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EXISTENCE OF INFINITELY MANY SOLUTIONS OF
p-LAPLACIAN EQUATIONS IN RY

JUNFANG ZHAO, XIANGQING LIU, JIAQUAN LIU

ABSTRACT. In this article, we study the p-Laplacian equation
—Apu=0, inRY,

1o}
\Vu|p72£ +a@)|ulP~?u = [u[7"%u, on IRY =RV,

wherel <p< N,p<g<p= Uy\,:lp)p, Ap =div(|Vu|P~2Vu) the p-Laplacian
operator, and the positive, finite function a(y) satisfies suitable decay assump-
tions at infinity. By using the truncation method, we prove the existence of

infinitely many solutions.

1. INTRODUCTION

In this article, we study the existence of infinitely many solutions of the p-
Laplacian equation in Rf ,

~Apu=0, inRY,

(1.1)

0
\Vu\p_Qa% +a(y)|ulP"?u = |u["?u, on ORY =RV,

where 1l < p < N, p<qg<p= %, Apu =div(|Vu[P72Vu) the p-Laplacian
operator, and the positive, finite function a(y) satisfies suitable decay assumptions
at infinity. L

For ¢ € C§°(RY), define a norm

1/p
ol =( [ vopazs [ lepay)”. (12)
RY ORY

Let W be the completion of C§°(RY) with respect to the above norm. Problem
(1.1) has a variational structure, given by the functional

1 1 1
I(u) = f/ [Vu|P dz + 7/ a(y)|ulP dy — 7/ lulfdy, weW. (1.3)
P Jry P Jory 7 JorY

The embedding W < L*(0RY),p < s < p is continuous, but not compact.
Consequently, the functional I does not satisfy the Palais-Smale condition. Note
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that the Sobolev space WP (RY) is continuously embedded into W, but the two
spaces WP(RY) and W are different.
The weak form of problem (1.1]) is as follows. Look for u € W satisfying

|
(1.4)

A function u € W is a weak solution if and only if u is a critical point of I.

Since the celebrated paper by Brezis and Nirenberg [3], there have been many
results for nonlinear problems, involving the lack of compactness. In particular,
Devillanova and Solimini [6] considered the problem

|Vu|p72VuV<pdx—|—/a . a(y)|ulP~2up dy z/(9 . |u|2updy, Vo e W.

N
N R RY

—Au=uv*"24 pu, in €

1.5
u=0, on 0, (15)

%,u > 0 and € is an open regular domain of RV, N > 3. On

the other hand, Cerami, Devillanova and Solimini [4] considered the subcritical
equation in RV,

where 2* =

—Au+a(z)u = [ulP"?u, in RV,

1.6
u(z) =0, as |z| — oco. (1.6)

Both problems and have a variational structure, but the Palais-Smale
condition is not satisfied by the corresponding functionals. In the case of ,
the lack of compactness is due to the scalings, and in the case due to the
translation. The authors of [6, 4] found the solutions as limits of solutions of suitable
approximated problems in bounded domains with subcritical growth. The fact that
one solves the approximated problems under suitable assumptions and with the use
of a local Pohozaev identity provides some extra information, which lead to a proof
of desired convergence. Finally, to obtain infinitely many solutions, one has to
distinguish the limits of the multiple approximated solutions. The estimate on the
Morse index plays a role in this last step.

As to problems involving p-Laplacian operator, we have no information on the
Morse index, therefore the approach of [6, 4] to distinguish the limit of solutions
cannot be extended in a straightforward way to problems involving p-Laplacian
operator with p # 2.

In this article, we use the truncation method. Following the idea in [10, @], we
first consider the truncated problems depending on a parameter A\, to which the
functionals corresponding satisfy the Palais-Smale condition. Then by a concen-
tration compactness analysis, similar to that in [6 4], in particular with the use of
a local Pohozaev identity, convergence theorem is proved. Our method is different
from [0, ] in the last step, the original problem and the approximated problems
share some common solutions, and more and more solutions of the original problem
are obtained as the parameter A tends to zero. In this way, we obtain infinitely
many solutions of the original problem. Up to our knowledge, there are few re-
sults concerning the existence of infinitely many solutions of the boundary value
problems in ]Rf involving the p-Laplacian operator.

To describe the approximated problem, we need to introduce some auxilary
functions. Let ¢ € C§°(R,[0,1]) be such that ¢(t) = 1 for |¢| < 1 and () = 0 for
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|t| > 2, is even and decreasing in [1,2]. For A > 0,y € ORY ~RY~1 s € R, define
ba(y, s) = $(A(L + |y|*)*/s),

S
m(y,5) = / ba(y,7) dr,
0
1 r q—r
F)\(ya 8) = a|s| |m)\(y,s)\ )

0
f)x(yv S) = %F)\(:% S),
where o = %, r € (p,q) is a fixed number. For A = 0, we understand mq(y, s) =
s, Fo(y,s) = %|s|‘1 and fo(y,s) = |s|7"2s. The approximated equation is

~Apu=0, inRY,

oy, Ou -2 N N-1 (1.8)
[Vul|P Vua—n +a(y)|uP"u = fa(y,uw), on IRy =R .
Problem (|1.8) has a variational structure, given by the functional
1 1 1
nw=> [ wardess [ a@ray-3 [ B 19)
P JrY D Jory q Jorly

The critical points of I are weak solutions of ([1.8]) satisfying
[ v vuTpde s [ a@lupupdy= [ Aledy (110)
R ORY ORY

N R

+ +
Notice that the function fy(y,u) decays polynomially as |y| — +oo (see Lemma
2.1), therefore the functional Iy satisfies the Palais-Smale condition. On the other
hand, if we have a good estimate, namely

lu(y)] < ATHA+[y|?) 72, y e aRY,

then, fr(y,u(y)) = |u|?"2u(y),y € ORY, and u will be a solution of the original
problem.

