which appears also in the next theorem. According
to the parts (iii) of Propositions 2.2, 2.3, oscillation constant λ0 of (3.6) satisfies
ρn,m/4 ≤ λ0 ≤ ρn,m. The next theorem shows that this value of the oscillation
constant is ρn,m/4.

Theorem 3.2. Let α ∈ {1, 3, . . . , 2n − 1}, m := 2n−1−α
2 and q(t) ≥ 0 for large t.

Equation (1.1) is oscillatory provided

lim
t→∞

lg t
∫ ∞
t

q(s)s2m ds >
ρn,m

4
=

[(m!(n−m− 1)!]2

4
. (3.7)

Proof. By Proposition 2.4 we need to show that∫ ∞ (
q(t)− ρn,m

4t2n−α lg2 t

)
t2m lg t dt =∞.

Inequality (3.7) implies the existence of T ∈ R and ε > 0 such that

1
t

∫ ∞
t

q(s)s2m ds >
(ρn,m

4
+ ε
) 1
t lg t

, t ≥ T.

Integrating the obtained inequality we get∫ b

T

1
t

∫ ∞
t

q(s)s2m ds dt >
(ρn,m

4
+ ε
)

lg
( lg b

lg T
)

for b > T . If the limit in (3.7) equals ∞, equation (1.1) is oscillatory by the part
(iii) of Proposition 2.2. If this limit is finite, using integration by parts, similarly
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as in the previous proof∫ b

T

(
q(t)− ρn,m

4t2n−α lg2 t

)
t2m lg t dt

=
∫ b

T

q(t)t2m lg t dt− ρn,m
4

lg
( lg b

lg T
)

= − lg t
∫ ∞
t

q(s)s2m ds
∣∣∣b
T

+
∫ b

T

1
t

∫ ∞
t

q(s)s2m ds− ρn,m
4

lg
( lg b

lg T
)

> lg T
∫ ∞
T

q(s)s2m ds− lg b
∫ ∞
b

q(s)s2m ds+
(ρn,m

4
+ ε− ρn,m

4

)
lg
( lg b

lg T
)

= K + ε lg
( lg b

lg T
)
→∞ as b→∞,

where K is a real constant. �

4. Remarks

In the oscillation and non-oscillation criteria given in Propositions 2.2,2.3 only
the so-called polynomial solutions of the one-term equation(

tαy(n)
)(n) = 0 (4.1)

appeared, i. e. solutions of the form y = tj , j = 0, . . . , n − 1. In addition to
these solutions, equation (4.1) possesses also nonpolynomial solutions – the func-
tions satisfying y(n) = ti−α, i = 0, . . . , n − 1. These functions are again powers of
t if α 6∈ {1, 2 . . . , 2n} or also of the form y = ti lg t if α ∈ {1, 2, . . . , 2n − 1} (the
integer i attains the values depending on n and α). One can formulate oscillation
and non-oscillation criteria containing

∫∞
t
q(s)y2(s) ds or

∫ t
q(s)y2(s) ds depending

on the fact whether a given non-polynomial solution y of (4.1) is in the principal
or non-principal system of solutions. The situation is here similar as in the case of
polynomial solutions treated in Propositions 2.2, 2.3. The constant in an oscillation
criterion is bigger than the corresponding constant in its non-oscillatory counter-
part. To illustrate the situation, consider (1.1) with α ∈ {1, 3, . . . , 2n − 1}. Then
tm lg t, m = 2n−1−α

2 , is a non-polynomial solution of (4.1) and it is known, see [7],
that (1.1) is oscillatory if

lim
t→∞

1
lg t

∫ t

1

q(s)s2m lg2 s ds > ρn,m

and it is non-oscillatory if

lim
t→∞

1
lg t

∫ t

1

q(s)+s
2m lg2 s ds <

ρn,m
4

with ρn,m given in (2.9). Using exactly the same method as in the proof of Theorem
3.2 one can prove the following statement which shows that the “correct” oscillation
constant is ρn,m/4.
Theorem 4.1. Let α ∈ {1, 3, . . . , 2n− 1}, m = 2n−1−α

2 and q(t) ≥ 0 for large t. If

lim
t→∞

1
lg t

∫ t

1

q(s)s2m lg2 s ds >
ρn,m

4
=

[m!(n−m− 1)!]2

4

then equation (1.1) is oscillatory.
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(ii) In the previous part of the paper equation (1.1) is essentially viewed as a
perturbation of the (non-oscillatory) one-term equation (4.1). Presented oscillation
and non-oscillation criteria show that if the function q is “sufficiently positive”
(“not too positive”) then (1.1) becomes oscillatory (remains non-oscillatory). More
refined criteria can be obtained when (1.1) is regarded as a perturbation of the Euler
equation (3.5) in case α 6∈ {1, 3, . . . , 2n − 1} and of (3.6) if α ∈ {1, 3, . . . , 2n − 1}.
Also in this case constants in non-oscillation criteria are less than their oscillation
counterparts as shows the following statement. Its proof is given in [4, 7], see also
[6, 8] for related remarks.
Proposition 4.2. Suppose that α 6∈ {1, 3, . . . , 2n− 1}, γn,α is given in (3.3) and