Now we state the assumptions on the potential function a.

(A1) a € CRN-LR).

(A2) There exist ag,a; > 0 such that ag < a(y) < a;,y € RV 7L

(A3) There exists ¢ > 1 such that %a(y) = (lz—l, Va) > 0and |Va(y)| < é%a(y),
for y € RN71 |y| > e

(Ad) Timyy oo | Za(y)|(1+[y[2)*/? = 400, a = =2,

Remark 1.1. By (A4), we have a(y) > c¢(1 + |y|)~@"!. For asumptions (A2) and

(A4) to be consistent, we need to assume o = % > 1; whence a > 1, we choose

B € (1,a). Then the function a(y) = 2 — (1 + |y|?)~*/? satisfies (A1)-(A4).
Here are our main results.

Theorem 1.2. Assumel <p<qg< N, a= % > 1. Assume (A1)-(A4). Given

M > 0, there exists p = (M) such that if u € W is a solution of (L.8), A >0 and
lull < M, then

u(y) < —(1+|y[*)~2 wyeRN "L

==



4 J. ZHAO, X. LIU, J. LIU EJDE-2019/87

Theorem 1.3. Assume 1 <p<qg< N, o= % > 1. Assume (A1)-(A4). Then
(1.1) has infinitely many solutions.

Throughout this article, we use the following notation: |- |, for the norm in
LP(RN=1) || - || for the norm in W, — for the strong convergence, — for the weak
convergence, Bf, = {z|z € RY, |z| < R}, Dgr = {yly € ORY =R "1 |y| < R}.

2. UNIFORM BOUNDS

As mentioned in the introduction, we use solutions of the truncated problems
as approximate solutions of the original problem. In this section, we prove uni-
form bounds for the approximate solutions by making a concentration compactness
analysis and with the help of local Pohozaev identity.

Let u, € W be a solution of (L1.8) with A = A, > 0, n = 1,2,.... Assume
|lu]l < M. By [13] Theorem 2.1], {u, } has a profile decomposition
Un =+ Y Uk(- = Ynk) + Tn, (2.1)
keA

where u,Ug,rn, € W, {yn 1} C ORY =RN71 k€ A and A is an index set. It holds
that

1) up =, un(- +ynk) = Upin W asn — oo,k € A.

2) |Ynk| = +00, |Yn.k — Yni| — 00 as n — 00, k,l € Ak # 1.

3) Jul 4+ pen Ukl < limp oo [unld, p < ¢ < p.

(4) |rnly = 0in LIRN =Y asn — oo, p < ¢ < p.

In the following lemma, we list some elementary properties of the auxiliary func-
tions.

Lemma 2.1. For (y,s) € RV~ xR and A > 0 the following holds:
(1> Sm}\(y78) > 0; |8|b)\<ya8) < |m)\(y78)‘
(2) min{|s|, 1 (1 + [y|>)7*/2} < |maly,s)| < min{[s|, 3(1 + |y[*)~*/?} and
ma(y,s) =s, if [yl < +(1+ [y|*) /2.

(3) [fa(y, s)] < [s["Hmaly, s)[" < [s]*".

(4> %Sf)\(yﬂs) - F,\(y,S) = %|s|r_l‘m/\(y7S)|q_r—1b)\<yaS) > 0.

(5) Vym)\(yas) = _aﬁ(m)\(yvs) - Sb,\(y,S))

VyF)x(y78) = _(1 - g)

(
(
(

Y T qg—r—1
a s|" ma(y, s mx(y, s) — sba(y, s)|.
1 |y|2| | | Ay )‘ Im(y, s) N¢ )|

Proof. The proof is elementary and straightforward. We prove only (3)—(5). For
(3) and (4), we have

o 3Fx(y,$)
f)\(y5s)_ as
iy a-r

s|"2slma(y, )17 + g e, s)[

m(y, $)ba (Y, 5),

since 0 < 229 < 1 wo have
= mx(y,s) — 7

N

r
—|

[fA(y,s)] < .

[s" may, )77 < |77

s|"Hma(y, s)[ 777

_ _ T
s ma (y, 5)|? T+"T|



EJDE-2019/87 p-LAPLACIAN EQUATIONS IN ]Rf 5

and
1 1 1 r q—r—2
;ka(yvs) - F)\(yvs) = (; - 5)|s| s|m>\(y7s)| mA(y,s)bA(y,s)
1 1
= (3= D)l )l 0 8) 2 0.