ωn,α =
∏n−1
i=0 (λ− i)(λ+ n− α− i)− γn,α(

λ− 2n−1−α
2

)2 ∣∣∣
λ= 2n−1−α

2

.

Equation (1.1) is oscillatory if

lim
t→∞

lg t
∫ ∞
t

(
q(s)− γn,α

s2n−α

)
s2n−1−α ds > ωn,α

and it is nonoscillatory if

lim
t→∞

lg t
∫ ∞
t

(
q(s)− γn,α

s2n−α

)
+
s2n−1−α ds <

ωn,α
4

.

Also in this case we believe that the sharp oscillation constant is ωn,α
4 , but at

this moment we are able to prove this conjecture only in the special case n = 2,
α = 0. The proof of this statement is based on the following oscillation criterion
for the fourth order equation

y(IV ) − 9
16t4

y = p(t)y. (4.2)

Proposition 4.3. Suppose that p(t) ≥ 0 for large t. If∫ ∞ (
p(s)− 5

8s4 lg2 s

)
s3 lg s ds =∞ (4.3)

then (4.2) is oscillatory.
Using this proposition we can now prove sharpness of the constant ω2,0

4 = 5
8 .

Theorem 4.4. Suppose that q(t) ≥ 9
16t4 for large t. Equation (1.1) with n = 2 and

α = 0 is oscillatory if

lim
t→∞

lg t
∫ ∞
t

(
p(s)− 9

16s4

)
s3 >

ω2,0

4
=

5
8
. (4.4)

Proof. Denote by M the value of the limit in (4.4). If M = ∞, equation (1.1) is
oscillatory by Proposition 4.2. In case 5

8 < M <∞ we use Proposition 4.3 (where
the function q(t)− 9

16t4 plays the role of p(t)).
Inequality (4.4) implies the existence of ε > 0 and T ∈ R such that for t > T∫ ∞

t

(
q(s)− 9

16s4

)
s3 >

5
8 + ε

lg t
,

hence ∫ b

T

1
t

∫ ∞
t

(
q(s)− 9

16s4

)
s3 ds >

(5
8

+ ε
)

lg
(

lg
b

T

)
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for b > T . Integration by parts yields∫ ∞
T

(
q(s)− 9

16t4
− 5

8t4 lg2 t

)
t3 lg t dt

=
∫ b

T

(
q(t)− 9

16t4
)
t3 lg t dt− 5

8
lg
(

lg
b

T

)
= − lg t

∫ ∞
t

(
q(s)− 9

16s4

)
s3 ds

∣∣∣b
T

+
∫ b

T

1
t

(∫ ∞
t

(
q(s)− 9

16s4

)
s3 ds

)
dt

−5
8

lg
(

lg
b

T

)
> − lg t

∫ ∞
T

(
q(s)− 9

16s4

)
s3 ds

∣∣∣b
T

+ ε lg
(

lg
b

T

)
→∞

as b→∞. Hence, by Proposition 4.3, (1.1) with n = 2, α = 0 is oscillatory. �
(iii) The reason why we were able to prove Proposition 4.3 and hence also The-

orem 4.1 only in the particular case n = 2, α = 0 is that in this case we are able to
compute explicitly all solutions of the equation

y(IV ) − 9
16t4

y = 0 (4.5)

and using this information to detect the next logarithmic term for which the re-
sulting equation is conditionally oscillatory. More precisely, we were able to prove
that the equation

y(IV ) −
( 9

16t4
+

λ

t4 lg2 t

)
y = 0

is oscillatory if and only if λ > 5
8 . Concerning the general case, it is conjectured in

[5] that the equation

(−1)n
(
tαy(n)

)(n) − γn,α
t2n−α

y =
λ

t2n−α lg2 t
y (4.6)

is conditionally oscillatory. The verification of this conjecture, including the com-
putation of the explicit value of the oscillation constant of (4.6) is the subject of
the present investigation.
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[4] O. Došlý, Oscillation and spectral properties of a class of singular self-adjoint differential
operators, Math. Nachr. 188 (1997), 49-68.
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Department of Mathematics, Masaryk University,
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