For (5), by the definition of my, we have

meya /ka Yy, T

- / WO+ [y2)2r) A1+ [y2) 3 r - aydr

= [Capt rava+ e
o “TT P

y o ° o
= SV P2 = [ 6O+ ) 2r) dr
“17 1+ [y? 0
Yy
= —am(mk(y: 5) — sba(y, 3))
Thus
q— —r—
VyF)\(y,s) = (yas)‘q 2m)\(y78)vym>\(yvs)
r Y r —r—1
=—(1-- q — sb .
( q)a1+|y|2|s| |m>\(y75)‘ |m>\(ya S) s A(y,5)|
The proof is complete. O

In the followmg few lemmas we study the profile decomposition [2.1] In partic-
ular in Lemmas [2.4] and 2.5] we prove that the weak limit functlons u, Uy, satisfy
differential 1nequahty and decay polynomially at the infinity.

Lemma 2.2. Let u € W be a solution of (1.8), A > 0. Then v = |u| satisfies the
differential inequality

/ |Vv|p72VUV<pdx+/ a(y)vpflgodyg/ v pdy, (2.2)
RY oRY oRY

R

for o € W and ¢ > 0.

Proof. This lemma is somewhat similar to Kato’s inequality setting that if u €
HY(RY) (for instance), then Alu| > sign u - Au.

To prove Lemma we set v, = (u? +e2)1/2 —¢,e > 0. Then v. — v in W as
e — 0. For ¢ € C§°(RY), ¢ > 0 we have

/ |Vo|P~2Vu. Vi dz
RY

_ p—2 uVu
= /Rf |Vul (RS Vpdz

— p—2 v _ S
7/]RN |Vl VUV((U2+€2)1/2¢> dx /Rﬁf |Vul (u2+€2)1/2cpdx

+
u

< p—2 S —
,/RN [Vul VUV<(U2+€2)1/2¢> dx

+
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(7 (7
= a(y)ulP"Pu—s s dy +/ Iyw) ——5gmedy
L (2T fo Py

v
< el T 5d +/ -l ,dy.
- /SRf a(y)v (U2+62)1/2S0 Y aRfv (1}24—82)1/2@ Y

Here we used that |f(y,s)| < |s|97!. Let e — 0 in in the above inequality, by
Lebesgue’s dominated convergence theorem, we obtain ([2.2) for ¢ € C§°(RY),
¢ > 0. By a density argument, (2.2)) holds for ¢ € W, ¢ > 0. O

Lemma 2.3. Let u, € W be a solution of (L.8) with A\ =X, >0, n=1,2,...,
{yn} C 8Rf ~ RN=L Suppose U, = up(- +yn) — U in W. Then t, — U in W
locally (equivalently w, — U in VVlip(]Rf))

C

Proof. ., satisfies the equation

/ |Vﬂn\p_2VEnV<pdx+/ a(y + yn)|tn [P 2Unp dy
RY oRY (2.3)
= [ Pt yedn)edy
ORY
1 for || < R,

for p € W. Let R > 0, ¢ € CSO(@, [0,1]) such that ¢(z) =
1 < ¢ < pandin

¢(xz) = 0 for |z| > 2R. Since @, converges in L (9RY),

loc

Lq

loc

(RY),1 < ¢ < p, we have

/ (VR P72V, — |V [P~ 2V, Vi, — Vi) ¢ da
RN

;
= —/ (|Vﬂn|p*2Vﬂn - |Vﬂm|p72Vﬂm,V¢) (Up, — Upy) dz
Ry
* /3]RN (a(y + y")|an|p_2ﬂn —a(y+ ym)|am|p_2ﬂm) (Uy, — U ) dy
+ (2.4)
[ 0 300) = B+ ) G = )
+

U 1/p . 1/p
< c(/ [, — um|pdm) + c(/ [t — um\pdy>
B, D

2R 2R
_ _ 1/q
+c(/ |un—um|qdy) —0, asn,m — oo.
D2r
The following elementary inequalities are very useful (see [5]). There exists a con-
stant ¢, v such that for &,n € RV,
(|§|p72€ - |Ti‘p7277,§ - 7]) Z cp,N|£ - 77|p» lfp Z 23
_2-p
(1€P~2 = [nl"~*n,& = n) = cpvl€ = nl* (€ +nl")" 7, if1<p<2.
For p > 2, by (2.4) and (2.5)), we have
/ |V, — Vi, |P dz < c/ (|Vn|P~2V Uy, — [V |P 2 Vi, Vi, — Vi, ) dz
B} RY

R +
— 0

(2.5)
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as n,m — oo. For 1 < p <2 by (2.4) and (2.5)), we have

/+ Vel — Vi |? dz
B

R

<e / (VP20 — [Vt [P Vi, Vit — V)72
B+

R

X (|Vp [P + |V |P) 2" dz

SO o~ _ _ P/2
< c( (IVa, |P~*Vu,, — |V, [P~ Vi, Vi, — Vi) dx)
Bf,

TP TP 2
x (/B;(|wn| + Vi) do)

SC(/B

— 0, asn,m — oo.

Hence {u,} converges locally in W (and in WP (REY)). (]

/2
(Vi [P~V ity — Vit [P~ Vi, Vit — Vi) dx)p

+
2R

Lemma 2.4. Let the profile decomposition (2.1) hold for {u,}. Then
(1) v =|ul|, Vi = |Ux| satisfy the differential inequalities

/ P pdy < / W lody,  (2.6)
RY RY ORY

for o e W and ¢ > 0.

/ |vvk\P—2vvkwdx+ao/ V,f_lwdyg/ VI o dy, (2.7)
RY ORY ORY

y
for o € W and ¢ > 0.
(2) The index set A is finite.
Proof. (1) Denote v,, = |u,|. By Lemma vy, satisfies the differential inequality
/ |V, P2V, Ve dr + ao/ P o dy < / vl tody (2.8)
RY oRY oRY

for p € W and ¢ > 0. By Lemma 2.3 u,, — uin W locally, consequently v,, — v in
W locally. Take the limit n — oo in (2.8), we obtain for p € C§°(RY ), > 0.
By a density argument, this inequality holds for ¢ € W, ¢ > 0. Similarly, we can
prove that Vj satisfies the inequality .

(2) By and the Sobolev embedding theorem,

p/q _
(/ ) gsml(/N |vvk|pdx+/ VP dy) §c/ vy,
ORY RYY ORY ORY

where S, , is the Sobolev constant for the embedding from W to L?(ORY):
Pd rd
5 e 1909 -+ [l dy

= 1mn
4 uew\{o} (fBM |ule dy)r/a

|VolP~2 VoV dz + ag /
12)

Hence [ypn [Uk|?dy = [opn VI dy > m for some m > 0. By the property (3) of the
+ +
decomposition (2.1)), A is finite. O
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Lemma 2.5. Let v € W, v > 0 satisfy the differential inequality (2.6)),

J

for p € W and p > 0. Then there exists a positive constant ¢ such that

|Vo|P2VuVedz + ao/ P lpdy < / v lpdy
N ORY ORY

v(e) < e(1 + |z)) "7,

N—
/ |VolP de < ¢R™ P*f,
RY\BS

_N-p
/ vPdy < cR™P-1.
ORN\Dp

Proof. The proof is divided into three steps, by using Moser’s iteration and the
Wolff potential for the p-Laplacian equation.

Step 1. Use Moser’s iteration to prove that, given € > 0, there exists Ry > 0 such
that

v(y) <e, ifyedRY, |yl > Ro. (2.9)
In particular, v?7P(y) < %ao, ify e 3R_I~\_[, ly| > Ro. We prove that
N
o]z () < c(|v|Lp(Bl+(y)) + |U|L§(Dl(y))), y € ORY, (2.10)
where d = P=*2 > 1. Since v € L (RY) N L (IRY), we have

_ N
|U|LP(BJ%(y)) + \”\Lg(D%(y)) —0, asyl —» 400, yeIRY.

Hence, the estimate (2.9)) follows from (2.10). o
Now, we prove (2.10) by using Moser’s iteration. Let ¢ € C§°(RY), r > 1. Take
vP(r=D+1P as the test function in (2.6)),

J

By Holder inequality we have

|Vo[P~2VoV (vPr=DH1oP) dz + / VPP dy < c/ vITPYPT P dy.

N N N
v ORY ORY

1
S [ veerdes [ @eray
" JRy oRY
S/ UpT|V<p|pd:L'+c/ vITPYPT P dy
RY oRY
i (2.11)

4=p P—q+p

_ - __pPPD i
< c/ VP |V|P dx + c(/ P dy) (/ (v"p) PP dy)
RY oRY oRY

2 pd/p
< C/ V|Vl da + C(/ (v"e)° dy) :
RY ORY
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By the Sobolev embedding theorem,
N p/p" N p/P
(/Rf(vgo) dx) +(/B]Rf(v(p) dy)
< C/R |V(v7"<p)’pd33 (2.12)

N
+
T T P d/ﬁ
< cr”( P VplP dx + (v"p)d dy) .
RY ORY

Now choose yg € 8Rf , assume that the support of the function ¢ € C5°(RY) is

contained in Ba(yo) = {z |z € RN, |z — yo| < 2}. Then
1 . -
(/ (vrgo)pd dx) < (c/ (vrgo)p dx)p .
RY REY
Since pd = p — g+ p < p*. By (2.12) and (2.13)), we obtain
1 NS
ws{( [ 0rorta)™, ([ o))
RY ORY
_ (2.14)

([ s ([ o))
* +

(2.13)

Denote
1 1
Sn:i—’_W’ ’I’L:O,l,2,...,

Bf ={z €RY : o —yo| <sn},

D, ={y € ORY : |y — yo| < sa}.
1

Let ¢ = ¢, be such that ¢, = 1 forz € Bf | s, =0forz ¢ Bl and [Ve,| < 5,

T:T’n:dn' Then by ’

1 _ _d
max { (/ EREY dx) Tn41P (/ o E dy) Tnt1B }
b
4
B Deiy
_d_

Sn4+1

< () T {(([ o @)™, ( [ia)™)
o0 o U Dan (2.15)
ng o\ -
S};[O(CQ dy) T maX{(/B1+ vpdx) , (/Dlyd dy) }
—cmax{(/B:r vpdx)l/p, (/Dl v¥ dy)d/ﬁ}.

Taking the limit n — oo in ([2.15)), we obtain the desired estimate.
Step 2. Using the Wolff potential for the p-Laplacian operator in Rf we prove

that there exists ¢ > 0 such that
V() <c(l+[al)" 7, zeRY.

Let Ry be as defined in Step 1,
(2.16)

1
vIP(y) < gao. fory € ORY, [y > Ro.
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Choose K > 0 large enough such that
K > |a(y)o?~" — o7 0Pt fory € ORY, |y < Ry. (2.17)
Let w € W be the solution of the p-Laplacian equation
—A,w=0, inRY,

w (2.18)
T = g, on GRf,

where g > 0,¢9(y) =0 if |y| > Ry, 9(y) = K if |y| < Ro. For y € 8Rf7 lyl > Ry, by
the choice of K,

((a(y)vp‘1 i) + g) (v—w)y = ((a(y)v”‘1 —0?h) + K) (v —w)
> P o —w)y > (v—w)h.
For y € ORY, |y| > Ry, by the choice of Ry,
((a(y)o"~" =v17) + g)(v — w)s = (aly)o? ™ —v? ) (v —w)s

>

[Vw[P~?

agv? (v —w)y >

DO | =

We have
0> / (|Vv|p72VU - |Vw|p*2Vw, V(v — w)+> dz
RN

+

" /aw <(a(y)vp_1 —0?h) + g) (v —w)4 dy

> / (|Vv|p—2vv — |Vw[P~2Vw, V(v — w)+) dz + c/ (v —w)h dy,
RY ORY

hence L
v(z) <w(z), forzeRY. (2.19)
We claim that . L
w(x) < e(l+|z)" 71, for z € RY. (2.20)
Since W is bounded, we need only to prove for |x| > 2Ry. By the Wolff
potential for the p-Laplacian operator in Rﬁ\_’ 12, 8, Corollary 4.13],

<1 1/p1
w(z) < c/ (N—_/ gdy) —dt
o TP B (@)nory t

1 / 1l
c ( — g dy) —dt,
/0 NP Bt (z)Nsupp g ¢

where suppg = Dg, = {yly € ORY,|y| < Ro}. If |z| > 2Ry and ¢ < 1|z|, then
Bi(z) N Dg, = 0, hence

oo 1 =1l
w(z) < c/ ( — / gdy) —dt
Lia| MNP By (@) Dr, t

e 1 |
SC/ (7,/ gdy) —dt
3al MY g t

_N-p
=clz|” 71, for |z| > 2R.
Consequently, we obtain (2.20]) for some ¢ > 0.
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Step 3. We prove that there exists ¢ > 0 such that

N—-p

/ [VolP de < ch%, / vPdy < cR™ Pt
RY\BY, RN\Dg

Choose ¢ € C*(RY,[0,1]) such that ¢(z) = 0,|z| < iR, o(z) = 1, |z| > R,
V| < 4/R. Take veP as test function in (2.6).

/ IVo[P~2VoV (ve?) do + ao/ VPP dy S/ vipP dy.
RY

ORY oRY
Assume R > 2Ry, then

/ |Vv|pd:c+a0/ vP dy
RN\BY, ORN\Dg

§/ |Vv|pg0pdx+a0/ vPP dy
RY RN

+

_p/
RY

1
< E/ [VolPeP dz + c/ vP|Vo|P dx + fao/ PP dy,
N N 2 BRQI

|Vv|p*2Vvv'g0p*1Vg0dm+/ vipP dy
oRY

RY RY
hence
/ |Vv\pdx+/ Updygc/ VP |Vp|P de
RY\BY, ORN\Dg RY
< chp/ vP dzx
Rf\B%R
< cRP(R71)’RY = cR™ 71,
The proof is complete. O

Remark 2.6. Let v,, € W, v, > 0 and satisfy the differential inequality (2.6), n =
1,2,.... Suppose v, — v in LY(ORY) and L"(RN~! x (0,2)) for some r € (p,p*),
then by checking the proof of Lemma [2.5] v,, is uniformly bounded.

Lemma 2.7. Let u, € W be a solution of the Problem (1.8) with A= X, > 0,n =
1,2,.... Assume {u,} is bounded in W and the profile decomposition (2.1)) holds.
Then there exists a positive constant ¢, independent of n, such that

()] < c(1+ dp(z)) 7 F

/( ) |Vu,|Pdzr < cR,
Qy

I

dn(x) = min{|x|v |£C - yn,k|a ke A}v
Qg) = {33 € Rf Ddp () > R} = Rf \ (BTQU UkeAFE(yn,k)), (2.21)
i = {y € ORY : d,(y) > R} = ORY \ (Dr UUkeaDr(ynr))-

o |t [P da < cllr%7
R

where
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Proof. The proof is similar to that of Lemma [2.5] and is divided into three steps.
Step 1. Given ¢ > 0, there exists Ry > 0, independent of n, such that
lun(y)| <&, ify € ORY, dn(x) > Ro. (2.22)
In particular, |u,(y)|?F < 1ao for y € ORY, d, () > Ry.
As in Step 1 of the proof of Lemma we have

_ N
[unlzo= 0y ) < ellunlioimg iy + lunl 5 ()0 Y € ORY.

By Lemma and the property (4) of the profile decomposition (2.1)), it holds for
p<r<p,

/<n> [un" dy
ER

<cf rdyreX [ -mal dye [l
= = =m

keA (2.23)
Sc/ |u|rdy+62/ |Uk|rdy+c/ |rn|Tdy
RN\BY, ken Y ORY\Dg ORY

< R 4 0(1) = 0y (1) + on(1).

Note that the space W is continuously embedded into WP (RN_1 x (0, 2)) Let D
be the translation group

D={g:|gu(-) =u(-—y), y € ORY =RN"1 x {0}}. (2.24)

The embedding from W'?(RN~1 x (0,2)) into L"(RV~! x (0,2)), p < r < p*, is
cocompact with respect to the group D. So we may assume r,, — 0 in L"(RY ! x
(0,2)), p < r < p*. In parallel to (2.23)), we have

/ |, |” da

= % (0,2)

< c/ |u|" dx + ¢ / [tn (- = Ynix)|P da
£ % (0,2) Z b

ke /S5 %(0.2) (2.25)
+ c/ |rn|" dy
= % (0,2)

= 03(1) =+ On(l) .

For y € Egg), Bf (y) ESQI x (0,2),D1(y) C ZSQI. The estimate (2.22)) follows
from (|2.23)),(2.21)) and (2.25|).

Step 2. There exists C' > 0, independent of n, such that

lun(z)| < C(1+dy(x)) > 1, z€RY. (2.26)
Let Ry be as defined in Step 1,
_ 1
[un (y)|77F < §a07 fory € &Rf, dn(y) > Ro.

Choose K > 0 large enough such that
k> (a(y)lunlP~?un) = [fx, (g un)| + [unl?™, fory € ORY, dn(y) < Ro.
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Let w, € W be the solution of the p-Laplacian equation
—Apw, =0, in Rf,

Owy, (2.27)

|an|p_2a—n =g,, on aRf,

where g, > 0, gn(y) = 0 if d,(y) > Ro,9n(y) = R if dn(y) < Ro. For y € BR-}A—]?
dn(y) > Ry, by the choice of K,

(a(y)|un|p_2un — fan (W, un) + gn) (Up, — wp )+

> (aly) a2t = f, () + K ) (= wa) ¢
> [unlP ™ (un = wn )4 > (un — wn )4

For y € ORY, d,,(y) > Ry, by the choice of Ry,
+

y)
(aw) a2 = £, (s un) + 9) (= w2

ay)lunl” 1t = fa, (g un) ) (= )+

(
> (al) "™ = | ) (1 = w0
%

1
> —aglun [P (up — wp)4 > 50(tn = wp) 1
We have
0= —/ (Apun, — Aptp ) (Uy, — wy) 4+ dz
=y
= / (|Vun|p72Vun — Vw,|P2Vw,, V(u, — wn)+) dx
R
[ () unl? 2 = £, (00 (= )y
R
> / (|Vun|p_2Vun — Vw, P2V w,, V(u, — wn)+> dz
Y
+ C/ (un - wn)p dy;
oRY
hence

U () < wy(z), for z € RY. (2.28)

Similarly we have —u,(z) < wy(z) for x € @
We claim that

wp(z) < c(1+ dn(x))f%, for z € @ (2.29)

Since w,, is uniformly bounded, we need only to prove (2.29) for = € @, dn(z) >
2Ry. Again by the Wolff potential for the p-Laplacian in Rf , we have

wy(x) < c/ ( — / In dy) e,
0 tN-p By (x)Nsupp gn, t

where supp g = D, Urea Dy (k) = {yly € ORY, du(y) < Ro}.
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Ifx e @, dn(x) > 2Rp and t < 2d,(z), then B(z) Nsuppg = 0, hence

1
2

oo 1 =l
wp(x) < C/ ( — / n dy) —dt,
3dn () tN=p By (z)Nsupp gn t

< /Oo ( ! / d)ﬁldt 477 ()
>cC N—p gn AY Tat=c z),
Zdn(z) NP SUpp gn " t "

for dy,(z) > 2Ry. Consequently, we obtain (2.29) for some ¢ > 0.
Step 3. There exists ¢ > 0, independent of n, such that

—p
10

N— N
/ |V, [P dz < cR™ 51, / |un P dy < cR™ »-
9 Bg\BgR

The proof is similar to that of Lemma Choose ¢,, € C§°(RY, [0, 1]) such that
on(x) =0, if dy(z) < AR, on(z) =1, if dy(z) > R, [Vip,| < 4. Testing equation
(1.8) by une? with A = A, and assuming R > 2Ry, we have

J

|Vu,|P dz —|—/ |t [P dz < c/ [V, |P|Von|P dz
) () RN

(n
R R +

< CR_p/ |t [P dz

N-p —-p
1 T,

<cRP(R 7T )PRN =cR™ vt

We follow the idea in [6] to derive a local Pohozaev type identity with a form as in
[4], which is much closer to our case. O

Lemma 2.8. Let u € W be a solution of Problem (L.§)), t € ORY and ¢ € C§° (@)
Then the following PohoZaev type identity holds

1
s evaledy = [ o) eV, B0 dy
D Jory ORY
1
— [ WP de - [ Var e va(Tu Ve de  (230)
D Jry RY
1
[PV dy+ [ R Vel
D Jor¥y ORY
Proof. Taking (t, Vu)e as the test function in equation (1.10) and integrating by
parts, we obtain the identity. O

Assume that u,, € W is a solution of the problem with A = X\, > 0,
lunl| < M, n = 1,2,.... Assume that the profile decomposition for the
sequence {u,} holds.

Up = U+ Z Uk( - yn,k:) + rn.
keA
Without loss of generality, we assume |y, 1| = min {|yn |,k € A}. Denote y, =
Yn,1- According to [4], we can construct a sequence of cones Cy,, having vertex %yn
and generated by the semiball Bf; (yy) as follows:

1 1
Ch= {w € Rf Tw = iynJr/\(If iyn), T € Bgn(yn),/\ > 0},
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where R,, satisfies

P lynl ynl 1

7'7:n<Rn<R n—T—7" aliow———

ko 2 =l st ETT T TE e )

and ¢ is the constant in the definition (A4), A = {1,2,...,ko}. o
The cone C;} has the following property, let 9C;!" be the boundary of C;f in RY,

then

9Cy N{BY, UUkeaBY, (ynr)} =0. (2.31)

n

Now we apply the Pohozaev type identity (2.31). Take u = uy,, t = t, = ‘Z:‘ and
© = X¢r, where x,pr € C$°(RY) such that x(z) = 0 for z € C;F, x(z) = 1 for
x € CF and dist(z,0C;}") > 1, pr(z) =1 for |z| < R, pr(z) = 0 for |z| > 2R. Let
R — o0, we obtain

1
*/ (tn,Vu)|un|pxdy—/ (tns Vy i, (s un)x) dy
D Jor¥ ORY
1
[ IVl V0 et [ TP 0, V) (Vi T A (232
D JrY RY

1
. / a(y) [unl? (b, V) dy + / Fa, (4 t) (b V) dy.
D Jory ORY

By (2.31)) and the definition of x, the support of V' is contained in the set Qg)UZg)
with R = 1r,—1. By Lemma the right-hand side of (2.32]) decays polynomially.
More precisely,

1

—7/ [V, |?(tn, V) dx—f—/ |Vt |P~2(tn, V) (Vag, V) dz
P JrY RY

1

—f/ a(y)|unl?(tn, VX) dy+/ F, (y,un)(t, VX)dy
D Jory ORY

<c( [ 1Vunlrdet [ G+ fun) dy)
o =)

N—p Nep
—1

N— _
<eR™v <ery 7 < clyn| T

(2.33)

To estimate the left-hand side of (2.32)), we use some estimates from [4]. By [4]
Lemma 4.2],

%a(y) for y € C;F N ORY.

| —

(tn,y) 20, (tn, Val(y)) =
Moreover, by Lemma 2.1(5),

(tn,VyF)\(y,un)) = —‘VyFA(ymn)(tm hyj—‘)‘ <0, foryce crn BRf.
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Hence, the left-hand side of (2.33)) can be as estimated as

1
1 / (b, V)P dy — / (b, Vo P, (5, )Xy
D JorY ORY
1
il il Pyd
Z % Jogs ara(y)lunl xdy (2.34)

1 0
> — inf —a/ lun [P dy,
2p D(ya) O Jpy(y,)

where Dp,(y,) C Eg) - CTJ{, L is a large number such that

/ AP dy = m > 0,
Dp

Since U, = up(- — yn) = Ur in W, we have

/ |un\de=/ \ﬂn\pdy%/ UL [P dy = m. (2.35)
Dr(yn) Dy, Dr

By (2.34), (2.35)), the left-hand side of ([2.33)),
1
];/ . (tha)\unlpxdy—/ s Vy By, (y,un))x dy
Ok Ok (2.36)
. da
> — inf —.
4p DL (yn) Or
Finally by (2.33), )
1 inf da
4p Dr(yn) OT
which contradicts (A4). Thus A = (), and by the profile decomposition (2.1)
Up = U+ T, = uin Lq(aRf). As mentioned before, the space W is continuously
embedded into WP (RV~! x (0,2)), and in turn W7 (RN =1 x [0,2]) is embedded
into L* (RNfl x [0, 2]),p < s < p*, compactly with respect to the translation group
D. We also have u,, — u in L® (RN*I X [0,2]),]) < s < p*. Namely we have the
following proposition.

Proposition 2.9. Let u, € W be a solution of (1.8)) with A = A\p,,n =1,2,....
Assume |Juy|| < M,u, — w in W. Then u, — u in L*(ORY),p < s < p and in
L (RN x(0,2), p< s <p*.

Proof of Theorem[I.4 We use an indirect argument. Let u, € W be a solution of
Problem (1.8) with A = A, >0, |Ju,|| < M, n=1,2,..., but it holds that

N-p
< c|yn| Pl

1 N-p
sup 7(1 =+ |y|) Pt |Un(y)| > 1. (2'37)
y€ORY n

By Proposition Uy, — u in LS(R{X), p < s < pandin L5 (RN~ x (0,2)),
p < s < p*, the index set A in the profile decomposition for the sequence {u,} is
empty. Hence dy,(z) = min{|z|, |z — yn x|,k € A} = ||, and by Lemma [2.7 there
exists ¢ > 0, independent of n, such that
N—
un(y)] < e(1+]y))" >, yedRY,

we arrive at a contradiction. O
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Corollary 2.10. Let u,, € W be a solution of (L.8) with A=\, >0, n=1,2....
Assume Iy (un,) < M, then there exists a constant ¢ > 0 independent of n, such
that

_N-p
lun(y)] < ec(l+y|))" 7t forye 8Rf. (2.38)
Moreover, up to a subsequence, {uy} converges in W.

Proof. By Lemma 4), we have

M > Iy, (un) = Ix, (u,) — %(D[An (un), un)

~ G- ([ wup et [ atulra)
p r REY ORY
1 1 r+1 qg—r—1
o 5) _— [wn|" " Im,, (Y, un)| b, (y, u,) dy
w

> (1—1)(/ |Vun|pd:z:+/ ua” dy).
r ]Rf aRf

The sequence {u,} is bounded in W. By Theorem (2.38]) holds. Moreover, by
Proposition up to a subsequence {u,} converges in L4(ORY ), and

/ (|Vtn|P"2Vuy — |Vt P2V, Vi, — Vi, ) dz
R

N
+

+ / a(y)(|un|p72un - |um|p72um)(un - um) dy
oRY

= [ U 0) = Fa (50— )
oRY

< c/ (|t |7+ |9 [ty — | dy
R
< clu, — umILq(BM) —0 asn,m— oo.

The sequence {u,} converges in W. O

3. EXISTENCE OF INFINITELY MANY SOLUTIONS

In this section, we prove the existence of infinitely many solutions of the original
problem . First we construct a sequence of critical values of the truncated
functionals Iy, A > 0, by the symmetric mountain pass lemma due to Ambosetti
and Rabinowitz [I].

Lemma 3.1. The functional I, A > 0 satisfies the Palais-Smale condition.
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Proof. Let {u,} C W be a Palais-Smale sequence of I. By Lemma [2.1] (4), hence
we have

I (un) — %<DIA(’[L"), un>

1 1
B race s

11 - vt (3.1)
FG =) [ Tl ) ) dy
T 9 JorY
1 1 » »
> (=) ([ Vel det [ aly)luapdy).
p T NJRY oRY
Hence {u,} is bounded in W. Assume u, — u in W, u, — u in L (9RY),

p < s < p. By Lemma 2.1} we have

/ (|Vun P2V, — |V [PV, Vi, — Vi, ) dz
RN

+

n / () (Pt — [ttn P21 ) (a1 — ) ly
ORY

+

- / (Fr (s ttn) — () (e — ) ly
ORY
2 —@ a-r r—1 r—1
< [ G ) Gl ol e = wldy (3
+
SCR_%(I’_T)/ (‘un‘r+|um|r) dy
ORN\Dg

r—1 1/r
Ol [ (ual + a1 0) T ([ =l )
R

R
< cR™ 710" 4 CRUn — Um|Lr(D,)

—0 asn,m— 0.

By (3.2) and the elementary inequalities (2.5), {u,} is a Cauchy sequence, hence a
convergent sequence in W. (]

Now we define a sequence of critical values of Iy as follows.

Ck ()\)

Algllfkilelgb\(u)’ A>0,k=1,2,..., (3.3)
where

I, ={ACW:Aiscompact , —A=A, y(Ano~'(S,)) >k, Vo € G},
G={oecCW,W):0(—u)=—0c(u), Vu € W;o(u) =u, if I (u) < 0},
Sp={u e W :|lul = p},

where p > 0 is a fixed number to be chosen as follows. For v € S, we have

1 1 1
B = ([ 1verdess [ ardy) <> [ ity
P NJRY D Jory q JorY

1
> cop” —e1p? > §Coppa
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provided ¢1p97? < c¢o and I(u) = Leop? for u € S,. The following proposition is
known, see [T}, 2], [11].

Proposition 3.2. Assume 0 < A < 1. Then
(1) ex(N) >0, k=1,2,... are critical values of Iy.
(2) If ck(A) = ckr1(A) = -+ = Cram—1(A) = ¢, then y(K:(I\)) = m, where
K (I\) = {ulu € W, DI\(u) = 0, Ix(u) = c}.
(3) Assume p = 2. Then there exists u € W such that Ix(u) = cx(N), DIx(u) =
0 and m*(u) > k, where m*(-) is the augmented Morse index.

Given k € N, by Corollary there exists pr > 0 such that if 0 < A < 1,
u€ W, DI\(u) =0, In(u) = cx(N) < ag := cx(1), then

1 _ _N-p
u(y)| < ﬁ(l +y*) 70,y e dRY. (3.4)

Choose 0 < A\ < min{l, pr}. Let ug(A),...,ur(A) be the solutions of with
A = A, corresponding to the critical values ¢;(A\g) < -+ < ¢x(Ag). Since Iy is
increasing in A, we have c;(\g) < -+ < (M) < ag, u1(Ag), ..., uk(Ax) satisfy the
estimate 7 hence they are solutions of the original problem . Now k is
arbitrary, we obtain infinitely many solutions of Problem .

Remark 3.3. We have proved that Problem (1.1)) has infinite many solutions. We
can prove a little more, namely claim the functional I has an infinitely sequence of
critical values.

We use an indirect argument. Assume I has only a finite number of critical
values ¢q,...,c;. Denote K = {ulu € W,DI(u) = 0}. Then by Corollary
K is compact. Assume v(K) = m < 4o00. For 0 < A < 1, the functional I, has
critical values ¢1(\) < ca(A) < -+ < erme1(A). If X is sufficiently small, they will
be critical values of I. We claim ¢1(A) < ¢m41(A) < -+ < Ckmy1(A). Otherwise
suppose, say ¢ = ¢1(A) = ¢pe1(N). By Proposition v(K.) > m + 1, where
K. = {u|lu € W,DI)(u) = 0,Ix(u) = ¢} C K, which is a contradiction. We obtain
k 4 1 different critical values of I. Since k is arbitrary, I has a infinite sequence of
critical values.

For p = 2, by the information on the Morse index, one can prove that I has an
unbounded sequence of critical values(see [0} []).
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